US 20170091008A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0091008 A1

Cherbakov et al. 43) Pub. Date: Mar. 30, 2017

(54) DETECTING AND ANALYZING (52) U.S. CL.
PERFORMANCE ANOMALIES OF CPC ... GO6F 11/079 (2013.01); GO6F 11/0709
CLIENT-SERVER BASED APPLICATIONS (2013.01); GO6N 99/005 (2013.01)

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
ARMONK, NY (US)

(57) ABSTRACT

An approach 1s provided for detecting and analyzing an
(72) Inventors: Luba Cherbakov, Mclean, VA (US): anomaly 1n application performance in a client-server con-
Kuntal Dey, New, Delhi (I,N); Sougz;ta nection via a network. A rgquest time agd an Internet
Mukherjea, New Delhi (IN); Nitendra Protocol (IP) address of the client are determined. Based on

Rajput, Haryana (IN); Venkatraman the request time and the IP address, log entries relevant to

: . the request are selected. A response code, a round trip

Ramakrishna, New Deltu (IN) latency time (RTT) of the response, and an indication of

(21) Appl. No.: 14/869,129 whether the connection timed out are determined. Based on
the status code, the RTT, and the indication of whether

(22) Filed: Sep. 29, 2015 connection timed out, the anomaly is detected. Based on

temporal and textual analyses of log entries associated with

Publication Classification the anomaly and an environment analysis that determines

(51) Int. CL activity of the client, server, and network, candidate root
GO6F 11/07 (2006.01) causes of a failure that resulted 1n the anomaly are deter-
GO6N 99/00 (2006.01) mined.

300

DETERMINING CANDIDATE ROOT CAUSES OF AN
ANOMALY DETECTED IN THE PROCESS OF FIG. 2

(EXPANDING STEPS 210, 212, 214 AND 216 IN FIG. 2)

I 302 } 304
INPUT ANOMALY / INPUT ENVIRONMENT PARAMETERS V/
¢ 306 y 214
DETERMINE RELEVANT 4 DETERMINE CLIENT, SERVER, AND |
TIME WINDOW NETWORK ACTIVITY FROM HEALTH
] 308| (E.G., CPU AND MEMORY USAGE)
L AND QUALITY OF SERVICE (E.G., I/
SELECT RELEVANT > ACTIVITY) INDICATORS
COMPONENTS FROM CLIENT, _ |
SERVER, AND NETWORK '
] OUTPUT ACTIMITY AP, WHICH | 316
TEMPORAL ANALYSIS: SELECT |, 2" | | (1) INDICATES WHETHER
RELEVANT LOG ENTRIES FROM SERVER, CLIENT, AND NETWORK
CLIENT, SERVER, AND NETWORK COMPONENTS ARE ACTIVE OR
COMPONENTS INACTIVE IN THE CONTEXT OF
I o THE ANOMALY: AND
TEXTUAL ANALYSIS: FILTERLOG |/ (2) INDICATES WHETHER ACTIVE
ENTRIES BASED ON KNOWN AND SERVER COMPONENTS WERE
LEARNED KEYWORDS PERFORMING TASKS RELEVANT
TO THE APPLICATION OR BUSY IN
EXTRANEOUS WORK
¢

DETERMINE CANDIDATE ROOT CAUSES OF THE FAILURE THAT RESULTEDIN |- 518

THE ANOMALY AND DETERMINE A CONFIDENCE IN EACH CANDIDATE BEING THE
ACTUAL ROOT CAUSE

'L 320
DISPLAY CANDIDATE ROOT CAUSES IN ORDER OF CONFIDENCE, ALONG WITH 7

EVIDENCE SUPPORTING THE DETERMINATION OF CANDIDATE ROOT CAUSES

3
END

US 2017/0091008 A1l

— I OId
IINAON TOOL SOILATYNY
ONILYAdN 3NN (Y77 | aNY ONIMOLINOW IDIA3G
ANY ONINYYIT JONIHIAXI HISN INGON
-/ 7
%) zA!
H) 4 :
o INIONT SOISNIHOL ONY T00L SOLLATYNY
° 'SDILSONOVIA ‘SOILATYNY GNY ONIHOLINOW
_ JIONTHISXI HIASN M TUNLONHISYHANI | ,_ +
v ONY FHNLONSLSYHANI MHOMLIN
o NOWLYT3HH0D ALIAILOY 7 INTOY
~ HHOMISN-EIAEAS-INNO 8BSl INIAIG
= 7 I ST —
~ et 1001 SOILATYNY ﬁ oLl H
— A NOILVOIJILON L8437V ' _ FUNLONYLS | I
= o HIAYIS TUNLONULS LI IRLLE | MEOMINYH
> ¢ VYN TUEON VaIN ONIDD0T
= g NHOMLIN | Rt
H31NdNOD 9zl - m\ AN
- . «\ > | NOILYD{IddY
.m LA A4 -y ——— /- s —em—ememe———————mmm A INEON
5 100ddd A INFOY FUNLONYLSYHNI ONIHOVE | 7
o f QYOG 071 “ 601
= -HSYQ - .
5 ~ . HIAHIS YIAMIS | |YIANIS | fe—> 30IA30 FG0N
= 9cl ISYEYLVQ | |NOLLYOMddY | | 83M || /
A= 4 4 V4 “ S0l
= gLl oL} Pl
= / A
= 71 MOVLS NOILYOITddY IHI0N ¥3IWO0LSND WHOMLIN
= 01 801
<
= ﬂ 00}
&
o~
-

Patent Application Publication Mar. 30, 2017 Sheet 2 of 11 US 2017/0091008 Al

200

< DETECTING AND ANALYZING A PERFORMANCE ANOMALY >/
OF A CLIENT-SERVER BASED APPLICATION |

¥ 202
DETERMINE TIME OF CLIENT REQUEST FROM THE APPLICATION AND /
P ADDRESS OF THE CLIENT

v 204
BASED ON TIME OF CLIENT REQUEST AND IP ADDRESS OF CLIENT, 4
SELECT ONE OR MORE RELEVANT LOG ENTRIES

'

DETERMINE RESPONSE CODE, ROUND-TRIP LATENCY TIME OF THE RESPONSE, |-
AND AN INDICATION OF WHETHER THE CONNECTION BETWEEN
CLIENT AND SERVER TIMED OUT

206

1 208
BASED ON RESPONSE CODE, ROUND TRIP LATENCY TIME, AND/OR THE v

INDICATION OF WHETHER THE CONNECTION TIMED OUT, DETECT AN ANOMALY
IN THE SERVER RESPONSE TO THE CLIENT REQUEST

v 210

PERFORM TEMPORAL AND TEXTUAL ANALYSIS TO FILTER LOG ENTRIES 4
RELEVANT TO THE DETECTED ANOMALY

1] 912
PERFORM ENVIRONMENT ANALYSIS TO DETERMINE SERVER CLIENT AND 1/
NETWORK ACTIVITY FROM HEALTH AND QUALITY OF SERVICE INDICATORS

214

BASED ON FILTERED LOG ENTRIES AND ENVIRONMENT ANALYLSIS, DETERMINE
ONE OR MORE CANDIDATE ROOT CAUSES OF A FAILURE IN THE SYSTEM THAT
RESULTED IN THE ANOMALY

; 216
PRESENT CANDIDATE ROOT CAUSE(S) ALONG WITH ASSOCIATED L

FILTERED LOG ENTRIES AND A REPRESENTATION OF
HEALTH AND QUALITY OF SERVICE INDICATORS

; 218
C END >/

FIG. 2

Patent Application Publication Mar. 30, 2017 Sheet 3 of 11 US 2017/0091008 Al

300
DETERMINING CANDIDATE ROOT CAUSES OF AN
ANOMALY DETECTED IN THE PROCESS OF FIG. 2
(EXPANDING STEPS 210, 212, 214 AND 216 IN FIG. 2)
302 l 304
INPUT ANOMALY 4 INPUT ENVIRONMENT PARAMETERS |/
! 306 v 14
DETERMINE RELEVANT / DETERMINE CLIENT, SERVER, AND |-
TIME WINDOW NETWORK ACTIVITY FROM HEALTH
: 308! (E.G., CPUAND MEMORY USAGE)
—'ii AND QUALITY OF SERVICE (E.G., /0
_ SELECT RELEVANT ACTIVITY) INDICATORS
COMPONENTS FROM CLIENT, _ -
SERVER, AND NETWORK | .
I OUTPUT ACTIVITY MAP, WHICH |, 316
TEMPORAL ANALYSIS: SELECT |, 510 (1) INDICATES WHETHER
RELEVANT LOG ENTRIES FROM SERVER, CLIENT, AND NETWORK
- CLIENT, SERVER, AND NETWORK COMPONENTS ARE ACTIVE OR
' COMPONENTS INACTIVE IN THE CONTEXT OF
I o || THE ANOMALY: AND
i TEXTUAL ANALYSIS: FILTER LOG (2) INDICATES WHETHER ACTIVE
| ENTRIES BASED ON KNOWN AND SERVER COMPONENTS WERE
3 LEARNED KEYWORDS PERFORMING TASKS RELEVANT
TO THE APPLICATION OR BUSY IN
EXTRANEOUS WORK
| DETERMINE CANDIDATE ROOT CAUSES OF THE FAILURE THAT RESULTEDIN | 318
| THE ANOMALY AND DETERMINE A CONFIDENCE IN EACH CANDIDATE BEING THE
; ACTUAL ROOT CAUSE
v 320

DISPLAY CANDIDATE ROOT CAUSES IN ORDER OF CONFIDENCE, ALONG WITH
EVIDENCE SUPPORTING THE DETERMINATION OF CANDIDATE ROOT CAUSES

(EL[’) - FIG. 3

Patent Application Publication Mar. 30, 2017 Sheet 4 of 11 US 2017/0091008 Al

400

- REFINING ANOMALY DETECTION —

‘

COLLECT ATTRIBUTES OF THE ANOMALY DETECTED IN STEP 208 (SEEFIG.2) |, 402
FOR A MACHINE LEARNING PROCESS: ROUND-TRIP LATENCY TIME,
CONNECTION TIME OUT, DELAY VALUE OF CONNECTIONS, SERVER DETAILS,
APPLICATION DETAILS, FUNCTION DETAILS, SERVICE URL, ETC.

‘ 404
BASED ON A USER'S ROLE. SEND AN ALERT TO THE USER DESCRIBING THE V/
ANOMALY DETECTED IN STEP 208 (SEE FIG. 2)

‘

RECEIVE THE USER'S FEEDBACK OR ANNOTATION OF THE ALERT OF TRUE OR
FALSE, WHICH INDICATES WHETHER THE ANOMALY DESCRIBED IN THE ALERT
WAS CORRECTLY IDENTIFED AS AN ANOMALOUS EVENT

406
L

-L 408
UTILIZE THE TRUE OR FALSE FEEDBACK FROM STEP 406 AS THE LABEL OF THE L
MACHINE LEARNING PROCESS

! 410
GENERATE MACHINE LEARNING MODEL %
BASED ON THE ATTRIBUTES OF THE ANOMALY

¢ 412

DETERMINE NEXT ANOMALY BASED ON RULES IN MACHINE LEARNING MODEL, 4
THEREBY IMPROVING ANOMALY DETECTION

’ 414
UPDATE THE MACHINE LEARNING MODEL CONTINUOUSLY OR 4
AT A SPECIFIED PERIODICITY
: 16

DETERMINE SUBSEQUENT ANOMALIES BASED ON THE UPDATED MACHINE |/
L EARNING MODEL, THEREBY FURTHER IMPROVING ANOMALY DETECTION

l 418
CENDD/

FIG. 4

US 2017/0091008 A1l

Mar. 30, 2017 Sheet 5 of 11

Patent Application Publication

ot
‘.b
. ‘.
1
& :
’
nom ;
.
’
£ § w4
“ * ‘
»” i t:
- Cd ‘
T v W e i S e e sy W e gl e e *pr _.“
11
]
~y ¢ o Y ¢ e . <o o)
T .. L 4 J S a i
. , 4 .. oG S W 2

o W TR R W RS WAL M WD R W, S SRS B, W WA EE W, S AR G, BT B B W S AR S SRS R A W S e e s

(spusoastjiu) | 1y

P
J

g

@4

G g

FaFf wfa S Faf aFfa i Fef s e Pel aFel el Falf dFal Yalfs FalF dFal ‘el Palt oFal wifs Palt oFel ‘aifa Palt JSal wFa Palf, el wifa Saih JSaf wiFa "R el wFa e SaF sFa SN

"
R e e it S0 S SE L SN S

W W g gy Wgls, R S W R gy T, R S B SRR R B, BRI By BRSO, EE EE WEy WE g G, B AR Py EgEm ey
....................:......................"'......................l......................:'.

30

10

Time

054
3
3
!

ﬁ:@masm

2000

—

{ % §
t 1
: waterumnsete |
(aemeRE -t
~& st |
R f.% R
3 gg&f%‘n
{ oy
e
t o b LE)
: e
O\ f e
3 t . 1
i) ‘ 2 §
/ “ o ~
%
- — Nk ey i et il eyl by Sk ey W P, o |
_\. .Mmm.vq&c@ e S WSS WTILTSSSI A r.rw.&‘ i
e o, : :
| N Sraie . .
_ o | ~ R
{ o R A R AN S }
iiiiiiiiiiiiii 4 f oy
-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-Ilwﬂ g G
S8 < e & v T

RIT [milliseconds)

FIG. 5B

Patent Application Publication Mar. 30, 2017 Sheet 6 of 11 US 2017/0091008 Al

"httpconnection” ; { \
"requestdatetime” . {
"‘IYDE" : 'ud atelt,
format’ ;. "MM/ddlyy HH:mm:ss:S55"
}

§

5'esponsedatetime“ {
lltyp’e!i . lidatel!,
“format" : "MM/dd/yy HH:mm:ss:SSS"

h
"source” ; {
"type” : "string”,
3
"appName” : {
Iftype!t : "Stringu,
},) oo
url” |
“type" : "string",
)

"requestData” : {
ntypeu : "Stt’iﬂ gn’
}

"responseCode” : {
"type" : "integer”

}

‘responseData” : {

L1 B

“type" . “string",
}

FIG. 64

Patent Application Publication Mar. 30, 2017 Sheet 7 of 11 US 2017/0091008 Al

“‘devicemonitor” ; { \
"datetime” : {
"type” : "date”,
‘format” : "MM/dd/yy HH:mm:ss:SSS"

}
"sourceAddress” : {

"type" : "string”,
}

$6

eviceType" : {
type" . "string’,

j

Jocaﬂon":{ .
ﬂtyp.eli : listring“’ > 620
}

“Yocpu” : {
"type” : "float”,
]

“;’/obattery“ -
"type” . "float”
}

“Yomemory" : {

"type" : "float”,
}

Patent Application Publication Mar. 30, 2017 Sheet 8 of 11 US 2017/0091008 Al

‘appserverlog” : { \
" datetime " : {
"type" : "date”,
"format” : "MM/dd/yy HH:mm:ss:SSS"
}
" sourceAddress " : {
"type" : "string’,
}

‘severity” : {

"type" : "string”,

h

“threadiD" : { ; ,
"type" : "string", > 0640

}, 1

‘component” ; {

1] 1]
}

"type" : "string",
‘messagelD" ; {

j

"type" : "string”
‘message” : {

"type" : "string”,
}

FIG. 6C

<

S .

2 V4 IIA

3

= . ___

= J m SPUOOBSI|iu 202:52:90:90

=

z _BISOM | ncspyceauiop Bos ¢68L ULSOMARUE 7’1’89} Z61 y1/51/90
- oebusenu] Spucoasiliu 118112 16:90

_ 0) punoibyoegujop 00 90L—=—£GZL8 |SonAlUR Z'}'891°Z6} 71/G1/80

- . J 2€G:/-8€:90

- _orebison punoiByoeguUIOp BUON 0bi—=—INOTWIL ULSoBAleUB Z'1'89L°Z6) 71/51/80

5 S SPUOSSI|jiu €1 1:90-¢7-90

= JEDISOAUL | punouByoegulop 002 ¥0L—=—24807 “ULSOoBAleue Z'1'891°Z6) p1/51/20

— h 21eBsany] | oy, . SPUOOSSHIL . . 8¢1-01-67-90

= OIPDHSOM) punouboeguiop 40 GBZ "|SOnAleue 7'1'89)°Z6) P1/G1/80

= o 01/ AT Spuodss|jiw L12:08:9%:90

jt _elebisonul [unoiByoeguop 005 95z, ULSomAleuR Z'1'891°Z61 y1/G1/80

S , AV SpUOYBSI[liLL PE6: 726190
Lowbisont | punosbyoeguiop ~ G0s [J0L "Uisonfleve z'4'891°Z6) vLISHSO

- (et ., G89:2Z:16:90

S JBOISOAUl | punosbyoeguiop SUON 80Z—=—INOJWIL “LSOuAleue Z'1'89)°Z61 y1/51/80

= mﬁmmmm%ﬁ . SpUodSSI|jiLL . 90€°8175-90

z _OIPONSOMI) punosbyoeguiop 00z 202—=—€590y “Lsoleue z'1'89L26L vLiSHSO.

. SPUODBSI[lI 0£2:9€:65:90

o

2 _swebyseny | punoiByoBgUIOp b0t 06¢ iSonfleue Z'1'g01°Z6l P1IG1/80

E sjebpseAu] poylly esuodsey 11 JaAldg adieg awi jsanbaey

z

£ .Foom

-

-9

US 2017/0091008 A1l

= 01 UM pajiey

= XXXXXXQP 19SN J0j UOHEPI[EA PIOMSSE GYE:22:06:10 S¥ETT 08690
- SOIAQ 19 'BZIs UM BulIS 14 Viva DoTxebs 3gvavIvd M bLSLB0 vL/SL/SO
- GYC:72:06'10 S¥EZZ:0G6:90
2 IO puopeoydde ‘JOVSSIN UsIS¥elbs 3SvavIvA M vSLBO ¥L/SL/80
7 SJON

m ‘pileAul piomssed :U0SEaY ‘Paund0o

N 3.N|iBj UONBZLIOYINE UOIIDBUL0Y OvE:22:0G:10 9¥E:2Z:08:90
% E\\ uojdadx3|bg e 0ol Zap wiqruiod LJweIsAg LewsSASISYM 71/G1/80 71/G1/80
= o [N}SS8I0NS UOHRZIBHU] 2G€:22:06 10 2GE'2T:05:90
> 18IAISS JaUIRILIOgOM SM LI LLIOD 18]AISS INOWBISAS: SYM b1/G1/80 v11G51/80
- G6LZL Y81 L0L'9LL'TT) pGE:7C:06:10 $GEZ2 0690
= W0l jsenbal poasosy InQwRisAS InowsisAsISyM p1iSLI80 1/G1/80
.m 00G uondaoxa

= pejelausb ‘G611 ¥8L 0L 941) GGE:7C:06'L0 GGE:2Z:06:90
nm \\ wod 190 1sanbai Buisseooid suog INQWIRISAS INOWBISASISYM PLiGL/80 P1/G1/80
2 ¢cal | obesssy 2 jueuodwo) 9popy Aueasg awij [eoo7 dwejsawi)
o~

£

< s

E

=

=5

Patent Application Publication Mar. 30, 2017 Sheet 11 of 11 US 2017/0091008 A1l
102
/
COMPUTER
802
-
. 804
CPU p
' MEMORY
4 808 . 814
/ . PROGRAM CODE FOR /
DIAGNOSTICS AND FORENSICS
ENGINE
806
v i
10 INTERFACE
N
810 812
v / ‘ /
COMPUTER DATA STORAGE
/0 DEVICES UNIT

FIG. 8

US 2017/0091008 Al

DETECTING AND ANALYZING
PERFORMANCE ANOMALIES OF
CLIENT-SERVER BASED APPLICATIONS

BACKGROUND

[0001] The present invention relates to managing client-
server based application performance, and more particularly
to detecting and determining root causes of mobile applica-
tion faults and performance bottlenecks.

[0002] A mobile application has two main components 1n
a client-server model: (1) a client side component running
on the mobile device; and (2) a server side component that
responds to various requests from the client. Known tech-
niques for detection and analysis of anomalies in mobile
application performance utilize mobile analytics but provide
either only device analytics (1.e., by monitoring client side
mobile applications) or only back-end analytics (1.e., by
monitoring server side infrastructure), without taking into
account details of client-server interactions end-to-end. For
example, U.S. Patent Application Publication No. 2010/
0041391 discloses a client-focused mobile analytics process
that collects mobile device metrics at the mobile device.
Known techniques for using the analytics to determine a root
cause of the anomaly requires a significant amount of time
for labor-intensive manual searches to discover where the
error originated. The manual searches are painstaking
because an application fault or a performance bottleneck
may originate in one place and time, but manifest itself at
another place and another time. Accordingly, there 1s a need
for mobile analytics technique that has an integrated view
across the device and the back-end and which 1s a less
time-consuming technique for determining a likely root
cause of the anomaly.

SUMMARY

[0003] In a first embodiment, the present invention pro-
vides a method of detecting and analyzing an anomaly 1n a
performance of an application 1n a connection between
client and server computers. The method includes a first
computer determining a time of a request from the client
computer executing the application and an Internet Protocol
(IP) address of the client computer. The request 1s sent by the
client computer to the server computer via a communica-
tions network. The method further includes based on the
time of the request from the client computer and the IP
address of the client computer, the first computer selecting
one or more log entries from a plurality of log entries so that
the selected one or more log entries are relevant to the
request. The method further includes the first computer
determining a status code of a response from the server
computer, a round trip latency time (R1TT) of the response,
and an 1ndication of whether the connection timed out. The
response 1s sent by the server computer to the client com-
puter via the network and responsive to the request. The
method further includes based on the status code, the RTT,
the indication of whether connection timed out, or a com-
bination of the status code, the RTT, and the indication of
whether the connection timed out, the first computer detect-
ing the anomaly 1n the performance of the application. The
method further includes based on a temporal analysis and
textual analysis of log entries associated with the anomaly,
and based on an environment analysis that determines
activity of the client computer, the server computer, and the

Mar. 30, 2017

network, the first computer determining candidate root
causes of a failure that resulted in the anomaly. The failure
1s 1n the client computer, the server computer, the network,
or a combination of the client computer, the server computer,
and the network.

[0004] In a second embodiment, the present invention
provides a computer program product including a computer-
readable storage device and a computer-readable program
code stored in the computer-readable storage device. The
computer-readable program code includes instructions that
are executed by a central processing unit (CPU) of a
computer system to implement a method of detecting and
analyzing an anomaly 1n a performance of an application 1n
a connection between client and server computers. The
method includes the computer system determining a time of
a request from the client computer executing the application
and an Internet Protocol (IP) address of the client computer.
The request 1s sent by the client computer to the server
computer via a communications network. The method fur-
ther includes based on the time of the request from the client
computer and the IP address of the client computer, the
computer system selecting one or more log entries from a
plurality of log entries so that the selected one or more log
entries are relevant to the request. The method further
includes the computer system determining a status code of
a response from the server computer, a round trip latency
time (RT'T) of the response, and an indication of whether the
connection timed out. The response 1s sent by the server
computer to the client computer via the network and respon-
s1ve to the request. The method further includes based on the
status code, the RT'T, the indication of whether connection
timed out, or a combination of the status code, the RTT, and
the indication of whether the connection timed out, the
computer system detecting the anomaly 1n the performance
of the application. The method further includes based on a
temporal analysis and textual analysis of log entries asso-
ciated with the anomaly, and based on an environment
analysis that determines activity of the client computer, the
server computer, and the network, the computer system
determining candidate root causes of a failure that resulted
in the anomaly. The failure 1s in the client computer, the
server computer, the network, or a combination of the client
computer, the server computer, and the network.

[0005] In a third embodiment, the present invention pro-
vides a computer system including a central processing unit
(CPU); a memory coupled to the CPU; and a computer-
readable storage device coupled to the CPU. The storage
device includes instructions that are executed by the CPU
via the memory to implement a method of detecting and
analyzing an anomaly 1n a performance of an application 1n
a connection between client and server computers. The
method 1ncludes the computer system determining a time of
a request from the client computer executing the application
and an Internet Protocol (IP) address of the client computer.
The request 1s sent by the client computer to the server
computer via a communications network. The method fur-
ther includes based on the time of the request from the client
computer and the IP address of the client computer, the
computer system selecting one or more log entries from a
plurality of log entries so that the selected one or more log
entries are relevant to the request. The method further
includes the computer system determining a status code of
a response from the server computer, a round trip latency
time (RTT) of the response, and an 1indication of whether the

US 2017/0091008 Al

connection timed out. The response 1s sent by the server
computer to the client computer via the network and respon-
s1ve to the request. The method further includes based on the
status code, the RTT, the indication of whether connection
timed out, or a combination of the status code, the RTT, and
the indication of whether the connection timed out, the
computer system detecting the anomaly 1n the performance
of the application. The method further includes based on a
temporal analysis and textual analysis of log entries asso-
ciated with the anomaly, and based on an environment
analysis that determines activity of the client computer, the
server computer, and the network, the computer system
determining candidate root causes of a failure that resulted
in the anomaly. The failure 1s in the client computer, the
server computer, the network, or a combination of the client
computer, the server computer, and the network.

[0006] Embodiments of the present invention provides a
general solution for diagnostics and forensics of distributed
applications by collecting relevant information from all
application components, accurately correlating client and
server activities, classifying faults and bottlenecks, and
identifying sources and underlying causes of the faults and
bottlenecks at runtime. The automated generation of diag-
nostic clues or determination of root causes significantly
reduces adminmstrative labor time as well as system down-
time. A learning module learns from past behavior and user
feedback about whether proposed anomalies are actual
anomalies, which improves future identification of anoma-
lies by reducing false positive and false negative rates for
anomaly determination.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 1s a block diagram of a system for detecting
and analyzing a performance anomaly of a client-server
based application, 1n accordance with embodiments of the
present 1vention.

[0008] FIG. 2 1s a flowchart of a process of detecting and
analyzing a performance anomaly of a client-server based
application, where the process 1s implemented 1n the system
of FIG. 1, 1n accordance with embodiments of the present
invention.

[0009] FIG. 3 1s a flowchart of a process of determining
candidate root causes of a performance anomaly detected by
the process of FIG. 2, 1n accordance with embodiments of
the present invention.

[0010] FIG. 4 1s a flowchart of a process of refining a
detection of performance anomalies, where the detection
had resulted from the process of FIG. 2, 1n accordance with
embodiments of the present invention.

[0011] FIGS. 5A-5B are examples of detecting perfor-
mance anomalies based on round trip latency times, as
utilized 1n the process of FIG. 2, in accordance with embodi-
ments of the present invention.

[0012] FIG. 6A 1s an example of a structure containing a
specification of Hypertext Transier Protocol (HTTP) client-
server connection parameters utilized in the process of FIG.
2, 1n accordance with embodiments of the present invention.

[0013] FIG. 6B 1s an example of a structure containing a
specification of client device environment parameters uti-
lized 1n the process of FIG. 2, 1 accordance with embodi-
ments of the present invention.

[0014] FIG. 6C 1s an example of a structure containing a
specification of application server log entry parameters

Mar. 30, 2017

utilized 1n the process of FIG. 2, in accordance with embodi-
ments of the present invention.

[0015] FIG. 7A 1s an example of a user interface present-
ing a list of faults and anomalies detected in the process of
FIG. 2, in accordance with embodiments of the present
invention.

[0016] FIG. 7B i1s an example of a user interface that
includes candidate root causes determined 1n the process of
FIG. 3, 1n accordance with embodiments of the present
invention.

[0017] FIG. 8 1s a block diagram of a computer that is
included in the system of FIG. 1 and that implements the

processes of FIG. 2, FIG. 3, and FIG. 4, 1n accordance with
embodiments of the present invention.

DETAILED DESCRIPTION

Overview

[0018] Embodiments of the present invention detect faults
and performance anomalies in client-server based mobile
applications. The detection of faults and performance
anomalies include generating a taxonomy of faults and
performance 1ssues occurring in client-server mobile appli-
cations, tracking and collecting distributed data. Embodi-
ments of the present invention utilize statistical algorithms
applied to the collected data to evaluate performance, deter-
mine anomalous behavior that results 1n poor performance,
and determine likely root causes of the faults and poor
performance. In one embodiment, the system for anomaly
detection 1s able to learn from verifications of root causes of
faults and unexpected poor performance and then use that
learning to refine the system, thereby improving the adapt-
ability of the system. A graphical user intertace (GUI) may
present analysis results and additional diagnostic clues to
users.

[0019] A client-server based mobile application includes
client side and server side components. The client side
component 1s a software application executed on a mobile
device (e.g., a smartphone). The server side component
responds to requests sent from the client side component.
Instead of providing only mobile device analytics or only
back-end analytics, embodiments of the present invention
advantageously provide mobile analytics that provides an
integrated view of details of client-server interactions end-
to-end (1.e., across the mobile device and the back-end).
[0020] As used herein, an application 1s dependent upon
client-server interactions working properly. A location of a
fault 1n the application may be 1n a client side component,
a server side component, or in the network used by the
client-server interactions. As used herein, a fault or failure 1s
a fault 1in the application that manifests itself during the
course ol a client-server interaction via a client-server
connection in the context of an application session. The
client-server connection may utilize any application layer
protocol (e.g., Hypertext Transfer Protocol (HTTP)). Client
side or server side components may fail in unanticipated
ways, thereby negatively aflecting client-server interactions.
Failures that negatively aflect client-server interactions may
include, for example, logic failures (1.e., bugs 1n software),
a client or server application being starved of resources on
the computer that executes the application, or a network
link, router, or switch experiencing an outage which results
in a client-server disconnection. Other examples of faults
may 1nclude an application crash resulting from a mobile

US 2017/0091008 Al

device running out of memory, a server application hitting
an exception (e.g., HI'TP Connections returns a 500 error
code (Internal Server Error)), or connections time out after
a pre-specified time limat.

[0021] Although embodiments presented herein focus on
faults and performance anomalies 1n client-server based
mobile applications, it 1s apparent to those skilled in the art
that the embodiments may be extended to other client-server
based applications that are executed on computers that are
not mobile devices.

System for Detecting and Analyzing a Performance
Anomaly of a Client-Server Based Mobile Application

[0022] FIG. 1 1s a block diagram of a system 100 for
detecting and analyzing a performance anomaly of a client-
server based application, 1n accordance with embodiments
of the present invention. System 100 includes a computer
102, a computer mobile application stack 104, a mobile
device 106, and a network 108. Mobile device 106 executes
a software-based mobile application 109.

[0023] Although FIG. 1 includes mobile application 109
executing on mobile device 106, other embodiments sub-
stitute another computer in place of mobile device 106,
where the other computer 1s not a mobile device and
executes another software application in place of mobile
application 109.

[0024] Mobile application 109 1s a client-server based
application, where mobile device 106 1s the client, which
communicates via network 108 with a server included 1n
customer mobile application stack 104. In other embodi-
ments, system 100 includes one or more other mobile
devices (not shown) executing mobile application 109 or
other mobile application(s) in application session(s) with
customer mobile application stack 104 via network 108.
Mobile application 109 includes a software-based device
agent 110 and a logging framework 112. Device agent 110
accesses logs 1n logging framework 112 to collect data from
the logs about an application session 1n which mobile
application 109 1s participating. The collected data includes
the time of client requests from mobile application 109 and
the IP address of the mobile device 106. In one embodiment,
device agent 110 runs as a background service on mobile
device 106.

[0025] Customer mobile application stack 104 includes a
web server 114, an application server 116, and a database
server 118, which are participating in the aforementioned
application session. Customer mobile application stack 104
also includes a software-based back-end infrastructure agent
120, which collects data about the application session from
logs provided by web server 114, application server 116, and
database server 118. Alternatively, customer mobile appli-
cation stack may include back-end infrastructure agent 120
and exactly one server or other numbers of servers not
shown 1n FIG. 1, where the server(s) provide one or more
logs from which back-end infrastructure agent 120 collects
data about the application session.

[0026] Network 108 includes the following components:
one or more routers (not shown), one or more switches (not
shown), and one or more firewalls (not shown). Network
108 also includes a software-based network infrastructure
agent 122, which collects data about the network connection
being used by the application session, where the data 1s
collected from log(s) provided by one or more of the
atforementioned components included in network 108.

Mar. 30, 2017

[0027] Computer 102 includes software-based tools that
monitor and analyze particular components of system 100 in
1solation: a mobile user experience device monitoring and
analytics tool 124, a mobile infrastructure server monitoring
and analytics tool 126, and a network infrastructure moni-
toring and analytics tool 128.

[0028] Mobile user experience device monitoring and
analytics tool 124 monitors mobile device 106, collects
activity and health information data received from device
agent 110, and performs application usage analytics for
mobile application 109. The activity and health information
indicates how and when a user uses mobile application 109
and includes the time of the client request from mobile
application 109 and the IP address of the mobile device 106
which 1s the source of the request. Mobile user experience
device monitoring and analytics tool 124 receives from
device agent 110: (1) a response code, which 1s a status code
of the response from web server 114, and (2) a round-trip
latency time of the response to the request from mobile
application 109. Mobile user experience device monitoring
and analytics tool 124 also computes aggregate statistics
across multiple users and multiple devices (not shown)
which have respective application sessions with customer
mobile application stack 104 via network 108.

[0029] Mobile infrastructure server monitoring and ana-
lytics tool 126 performs server-side analytics by monitoring
and analyzing server logs and server health parameters,
which are received from back-end infrastructure agent 120.
The server logs are logs provided by web server 114,
application server 116, and database server 118. An entry 1n
a server log 1s free-form text written by an application
developer to trace an application run. Server log entries are
textually analyzed using data mining or pattern matching
techniques. Mobile infrastructure server monitoring and
analytics tool 126 also generates output in the form of

statistics and tables that are presented to the user through a
GUI

[0030] Network infrastructure monitoring and analytics
tool 128 monitors the state and activity logs of the commu-
nication connection and components of network 108 by
rece1ving information about the state and activity logs from
network infrastructure agent 122. The aforementioned com-
munication connection 1s the connection being used by
mobile application 109 to communicate with one or more of
the server components of customer mobile application stack
104. The activity logs are logs provided by components (not

shown), such as routers and switches, included in network
108.

[0031] Mobile user experience monitoring and analytics
tool 124, mobile 1nfrastructure server monitoring and ana-
lytics tool 126, and network infrastructure monitoring and
analytics tool 128 sends their respectively received activity
and health information data to a software-based client-
server-network activity correlation, infrastructure and user
experience analytics, diagnostics, and forensics engine 130
(heremafter, simply “diagnostics and forensics engine”).
Diagnostics and forensics engine 130 utilizes the data from
tools 124, 126, and 128 to detect anomalies 1n server
responses to requests from mobile application 109 and to
determine candidates for root causes of failures in system
100 that resulted 1n the anomalies. Diagnostics and forensics
engine 130 sends information about the anomalies and
candidate root causes to an alert notification generation

US 2017/0091008 Al

module 132, which generates an alert about the anomalies
and candidate root causes to be viewed and annotated by a
user.

[0032] A root cause of a failure i system 100 may be
located 1n (1) client side components (e.g., mobile applica-
tion 109 1s running slowly or mobile device 106 1s over-
loaded due to high CPU usage or the amount of memory
remaining 1s low), (2) server side components (e.g., appli-
cation server 116 1s operating slowly or 1s overloaded due to
high CPU usage, low memory, or high disk input/output
(I/O) activity), or (3) communication network components
(e.g., network speed 1s low, or there 1s an outage or overload
of network components including routers and switches).
High RTT wvalues can have multiple simultaneous root
causes (e.g., an overloaded database managed by database
server 118 and a router outage).

[0033] A learming and rule updating module 134 receives
teedback from the user reviewing and annotating the alerts,
uses the feedback to update rules that determine anomalies
based on log entries from mobile device 106, network 108,
and server components of customer mobile application stack
104, and use the updated rules to refine the anomaly deter-
mination for subsequent requests generated by mobile appli-
cation 109 and sent to one of the server components of the
customer mobile application stack 104.

[0034] Alert notification generation module 132 sends the
alerts about the anomalies and candidate root causes to a
GUI dashboard and/or a report 136, which 1s viewed by a
user of computer 102. Diagnostics and forensics engine 130,
mobile user experience monitoring tool 124, and mobile
infrastructure server monitoring and analytics tool 126 send
monitored data from the client and server, results of the
analysis of the monitored data, and statistics and tables to
dashboard and/or report 136. The GUI dashboard 136 pro-
vides detailed information about anomalous events as a
result of an alert or 1n response to user queries or entries in
a search interface.

[0035] The functionality of the components shown 1n FIG.
1 1s described 1n more detail 1n the discussion of FIG. 2, FIG.
3, FIG. 4, and FIG. § presented below.

Process for Detecting and Analyzing a Performance
Anomaly of a Client-Server Based Mobile Application

[0036] FIG. 2 1s a flowchart of a process of detecting and
analyzing a performance anomaly of a client-server based
application, where the process 1s implemented in the system
of FIG. 1, 1n accordance with embodiments of the present
invention. The process of FIG. 2 starts at step 200. An
application session 1s ongoing between a client (1.e., mobile
device 106 (see FIG. 1)) and a server (1.e., web server 114,
application server 116, or database server 118 in FIG. 1). In
step 202, diagnostics and forensics engine 130 (see FIG. 1)
determines a time of a client request from mobile application
109 (see FIG. 1) and the IP address of the mobile device 106
(see FIG. 1), which 1s the source of the client request.

[0037] In step 204, based on the time of the client request
and the IP address of the client determined 1n step 202,
diagnostics and forensics engine 130 (see FIG. 1) selects one
or more relevant log entries from logs provided by logging
framework 112 (see FIG. 1), the server, and components of
network 108 (see FIG. 1). The relevant log entries include
information monitored by device agent 110 (see FIG. 1),
back-end infrastructure agent 120 (see FIG. 1), and network
infrastructure agent 122 (see FIG. 1). Device agent 110 (see

Mar. 30, 2017

FIG. 1) monitors activity of the application session by
monitoring application logs, performing method-level track-
ing, and obtaining network connection and session informa-
tion. Back-end infrastructure agent 120 (see FIG. 1) moni-
tors activity of the application session by monitoring
application server and database server logs, and obtaining
network connection and session information. Network inira-
structure agent 122 (see FIG. 1) monitors activity of the
application session by monitoring network router logs and
network switch logs, 1f such logs are available.

[0038] Prior to step 206, device agent 110 (see FIG. 1)
records or calculates the following information: (1) a
response code 1n the server response to the client request, (2)
a round-trip latency time (RTT) of the response to the client
request, and (3) an indication of whether the connection
between the client and the server timed out, and subse-
quently, device agent 110 (see FIG. 1) sends the aforemen-
tioned recorded or calculated information to mobile user
experience device monitoring and analytics tool 124 (see
FIG. 1). In step 206, based on receiving the aforementioned
recorded or calculated information from mobile user expe-
rience device momtoring and analytics tool 124 (see FIG. 1),
diagnostics and forensics engine 130 (see FIG. 1) deter-
mines the response code 1n the server response to the client
request, the RTT of the response to the client request, and the
indication of whether the connection between the client and
the server timed out. The server response 1s the response sent
by the server participating in the application session, respon-
sive to the client request being received by the server. The
RTT 1s the amount of time from the time at which mobile
application 109 (see FIG. 1) sends a request to the server to
the time at which the mobile application 109 (see FIG. 1)
receives a response from the server. A connection times out
in response to the client sending a request to the server and
the server not responding to the request within a predeter-
mined time period. The response code 1s a message included
In a response a server sends to a client 1n response to the
client sending a request to the server. The response code
indicates whether the server performed the function
requested by the client or was unable to perform the func-
tion. In one embodiment, the response code 1s a HTTP status
code, where a response code of 200 indicates that the server
properly performed its function in response to a request from
the client, a response code of 400 through 499 indicates that
the client sent a malformed request, and therefore the server
was unable to fulfill the request, and a response code of 500
through 599 1s a failure code that indicates the server did not
properly perform its function in response to the request from
the client.

[0039] In step 208, based on the response code, the RTT,

or the indication of whether the connection between the
client and server timed out, or a combination of the response
code, the RTT, and the indication of whether the connection
timed out, diagnostics and forensics engine 130 (see FIG. 1)
detects an anomaly 1n the server response to the client
request. Diagnostics and forensics engine 130 (see FIG. 1)
marks response codes that indicate the server was unable to
properly perform its function as indicating performance
anomalies and marks connections that timed out as anoma-
lous client-server interactions.

[0040] Diagnostics and forensics engine 130 (see FIG. 1)
utilizes one or more known statistical methods to determine
how large a RT'T value must be to be considered an indica-
tion of an anomaly. In one embodiment, diagnostics and

US 2017/0091008 Al

forensics engine 130 (see FIG. 1) utilizes a k-means clus-
tering algorithm to determine a threshold RTT value (1.e.,
threshold) above which diagnostics and forensics engine 130
(see FIG. 1) marks RTT values as anomalous. Using the
k-means clustering algorithm, where k=2, diagnostics and
forensics engine 130 (see FIG. 1) partitions the gathered
RTT values into two sets: a lower values cluster (1.e., C,) and
a higher values cluster (i.e., C,). Diagnostics and forensics
engine 130 (see FIG. 1) determines a mean p, and a standard
deviation o, of cluster C, and a mean W, and a standard
deviation o, of cluster C,. If clusters C, and C, overlap to
a high extent (1.e., exceeding a predetermined amount of
overlap), then diagnostics and forensics engine 130 (see
FIG. 1) chooses anomalies only from the higher values
cluster. Two standard deviations from the mean 1s designated
as sufficiently anomalous. That 1s, if p,+0,=zu, then diag-
nostics and forensics engine 130 (see FIG. 1) determines that
threshold=p,+20,, else threshold=p,+20,. Again, the atore-
mentioned threshold computation algorithm 1s only one
embodiment; other embodiments may utilize other algo-
rithms to partition the RTT values and compute the thresh-
old.

[0041] Diagnostics and forensics engine 130 (see FIG. 1)
flags a performance anomaly 1f the RTT value of a given
client-server connection exceeds the computed threshold.
[0042] If a user has enough domain knowledge to know
what a high RTT value 1s, that user can manually set the
value of threshold. A minimum or maximum value of
threshold can be pre-set depending on the type of the
application 109 (see FIG. 1).

[0043] For example, diagnostics and forensics engine 130
(see FIG. 1) determines that a normal RTT for requests 1s
approximately 30 milliseconds and detects that a particular
request has a RT'T of five seconds. Diagnostics and forensics
engine 130 (see FIG. 1) detects that the five second RTT
exceeds the threshold amount, which indicates an anomaly.
The anomaly indicates a performance bottleneck or other
performance 1ssue, or may indicate a component failure.
[0044] In one embodiment, diagnostics and forensics
engine 130 (see FIG. 1) continuously tracks RTT values that
result from streaming data from multiple mobile devices
having application sessions in system 100 (see FIG. 1).
Because 1t 1s infeasible to process the entire set of historical
RTT values every time new RIT values are available to
determine the aforementioned clusters, diagnostics and
forensics engine 130 (see FIG. 1) utilizes a streaming
threshold computation algorithm, which 1s a variation of the
threshold computation algorithm described above.

[0045] In the streaming threshold computation algorithm,
diagnostics and forensics engine 130 (see FIG. 1) performs
the following steps after using the k-means clustering algo-
rithm to compute an 1mitial value of threshold:

[0046] 1. Divide the space of RTT values into fixed size
buckets (e.g., 0-50 milliseconds, 50-100 milliseconds, 100-
150 milliseconds, etc.).

[0047] 2. Maintain running counts and means for RTT
values 1n each bucket.

[0048] 3. Maintain boundary value to determine which
buckets fall 1n the lower value cluster and which fall 1n the
higher value cluster (e.g., maintain a boundary value ot 300
milliseconds).

[0049] 4. For every new batch of new RTT values, (1)
determine the bucket that each new RTT value {falls 1n, (1)
assign each new RTT value to an appropriate bucket, (i11)

Mar. 30, 2017

re-compute counts and means for each bucket, (1v) re-
balance the clusters to ensure that values in both clusters are
closer to their respective cluster means, and (v) move
buckets on the boundary up to the higher value cluster or
down to the lower value cluster monotonically until further
movement 1s not possible.

[0050] 3. Re-compute the mean and standard deviation for
each cluster.
[0051] 6. Re-compute threshold using the k-means clus-

tering algorithm described above.

[0052] /. If any of the new RTT values exceeds threshold,
flag those RTT value(s) and the associated client-server
connections in the new batch as anomalous.

[0053] In other embodiments, diagnostics and forensics
engine 130 (see FIG. 1) may utilize a variation of the
streaming threshold computation algorithm, which may
employ different bucket sizes and counts, a different thresh-
old computation formula, and/or variable sizes for every
new batch of RTT values.

[0054] In step 210, diagnostics and forensics engine 130
(see FIG. 1) performs temporal analysis and then textual
analysis to filter log entries which are relevant to the
anomaly detected 1n step 208. The log entries resulting from
the filtering 1n step 210 are hereinatter also referred to as the
filtered log entries.

[0055] In step 212, diagnostics and forensics engine 130
(see FIG. 1) obtains information from device agent 110 (see
FIG. 1), back-end infrastructure agent 120 (see FIG. 1), and
network infrastructure agent 122 (see FIG. 1) to perform an
environment analysis, which determines health and quality
of service (QoS) indicators (1.e., environment parameters) of
the server, the client, and network 108 (see FIG. 1) 1n the
application session. In one embodiment, the health and QoS
indicators indicate whether the server has adequate unused
memory and whether the CPU usage of the server 1s spiking
in excess of a predetermined amount.

[0056] In step 212, the information obtained from device
agent 110 includes indicators of the health of client side
components, mcluding indicators of CPU usage, memory
usage, and I/O activity in mobile device 106 (see FI1G. 1), the
information from back-end infrastructure agent 120 (see
FIG. 1) includes indicators of CPU usage, memory usage,
and I/0 activity 1n servers in customer mobile application
stack 104 (see FIG. 1), and the information from network
infrastructure agent 122 (see FIG. 1) icludes QoS param-
eters such as bandwidth, latency, and jitter.

[0057] In step 214, based on the filtered log entries and
based on the environment analysis performed in step 212,
diagnostics and forensics engine 130 (see FIG. 1) deter-
mines one or more candidates of the root cause(s) of a failure
in system 100 (see FIG. 1) that resulted in the anomaly
detected 1n step 208. Hereinatter, the one or more candidates
of the root cause(s) are referred to as the candidate root
cause(s).

[0058] In step 216, alert notification generation module
132 (see FIG. 1) generates and presents an alert, which
includes the candidate root cause(s) along with (1) one or
more of the filtered log entries that specily attributes of the
candidate root cause(s) and (2) a representation (e.g., sta-
tistics, table, or diagram) of the health and QoS indicators
that specily attributes of the candidate root cause(s). In one
embodiment, diagnostics and forensics engine 130 (see FIG.
1) determines a type of the alert and sends the alert to users
who have roles that are relevant to the type of the alert. Alert

US 2017/0091008 Al

notification generation module 132 (see FIG. 1) may send
the alert to the users over specified channels such as emails,
push notifications, and text (1.e., Short Message Service
(SMS)) messages. In one embodiment, alert notification
generation module 132 (see FIG. 1) presents the alert via
GUI dashboard and/or report 136 (see FIG. 1).

[0059] The process of FIG. 2 ends at step 218.

[0060] FIG. 3 1s a flowchart of a process of determining
candidate root causes of an anomaly detected by the process
of FIG. 2, 1n accordance with embodiments of the present
invention. The process of FIG. 3 expands the steps of 210,

212, 214, and 216 1n FIG. 2 and starts at step 300.

[0061] In step 302, the anomaly detected in step 208 (see
FIG. 2) 1s mnput 1nto the process of FIG. 3. In step 304, the
environment parameters resulting from the environment

analysis performed 1n step 212 (see FIG. 2) are input into the
process of FIG. 3.

[0062] In step 306, diagnostics and forensics engine 130
(see FIG. 1) determines a time window (1.€., period of time)
that 1s likely to include the time at which a root cause caused
a failure of system 100 (see FIG. 1), which caused the
anomaly input 1n step 302.

[0063] In step 308, based on the time window determined
in step 306, diagnostics and forensics engine 130 (see FIG.
1) selects relevant components from among the client (1.e.,
mobile device 106 1n FIG. 1), servers, and network 108 (see
FIG. 1).

[0064] In step 310, diagnostics and forensics engine 130
(see FIG. 1) performs temporal analysis by selecting rel-
evant log entries from logs provided by the relevant client,
server, and network components selected 1n step 308, where
the selection of the log entries 1s based on an approximate
time window of fault (1.e., select only log entries whose
timestamps are within the approximate time window of
tault). In one embodiment, diagnostics and forensics engine
130 (see FIG. 1) determines that a faulty connection indi-
cated by a high RTT started at time T, and ended at time T,
thereby i1ndicating a high likelihood that the fault occurred
between time T, and time T,. Because there 1s a decreasing
likelihood that the original fault occurred before time T,
diagnostics and forensics engine 130 (see FIG. 1) generates
the approximate time window of fault as T,-w to T, which
extends the window of time T, to time T, to include a
predefined amount of time w before time T, .

[0065] In step 312, diagnostics and forensics engine 130
(see FIG. 1) performs textual analysis by filtering the log
entries selected 1n step 310 based on known and learned
keywords. As used herein, a keyword 1s defined as a word or
phrase that 1s predetermined to be an indicator of an anomaly
of system 100 (see FIG. 1). In one embodiment, steps 310
and 312 are included 1n step 210 in FIG. 2.

[0066] In one embodiment, the textual analysis in step 312
includes extracting keywords from connection information
(e.g., from the URL or from the message payload) and
utilizing a database of relevant keywords (e.g., words
including “exception,” “waiting,” “password,” “failure,”
etc.). Diagnostics and forensics engine 130 (see FIG. 1)
attempts to match words or phrases in the log entries to the
database of keywords. Log entries that have words or
phrases that match entries in the database of keywords are
candidates for determining causes of anomalies.

[0067] In step 314, which follows step 304, step 308 and
step 312, diagnostics and forensics engine 130 (see FIG. 1)
determines health (e.g., CPU usage and memory usage) and

2?2 &«

Mar. 30, 2017

QoS (e.g., mput/output activity) indicators for the time
window determined 1n step 306. Also 1n step 314, and based
on the health and QoS indicators, diagnostics and forensics
engine 130 (see FIG. 1) determines the activity of the

relevant client, server, and network components selected in
step 308.

[0068] In step 316, diagnostics and forensics engine 130
(see FIG. 1) generates an activity map, which (1) indicates
whether each of the client, server, and network components
1s active or 1nactive 1n the context of the anomaly input 1n
step 302; and (2) indicates whether active client, server, or
network components were (1) performing tasks relevant to
mobile application 109 (see FIG. 1) or (11) busy performing
extraneous work. In one embodiment, step 316 1s included
in step 212 1n FIG. 2. Via the activity map, diagnostics and
forensics engine 130 (see FIG. 1) classifies each anomaly as
having a root cause whose location 1s (1) the mobile device
106 (see FIG. 1), (2) server components, or (3) components
of the network channel through which the client and server
communicate.

[0069] After step 316 and prior to step 318, diagnostics
and forensics engine 130 (see FIG. 1) determines the likely
location of the root cause of the failure that resulted in the
anomaly iput in step 302 by performing the following
steps:

[0070] 1. Determine a subset of the log entries, where the
entries 1n the subset correspond to mobile application 109
(see FIG. 1). The subsequent steps in determining the likely
location of the root cause are performed only on the subset
of log entries. Diagnostics and forensics engine 130 (see
FIG. 1) determines the log entries having a correspondence
to mobile application 109 (see FIG. 1) by utilizing applica-
tion 1dentifiers (IDs) or thread IDs 1included 1n annotations in
the log entries.

[0071] 2. Perform an inactivity based determination of the
source of the fault by checking for an absence of log entries
in the approximate time window of fault, which indicates a
high probability that system 100 (see FIG. 1) 1s overloaded
and 1s therefore not able to devote resources to mobile
application 109 (see FIG. 1). Module(s) exhibiting the
iactivity are likely to be sources of performance-related
faults. For example, 11 a back-end application server instance
logged very little or no information, whereas the client
device and network components (e.g., router) exhibited
significant logging activity, then the application server 1s the
likely source of the fault.

[0072] 3. Perform an overload-based (1.e., heavy logging
activity based) determination of the source of the fault by
checking for a substantial number of log entries in the
approximate time window of fault (1.e., the number of log
entries exceeds a predetermined threshold amount), but few
or none of these log entries are relevant to mobile applica-
tion 109 (see FIG. 1). I the aforementioned heavy logging
activity 1s detected, 1t indicates that the server 1s overloaded
and the mobile application 109 (see FIG. 1) 1s starved of
CPU cycles to run, thereby adding to the network connection
delay. The detection of the aforementioned overload indi-
cates that the server 1s the likely source of the fault.

[0073] 4. Correlate logging activity with connection dura-
tion. For example, 1f (1) the client logs indicate activity
unrelated to mobile application 109 (see FIG. 1), (2) the
server logs 1indicate that the server-side of the application 1s
running, and (3) network logs indicate that the network 1s

US 2017/0091008 Al

not undergoing a delay, then an overloaded client device
(1.e., mobile device 106 1n FIG. 1) 1s the likely source of the
fault.

[0074] Diagnostics and forensics engine 130 (see FIG. 1)
also utilizes health indicators determined 1n step 314 to yield
diagnostic information. For example, 1f diagnostics and
forensics engine 130 (see FIG. 1) detects high I/O activity or
high memory usage on the machine running the application
server during the approximate time window of fault, then 1t
1s likely that the machine was responsible for the fault.
Diagnostics and forensics engine 130 (see FIG. 1) generates
graphs and statistics to indicate the variation of CPU usage,
memory usage, battery usage, and /O activity during the
approximate time window of fault. At a given time, more
than one of the client, server, and network could be under-
performing and causing performance anomalies, and 1n such
a case, embodiments of the present invention may present
inconclusive results. In the case of inconclusive results,
diagnostics and forensics engine 130 (see FIG. 1) presents to
a user log entries, charts, and statistics for the approximate
time window of fault, so that the user can then manually
inspect the results to determine a likely root cause.

[0075] In step 318, based on the activity map generated
instep 316, diagnostics and forensics engine 130 (see FIG. 1)
determines the candidate root cause(s) of the failure that
resulted 1n the anomaly input 1n step 302. The process in
FIG. 3 1s a best eflort procedure and therefore there 1s not a
guarantee that the precise root cause will be determined. If
multiple candidate root causes are determined 1n step 318,
then step 318 also includes diagnostics and forensics engine
130 (see FIG. 1) determining a confidence 1n each candidate

root cause being the actual root cause. In one embodiment,
step 318 1s included 1n step 214 1n FIG. 2.

[0076] In step 320, diagnostics and forensics engine 130
(see FIG. 1) generates a display of the candidate root
cause(s), along with evidence supporting the determination
of the candidate root cause(s) for viewing by a user of
computer 102 (see FIG. 1). I there are multiple root causes
determined in step 318, then step 320 includes diagnostics
and forensics engine 130 (see FIG. 1) displaying the can-
didate root causes 1n the order of the confidence determined
in step 318. In one embodiment, the order of confidence 1s
based on the number of log entries selected and filtered out
through the temporal and textual analyses 1n steps 310 and
312 as indicating an anomaly and the number of health and
QoS 1ndicators that indicate an anomaly as a result of the
environment analysis in step 314. For example, if the
temporal and textual analyses yield 10 log entries on server
logs that indicate faults but yield zero similar entries on
client logs, and 11 the environment analysis indicates a CPU
spike on the client side, but no anomalies in the health or
QoS 1ndicators of the server, then compared to the client, the
server 1s assigned a higher confidence of being the location
of the root cause because the 10 log entries plus zero health
and QoS 1ndicators of the server 1s greater than the zero log
entries plus one health and QoS indicator for the client.

[0077] The display of the candidate root causes 1n step 320
advantageously filters out 1rrelevant and extraneous infor-
mation, which allows a user to focus on an amount of data
(1.e., candidate root causes) that 1s substantially smaller than
the information provided by known diagnostic techniques,
thereby leading to a quicker manual analysis of the candi-
date root causes to determine an actual root cause of the
anomaly.

Mar. 30, 2017

[0078] The process of FIG. 3 ends at step 322.

[0079] FIG. 4 1s a flowchart of a process of refining a
detection of anomalies, where the detection had resulted
from the process of FIG. 2, in accordance with embodiments
of the present invention. The process of FIG. 4 starts at step
400. In step 402, diagnostics and forensics engine 130 (see
FIG. 1) collects attributes of the anomaly detected 1n step
208 (see FIG. 2) and sends the attributes to a machine
learning process performed by learning and rule updating
module 134 (see FIG. 1). The collected attributes include
RTT, an indication of whether the connections timed out,
delay value of the connections, server details, application
details, the set of functions that are executing or are planned
to be executed, service uniform resource locator (URL) that
1s being called, eftc.

[0080] In step 404, based on a role of a user, a type of an
alert, and a stored association between the role and the type
of an alert, alert notification generation module 132 (see
FIG. 1) sends the alert to the user via GUI dashboard and/or
report 136 (see FIG. 1), where the alert describes the
anomaly detected in step 208 (see FIG. 2).

[0081] In step 406, diagnostics and forensics engine 130
(see FIG. 1) recetves from the user feedback or an annota-
tion of the alert, which specifies the anomaly described in
the alert as being true or false (1.e., accurately 1dentified as
an anomaly or inaccurately i1dentified as an anomaly).
[0082] In step 408, learning and rule updating module 134
(see FIG. 1) recerves and utilizes the true or false specifi-
cation 1n the feedback or annotation received in step 406 as
the label of the machine learning process. By incorporating
the true or false specification into the machine learning
process, false positives are detected and eliminated 1n sub-
sequent anomalies detected by system 100 (see FIG. 1),
thereby improving the accuracy of anomaly determination
by system 100 (see FIG. 1).

[0083] In step 410, learning and rule updating module 134
(see FIG. 1) generates a machine learning model based on
the attributes of the anomaly collected 1n step 402. The
machine learning model includes rules for determining
whether an event 1s an anomaly 1n system 100 (see FIG. 1).
[0084] In step 412, diagnostics and forensics engine 130
(see FIG. 1) determines a next anomaly 1n system 100 (see
FIG. 1) based on rules in the machine learning model
generated 1n step 410. The accuracy of the determination of
the next anomaly 1s improved from the determination of
prior anomalies because of the rules 1n the machine learning
model.

[0085] Instep 414, learning and rule updating module 134
(see FIG. 1) updates the machine learning model continu-
ously or at a specified periodicity.

[0086] In step 416, diagnostics and forensics engine 130
(see FIG. 1) determines subsequent anomalies based on the
machine learning model updated 1n step 414, thereby further
improving the anomaly detection accuracy.

[0087] The process of FIG. 4 ends at step 418.
Examples
[0088] FIGS. SA-5B are examples of 1dentifying perfor-

mance anomalies based on round ftrip latency times, in
accordance with embodiments of the present invention.
Diagnostics and forensics engine 130 (see FIG. 1) deter-
mines RTT values 1n step 206 (see FIG. 2) which are data
points placed 1n a scatter plot depicted in FIG. SA. Diag-
nostics and forensics engine 130 (see FIG. 1) determines that

US 2017/0091008 Al

the data points are clustered into a first group 502 of RTT
data points and a second group 504 of RTT data points.
Diagnostics and forensics engine 130 (see FIG. 1) deter-
mines that the RTT data points 1n first group 502 are
clustered in a narrow band in which the RTT values are low
enough to ensure a good user experience for the user of
mobile application 109 (see FIG. 1) (1.e., the data points in
first group 502 indicate normal RTT values). Diagnostics
and forensics engine 130 (see FIG. 1) 1n step 208 (see FIG.
2) detects performance anomalies at the times associated
with the RTT data points in second group 504 by determin-
ing that the RT'T data points in second group 504 are not 1n
the atorementioned narrow band of normal RTT values, and
are high enough to ensure a negative user experience for the
user of mobile application 109 (see FIG. 1). Diagnostics and
forensics engine 130 (see FIG. 1) filters out the RTT data
points 1n second group 504 and for each of the performance
anomalies, determines what corresponding part of system
100 (see FIG. 1) 1s the origin of the anomaly. In one
embodiment, diagnostics and forensics engine 130 (see FIG.
1) makes no a prior1 assumptions about what RT'T values are
normal.

[0089] The frequency of RTT values determined 1n step
206 (see FIG. 2) may be placed in a frequency graph
depicted 1n FIG. SB. Diagnostics and forensics engine 130
(see FIG. 1) determines that the RT'T frequencies are clus-
tered 1nto a first group 552 of RT'T frequencies and a second
group 354 of RTT frequencies. Diagnostics and forensics
engine 130 (see FIG. 1) determines that the RTT frequencies
in first group 552 are higher than the RTT frequencies 1n
second group 3554, and therefore determine that the RTT
values associated with first group 552 of frequencies are
normal RTT wvalues and the RTT wvalues associated with
second group 554 of frequencies indicate performance
anomalies. That 1s, the RT'T values that are relatively high
due to faults i system 100 (see FIG. 1) tend to occur less
frequently.

[0090] FIG. 6A1s an example of a structure 600 containing
a specification of Hypertext Transter Protocol (HTTP) cli-
ent-server connection parameters utilized in the process of
FIG. 2, 1in accordance with embodiments of the present
invention. In step 204 (see FIG. 2), the selected log entries
may include HTTP client-server connection parameters
which are specified by structure 600.

[0091] FIG. 6B 1s an example of a structure 620 containing
a specification of client device environment parameters
utilized 1n the process of FIG. 2, in accordance with embodi-
ments of the present invention. In step 212 (see FIG. 2), the
environment analysis may utilize environment parameters
for mobile device 106 (see FIG. 1), which are specified by
structure 620.

[0092] FIG. 6C 1s an example of a structure 640 containing
a specification of application server log entry parameters
utilized 1n the process of FIG. 2, in accordance with embodi-
ments of the present invention. In step 204 (see FIG. 2), the
selected log entries of application server 116 (see FIG. 1) are
specified by structure 640.

[0093] FIG. 7A 1s an example of a user intertace 700,
which presents faults and performance anomalies detected in
the process of FIG. 2, 1n accordance with embodiments of
the present invention. In repeated performances of step 208
(see FIG. 2), diagnostics and forensics engine 130 (see FIG.
1) detects multiple faults, performance anomalies, and other
events of interest for mobile application 109 (see FIG. 1)

Mar. 30, 2017

over a specified period of time. User interface 700 includes
timestamps of requests sent to the server from mobile device
106 (see FIG. 1) under the Request Time column, an

identifier of mobile device 106 (see FIG. 1) under the Device
column, 1dentifiers of servers under the Server column, RTT
values or an indicator of a connection time out under the
RTT column, response codes under the Response column, a
method 1dentifier under the Method column, and hyperlink
buttons labeled “Investigate” under the Investigate column.
In response to activating an Investigate button such as button
716, a corresponding user interface 1s displayed that
includes diagnostic clues and a root cause analysis, which
provides data for user to manually analyze the details of a

fault to determine the likely location of a root cause of the
fault.

[0094] User interface 700 includes RTT values 702, 704

and 706, which are determined by diagnostics and forensics
engine 130 (see FIG. 1) to exceed a threshold value 1n step
208 (see FIG. 2). User interface 700 also includes TIM-
EOUT 1indicators 708 and 710, which indicate failed con-
nections (1.e., the connection began but was never com-
pleted). Furthermore, user intertace 700 includes response
codes 712 and 714, which are HT'TP response codes of 500

(1.e., a response code indicating a server module failure).

[0095] FIG. 7B 1s an example of a user interface 750 that
includes diagnostic clues and candidate root causes deter-
mined 1n the process of FIG. 3, in accordance with embodi-
ments of the present invention. User interface 750 includes
the details presented in response to a user activating Inves-
tigate button 716 (see FIG. 7A) 1n the fourth data row 1n user
intertace 700 (see FIG. 7A). The details 1n user interface 750
allow a user to manually analyze the error response code 714
(see FIG. 7A) to determine the likely root cause of the server
module failure associated with response code 714 (see FIG.

7A).

[0096] User interface 750 includes timestamps and local
times of log entries from correlated logs that are relevant to
the server module failure under the Timestamp and Local
Time columns, respectively. Under the Severity column,
user intertace 750 includes a severity code of each log entry.
For a sevenity code, I indicates that the entry provides
information, R indicates that the entry describes an error
(e.g., a system error), W indicates that the entry describes a
warning, and O indicates that a level of severity has not been
assigned to the entry. User interface 750 also includes
identifiers of modules and components associated with each
log entry under the Module and Component columns,
respectively. Furthermore, user interface 750 includes mes-
sages from the log entries under the Message column,
including messages 752 and 754.

[0097] The data rows 1n user intertace 750 are the result of
the temporal analysis performed 1n step 310 (see FIG. 3).
The textual analysis performed in step 312 (see FIG. 3)
detects the keyword of “‘exception” 1n message 752 and
“failure” 1n message 754. In one embodiment, user interface
750 highlights the messages 752 and 754, but not the other
messages, to 1ndicate that keywords are detected 1n mes-
sages 752 and 754. By focusing only on the highlighted
messages, the user can quickly analyze the failure and
determine the likely location of the root cause of the failure
as 1dentified 1n the corresponding entries under the Module
and Component columns.

US 2017/0091008 Al

Computer System

[0098] FIG. 8 1s a block diagram of computer 102 that 1s
included 1n the system of FIG. 1 and that implements the
processes of FIG. 2, FIG. 3, and FIG. 4, 1n accordance with
embodiments of the present invention. Computer 102 1s a
computer system that generally includes a central processing
unit (CPU) 802, a memory 804, an input/output (I/O)
interface 806, and a bus 808. Further, computer 102 1s
coupled to I/O devices 810 and a computer data storage unit
812. CPU 802 performs computation and control functions
of computer 102, including executing instructions included
in program code 814 to perform a method of detecting and
analyzing an anomaly 1n a performance of an application 1n
a connection between client and server computers, where the
instructions are carried out by CPU 802 via memory 804.
CPU 802 may include a single processing unit, or be
distributed across one or more processing units in one or
more locations (e.g., on a client and server).

[0099] Memory 804 includes a known computer readable
storage medium, which 1s described below. In one embodi-
ment, cache memory elements of memory 804 provide
temporary storage of at least some program code (e.g.,
program code 814) in order to reduce the number of times
code must be retrieved from bulk storage while instructions
of the program code are carried out. Moreover, similar to
CPU 802, memory 804 may reside at a single physical
location, including one or more types of data storage, or be
distributed across a plurality of physical systems 1n various
forms. Further, memory 804 can include data distributed
across, for example, a local area network (LAN) or a wide
area network (WAN).

[0100] I/O interface 806 includes any system for exchang-
ing information to or from an external source. I/O devices
810 include any known type of external device, including a
display device, keyboard, etc. Bus 808 provides a commu-
nication link between each of the components in computer
102, and may include any type of transmission link, includ-
ing electrical, optical, wireless, eftc.

[0101] I/O intertace 806 also allows computer 102 to store
information (e.g., data or program instructions such as
program code 814) on and retrieve the information from
computer data storage unit 812 or another computer data
storage umt (not shown). Computer data storage unit 812
includes a known computer-readable storage medium,
which 1s described below. In one embodiment, computer
data storage unit 812 1s a non-volatile data storage device,
such as a magnetic disk drive (1.e., hard disk drive) or an
optical disc drive (e.g., a CD-ROM drive which receives a
CD-ROM disk).

[0102] Memory 804 and/or storage umit 812 may store
computer program code 814 that includes instructions that
are executed by CPU 802 via memory 804 to detect and
analyze an anomaly 1n a performance of an application 1n a
connection between client and server computers. Although
FIG. 8 depicts memory 804 as including program code 814,
the present invention contemplates embodiments 1n which
memory 804 does not include all of code 814 simultane-
ously, but instead at one time 1ncludes only a portion of code
814.

[0103] Further, memory 804 may include an operating
system (not shown) and may include other systems not
shown 1n FIG. 8.

[0104] Storage unit 812 and/or one or more other com-
puter data storage units (not shown) that are coupled to

Mar. 30, 2017

computer 102 may store environment attributes and perfor-
mance data relative to the application session of mobile
application 109 (see FIG. 1), which are provided by device
agent 110 (see FIG. 1), network infrastructure agent 122 (see
FIG. 1), and back-end infrastructure agent 120 (see FI1G. 1).

[0105] As will be appreciated by one skilled 1n the art, 1n
a first embodiment, the present invention may be a system;
in a second embodiment, the present invention may be a
method; and i a third embodiment, the present invention
may be a computer program product.

[0106] Any of the components of an embodiment of the
present invention can be deployed, managed, serviced, efc.
by a service provider that offers to deploy or integrate
computing infrastructure with respect to detecting and ana-
lyzing an anomaly 1n a performance of an application 1n a
connection between client and server computers. Thus, an
embodiment of the present invention discloses a process for
supporting computer infrastructure, where the process
includes providing at least one support service for at least
one of integrating, hosting, maintaining and deploying com-
puter-readable code (e.g., program code 814) 1n a computer
system (e.g., computer 102) including one or more proces-
sors (e.g., CPU 802), wherein the processor(s) carry out
instructions contained in the code causing the computer
system to detect and analyze an anomaly 1n a performance
of an application 1n a connection between client and server
computers. Another embodiment discloses a process for
supporting computer infrastructure, where the process
includes integrating computer-readable program code into a
computer system including a processor. The step of 1inte-
grating includes storing the program code in a computer-
readable storage device of the computer system through use
of the processor. The program code, upon being executed by
the processor, implements a method of detecting and ana-
lyzing an anomaly 1n a performance of an application 1n a
connection between client and server computers.

[0107] While it 1s understood that program code 814 for
detecting and analyzing an anomaly 1n a performance of an
application 1n a connection between client and server com-
puters may be deployed by manually loading directly in
client, server and proxy computers (not shown) via loading
a computer-readable storage medium (e.g., computer data
storage unit 812), program code 814 may also be automati-
cally or semi-automatically deployed into computer 102 by
sending program code 814 to a central server or a group of
central servers. Program code 814 1s then downloaded into
client computers (e.g., computer 102) that will execute
program code 814. Alternatively, program code 814 1s sent
directly to the client computer via e-mail. Program code 814
1s then eirther detached to a directory on the client computer
or loaded into a directory on the client computer by a button
on the e-mail that executes a program that detaches program
code 814 into a directory. Another alternative 1s to send
program code 814 directly to a directory on the client
computer hard drive. In a case in which there are proxy
servers, the process selects the proxy server code, deter-
mines on which computers to place the proxy servers’ code,
transmits the proxy server code, and then 1nstalls the proxy
server code on the proxy computer. Program code 814 1s
transmitted to the proxy server and then 1t 1s stored on the
Proxy server.

[0108] Another embodiment of the invention provides a
method that performs the process steps on a subscription,
advertising and/or fee basis. That 1s, a service provider, such

US 2017/0091008 Al

as a Solution Integrator, can ofler to create, maintain,
support, etc. a process of detecting and analyzing an
anomaly 1n a performance of an application 1n a connection
between client and server computers. In this case, the service
provider can create, maintain, support, etc. a computer
infrastructure that performs the process steps for one or
more customers. In return, the service provider can receive
payment from the customer(s) under a subscription and/or
fee agreement, and/or the service provider can receive

payment from the sale of advertising content to one or more
third parties.

[0109] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) (memory 804 and computer data storage unit
812) having computer readable program instructions 814
thereon for causing a processor (e.g., CPU 802) to carry out
aspects of the present invention.

[0110] The computer readable storage medium can be a
tangible device that can retain and store instructions (e.g.,
program code 814) for use by an instruction execution
device (e.g., computer 102). The computer readable storage
medium may be, for example, but 1s not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0111] Computer readable program instructions (e.g., pro-
gram code 814) described herein can be downloaded to
respective computing/processing devices (e.g., computer
102) from a computer readable storage medium or to an
external computer or external storage device (e.g., computer
data storage unit 812) via a network (not shown), for
example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card (not
shown) or network interface (not shown) in each computing/
processing device receives computer readable program
istructions from the network and forwards the computer
readable program instructions for storage in a computer
readable storage medium within the respective computing/
processing device.

[0112] Computer readable program instructions (e.g., pro-
gram code 814) for carrying out operations of the present
invention may be assembler instructions, instruction-set-

Mar. 30, 2017

architecture (ISA) 1nstructions, machine instructions,
machine dependent 1instructions, microcode, firmware
instructions, state-setting data, or either source code or
object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++ or the like, and
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. The computer readable program instructions may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

[0113] Aspects of the present invention are described
herein with reference to flowchart illustrations (e.g., FIG. 2,
FIG. 3, and FIG. 4) and/or block diagrams (e.g., FIG. 1 and
FIG. 8) of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart 1llustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions (e.g., program code 814).

[0114] These computer readable program instructions may
be provided to a processor (e.g., CPU 802) of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus (e.g., computer 102)
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer readable
program 1nstructions may also be stored in a computer
readable storage medium (e.g., computer data storage unit
812) that can direct a computer, a programmable data
processing apparatus, and/or other devices to function 1n a
particular manner, such that the computer readable storage
medium having instructions stored therein comprises an
article of manufacture including instructions which 1mple-
ment aspects of the function/act specified i1n the flowchart
and/or block diagram block or blocks.

[0115] The computer readable program instructions (e.g.,
program code 814) may also be loaded onto a computer (e.g.
computer 102), other programmable data processing appa-
ratus, or other device to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tflow-
chart and/or block diagram block or blocks.

US 2017/0091008 Al

[0116] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, 1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1n the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

[0117] While embodiments of the present invention have
been described herein for purposes of illustration, many
modifications and changes will become apparent to those
skilled 1n the art. Accordingly, the appended claims are
intended to encompass all such modifications and changes as
fall within the true spirit and scope of this invention.

What 1s claimed 1s:

1. A method of detecting and analyzing an anomaly 1n a
performance of an application 1n a connection between
client and server computers, the method comprising the
steps of:

a first computer determining a time of a request from the
client computer executing the application and an Inter-
net Protocol (IP) address of the client computer, the
request being sent by the client computer to the server
computer via a communications network;

based on the time of the request from the client computer
and the IP address of the client computer, the first
computer selecting one or more log entries from a
plurality of log entries so that the selected one or more
log entries are relevant to the request;

the first computer determining a status code of a response
from the server computer, a round trip latency time
(RTT) of the response, and an indication of whether the
connection timed out, the response being sent by the
server computer to the client computer via the network
and responsive to the request;

based on the status code, the RTT, the indication of
whether connection timed out, or a combination of the
status code, the RTT, and the indication of whether the
connection timed out, the first computer detecting the
anomaly 1n the performance of the application; and

based on a temporal analysis and textual analysis of log
entries associated with the anomaly, and based on an
environment analysis that determines activity of the
client computer, the server computer, and the network,
the first computer determining candidate root causes of
a failure that resulted 1n the anomaly, the failure being
in the client computer, the server computer, the net-
work, or a combination of the client computer, the
server computer, and the network.

2. The method of claim 1, further comprising the steps of:

the first computer determining a period of time relevant to
the anomaly;

Mar. 30, 2017

based on the period of time, the first computer selecting
relevant entities from among the client computer, the
server computer, and components of the communica-
tions network;

based on the selected relevant entities and the period of

time, the first computer selecting log entries from logs
provided by the relevant entities;

subsequent to the step of selecting the log entries, the first
computer filtering the selected log entries based on
keywords that specily anomalies;

the first computer determining a usage of a central pro-
cessing unmt (CPU) of the server computer, a usage of
a memory by the server computer, and an input/output
(I/0) activity of the server computer; and

based on the filtered log entries, the usage of the CPU, the
usage ol the memory, and the I/O activity, the first
computer determining whether each of the client com-
puter, the server computer, and the components of the
communications network was active or inactive at a
time of an occurrence of the anomaly, wherein the step
of determining the candidate root causes 1s based 1n
part on whether each of the client computer, the server
computer and the components of the communications
network 1s determined to have been active or inactive
at the time of the occurrence of the anomaly.

3. The method of claim 2, further comprising the steps of:

the first computer determining one or more components of
the server computer were active at the time of the
occurrence of the anomaly; and

based on the filtered log entries, the usage of the CPU, the
usage ol the memory, and the I/O activity, the first
computer determining whether the one or more com-
ponents of the server computer were performing tasks
relevant to the application or extraneous to the appli-
cation, wherein the step of determining the candidate
root causes 1s based in part on whether the one or more
components of the server computer were performing
tasks relevant to the application or extraneous to the
application.

4. The method of claim 1, further comprising the steps of:

the first computer determining confidences of the respec-
tive candidate root causes, each confidence indicating
how likely the respective root cause 1s an actual root
cause of the anomaly; and

the first computer presenting the candidate root causes 1n
an order which 1s based on the confidences.

5. The method of claim 1, further comprising the steps of:

the first computer determining the anomaly specifies a
type of an alert;

the first computer determining a role of a user;

the first computer determining an association between the
type of the alert and the role of the user; and

based on the association between the type of the alert and
the role of the user, the first computer presenting the
alert to the user, the alert notifying the user about the
anomaly.

6. The method of claim 5, further comprising the steps of:

the first computer collecting attributes of the anomaly and
sending the attributes to a machine learning process,
the attributes including the RTT, the indication of
whether the connection timed out; a delay value of the
connection, details of the server computer and the

US 2017/0091008 Al

application, details about a function specified by the
request, and a uniform resource locator of the server
computer;

the first computer receiving feedback from the user about
whether the anomaly was correctly detected or incor-
rectly detected;

the first computer utilizing the feedback as a label of the
machine learning process;

based on the collected attributes, the first computer gen-
erating a machine learning model for the machine
learning process, the machine learning model including
rules specitying subsequent anomalies;

the first computer updating the machine learning model
continuously or at specified time intervals; and

based on the machine learning model or the updated
machine learning model, the first computer detecting a
subsequent anomaly 1n the performance of the appli-
cation, wherein the subsequent anomaly 1s more likely
to be accurately detected than the anomaly detected by
the prior step of detecting the anomaly.

7. The method of claim 1, further comprising the step of:

providing at least one support service for at least one of
creating, integrating, hosting, maintaining, and deploy-
ing computer-readable program code in the computer,
the program code being executed by a processor of the
computer to implement the steps of determining the
time of the request and the IP address of the client
computer, selecting the one or more log entries, deter-
mining the status code of the response, the RTT, and the
indication of whether the connection timed out, detect-
ing the anomaly, and determining the candidate root
causes of the failure that resulted 1n the anomaly.

8. A computer program product, comprising:
a computer-readable, storage device; and

a computer-readable program code stored in the com-
puter-readable, storage device, the computer-readable
program code containing instructions that are executed
by a central processing unit (CPU) of a computer
system to implement a method of detecting and ana-
lyzing an anomaly 1n a performance of an application
in a connection between client and server computers,
the method comprising the steps of:

the computer system determining a time of a request
from the client computer executing the application
and an Internet Protocol (IP) address of the client
computer, the request being sent by the client com-

puter to the server computer via a communications
network;

based on the time of the request from the client com-
puter and the IP address of the client computer, the
computer system selecting one or more log entries
from a plurality of log entries so that the selected one
or more log entries are relevant to the request;

the computer system determining a status code of a
response from the server computer, a round trip
latency time (R1T) of the response, and an indication
of whether the connection timed out, the response
being sent by the server computer to the client
computer via the network and responsive to the
request;

based on the status code, the RTT, the indication of
whether connection timed out, or a combination of
the status code, the RTT, and the indication of

12

Mar. 30, 2017

whether the connection timed out, the computer
system detecting the anomaly 1n the performance of
the application; and
based on a temporal analysis and textual analysis of log
entries associated with the anomaly, and based on an
environment analysis that determines activity of the
client computer, the server computer, and the net-
work, the computer system determining candidate
root causes of a failure that resulted 1n the anomaly,
the failure being 1n the client computer, the server
computer, the network, or a combination of the client
computer, the server computer, and the network.
9. The computer program product of claim 8, wherein the

method further comprises the steps of:

the computer system determining a period of time rel-
evant to the anomaly;

based on the period of time, the computer system select-
ing relevant entities from among the client computer,
the server computer, and components of the commu-
nications network;

based on the selected relevant entities and the period of
time, the computer system selecting log entries from
logs provided by the relevant entities;

subsequent to the step of selecting the log entries, the
computer system filtering the selected log entries based
on keywords that specity anomalies;

the computer system determining a usage of a central
processing unmt (CPU) of the server computer, a usage
of a memory by the server computer, and an input/
output (I/0) activity of the server computer; and

based on the filtered log entries, the usage of the CPU, the
usage of the memory, and the I/O activity, the computer
system determining whether each of the client com-
puter, the server computer, and the components of the
communications network was active or inactive at a
time of an occurrence of the anomaly, wherein the step
of determining the candidate root causes 1s based 1n
part on whether each of the client computer, the server
computer and the components of the communications
network 1s determined to have been active or inactive
at the time of the occurrence of the anomaly.

10. The computer program product of claim 9, wherein

the method further comprises the steps of:

the computer system determining one or more compo-
nents of the server computer were active at the time of
the occurrence of the anomaly; and

based on the filtered log entries, the usage of the CPU, the
usage ol the memory, and the I/O activity, the computer
system determining whether the one or more compo-
nents of the server computer were performing tasks
relevant to the application or extraneous to the appli-
cation, wherein the step of determining the candidate
root causes 1s based in part on whether the one or more
components of the server computer were performing
tasks relevant to the application or extraneous to the
application.

11. The computer program product of claim 8, wherein the

method further comprises the steps of:

the computer system determining confidences of the
respective candidate root causes, each confidence 1ndi-
cating how likely the respective root cause 1s an actual
root cause of the anomaly; and

the computer system presenting the candidate root causes
in an order which 1s based on the confidences.

US 2017/0091008 Al

12. The computer program product of claim 8, wherein
the method further comprises the steps of:

the computer system determining the anomaly specifies a
type of an alert;

the computer system determining a role of a user;

the computer system determining an association between
the type of the alert and the role of the user; and

based on the association between the type of the alert and
the role of the user, the computer system presenting the
alert to the user, the alert notifying the user about the
anomaly.

13. The computer program product of claim 12, wherein
the method further comprises the steps of:

the computer system collecting attributes of the anomaly
and sending the attributes to a machine learning pro-
cess, the attributes including the RT'T, the indication of
whether the connection timed out; a delay value of the
connection, details of the server computer and the
application, details about a function specified by the
request, and a uniform resource locator of the server
computer;

the computer system receiving feedback from the user
about whether the anomaly was correctly detected or
incorrectly detected;

the computer system utilizing the feedback as a label of
the machine learning process;

based on the collected attributes, the computer system
generating a machine learning model for the machine
learning process, the machine learning model including
rules specilying subsequent anomalies;

the computer system updating the machine learning
model continuously or at specified time intervals; and

based on the machine learning model or the updated
machine learning model, the computer system detect-
ing a subsequent anomaly 1n the performance of the
application, wherein the subsequent anomaly 1s more
likely to be accurately detected than the anomaly
detected by the prior step of detecting the anomaly.

14. A computer system comprising:
a central processing unit (CPU);
a memory coupled to the CPU; and

a computer readable storage device coupled to the CPU,
the storage device contaiming instructions that are
executed by the CPU wvia the memory to implement a
method of detecting and analyzing an anomaly 1n a
performance of an application 1n a connection between
client and server computers, the method comprising the
steps of:

the computer system determining a time of a request
from the client computer executing the application
and an Internet Protocol (IP) address of the client
computer, the request being sent by the client com-
puter to the server computer via a communications
network;

based on the time of the request from the client com-
puter and the IP address of the client computer, the
computer system selecting one or more log entries
from a plurality of log entries so that the selected one
or more log entries are relevant to the request;

the computer system determining a status code of a
response from the server computer, a round trip
latency time (R1T) of the response, and an indication
of whether the connection timed out, the response

Mar. 30, 2017

being sent by the server computer to the client
computer via the network and responsive to the
request;
based on the status code, the RTT, the indication of
whether connection timed out, or a combination of
the status code, the RTT, and the indication of
whether the connection timed out, the computer
system detecting the anomaly 1n the performance of
the application; and
based on a temporal analysis and textual analysis of log
entries associated with the anomaly, and based on an
environment analysis that determines activity of the
client computer, the server computer, and the net-
work, the computer system determining candidate
root causes of a failure that resulted 1n the anomaly,
the failure being 1n the client computer, the server
computer, the network, or a combination of the client
computer, the server computer, and the network.
15. The computer system of claim 14, wherein the method
further comprises the steps of:
the computer system determining a period of time rel-
evant to the anomaly;
based on the period of time, the computer system select-
ing relevant entities from among the client computer,
the server computer, and components of the commu-
nications network;
based on the selected relevant entities and the period of
time, the computer system selecting log entries from
logs provided by the relevant entities;
subsequent to the step of selecting the log entries, the
computer system filtering the selected log entries based
on keywords that specily anomalies;
the computer system determining a usage of a central
processing unmt (CPU) of the server computer, a usage
of a memory by the server computer, and an input/
output (I/0) activity of the server computer; and
based on the filtered log entries, the usage of the CPU, the
usage ol the memory, and the I/O activity, the computer
system determining whether each of the client com-
puter, the server computer, and the components of the
communications network was active or inactive at a
time of an occurrence of the anomaly, wherein the step
of determining the candidate root causes 1s based 1n
part on whether each of the client computer, the server
computer and the components of the communications
network 1s determined to have been active or inactive
at the time of the occurrence of the anomaly.
16. The computer system of claim 15, wherein the method
further comprises the steps of:
the computer system determining one or more compo-
nents of the server computer were active at the time of
the occurrence of the anomaly; and
based on the filtered log entries, the usage of the CPU, the
usage ol the memory, and the I/O activity, the computer
system determining whether the one or more compo-
nents of the server computer were performing tasks
relevant to the application or extraneous to the appli-
cation, wherein the step of determining the candidate
root causes 1s based in part on whether the one or more
components of the server computer were performing
tasks relevant to the application or extraneous to the
application.
17. The computer system of claim 14, wherein the method
further comprises the steps of:

US 2017/0091008 Al

the computer system determining confidences of the
respective candidate root causes, each confidence 1ndi-
cating how likely the respective root cause 1s an actual
root cause of the anomaly; and

the computer system presenting the candidate root causes
in an order which 1s based on the confidences.

18. The computer system of claim 14, wherein the method

further comprises the steps of:

the computer system determining the anomaly specifies a
type of an alert;

the computer system determining a role of a user;

the computer system determining an association between
the type of the alert and the role of the user; and

based on the association between the type of the alert and
the role of the user, the computer system presenting the
alert to the user, the alert notifying the user about the
anomaly.

19. The computer system of claim 18, wherein the method

further comprises the steps of:

the computer system collecting attributes of the anomaly
and sending the attributes to a machine learning pro-
cess, the attributes including the RT'T, the indication of
whether the connection timed out; a delay value of the

Mar. 30, 2017

connection, details of the server computer and the
application, details about a function specified by the
request, and a uniform resource locator of the server
computer;

the computer system receiving feedback from the user
about whether the anomaly was correctly detected or
incorrectly detected;

the computer system utilizing the feedback as a label of
the machine learning process;

based on the collected attributes, the computer system
generating a machine learning model for the machine
learning process, the machine learning model including
rules specitying subsequent anomalies;

the computer system updating the machine learning
model continuously or at specified time intervals; and

based on the machine learning model or the updated
machine learming model, the computer system detect-
ing a subsequent anomaly 1n the performance of the
application, wherein the subsequent anomaly 1s more
likely to be accurately detected than the anomaly
detected by the prior step of detecting the anomaly.

e % e ex 7

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description/Claims
	Page 24 - Claims
	Page 25 - Claims
	Page 26 - Claims

