
US 20090083306Al

(12) Patent Application Publication (10) Pub. No.: US 2009/0083306 A1
(19) United States

Sichi et al. (43) Pub. Date: Mar. 26, 2009

(54) AUTOPROPAGATION OF BUSINESS (22) Filed: Sep. 26, 2007
INTELLIGENCE METADATA

Publication Classi?cation
(75) Inventors: John V. Sichi, Half Moon Bay, CA

(US); Benny T. Chow, Fremont, (51) Int‘ Cl‘
CA (US); VishWas S. Agashe, San G06F 17/00 (200601)
Ramon, CA US ; Chetan R.
Kadam’ salfprgnciscoa CA (Us); (52) U.S. Cl. 707/102; 707/E17.005

Quoc T. Tran, Mountain View, CA
(US); Ken M. Rudin, Palo Alto, (57) ABSTRACT
CA (US)

Correspondence Address:
VAN PELT, YI & JAMES LLP
10050 N. FOOTHILL BLVD #200
CUPERTINO, CA 95014 (US)

(73) Assignee: LucidEra, Inc.

(21) Appl. No.: 11/904,632

accounting
source

A method of processing data is disclosed. A data ?eld change
is detected in a received data entry received by a business
intelligence application. A shared metadata entry shared by
tWo or more business intelligence application stack elements
is processed to derive for each of at least a subset of said tWo
or more business intelligence application stack elements a
corresponding set of element speci?c metadata needed by
that element to use a data value associated With the data ?eld
change.

306

ERP
source

308

shared metadata

Patent Application Publication Mar. 26, 2009 Sheet 1 0f 10 US 2009/0083306 A1

102
data

source(s)

104

administrator j- 106

I business intelligence '
application

analysis
queries reports

I108
user

FIG. 1

Patent Application Publication Mar. 26, 2009 Sheet 2 0f 10 US 2009/0083306 A1

j- 202

design

j- 204

con?gurator <——

J- 206

———> ru n-time

FIG. 2

Patent Application Publication Mar. 26, 2009 Sheet 3 0f 10 US 2009/0083306 A1

304 306

SFA
source

accounting
source

ERP
source

SFA data agent
ERP data agent

314
310 318 322

v iv j- g j

ETL OLAP Ul
warehouse

;
A A A

312 316 32
v j- v I v 5-320 v I 4
ETL data OLAP Ul

metadata Warehouse metad ata metadata
metadata

FIG. 3A

Patent Application Publication Mar. 26, 2009 Sheet 4 of 10 US 2009/0083306 A1

304 - 306

accounting SFA ERP
source source source

A;

308

warehouse

shared metadata

FIG. 3B

Patent Application Publication Mar. 26, 2009 Sheet 5 0f 10 US 2009/0083306 A1

5-412
application
developer

A

410 408
v I f

application design 4__> arggggiatgiy 4—_
tool server

A A M

source A a

data agent ‘

5- 404
shared

source B k metadata
data agent repository

source C 4

data agent ‘

FIG. 4

Patent Application Publication Mar. 26, 2009 Sheet 6 of 10 US 2009/0083306 A1

j- 502

use generic source
account and extract

standard metadata from
source.

J- 504
build standard plumbing

for generic source
account to each BIA

stack element.

J- 506
add extension points for
source account optional
and/or custom ?elds with

dynamic types.

FIG. 5

Patent Application Publication Mar. 26, 2009 Sheet 7 0f 10 US 2009/0083306 A1

5- 602

de?ne dynamic data
?eld.

j- 604

plumb dynamic type
usages according to

industry best practices.

FIG. 6

Patent Application Publication Mar. 26, 2009 Sheet 8 0f 10 US 2009/0083306 A1

w 20: m 29»,

w 29»,

N Em:

m 22 . w 29:

F 20c

m 2m:

= 22 . _ 22

source B

FIG. 7A

Patent Application Publication Mar. 26, 2009 Sheet 9 0f 10

: I I

....... .. I I I
| 756

1 | I
\ _ EL _/ I data wa£hou_se

FIG. 7B

US 2009/0083306 A1

analysis

Patent Application Publication Mar. 26, 2009 Sheet 10 0f 10 US 2009/0083306 A1

5- 802 l j- 808
administrator

extract user binds new ?elds to
metadata dynamic data

?elds

5-804 5-810
diff against combine shared

previous template metadata

806 - 812 I I
discover de lo ment to

new ?elds, detect P y _
deleted and generate runtlme

modi?ed ?elds Objects

FIG. 8

US 2009/0083306 A1

AUTOPROPAGATION OF BUSINESS
INTELLIGENCE METADATA

BACKGROUND OF THE INVENTION

[0001] Business intelligence applications allow a company
to perform tasks such as gathering data from heterogeneous
sources, analyzing such data, and producing reports. Tradi
tionally, a business intelligence application includes one or
more stack elements con?gured to perform data retrieval,
integration, management, and/ or reporting functions. The
stack elements typically require some knowledge of the struc
ture and content of data available from various sources, and as
a result under existing approaches considerable administra
tive effort may be required to enable a typical business intel
ligence application to use (e.g., include in a proper or desired
way in a report) data associated with a data ?eld newly added
at a source.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Various embodiments of the invention are disclosed
in the following detailed description and the accompanying
drawings.
[0003] FIG. 1 is a block diagram illustrating an embodi
ment of a business intelligence application and/or system and
associated elements.
[0004] FIG. 2 is a block diagram illustrating an embodi
ment of a process for a business intelligence application life
cycle.
[0005] FIG. 3A is a block diagram illustrating an example
of a system for a typical business intelligence application
run-time ?ow.
[0006] FIG. 3B is a block diagram illustrating an embodi
ment of a business intelligence application run-time ?ow.
[0007] FIG. 4 is a block diagram illustrating an example of
a system for a business intelligence application design ?ow.
[0008] FIG. 5 is a ?owchart illustrating an embodiment of a
process to design a business intelligence application.
[0009] FIG. 6 is a ?owchart illustrating an embodiment of a
process to add extension points during the design of a busi
ness intelligence application.
[0010] FIG. 7A is a data ?ow graph illustrating an example
of data ?ow connections joining dynamic data ?elds from
data agents in a business intelligence application.
[0011] FIG. 7B is a data ?ow graph illustrating an example
of data ?ow connections joining dynamic data ?elds in a
business intelligence application.
[0012] FIG. 8 is a ?owchart illustrating an embodiment of a
process to con?gure a business intelligence application.

DETAILED DESCRIPTION

[0013] The invention can be implemented in numerous
ways, including as a process, an apparatus, a system, a com
position of matter, a computer readable medium such as a
computer readable storage medium or a computer network
wherein program instructions are sent over optical or com
munication links. In this speci?cation, these implementa
tions, or any other form that the invention may take, may be
referred to as techniques. A component such as a processor or
a memory described as being con?gured to perform a task
includes both a general component that is temporarily con
?gured to perform the task at a given time or a speci?c
component that is manufactured to perform the task. In gen

Mar. 26, 2009

eral, the order of the steps of disclosed processes may be
altered within the scope of the invention.

[0014] A detailed description of one or more embodiments
of the invention is provided below along with accompanying
?gures that illustrate the principles of the invention. The
invention is described in connection with such embodiments,
but the invention is not limited to any embodiment. The scope
of the invention is limited only by the claims and the invention
encompasses numerous alternatives, modi?cations and
equivalents. Numerous speci?c details are set forth in the
following description in order to provide a thorough under
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these speci?c
details. For the purpose of clarity, technical material that is
known in the technical ?elds related to the invention has not
been described in detail so that the invention is not unneces
sarily obscured.
[0015] FIG. 1 is a block diagram illustrating an embodi
ment of a business intelligence application and/or system and
associated elements. Data source 102 provides a source of
business-related data. Examples of sources of business
related data source 102 include a database provided by a
sales-force automation (“SPA”) vendor, a customer relation
ship management (“CRM”) vendor, an accounting manage
ment vendor, or an enterprise resource planning (“ERP”)
vendor. In some embodiments, there may be more than one
data source 102.

[0016] In the example shown, a data source 102 is coupled
to a network 104; a public or private network and/or combi
nation thereof, for example the Internet, an Ethernet, serial/
parallel bus, intranet, NAS, SAN, LAN, WAN, and other
forms of connecting multiple systems and/or groups of sys
tems together. Business intelligence application (“BIA”) 106
receives data from one or more database sources 102 through

network 104. BIA 106 extracts, warehouses, and analyZes the
data; accepts analysis queries from user 108; and delivers
reports to user 108. In some embodiments, there may be more
than one user 108. In some embodiments, a BIA administra
tor maintains the BIA 106 and troubleshoots any problems.

[0017] FIG. 2 is a block diagram illustrating an embodi
ment of a process for a business intelligence application life
cycle. The process may be implemented in BIA 106.
[0018] In step 202, an application developer designs BIA
106, taking into consideration the requirements of user 108
that are known at design time for data sources 102, analysis
queries, and reports. The application developer de?nes data
?ows between the internal components of BIA 106.
Examples of a data ?ow include a path that starts with a
particular data ?eld or type of data ?eld associated with one or
more data sources and indicates intermediate processing, if
any, done on and/or with respect to data values associated
with the ?eld or type of ?eld and one or more outputs, e.g.,
how the data, as processed if applicable, is provided as output,
e.g., in a report.

[0019] In step 204, the BIA enters a “con?gurator” mode,
which allows the BIA to adapt to its initial or a changed
environment. In some embodiments, a changed environment
may involve a data ?eld change in a data source 102, for
example the introduction of a data ?eld for a customer siZe in
a opportunity database entry for a CRM vendor 102. In this
example, the con?gurator mode will identify the new cus

US 2009/0083306 A1

tomer size ?eld, and recon?gure the BIA 106 to correctly
analyze and produce reports that include the customer siZe
?eld.

[0020] In step 206, the BIA 106 enters its normal “run
time” mode, in Which a data source 102 is accessed to ansWer
queries from user 108 and produce reports to user 108. In
some embodiments, the BIA 106 may reenter the con?gurator
mode 204 to further analyZe any changed data ?elds at a
scheduled time or as the administrator requests it.

[0021] FIG. 3A is a block diagram illustrating an example
of a system for a typical business intelligence application
run-time ?oW. Accounting source 302, SFA source 304 and
ERP source 306 each represent a source database for analysis
and reporting. The three sources shoWn in FIG. 3A are only
examples, and other sources may be available, for example
CRM sources. The sources are connected through netWork

308 to an Extract, Transform, Load (“ETL”) system 310, via
data agents speci?cally customiZed for each source, for
example an accounting data agent connects accounting
source 302 With ETL 310. Besides the core data transported
from source to ETL 310, metadata is any additional data
required for adjusting content or form of the core data. ETL
metadata is stored in an ETL metadata repository 312.

[0022] The ETL 310 is connected to a data Warehouse
system 314, Which Warehouses data for future analysis and
reports. The data agents may also be connected through to
other components, for example data Warehouse system 314.
Data Warehouse metadata is stored in a data Warehouse meta
data repository 316. Examples of data Warehouse metadata
include table schema for each table in the data Warehouse.
The data Warehouse 314 is also connected to an Online Ana
lytical Processing (“OLAP”) cube, Which analyZes data and
prepares reports using a multidimensional approach. OLAP
metadata is stored in an OLAP metadata repository 320.
Examples of OLAP metadata include the eXtended Markup
Language (“XML”) ?les to con?gure the cubes and analysis.
The OLAP cube 318 is also connected to a User Interface
(“UI”) system 322. The UI 322 presents the analyZed data and
reports from OLAP cube 318 to a user 108. UI metadata is
stored in a UI metadata repository 324.

[0023] Conventionally, the ETL 310, data Warehouse 314,
OLAP cube 318 and UI 322 all store metadata in the corre
sponding local metadata repository. When a data ?eld change
occurs in any of the source databases 302, 304 and 306,
typically each metadata repository; ETL metadata 312, data
Warehouse metadata 316, OLAP metadata 320 and UI meta
data 324 must be updated to re?ect the neW data ?eld change.
Conventionally, static data ?elds, also knoWn as “?exible
?elds”, are reserved for a limited number of added data ?eld
changes. However, this approach requires a priori knowledge
of the data ?eld count, types, and siZes Which are not alWays
available; the alternative is to statically allocate very large
resources to accommodate average data ?eld numbers and
siZes. For example, a particular con?guration might have
?elds PHONE_NUMBER NUMERIC(1 0) and NAME VAR
CHAR(128). Here the ?eld count Would be tWo, the types
Would be NUMERIC and VARCHAR, and the corresponding
siZes Would be 10 and 128. The metadata repositories are
stored separately and human errors and inconsistencies may
be made for a data ?eld change. Additionally, if the siZe and
number of static data ?elds are not used, then the business
intelligence system must carry the additional resource burden
of the unused ?elds.

Mar. 26, 2009

[0024] A technique for propagating metadata changes for
one or more business intelligence application stack elements,
such as ETL 310, data Warehouse 314, OLAP 318 and/or UI
322, automatically, so that data ?eld changes are handled
e?iciently and correctly, is disclosed.
[0025] FIG. 3B is a block diagram illustrating an embodi
ment of a business intelligence application run-time How. The
system in FIG. 3B may be part ofthe ?oW ofFIG. 206 in FIG.
2. The sources 302, 304, and 306, and netWork 308 are again
examples of sources connected to an ETL system 352.

[0026] In the disclosed ETL system 352, the metadata
repository is a shared metadata repository 354. The shared
metadata repository 354 shares metadata With other business
intelligence components. Throughout this speci?cation,
“business intelligence application” or BIA refers to a set of
agents and/or components con?gured to receive, store, inte
grate, process, and/or provide access to (e.g., as output, such
as a report) business data from one or more sources. In the

example shoWn in FIG. 3B, the business intelligence appli
cation includes the suite of the data agents and the four busi
ness intelligence components: ETL 352, data Warehouse 356,
OLAP cube 358 and UI 360. In FIG. 3B the BIA is labeled as
system 362. Throughout this speci?cation a “BIA stack ele
ment” refers to an identi?able component comprising a BIA
and/or a data path associated thereWith, such as the data
agents or one of the four business intelligence components in
the example shoWn in FIG. 3B: ETL 352, data Warehouse
356, OLAP cube 358 or UI 360.

[0027] In comparison to FIG. 3A, the shared metadata
repository 354 provides a centraliZed source for data ?eld
change propagation. In some embodiments, each BIA stack
element may have a local metadata repository as Well, but
these local metadata repositories are derived automatically
from the shared metadata repository 354. That is, a BIA
administrator only needs to maintain the shared metadata
repository 354 and not each local metadata repository. This
reduces inconsistencies and errors betWeen the BIA stack
elements.

[0028] In some embodiments, the user and/or administrator
have the ability in ETL 352 to de?ne vieWs and insert/update
statements for data movement corresponding to at least one
shared metadata entry in shared metadata repository 354. In
some embodiments, the user and/ or administrator have the
ability in data Warehouse 356 to create columns and tables to
represent at least one shared metadata entry in shared meta
data repository 354. In some embodiments, the user and/or
administrator have the ability in OLAP cube 358 to catego
riZe, summariZe and aggregate data in at least one shared
metadata entry in shared metadata repository 354. In some
embodiments, the user and/ or administrator have the ability
in UI 360 to build reports using at least one shared metadata
entry shared metadata repository 354 from a Zero footprint
Web interface. In some embodiments, the user and/ or admin
istrator have the ability to incorporate a neW type of BIA stack
element, for example, data mining, into the auto-propagation
scheme.

[0029] With a centraliZed shared metadata repository 354, a
dynamic data ?eld can be used that expands and contracts
automatically With data ?eld changes Without the overhead of
a static data ?eld. A technique to implement a dynamic data
?eld is disclosed.

US 2009/0083306 A1

[0030] FIG. 4 is a block diagram illustrating an example of
a system for a business intelligence application design ?ow.
The system in FIG. 4 may be part of the ?ow of FIG. 202 in
FIG. 2.

[0031] Source data agents are shown as source A data agent
402, source B data agent 404 and source C data agent 406, as
data agents, for example for corresponding sources 302, 304
and 306. In some embodiments there may be less than three or
more than three data agents. The data agents are connected to
the application repository server 408 which enables the BIA
362. In some embodiments, the server 408 may be spread
across multiple physical servers. The server 408 interacts
with an application developer 412, through an application
design tool 410. The server 408 also is connected to the shared
metadata repository 354.
[0032] FIG. 5 is a ?owchart illustrating an embodiment of a
process to design a business intelligence application. The
process may be implemented with application design tool 41 0
by application developer 412.
[0033] In step 502, a generic source account is used to
extract standard metadata from each source to the repository
server 408. For example, if an SFA source is used, a test or
generic SFA account is set up to extract the source standard
metadata without any custom data ?elds.

[0034] In step 504, the source standard metadata is used to
provide to applicable BIA stack elements a default or initial
de?nition of data ?ow connections between data ?elds and
tables.

[0035] In step 506, the generic account is compared with
the actual source account to ?nd optional and/or custom
?elds. Extension points are added to the shared metadata
repository 354 by using dynamic data ?elds. Dynamic data
?elds are analogous to dynamically allocated variables in
programming; they allow more than one or more attributes of
a new data ?eld, such as data type or siZe, to be de?ned
dynamically, rather than requiring static de?nition at BIA
design time. In some embodiments, an administrator de?nes,
e.g., at BIA installation, customization, or a subsequent time,
how detected dynamic data ?elds are to be used, for example
how and/or where they should be included in the data ?ows
de?ned for a particular BIA installation. Examples of such
uses include what, if any, intermediate processing should be
done with respect to data values associated with a dynamic
data ?eld and whether/how such data should be included in
reports. In some embodiments, a user interface (UI) and/or
related component interacts with a human user, such as an
administrator, to receive input regarding how data associated
with a new ?eld is to be used.

[0036] FIG. 6 is a ?owchart illustrating an embodiment of a
process to add extension points during the design of a busi
ness intelligence application. In some embodiments, the pro
cess of FIG. 6 is included in 506 of FIG. 5. The process may
be implemented with application design tool 410 by applica
tion developer 412.
[0037] In step 602, the dynamic data ?eld is de?ned in each
table that requires a custom or optional ?eld. In step 604, the
dynamic data ?elds are plumbed throughout the BIA accord
ing to industry best practices with the assistance of the appli
cation developer 412. “Industry best practices” are de?ned
throughout this speci?cation as practices generally accepted,
through theory or experience, as safe data ?ow connections of
these dynamic data ?elds. An example might be a dynamic
data ?eld with a ratings (from 1 through 10) type; a safe

Mar. 26, 2009

placement might be to average two ratings together, but an
unsafe placement would be the addition of two ratings which
would not make sense.

[0038] After all the dynamic data ?eld data ?ow connec
tions have been established and are veri?ed, the design ?ow is
complete and the BIA is ready for either con?guration or
run-time.
[0039] FIG. 7A is a data ?ow graph illustrating an example
of data ?ow connections joining dynamic data ?elds from
data agents in a business intelligence application. In some
embodiments, the example of FIG. 6 is part of 604 of FIG. 6.
The process may be implemented with application design
tool 410 by application developer 412.
[0040] For the example data ?ow graph in FIG. 7A, the BIA
has two source databases with two source data agents, source
A 702 and source B 704. The data agents 702 and 704 connect
to the BIA’s ETL 706. SourceA 702 has two tables, table 708
and table 710. Source B 704 has one table, table 712. The ETL
has multiple tables, including table 714.
[0041] With the generic template, it is determined in step
504 that SourceA table 710 has a data ?eld 6 that is split using
the Split “A” 716 algorithm to two ?elds in ETL table 714.
Similarly, SourceA table 710 has a data ?eld 5 and Source B
table 712 has a ?eld ii that when combined are re-split using
the Split “B” 718 algorithm to two different ?elds in ETL
table 714.
[0042] A dynamic data ?eld is introduced in step 604 as part
of Source A table 708. According to industry best practices,
the dynamic data ?eld can be joined using algorithm Join 720
with Source A table 710’s ?eld 7 to a ?eld in ETL table 714.
This example only shows the data ?ow graph between data
agents and ETL, and may be continued from ETL through
data warehouse, OLAP and UI. This is shown in the next
?gure, FIG. 7B.
[0043] FIG. 7B is a data ?ow graph illustrating an example
of data ?ow connections joining dynamic data ?elds in a
business intelligence application. In some embodiments, the
example of FIG. 6 is part of 604 of FIG. 6. The process may
be implemented with application design tool 410 by applica
tion developer 412.
[0044] As shown in FIG. 7A, Source A 702 and ETL 706
are connected through a dynamic data ?eld from Source A
table 708 to ETL table 714. At this level, the further connec
tion to data warehouse 752 is shown as the dynamic data ?eld
is plumbed to both data warehouse table 754 and table 756
using an algorithm. The data warehouse table 754 stores the
dynamic ?elds for use by analysis in the OLAP.
[0045] FIG. 8 is a ?owchart illustrating an embodiment of a
process to con?gure a business intelligence application. In
some embodiments, the process of FIG. 8 is included in 204
of FIG. 2. The process may be implemented with BIA 106
with an administrator.

[0046] In step 802, the administrator starts the con?gurator
process and extracts the user metadata from each of its
sources. In step 804, the differences between the current user
metadata and the previous template are compared using a
“diff” type tool. In some embodiments, the previous template
when initially run may be the generic template of step 504.
[0047] In step 806, the discovered differences are classi?ed
as either new data ?elds, deleted data ?elds or modi?ed data
?elds and presented to the administrator. In step 808, the
administrator is permitted to bind the new data ?elds to
dynamic data ?elds. In some embodiments, this binding may
be done without the administrator’s assistance.

US 2009/0083306 A1

[0048] In step 810, the union of the previous template meta
data and the bindings of the con?gurator are combined to
present neW shared metadata. In step 812, the neW shared
metadata is deployed to generate the runtime objects such as
table schema and XML ?les for the OLAP metadata.
[0049] The con?gurator How of FIG. 8 may be run as
requested by the administrator or on a scheduled basis. Run
ning the con?gurator ?oW alloWs the BIA to detect a data ?eld
change from a database source and process the shared meta
data to generate the BIA stack element speci?c metadata
needed by that element to use a data value associated With the
data ?eld change.
[0050] Although the foregoing embodiments have been
described in some detail for purposes of clarity of understand
ing, the invention is not limited to the details provided. There
are many alternative Ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.
What is claimed is:
1. A method of processing data, comprising:
detecting a data ?eld change in a received data entry

received by a business intelligence application; and
processing a shared metadata entry shared by tWo or more

business intelligence application stack elements to
derive for each of at least a subset of said tWo or more
business intelligence application stack elements a cor
responding set of element speci?c metadata needed by
that element to use a data value associated With the data
?eld change.

2. A method as recited in claim 1, Wherein the business
intelligence application stack elements include one or more
of the folloWing: one or more source data agents, an ETL

element, a Data Warehouse element, an OLAP element, a data
mining element, and a UI element.

3. A method as recited in claim 2, Wherein source data
agents connect to accounting is sources, CRM sources, SFA
sources or ERP sources.

4. A method as recited in claim 1, Wherein detecting a data
?eld change comprises detecting a dynamic data ?eld.

5. A method as recited in claim 4, further comprising
receiving a binding data associated With the dynamic data
?eld, Wherein the binding data indicates a manner in Which
data associated With the dynamic data ?eld is to be used.

6. A method as recited in claim 1, Wherein the correspond
ing set of element speci?c metadata is represented by de?ning
vieWs and insert/update statements for data movement in an
ETL element.

7. A method as recited in claim 1, Wherein the correspond
ing set of element speci?c metadata is represented by creating
columns and tables in a Data Warehouse element.

8. A method as recited in claim 1, Wherein the correspond
ing set of element speci?c metadata is represented by catego
riZing, summarizing and aggregating data in an OLAP ele
ment.

9. A method as recited in claim 1, Wherein the correspond
ing set of element speci?c metadata is represented by building
reports from a Zero footprint Web interface in a UI element.

10. A method as recited in claim 1, further comprising
adding, modifying or deleting a business intelligence appli
cation stack element from the said tWo or more business
intelligence application stack elements.

11. A method as recited in claim 1, Wherein at least one
corresponding set of element speci?c metadata comprises a
set of element speci?c runtime object creation commands.

Mar. 26, 2009

12. A method as recited in claim 11, Where the set of
element speci?c runtime object creation commands include
one or more of the folloWing: database commands, table
schema commands, XML commands, or OLAP metadata
commands.

13. A system of processing data, including:
a processor; and
a memory coupled With the processor, Wherein the memory

is con?gured to provide the processor With instructions
Which When executed cause the processor to:
detect a data ?eld change in a received data entry by a

business intelligence application; and
process a shared metadata entry shared by tWo or more

business intelligence application stack elements to
derive for each of at least a subset of said tWo or more
business intelligence application stack elements a
corresponding set of element speci?c metadata
needed by that element to use a data value associated
With the data ?eld change.

14. A system as recited in claim 13, Wherein the business
intelligence application stack elements include one or more
of the folloWing: one or more source data agents, an ETL
element, a Data Warehouse element, an OLAP element, and a
UI element.

15. A system as recited in claim 14, Wherein source data
agents connect to accounting sources, CRM sources, SFA
sources or ERP sources.

16. A system as recited in claim 13, Wherein detecting a
data ?eld change comprises detecting a dynamic data ?eld.

17. A system as recited in claim 16, Wherein the processor
is further con?gured to receive a binding data associated With
the dynamic data ?eld, Wherein the binding data indicates a
manner in Which data associated With the dynamic data ?eld
is to be used.

18. A computer program product for processing data, the
computer program product being embodied in a computer
readable medium and comprising computer instructions for:

detecting a data ?eld change in a received data entry by a
business intelligence application; and

processing a shared metadata entry shared by tWo or more
business intelligence application stack elements to
derive for each of at least a subset of said tWo or more
business intelligence application stack elements a cor
responding set of element speci?c metadata needed by
that element to use a data value associated With the data
?eld change.

19. A computer program product as recited in claim 18,
Wherein the business intelligence application stack elements
include one or more of the folloWing: one or more source data

agents, an ETL element, a Data Warehouse element, an
OLAP element, and a UI element.

20. A computer program product as recited in claim 19,
Wherein source data agents connect to accounting sources,
CRM sources, SFA sources or ERP sources.

21. A computer program product as recited in claim 18,
Wherein detecting a data ?eld change comprises detecting a
dynamic data ?eld.

22. A computer program product as recited in claim 21, the
computer program product further comprising computer
instructions for receiving a binding data associated With the
dynamic data ?eld, Wherein the binding data indicates a man
ner in Which data associated With the dynamic data ?eld is to
be used.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description/Claims

