US 20190310775A1
19y United States
a2y Patent Application Publication o) Pub. No.: US 2019/0310775 Al
Chen et al. 43) Pub. Date: Oct. 10, 2019
(54) MANAGING VIRTUAL-MACHINE IMAGE 3/0683 (2013.01); GO6F 9/45558 (2013.01);
CLONING GO6F 3/0665 (2013.01)
(71) Applicant: Red Hat, Inc., Raleigh, NC (US)
(57) ABSTRACT
(72) Inventors: Huamin Chen, Westboro, MA (US);
Adam Gel:ard Litke, BetheloPark, PA Cloning of virtual-machine images can be managed. For
(US); Fabian Deutsch, Thedinghausen example, a computing device can copy a segment of a
(DE) virtual-machine 1mage stored in a second storage device to
| a first storage device 1n response to receiving a first read
(21) Appl. No.: 15/948,614 request for the segment from a virtual machine. The first
o storage device may be capable of responding to read
(22) Filed: APE. 3, 2018 requests from the virtual machine with less latency than the
Publication Classification second storage d§V1ce. The computing device can also
update a log to indicate that the segment 1s stored on the first
(51) Int. Cl. storage device. Thereafter, the computing device can receive
GO6L 3/06 (2006.01) a second read request for the segment. In response, the
GO6L 9/455 (2006.01) computing device can determine that the segment is stored
(52) U.S. CL in the first storage device using the log, and provide the
CPC GOo6l’ 3/065 (2013.01); GO6F 3/0619 segment by obtaining the segment from the first storage

.

roud wiwt @éw wim Ambw dwiv Swik clwh gtud @iw wiw wim dwim dwir cdwh giw wowl @iw wiw dwdn dwin Swh dwk ot abw wim wiw swdw Swiv cowd gt wiw wiw wim Gwin cdwie OSwe chwh wiwt @dw wiw wiwm dwiw swde

(2013.01); GO6F 2009/45583 (2013.01); GO6F

Network infrastructure 128

Computing device 102

Virtual machine 104a{ { Virtual machine 104b

Device node 1063 Deavice node 106b

l!

] 120a 120b
1162 116b

Device driver 108 1. -

L
‘-—..._
-
Sy
-
Wiy
~‘~
-
“~
by
- -

device.

[100

Block storage
device 112

Object storage
device 110

[o o R A e e e e e R A A e e o e e

VM image 114
113

oy
“ﬁ-‘
b

Cache memory 124 1€

-**“*-

Patent Application Publication Oct. 10, 2019 Sheet 1 of 4 US 2019/0310775 Al

Computing device 102

[‘100

Virtual machine 104a{ | Virtual machine 104b{ | Block storage

e e e e e S o

device 112

Objéct s:té-razge
device 110

116a ~~— 116b g L7

Cache memory 124

Patent Application Publication Oct. 10, 2019 Sheet 2 of 4 US 2019/0310775 Al

Computing device 102

Virtual machine 104a i | Virtual machine 104b | | Block storage

device 112

Objéct' storage
- device 310

| VM image 114

Cache memory 124

FiG. 2

Patent Application Publication Oct. 10, 2019 Sheet 3 of 4 US 2019/0310775 Al

-
] First storage
device 310

Second storage |
' device 308 |

VM image 114

Virtual machine 104

Patent Application Publication Oct. 10, 2019 Sheet 4 of 4 US 2019/0310775 Al

402
Copy a segment of a virtual-machine image stored in a second storage device to a first storage device in
response to receiving a first read request for the segment from a virtual machine that is deployable using
the virtual-machine image, the first storage device being capable of responding to read requests from the

virtual machine with less latency than the second storage device

404

Update a log to indicate that the segment of the virtual-machine image is stored on the first storage
device

406
in response to receiving a second read request for the segment from the virtual machine subsequent to
receiving the first read request, determine that the segment is stored in the first storage device using the
log

408
Based on determining that the segment is stored in the first storage device, provide the segment to the
virtual machine by obtaining the segment from the first storage device

FIG. 4

US 2019/0310775 Al

MANAGING VIRTUAL-MACHINE IMAGE
CLONING

TECHNICAL FIELD

[0001] The present disclosure relates generally to file
management. More specifically, but not by way of limita-
tion, this disclosure relates to managing virtual-machine
image cloning.

BACKGROUND

[0002] A virtual machine can be a substantially 1solated
environment that has its own operating system, software
applications, and virtualized hardware. For example, a vir-
tual machine can have a virtual Central Processing Unit
(vCPU), a virtual Random Access Memory (VRAM), and
other components. Virtual machines are launched from
image files, which can be referred to as images. Typically,
images include the underlying operating-system files, data
files, and applications for provisioning a virtual machine. As
a result, images are often relatively large 1n size, exceeding
1 gigabyte (GB) or more.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 1s a block diagram of an example of a
system for managing virtual-machine image cloning accord-
ing to some aspects.

[0004] FIG. 2 1s a block diagram of another example of a
system for managing virtual-machine image cloning accord-
ing to some aspects.

[0005] FIG. 3 1s a block diagram of still another example
of a system for managing container-image layers according
t0 some aspects.

[0006] FIG. 4 1s a flow chart of an example of a process
for managing virtual-machine 1mage cloning according to
some aspects.

DETAILED DESCRIPTION

[0007] The relatively large sizes of virtual-machine
images can result 1n a variety of problems. For example,
these 1mages are often stored in a central repository from
which copies of the images are downloaded as needed (or
“cloned”) by client devices. But 1t can take a long time for
the client devices to download the images from the central
repository, given the large sizes of the images. For example,
it can take several minutes or hours to download a single
image. And the client devices typically do not preemptively
download 1images before they are needed. As a result, 1t can
take a significant amount of time for a client device to
deploy a virtual machine (e.g., for the first time). For
example, a client device can receive a command to deploy
a virtual machine. The client device may then have to
download an 1mage associated with the virtual machine from
the central repository, which can take a significant amount of
time, before ultimately deploying the virtual machine. This
process can introduce a large amount of latency in deploying
the virtual machine.

[0008] Some examples of the present disclosure can over-
come one or more of the abovementioned 1ssues by selec-
tively copying segments of a virtual-machine image (e.g.,
stored 1n a central repository) in response to requests for
those segments, rather than attempting to download the
entire 1mage all at once. For example, a client device can
download the minimal amount of an image required to

Oct. 10, 2019

initiate a boot-up process through which a virtual machine 1s
deployed. The client device can then attempt to boot up the
virtual machine. As the virtual machine boots up, the virtual
machine can 1ssue read requests for certain segments of the
virtual-machine 1mage. In some examples, the client device
can detect these read requests, obtain the requested segments
from the central repository, and provide the segments back
to the virtual machine. By selectively downloading the
segments “on demand,” the startup latency, data tratlic, and
computational overhead required to launch a virtual machine
can be significantly reduced.

[0009] After downloading an image segment requested by
the virtual machine, 1n some examples, the client device can
store the segment 1n a local storage device. A local storage
device can be a storage device that 1s internal to the client
device, accessible to the client device via a local area
network (LAN), or part of the physical infrastructure that
includes the client device. Storing the segment 1n a local
storage device can enable the client device to more quickly
obtain the segment again 1n the future, as opposed to having
to download the segment again from the central repository.
For example, 1f the same virtual machine or another virtual
machine 1ssues a subsequent read request for the segment,
the client device can quickly obtain the segment from the
local storage device and provide 1t back to the virtual
machine. This can reduce the latency 1n responding to these
subsequent read requests, prevent duplicate copies of the
same 1mage-segments from being downloaded and stored
(thereby reducing bandwidth and memory consumption),
and 1mprove scalability.

[0010] In some examples, the client device can determine
whether to obtain an 1mage segment from the local storage
device or the central repository by maintaining a log. The log
can 1ndicate which segments of a virtual-machine 1mage are
stored 1n the local storage device. As a particular example,
the client device can receive a read request for a certain
image segment from a virtual machine. In response, the
client device can analyze the log to determine 11 the segment
1s already stored 1n the local storage device. If so, the client
device can retrieve the segment from the local storage
device and provide the segment to the virtual machine.
Otherwise, the client device can download the segment from
the central repository (e.g., as discussed above) and provide
the segment to the virtual machine. The client device may
also store a copy of the segment 1n the local storage device
and update the log to reflect that the segment 1s now
available 1n the local storage device. This can enable the
client device to respond to subsequent read requests for the
segment using the copy of the segment stored in the local
storage device.

[0011] These illustrative examples are given to introduce
the reader to the general subject matter discussed here and
are not intended to limit the scope of the disclosed concepts.
The following sections describe various additional features
and examples with reference to the drawings in which like
numerals i1ndicate like elements but, like the illustrative
examples, should not be used to limit the present disclosure.

[0012] FIG. 1 1s a block diagram of an example of a
system 100 for managing virtual-machine image cloning
according to some aspects. The system 100 includes a
computing device 102, such as a client device, server, or
desktop computer. The computing device 102 may be run-
ning one or more virtual machines 104a-b.

US 2019/0310775 Al

[0013] The wvirtual machines 104a-6 can have device
nodes 106a-6. A device node can provide a software link to
a device driver, which can interface with a hardware device.
For example, a device node can provide a software link to
a storage driver for communicating with a storage device,
such as a hard disk. In some examples, the device nodes
106a-b can be located in /dev directories of a Unix-based
environment. For example, device node 106a can be located
at /dev/sdx 1n the operating system of virtual machine 104aq,
and device node 1066 can be located at /dev/sdy in the
operating system of virtual machine 1045. In this example,
the virtual machines 104a-b can use the device nodes 106a-b
to communicate with device driver 108.

[0014] The device driver 108 can be a storage driver for
interfacing with one or more storage devices. One example
ol a storage device 1s a block storage device 112, such as
Internet Small Computer System Interface (1SCSI) storage
or RADOS Block Device (RBD) storage. A block storage
device 112 can store data 1n fixed sized volumes, which can
be referred to as data blocks. Each data block can be
assigned an arbitrary identifier by which 1t can be located
and retrieved, but generally no additional metadata 1s stored
with the data block to provide additional context about the
data block. The block storage device 112 may be accessed by
the device driver 108 through a read/write protocol (e.g., an
1ISCSI protocol) that provides for both reading and writing of
data. In some examples, the block storage device 112 i1s a
local storage device and within the same network infrastruc-
ture 128 as the computing device 102. Another example of
a storage device 1s an object storage device 110, such as
Amazon Web Services™ S3 storage or Azure™ blob stor-
age. An object storage device 110 can group data and
metadata together 1n one object, where the metadata can
provide additional context about the data. Each object can
have a unique identifier by which 1t can be located and
retrieved from the object storage device 110. The object
storage device 110 may be accessed by the device driver 108
through a read-only protocol that only allows for reading,
but not writing, of data. In some examples, the object storage
device 110 1s a remote storage device that 1s geographically
remote from the computing device 102, accessible to the
computing device 102 via the Internet, or both. This can
result 1n the block storage device 112 being capable of
responding to read requests with less latency than the object
storage device 110. Additionally or alternatively, the block
storage device 112 can respond to read requests with less
latency than the object storage device 110 due to the
operational differences in the physical architectures of the
storage devices (e.g., block storage devices can have better
performance characteristics than object storage devices).

[0015] The virtual machines 104aq-b6 can transmit read
requests 116a-b to the device driver 108 to obtain segments
of a virtual-machine 1mage 114 stored in the object storage
device 110. The virtual machine 104a can transmit the read
requests 116a-b during one or more operational states, such
as during a boot-up process, runtime, or both. The device
driver 108 can receive the read requests 116a-b and respon-
sively determine 11 the segments of data already exist 1n the
block storage device 112. For example, the device driver 108
can generate a log 122 in the block storage device 112. The
device driver 108 may generate the log 122 by creating a
partition 126 1n the block storage device 112 and generating
the log 122 within the partition 126 (e.g., prior to or
subsequent to the computing device 102 deploying a virtual

Oct. 10, 2019

machine). The log 122 can indicate which 1image segments
are stored 1n the block storage device 112. The device driver
108 can analyze the log 122 to determine whether the
segments exist 1n the block storage device 112. If so, the
device driver 108 can obtain the segments from the block
storage device 112 and provide them to the virtual machines
104a-b as read responses 120a-b. If not, the device driver
108 can obtain the segments from the object storage device
110 and provide them to the virtual machines 104a-b as read
responses 120a-b. The device driver 108 may then store the
segments 1n the block storage device 112, and update the log
122 to reflect that the segments are stored in the block
storage device 112.

[0016] As a particular example, the virtual machine 104a
can transmit a read request 116a for a segment 118 of the
virtual-machine i1mage 114. The device driver 108 can
receive the read request 116a, determine that the segment
118 does not exist 1n the block storage device 112 using the
log 122, and responsively obtain the segment 118 from the
object storage device 110. The device driver 108 can then
provide the segment 118 1n a read response 120a to the
virtual machine 104a. The device driver 108 can also store
a copy of the segment 118 1n the block storage device 112
(e.g., as indicated by a dashed arrow 1n FIG. 1) and update
the log 122. Thereafter, 1f either of the virtual machines
104a-b transmits a read request for the segment 118, the
device driver 108 can determine that the segment 118 exists
in the block storage device 112, obtain the segment 118 from
the block storage device 112, and provide the segment 118
to the virtual machine. This can be substantially faster than
re-acquiring the segment 118 from the object storage device
110, given the lower amount of latency associated with the
block storage device 112.

[0017] In some examples, the device driver 108 can store
one or more segments of the virtual-machine 1mage 114 1n
a cache memory 124. For example, the device driver 108 can
perform some or all of the above steps, but rather than
storing the segment 118 in the block storage device 112, the
device driver 108 can store the segment 118 in the cache
memory 124. This can make the segment 118 more quickly
accessible than storing the segment 118 1n the block storage
device 112. In other examples, the device driver 108 can
store copies of the segment 118 1n both the cache memory
124 and the block storage device 112. In some such
examples, the device driver 108 can respond to read requests
116a-b for the segment 118 using the copy stored in the
cache memory 124 until the copy 1s removed from (e.g.,
overwritten in) the cache memory 124. Thereafter, the
device driver 108 can respond to read requests 116a-b for the
segment 118 using the copy stored in the block storage

device 112.

[0018] In some examples, the device driver 108 can 1den-
tify a segment of the virtual-machine 1mage 114 as being
frequently requested, and maintain a copy of the segment 1n
the cache memory 124 for quick retrieval. For example, the
device driver 108 can analyze read requests 116a-b6 from one
or more virtual machines 104a-b to determine that a par-
ticular segment of the virtual-machine 1image 114 1s fre-
quently requested (e.g., requested more than a predefined
number of times within a predefined time period). So, the
device driver 108 can store a copy of the particular segment
in the cache memory 124. This can enable the particular
segment to be more quickly provided 1n response to read
requests.

US 2019/0310775 Al

[0019] In some examples, the virtual machines 104a-b6 can
transmit the read requests 116a-b 1n a certain format that 1s
compatible with one storage device, but not another storage
device. So, the device driver 108 can translate at least a
portion of the read requests 116a-b between formats. For
example, the virtual machine 104a can 1ssue some or all 1ts
read requests 1n a block format for use with the block storage
device 112. The virtual machine 104a may 1ssue the read
requests 1n the block format because the device driver 108
may only present the block storage device 112 to the virtual
machine 104a for use. In some such examples, the device
driver 108 can receive a read request 116a for a data block
and determine that the data block 1s not stored 1n the block
storage device 112. So, the device driver 108 can determine
that the data block 1s to be acquired from the object storage
device 110. But the object storage device 110 may not store
data 1n a block format. For example, the object storage
device 110 may store the virtual-machine image 114 1n a
QEMU Copy On Write 2 (QCOW2) format. So, the device
driver 108 can translate at least a portion of the read request
116a 1nto an object format for use with the object storage
device 110. For example, the device driver 108 can use a
lookup table or algorithm to determine that the data block
identified 1n the read request 116a corresponds to a particu-
lar offset 1n the virtual-machine 1mage 114. The device
driver 108 can use the particular oifset to obtain the appro-
priate data from the object storage device 110. After obtain-
ing the data from the object storage device 110, the device
driver 108 can translate the data back into the block format,
for example, to communicate the data back to the virtual
machine 104q, store the data in the block storage device 112,
or both. The device driver 108 can eflectuate any number
and combination of format translations to interface between
the virtual machine 104a and one or more storage devices.

[0020] In some examples, the virtual machines 104a-b6 can
transmit delete commands for removing image segments
from the block storage device 112. For example, a virtual
machine 1044 can transmit a delete command indicating that
the segment 118 1s to be deleted from the block storage
device 112. The device dniver 108 can receive the delete
command and responsively update the log 122 to indicate
that the segment 1s not stored in the block storage device
112. This may “delete” the segment 118 from the perspective
of the virtual machine 104a. Additionally or alternatively,
the device driver 108 can receive the delete command and

responsively remove the segment 118 from the block storage
device 112.

[0021] Insome examples, the device driver 108 can enable
the virtual machines 104a-b6 to wrte data to the block
storage device 112, for example as shown 1n FIG. 2. Turning
to FIG. 2, the virtual machine 104a may transmit a write
command 202 indicating that only a portion of a data block
1s to be overwritten with new data. The virtual machine 104a
may transmit the write command 202 as a result of perform-
ing calculations or other operations. The device driver 108
can receive the write command 202 and determine 11 the data
block already exists 1n the block storage device 112. If so,
the device driver 108 can overwrite the portion of the data
block with the new data. If not, the device driver 108 can
retrieve data 206 corresponding to the data block (e.g., the
entire data block) from the object storage device 110. The
device driver 108 can then overwrite a subset of the data 206
with the new data indicated 1n the write command 202. This
can result 1n an updated version of the data block 208. The

Oct. 10, 2019

device driver 108 can then store the updated version of the
data block 208 1n the block storage device 112.

[0022] As another example, the virtual machine 104a may
transmit a write command 202 indicating that an entire data
block 1s to be overwritten with new data. The device driver
108 can receive the write command 202 and responsively
store the entire data block 1n the block storage device 112,
without retrieving the corresponding data 206 from the
object storage device 110. The device drniver 108 may
perform this process regardless of whether a prior version of
the data block 1s stored in the block storage device 112, since
the entire data block 1s being overwritten.

[0023] While FIGS. 1-2 depict certain numbers, combi-

nations, and arrangements of components, these are merely
examples. Other examples can involve different amounts,
combinations, and arrangements of components. For
example, some systems of the present disclosure can involve
more or fewer virtual machines 104a-b or storage devices
than are depicted in FIGS. 1-2. And some systems of the
present discloser can involve different types or arrangements
ol storage devices than the storage devices shown in FIGS.
1-2. Further, some or all of the functionality of the device
driver 108 can be implemented by another hardware or
software component, such as a software application associ-
ated with a virtual machine.

[0024] FIG. 3 1s a block diagram of still another example
of a system 300 for managing container-image layers
according to some aspects. The system 300 includes a
processing device 302 communicatively coupled to a
memory device 304. In some examples, the processing
device 302 and the memory device 304 can be housed 1n a
single device, such as computing device 102. In other
examples, the processing device 302 and the memory device
304 can be distributed from one another.

[0025] The processing device 302 can include one pro-
cessing device or multiple processing devices. Non-limiting
examples of the processing device 302 include a Field-
Programmable Gate Array (FPGA), an application-specific
integrated circuit (ASIC), a microprocessor, etc. The pro-
cessing device 302 can execute 1nstructions 306 stored 1n the
memory device 304 to perform operations. In some
examples, the instructions 306 can include processor-spe-
cific 1nstructions generated by a compiler or an interpreter
from code written 1n any suitable computer-programming
language, such as C, C++, C#, eftc.

[0026] The memory device 304 can include one memory
device or multiple memory devices. The memory device 304
can be non-volatile and may include any type of memory
device that retains stored information when powered off.
Non-limiting examples of the memory device 304 include
clectrically erasable and programmable read-only memory
(EEPROM), tflash memory, or any other type of non-volatile
memory. In some examples, at least some of the memory
device can include a medium from which the processing
device 302 can read instructions 306. A computer-readable
medium can include electronic, optical, magnetic, or other
storage devices capable of providing the processing device
302 with computer-readable instructions or other program
code. Non-limiting examples of a computer-readable
medium include magnetic disk(s), memory chip(s), ROM,
random-access memory (RAM), an ASIC, a configured
processor, optical storage, or any other medium from which
a computer processor can read the instructions 306.

US 2019/0310775 Al

[0027] In some examples, the processing device 302 can
detect a first read request 116a from a virtual machine 104
for a segment 118 of a virtual-machine 1mage 114. The
virtual-machine 1image 114 can be stored 1n a second storage
device 308, such as a block storage device, an object storage
device, or another type of storage device. The processing
device 302 can obtain only a copy of the segment 118
indicated in the first read request 116a. The processing
device 302 can then store the copy of the segment 118 1n a
first storage device 310. The first storage device 310 may be
a block storage device, an object storage device, or another
type of storage device. This process 1s indicated by the
dotted arrow 1n FIG. 3.

[0028] The processing device 302 can also update a log
122 to indicate that the segment 118 of the virtual-machine
image 114 1s stored in the first storage device 310. For
example, the processing device 302 can set a tlag 1n the log
122, append data to the log 122, or overwrite a portion of the
log 122 to indicate that the segment 118 of the virtual-
machine 1image 114 1s stored 1n the first storage device 310.

[0029] In some examples, the processing device 302 can
receive a second read request 1165 for the segment 118 from
the virtual machine 104. The processing device 302 can
receive the second read request 1165 subsequent to receiving,
the first read request 116a. The processing device 302 can
receive the second read request 1165 from the same virtual
machine or a different virtual machine. For example, the box
labeled ““virtual machine 104” 1n FIG. 3 can represent
multiple virtual machines, which can be collectively referred
to as a virtual machine. In some such examples, the first read
request 116a can be transmitted by one of the wvirtual
machines and the second read request 1165 can be trans-
mitted by another one of the virtual machines. After receiv-
ing the second read request 1165, the processing device 302
can determine that the segment 118 1s stored in the first
storage device 310 using the log 122, obtain the segment 118
from the first storage device 310, and provide the segment
118 to the virtual machine.

[0030] In some examples, the processing device 302 can
perform some or all of the steps shown in FIG. 4. Other
examples can include more steps, fewer steps, different
steps, or a different order of the steps than are depicted 1n
FIG. 4. The steps of FIG. 4 are described with reference to

the components discussed above with regard to FIG. 3.

[0031] In block 402, a processing device 302 copies a
segment 118 of a virtual-machine image 114 stored in a
second storage device 308 to a first storage device 310 1n
response to receiving a first read request 116a for the
segment 118 from a virtual machine 104 that 1s deployable
using the virtual-machine image 114. The first storage
device 310 can be capable of responding to read requests
(e.g., transmitted from the processing device 302) with less
latency than the second storage device 308.

[0032] In some examples, copying the segment 118 can
involve translating an identifier of the segment 118 that 1s 1n
the first read request 116a 1nto another format suitable for
use with the second storage device 308. The processing
device 302 can then transmit a read command that includes
the translated identifier to the second storage device 308.
The second storage device 308 can receive the read com-
mand, identily the segment 118 using the translated i1denti-
fier, and respond to the read command by communicating a
copy of the segment 118 back to the processing device 302.

Oct. 10, 2019

The processing device 302 can then store the copy of the
segment 118 1n the first storage device 310.

[0033] In block 404, the processing device 302 updates a
log 122 to indicate that the segment 118 of the virtual-
machine 1mage 114 1s stored 1n the first storage device 310.
The processing device 302 can update the log 122 before or
after acquiring the segment 118 from the second storage
device 308. In some examples, updating the log 122 can
involve first creating the log 122. This may involve gener-
ating a partition in the first storage device 310 and then
creating the log 122 within the partition. Alternatively, the
processing device 302 can create and store the log 122 in
another manner. The log 122 can have any suitable format or
structure (e.g., a database structure).

[0034] In block 406, the processing device 302 determines
that the segment 118 1s stored 1n the first storage device 310
using the log 122 in response to receiving a second read
request 1165 for the segment 118 from the virtual machine
104. The processing device 302 can receive the second read
request 1165 subsequent to receiving the first read request
116a. The processing device 302 can determine that the
segment 118 1s stored 1n the first storage device 310 by, for
example, analyzing the log 122 to determine the contents of
an entry or the value of a parameter corresponding to the
segment 118.

[0035] In block 408, the processing device 302 provides
the segment 118 to the virtual machine 104 by obtaining the
segment 118 from the first storage device 310. The process-
ing device 302 can provide the segment 118 to the virtual
machine 104 based on determining that the segment 118 1s
stored 1n the first storage device 310 (e.g., in block 406).

[0036] The foregoing description of certain examples,
including illustrated examples, has been presented only for
the purpose of illustration and description and 1s not
intended to be exhaustive or to limit the disclosure to the
precise forms disclosed. Numerous modifications, adapta-
tions, and uses thereof will be apparent to those skilled in the
art without departing from the scope of the disclosure. And
the examples disclosed herein can be combined or rear-
ranged to yield additional examples.

1. A system comprising;:
a processing device; and

a memory device including instructions that are execut-
able by the processing device for causing the process-
ing device to:

copy a segment of a virtual-machine 1image stored in a
second storage device to a first storage device in
response to receiving a first read request for the
segment from a virtual machine that 1s deployable
using the virtual-machine image, the first storage
device being capable of responding to read requests
from the virtual machine with less latency than the
second storage device;

update a log to indicate that the segment of the virtual-
machine 1image 1s stored on the first storage device;
and

in response to receving a second read request for the
segment from the virtual machine subsequent to
receiving the first read request:

determine that the segment 1s stored in the first
storage device using the log; and

US 2019/0310775 Al

based on determining that the segment 1s stored 1n
the first storage device, provide the segment to the
virtual machine by obtaining the segment from the
first storage device.

2. The system of claim 1, wherein the instructions are for
a device driver configured to interface between the virtual
machine and the first storage device.

3. The system of claim 1, wherein the first storage device
1s a first type of storage device and the second storage device
1s a second type of storage device that 1s different from the
first type of storage device.

4. The system of claim 3, wherein the first storage device
1s a block storage device and the second storage device 1s an
object storage device.

5. The system of claim 1, wherein the memory device
further comprises instructions that are executable by the
processing device for causing the processing device to copy
the segment from the second storage device to the first
storage device 1n response to the first read request by:

determining that the segment 1s not stored in the first

storage device by accessing the log indicating which
portions of the virtual-machine 1mage are stored 1n the
first storage device; and

in response to determining that the segment 1s not stored

in the first storage device:

obtaining the segment from the second storage device;

storing the segment 1n the first storage device to enable
a subsequent read request for the segment to be
tulfilled using the first storage device; and

providing the segment to the virtual machine 1n a read
response to the first read request.

6. The system of claim 5, wherein the first read request 1s
in a first format configured for the first storage device, and
wherein the memory device further comprises instructions
that are executable by the processing device for causing the
processing device to:

obtain the segment from the second storage device by

translating at least a portion of the first read request 1nto
a second format that 1s different from the first format,
the second format being configured for obtaiming the
segment from the second storage device.

7. The system of claim 1, wherein the memory device
further comprises 1nstructions that are executable by the
processing device for causing the processing device to, prior
to copying the segment of the virtual-machine 1image from
the second storage device to the first storage device:

create a partition 1n the first storage device for storing the

log; and

generate the log within the partition.

8. The system of claim 1, wherein the memory device
further comprises instructions that are executable by the
processing device for causing the processing device to:

recerve a write command from the virtual machine, the

write command being for storing data in the first
storage device;

determine that a prior version of the data does not exist in

the first storage device using the log; and

in response to determining that the prior version of the

data does not exist in the first storage device:

obtain the prior version of the data from the second
storage device;

overwrite a portion of the prior version of the data with
new data indicated in the write command, thereby
forming an updated version of the data;

Oct. 10, 2019

store the updated version of the data in the first storage
device; and

update the log to indicate that the data 1s stored in the
first storage device.

9. The system of claim 1, wherein the virtual machine
comprises a first virtual machine and a second virtual
machine, and wherein the first read request 1s from the first
virtual machine and the second read request 1s from the
second virtual machine.

10. A method comprising:

copying, by a processing device, a segment of a virtual-

machine 1image stored in a second storage device to a
first storage device 1n response to receiving a first read
request for the segment from a virtual machine that 1s
deployable using the virtual-machine image, the first
storage device being capable of responding to read
requests from the virtual machine with less latency than
the second storage device;

updating, by the processing device, a log to indicate that

the segment of the virtual-machine 1mage 1s stored on
the first storage device; and

in response to receiving a second read request for the

segment from the virtual machine subsequent to receiv-

ing the first read request:

determining, by the processing device, that the segment
1s stored 1n the first storage device using the log; and

based on determining that the segment 1s stored in the
first storage device, providing, by the processing
device, the segment to the virtual machine by obtain-
ing the segment from the first storage device.

11. The method of claim 10, wherein the first storage
device 1s a block storage device and the second storage
device 1s an object storage device.

12. The method of claim 10, further comprising copying
the segment from the second storage device to the first
storage device 1n response to the first read request by:

determining that the segment 1s not stored in the first

storage device by accessing the log indicating which
portions of the virtual-machine 1mage are stored in the
first storage device; and

in response to determining that the segment 1s not stored

in the first storage device:

obtaining the segment from the second storage device;

storing the segment 1n the first storage device to enable
a subsequent read request for the segment to be
fulfilled using the first storage device; and

providing the segment to the virtual machine 1n a read
response to the first read request.

13. The method of claim 10, wherein the first read request
1s 1n a first format configured for the first storage device,
further comprising;:

obtaining the segment from the second storage device by

translating at least a portion of the first read request into
a second format that 1s different from the first format,
the second format being configured for obtaining the
segment from the second storage device.

14. The method of claim 10, further comprising:

receiving a write command from the virtual machine, the
write command being for storing data in the first
storage device;

determining that a prior version of the data does not exist
in the first storage device using the log; and

in response to determining that the prior version of the
data does not exist 1n the first storage device:

US 2019/0310775 Al

obtaining the prior version of the data from the second
storage device;

overwriting a portion of the prior version of the data
with new data indicated in the write command,
thereby forming an updated version of the data;

storing the updated version of the data in the first
storage device; and

updating the log to indicate that the data 1s stored 1n the
first storage device.

15. The method of claim 10, wherein the virtual machine
comprises a first virtual machine and a second virtual
machine, and wherein the first read request 1s from the first
virtual machine and the second read request 1s from the
second virtual machine.

16. A non-transitory computer-readable medium compris-
ing program code that 1s executable by a processing device
for causing the processing device to:

copy a segment of a virtual-machine 1mage stored 1n a

second storage device to a first storage device 1n
response to receiving a first read request for the seg-
ment from a virtual machine that 1s deployable using
the virtual-machine image, the first storage device
being capable of responding to read requests from the
virtual machine with less latency than the second
storage device;

update a log to indicate that the segment of the virtual-

machine 1mage 1s stored on the first storage device; and

in response to receiwving a second read request for the

segment from the virtual machine subsequent to rece1v-

ing the first read request:

determine that the segment 1s stored in the first storage
device using the log; and

based on determining that the segment 1s stored in the
first storage device, provide the segment to the
virtual machine by obtaining the segment from the
first storage device.

17. The non-transitory computer-readable medium of
claim 16, wherein the first storage device 1s a block storage
device and the second storage device i1s an object storage
device.

18. The non-transitory computer-readable medium of
claim 16, further comprising program code that 1s execut-
able by the processing device for causing the processing
device to copy the segment from the second storage device
to the first storage device 1n response to the first read request
by:

Oct. 10, 2019

determining that the segment 1s not stored in the first
storage device by accessing the log indicating which
portions of the virtual-machine 1mage are stored in the
first storage device; and

in response to determining that the segment 1s not stored
in the first storage device:

obtaining the segment from the second storage device;

storing the segment 1n the first storage device to enable
a subsequent read request for the segment to be
tulfilled using the first storage device; and

providing the segment to the virtual machine 1n a read
response to the first read request.

19. The non-transitory computer-readable medium of
claim 16, wherein the first read request 1s 1n a first format
configured for the first storage device, further comprising
program code that 1s executable by the processing device for
causing the processing device to:

obtain the segment from the second storage device by
translating at least a portion of the first read request 1nto
a second format that i1s different from the first format,
the second format being configured for obtaining the
segment from the second storage device.

20. The non-transitory computer-readable medium of
claim 16, further comprising program code that 1s execut-
able by the processing device for causing the processing
device to:

receive a write command from the virtual machine, the
write command being for storing data in the first
storage device;

determine that a prior version of the data does not exist in
the first storage device using the log; and

in response to determining that the prior version of the
data does not exist 1n the first storage device:

obtain the prior version of the data from the second
storage device;

overwrite a portion of the prior version of the data with
new data indicated in the write command, thereby
forming an updated version of the data;

store the updated version of the data in the first storage
device; and

update the log to indicate that the data 1s stored in the
first storage device.

e 7 e e e

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Description
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description/Claims
	Page 10 - Claims
	Page 11 - Claims

