a9y United States
12y Patent Application Publication o) Pub. No.: US 2019/0311805 Al

US 20190311805A1

LINGURARU et al. 43) Pub. Date: Oct. 10, 2019
(54) MEDICAL ANATOMY QUANTIFICATION: GO6K 9/62 (2006.01)
COMPUTER-AIDED DIAGNOSIS TOOL GO6K 9/66 (2006.01)
GO6T 7/155 (2006.01)
(71) Applicant: CHILDREN’S NATIONAL GO6T 7/13 (2006.01)
MEDICAL CENTER, WaShiIlgtOIl, DC GO6T 7/40 (2006.01)
(US) A6IB 5/20 (2006.01)
(72) Inventors: Marius George LINGURARU, ?;3?]}‘ ‘Zzz %88281)
Washington, DC (US); Juan Jose ( 1)
CERROLAZA, Washington, DC (US); (52) US. CL
Craig Andrew PETERS, Dallas, TX CPC .... GI6H 50/20 (2018.01); GO6T 2207/20116
(US) (2013.01); GO6K 9/6219 (2013.01); GO6K
| 9/6256 (2013.01); GO6K 9/66 (2013.01); GO6T
(73)  Assignee: CHILDREN’S NATIONAL 7/155 (2017.01); GO6K 9/6269 (2013.01);
MEDICAL CENTER, Washington, DC GO6T 7/13 (2017.01); GO6T 7/40 (2013.01);
(US) AG61B 5/201 (2013.01); AG61B 5/7267
. (2013.01); Go6T 7/0012 (2013.01); GO6T
(&1) Appl No.: - L6/303,825 2207/30084 (2013.01); GO6T 2207/10132
(22) PCT Filed: Jun. 19, 2017 (2013.01); G16H 30/40 (2018.01)
(86) PCT No.: PCT/US17/38149
$ 371 (e)(1). (57) ABSTRACT
(2) Date: Dec. 13, 2018
Y Described 1s a method for segmenting an anatomical part
Related U.S. Application Dat . .. . ’
M ppleation e including identifying a landmark on a contour/surface of a
(60) Provisional application No. 62/351,859, filed on Jun. 2D/3D model of the anatomical part 1n an ultrasound 1mage,
17, 2016. assigning a weight to the landmark, i1dentifying different
o . . appearance patterns of a region around the landmark based
rublication Classification on a previously stored training set; and applying a filter to
(51) Int. CL the different appearance patterns of the region around the
G16H 50/20 (2006.01) landmark 1n order to identify contours of the anatomical
G16H 30/40 (2006.01) part.

101

identifying landmarks on a contour/surface of a
2D/3D model of the anatomical part by /
comparing the 2D/3D model of the anatomical
part with a plurality of reference models

h J

102

assigning a weight to the landmark based on the
angle between the propagation direction of the f
ultrasound wave front and the vector normal
with respect to the landmark
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103

identifying different appearance patterns /
of a region around the landmark based on | -
a previously stored training set

h J

104

applying a filter to the different appearance /

patterns of the region around the landmark in
order to identify contours of the anatomical part
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identifying landmarks on a contour/surface of a =
2D/3D model of the anatomical part by f

comparing the 2D/3D model of the anatomical
part with a plurality of reference models

assigning a weight to the landmark based on the jf"
angle between the propagation direction of the | ¢
ultrasound wave front and the vector normal
with respect to the landmark

v 103

1dentifying different appearance patterns f *
of a region around the landmark based on =
a previously stored training set

v 104

applying a filter to the different appearance §
patterns of the region around the landmark
order to 1identify contours of the anatomical part
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201
incorporating patient-specific constraints, o~

determined based on an analysis of a 2D/3D | ¢
model of the anatomaical part, to delimitate the
portion of the anatomical part

J 202

identifying echogenic regions of the anatomical| =
part 1n order to differentiate the portion of the j
anatomical part from other portions of the
anatomical part

._ v 203
generating, using the identitied echogenic {*‘*“‘
regions of the anatomical part, a 2D/3D | ¢
positional map of the portion of the
anatomical part using 2D/3D alpha
shapes

Figure 3
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301

Nk

delineating the anatomical part and segmenting }f ¢
a portion of the anatomical part from ultrasound |~
1mages ’

v 302

extracting morphological features of the { ;
anatomical part and the portion of the
anatomical part using image analysis

...... ) 4 303

features mnto a plurality of categories, the plurality f

of categories including size, geometric shape, +

curvature, and texture of the anatomical part and the
portion of the anatomical part

Y 304

selecting an optimal subset of the morphological _,—*‘if
features using a supervised or an unsupervised
feature selection framework

v
classifying the ultrasound 1mage as critical or 305

non-critical based on the selected optimal subset| ¢
of features and a clinically relevant threshold, | ¢
using a supervised classifier, such as support
vector machines with radial basis function
kernel, or others

Figure 4
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MEDICAL ANATOMY QUANTIFICATION:
COMPUTER-AIDED DIAGNOSIS TOOL

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of priority of
U.S. Patent Application No. 62/351,859, filed Jun. 17, 2016
the entire contents of all are incorporated herein by refer-
ence.

BACKGROUND

Technical Field

[0002] Among other things, the present disclosure 1is
related to a computer aided approach for the automatic
assessment of disease severity in patients.

BACKGROUND

[0003] The “background” description provided herein is
for the purpose of generally presenting the context of the
disclosure. Work of the presently named inventors, to the
extent 1t 1s described 1n this background section, as well as
aspects of the description which may not otherwise qualily
as prior art at the time of filing, are neither expressly or
impliedly admitted as prior art against the present invention.
[0004] Thanks to its non-1onizing nature, ultrasound (US)
imaging 1s the preferred diagnostic modality for the evalu-
ation of the kidney and the uninary track. However, there 1s
a lack of correlation of ultrasound with renal function. In
addition, the use of ultrasound as diagnostic tool 1s limited
by the subjective visual interpretation of radiologists. As a
result, the severity of a certain diseases such as hydroneph-
rosis 1 children 1s evaluated by invasive and i1omizing
diuretic renograms.

SUMMARY

[0005] The foregoing paragraphs have been provided by
way of general introduction, and are not intended to limat the
scope of the following claims. The described embodiments,
together with further advantages, will be best understood by
reference to the following detailed description taken in
conjunction with the accompanying drawings.

[0006] The present embodiments provide a unique
approach for the segmentation of an anatomical part which
can be used, 1n a non-limiting example, in the treatment of
hydronephrosis without the need for invasive and 1omzing
diuretic renograms. This approach can also be used in many
other medical contexts including the characterizations of
portions of the anatomy.

[0007] Embodiments of the disclosed subject matter are
directed to a method for segmenting an anatomical part,
including i1dentifying a landmark on a contour/surface of a
2D/3D model of the anatomical part 1n an ultrasound 1mage,
assigning a weight to the landmark, i1dentifying different
appearance patterns of a region around the landmark based
on a previously stored training set; and applying a filter to
the different appearance patterns of the region around the
landmark 1n order to identity contours of the anatomical
part.

[0008] Also described 1s a method for segmenting a por-
tion of an anatomical part, including 1dentifying echogenic
regions ol the anatomical part in an ultrasound 1mage to
differentiate the portion of the anatomical part from other
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portions of the anatomical part, generating, using the i1den-
tified echogenic regions of the anatomical part, a positional
map of the portion of the anatomical part, and incorporating
patient-specific constraints to delimitate the portion of the
anatomical part.

[0009] Embodiments also include a method for character-
1zing functionality of an anatomical part to 1dentify severity
ol a medical condition, the method 1including delineating the
anatomical part and segmenting a portion of the anatomical
part 1n ultrasound 1mages, extracting morphological features
of the anatomical part and the portion of the anatomical part
using i1mage analysis, selecting an optimal subset of the
morphological features using a supervised or an unsuper-
vised feature selection framework, and classitying each
feature 1n the optimal subset as critical or non-critical based
on a threshold and a classifier, the classifier being one of
linear discriminant analysis or a support vector machine.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] A more complete appreciation of the disclosure and
many of the attendant advantages thereof will be readily
obtained as the same becomes better understood by refer-
ence to the following detailed description when considered
in connection with the accompanying drawings, wherein:
[0011] FIG. 1 1illustrates a block diagram according to an
embodiment of the present disclosure;

[0012] FIG. 2 illustrates a 1llustrates a flowchart describ-
ing segmentation of an anatomical part 1n 2D/3D ultrasound
1mages;

[0013] FIG. 3 illustrates a flowchart describing segmen-
tation of a portion of an anatomical part;

[0014] FIG. 4 illustrates a flowchart describing a method
for characterizing functionality of an anatomical part to
identily severity of a medical condition;

[0015] FIG. S illustrates a hardware description of a device
according to exemplary implementations of the present
disclosure; and

[0016] FIG. 6 1illustrates a Block diagram showing the
principal elements of a system for pediatric hydronephrosis.

DETAILED DESCRIPTION

[0017] The description set forth below 1n connection with
the appended drawings 1s intended as a description of
various embodiments of the disclosed subject matter and 1s
not necessarily intended to represent the only embodiment
(s). In certain 1instances, the description includes specific
details for the purpose of providing an understanding of the
disclosed subject matter. However, 1t will be apparent to
those skilled in the art that embodiments may be practiced
without these specific details. In some instances, well-
known structures and components may be shown in block
diagram form 1n order to avoid obscuring the concepts of the
disclosed subject matter.

[0018] Reiference throughout the specification to “one
embodiment” or “an embodiment” means that a particular
feature, structure, characteristic, operation, or function
described in connection with an embodiment 1s included 1n
at least one embodiment of the disclosed subject matter.
Thus, any appearance of the phrases “in one embodiment”
or “in an embodiment” in the specification 1s not necessarily
referring to the same embodiment. Further, the particular
features, structures, characteristics, operations, or functions
may be combined 1n any suitable manner in one or more
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embodiments. Further, 1t 1s intended that embodiments of the
disclosed subject matter can and do cover modifications and
variations of the described embodiments.

[0019] It must be noted that, as used 1n the specification
and the appended claims, the singular forms “a,” “an,” and
“the” include plural referents unless the context clearly
dictates otherwise. That 1s, unless clearly specified other-
wise, as used herein the words “a” and “an” and the like
carry the meaning of “one or more.” Additionally, 1t 1s to be
understood that terms such as “left,” “right,” “top,” “bot-
tom,” “front,” “rear,” “side,” “height,” “length,” “width,”
“upper,” “lower,” “interior,” “exterior,” “inner,” “outer,” and
the like that may be used herein, merely describe points of
reference and do not necessarily limit embodiments of the
disclosed subject matter to any particular orientation or
configuration. Furthermore, terms such as “first,” “second,”
“third,” etc., merely identily one of a number of portions,
components, points of reference, operations and/or functions
as described herein, and likewise do not necessarily limait
embodiments of the disclosed subject matter to any particu-

lar configuration or orientation.

[0020] FIG. 1 depicts an exemplary overview of the seg-
mentation and characterization system 100 (herein system
100) according to one or more aspects of the disclosed
subject matter. The system 100 may include a medical
imaging device (such as an ultrasound machine or any other
type of imaging or medical imaging hardware), an nput/
output device 3 (such as a touch screen or a display device
and a keyboard/mouse) and computing device 10 (which
may or may not be imcorporated into the medical imaging
device). The computing device 10 includes processing cir-
cuitry/memory 11 (such as a CPU and RAM) and imple-
ments via the processing circuitry/memory 11 software 20
having a number of functions 21, 22 and 23. The first
function 21 relates to segmentation of a whole (for example
segmentation of an entire kidney or any other anatomical
part). This function 1s described in the process shown 1n FIG.
2. The second function 22 relates to segmentation of a part
(for example segmentation of a collecting system (CS) of a
kidney or any other smaller portion of the whole of the
anatomical part). This function 1s described in the process
shown 1n FIG. 3. The third function 23 relates to character-
1zing functionality of an anatomical part (for example to
identily severity of a medical condition such as hydroneph-
rosis). This function 1s described in the process shown in

FIG. 4.

[0021] FIG. 2 illustrates a flowchart describing segmen-
tation of an anatomical part (for example, a kidney) in
2D/3D ultrasound images. In Step 101, landmarks on a
contour/surface of a 2D/3D model of the anatomical part are
identified by comparing the 2D/3D model of the anatomical
part with a plurality of reference models. In Step 102, a
weight to the landmark 1s assigned based on the angle
between the propagation direction of the ultrasound wave
front and the vector normal with respect to the landmark.
Further, in Step 103, different appearance patterns of a
region around the landmark are i1dentified based on a pre-
viously stored training set. Finally, in Step 104, a filter 1s
applied to the different appearance patterns of the region
around the landmark in order to identity contours of the
anatomical part.

[0022] FIG. 3 illustrates a flowchart describing segmen-
tation of a portion of an anatomical part (for example, a
collecting system). In Step 201, patient-specific constraints,
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determined based on an analysis of a 2D/3D model of the
anatomical part, are incorporated to delimitate the portion of
the anatomical part. The patient-specific constraint refers to
the use of a particular positional map that was generated as
additional constraint when segmenting the collecting sys-
tem. The attached documents refer to patient-specific con-
straints because the positional map 1s computed specifically
for each patient. The steps are: 1¥—Identify echogenic
regions within the kidney (typically, these echogenic regions
represent renal fat that surround the collecting system),
2"?__Use the alpha shapes to identify the contour defined by
those echogenic regions, and 3"“—The resulting region is
used to define the positional map, which will be used as
patient-specific constraints when segmenting the collecting
system. Since the renal fat typically surrounds the collecting
system, the obtained contour will define the region where 1t
1s more likely to find the collecting system, and thus, making
it easier to segment 1t 1n ultrasound images. In Step 202,
echogenic regions of the anatomical part are i1dentified 1n
order to differentiate the portion of the anatomical part from
other portions of the anatomical part. Finally, in Step 203, a
2D/3D positional map of the portion of the anatomical part
1s generated using the identified echogenic regions of the
anatomical part and using 21D/3D alpha shapes.

[0023] FIG. 4 illustrates a flowchart describing a method
for characterizing functionality of an anatomical part to
identify severity of a medical condition (for example, hydro-
nephrosis). In Step 301, the anatomical part 1s delineated and
a portion of the anatomical part 1s segmented from a 2D/3D
ultrasound 1mage. It should be noted that any known method
to delineate the anatomical part and to segment the portion
of the anatomical part may be used. Additionally, the seg-
mentation processes described above with regard to Flow-
charts 1 and 2 may also be used to delineate the anatomical
part and to segment the portion of the anatomical part. In
Step 302, morphological and texture features of the ana-
tomical part and the portion of the anatomical part are
extracted using image analysis. Further, in Step 303, the
extracted morphological features are grouped into a plurality
of categories, the plurality of categories including size,
geometric shape, curvature, and texture of the anatomical
part and the portion of the anatomical part. In Step 304, an
optimal subset of the morphological features 1s selected
using a supervised or an unsupervised feature selection
framework. Finally, each feature in the optimal subset i1s
classified as critical or non-critical based on a threshold and
a classifier, e.g. linear discriminant analysis, support vector
machine, or other. Further details of the method for charac-
terizing functionality of an anatomical part to identify sever-
ity of a medical condition are described in the attached
documents.

[0024] The processes described above and described
throughout the presently filed application can be performed
on a device including circuitry or CPU. FIG. 5 illustrates a
hardware description of a device 100 according to exem-
plary implementations of the present disclosure. The struc-
ture of the device 100 1illustrated in the FIG. 5 1s an
exemplary computer system as mentioned herein. Although
the specific description provided below regarding FIG. §
pertains to a computer system, 1t should be appreciated that
corresponding structures or components can be provided 1n
the other devices discussed herein, and not all of the
components or connections illustrated i1n the above figure
may be provided 1n particular devices.
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[0025] In FIG. 5, the device 100 includes a CPU 1200
which performs/executes the processes and algorithms
described herein. Process data and instructions may be
stored 1n memory 1202. Processes and instructions may also
be stored on a storage medium disk 1204 such as a hard drive
(HDD) or portable storage medium or may be stored
remotely. Further, executable instructions are not limited by
the form of the computer-readable media on which the
instructions of the inventive process are stored. For example,
the 1nstructions may be stored on CDs, DVDs, 1n FLASH
memory, RAM, ROM, PROM, EPROM, FEPROM, hard
disk or any other information processing device with which
the device communicates, such as a server or computer.

[0026] Further, executable instructions may be provided
as a utility application, background daemon, or component
of an operating system, or combination thereof, executing in
conjunction with CPU 1200 and an operating system such as

Android, 10S, Windows Mobile, Windows Phone, Microsoft
Windows 7 or 8, UNIX, Solaris, LINUX, Apple MAC-OS

and other operating systems.

[0027] CPU 1200 may be a Xenon or Core processor from
Intel of America or an Opteron processor from AMD of
America, especially in implementations where the device 1s
a computer or a server. Other processors can be utilized
when the device 1s, e.g., a mobile phone, a smartphone, a
tablet, a battery-operated device, or a portable computing
device. For example, a Qualcomm Snapdragon or ARM-
based processor can be utilized. The CPU 1200 may be
implemented on an FPGA, ASIC, PLD or using discrete
logic circuits, as one of ordinary skill in the art would
recognize. Further, CPU 1200 may be implemented as
multiple processors cooperatively working in parallel to
perform the instructions of the processes described above,
and the CPU 1200 may incorporate processing circuitry
other than generic processing circuitry, whereby the CPU
1200 includes circuitry to execute specific display and user
interface controls that may otherwise be provided for by
other discrete circuitry.

[0028] The device 1n the above figure also includes a
network controller 1206, such as an Intel Fthernet PRO
network interface card from Intel Corporation of America,
for interfacing with network 1277 when the device 1s a
computer or a server, for example. When the device 1s a
portable electronic device, the network controller 1206
includes a radio that may be incorporated into the CPU
1200. The radio may incorporate various wireless commu-
nication technologies as separate circuits or shared circuitry,
and the technologies can incorporate LTE, GSM, CDMA,
WiF1, Bluetooth, NFC, infrared, FM radio, AM radio, ultra-
sonic, and/or RFID circuitry. The network 1277 can be a
public network, such as the Internet, or a private network
such as an LAN or WAN network, or any combination
thereof and can also include PSTN or ISDN sub-networks.
The network 1277 can also be wired, such as an Ethernet
network, or can be wireless such as a cellular network
including EDGE, 3G and 4G wireless cellular systems. The
network 1277 may be connected to server 1240 to retrieve
a list of classroom registration and/or allow the device to
download and install application software to i1mplement
aspects of this disclosure. The wireless network can also be
WiF1, Bluetooth, or any other wireless form of communi-
cation. In the exemplary implementations discussed herein,
the network 1277 can include both the Internet and a
Bluetooth communication channel, but this 1s not limiting as
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other combinations are applicable when a different short-
range communication technology 1s utilized.

[0029] The device further includes, when the device 1s a
computer or a server, a display controller 1208, such as a
NVIDIA GeForce GTX or Quadro graphics adaptor from
NVIDIA Corporation of America for interfacing with dis-
play 1210, such as a Hewlett Packard HPL2445w LCD
monitor. A general purpose I/O iterface 1212 interfaces
with a keyboard and/or mouse 1214 as well as a touch screen
panel 1216 on or separate from display 1210. General
purpose 1/0O interface also connects to a variety of periph-
erals 1218 including printers and scanners. When the device
1s, €.g., a smartphone, the display 1210 can be integrated into
the device and can be a touchscreen display. Further, the

display controller 1208 can be incorporated into the CPU
1200.

[0030] A sound controller 1220 1s also provided in the
device, such as Sound Blaster X-F1 Titanium from Creative,
to interface with speakers/microphone 1222 thereby provid-
ing sounds and/or music. The sound controller 1220 can also
be incorporated 1nto the CPU 1200 when the device 1s, e.g.,
a smartphone.

[0031] The general purpose storage controller 1224 con-
nects the storage medium disk 1204 with communication
bus 1226, which may be an ISA, EISA, VESA, PCI, or
similar, for interconnecting all or some of the components of
the device. A description of the general features and func-
tionality of the display 1210, keyboard and/or mouse 1214,
as well as the display controller 1208, storage controller
1224, network controller 1206, sound controller 1220, and
general purpose I/0 interface 1212 1s omitted herein for
brevity.

[0032] One goal of the system 1s to quantily the shape of
the kidney and 1ts collecting system and allow the charac-
terization of hydronephrosis severity from ultrasound
images of the kidney. The invention may preclude the need
to use more 1nvasive diagnostic procedures such as diuretic
renography on patients with hydronephrosis, and identify
those cases that would benefit from surgery. From the
segmentation of the kidney and the collecting system 1n 2D
or 3D ultrasound 1mages, the system allows to extract an
optimal set of morphological (including volumetrics and
hydronephrosis index) and appearance descriptors of both
structures. These features are used as input parameters of a
machine learning algorithm to objectively predict the degree
of hydronephrosis of the renal unit. The segmentation of the
system can be obtained either by manual or automatic
segmentation tools). More specifically, the system 1s used to
identily those cases where further tests would be required.
At the same time, the system also identifies hydronephrotic
patients where additional tests (including diuretic renogra-
phy) could be safely avoided. Finally, the system can evalu-
ate surgical patients to assess and potentially predict 1f
surgery provides a significant improvement of the renal
function.

[0033] First, the embodiments allow the quantitative
analysis of the renal units from 2D or 3D ultrasound 1mage
data and can be used for the analysis of other organs and
objects from similar 1mage data. In particular, the invention
relates for the first time ultrasound 1maging of the kidneys
with renal function. More precisely, the disclosure identifies
patients with hydronephrosis that will likely require addi-
tional tests and possible surgical intervention, but also
patients 1n which further investigations (such as diuretic
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renography) could be safely avoided, minimizing the use of
ionizing radiation on children while allowing significant
savings of human and economic resources. Additionally, the
system can assess and potentially predict surgery outcome,
identifying those patient whose renal function would
improve with surgery.

[0034] Key points of this system are listed below: 1) It
improves the climical utility of ultrasound imaging for
hydronephrosis providing a novel automatic and objective
tool as an alternative to traditional and subjective grading
system based on simple visual inspection. 11) The system
incorporates novel segmentation tools specifically designed
to delineate the kidney and the collecting system 1n 2D and
3D ultrasound 1mages. In particular, these tools provide a
detailed analysis of the patient’s anatomy (including volu-
metrics and hydronephrosis index), simulating the evolution
of hydronephrosis in the kidney. 111) The system defines a set
of optimal appearance features and morphological features
of the renal system that allows the establishment of a direct
relationship between the shape and appearance of the renal
units 1n ultrasound i1mages and renal functional parameters
(e.g. washout time). 1v) The system defines new decision
boundaries and specific configurations for classifications
algorithms that provide maximum sensitivity on identifying
severe hydronephrotic cases. v) The system assesses surgical
outcome. vi1) The system allows the quantification of renal
size (and its collecting system). vi1) The system permits
more objective description and communication regarding
the renal unat.

[0035] Machine learning and neural networks can also be
applied to the algorithms described herein to improve the
segmentation and the characterization processes found
herein. Moreover, both 2D and 3D i1mages (such as 2D and
3D ultrasound 1mages) can be used as in the medical image
input.

[0036] The outputs of the segmentation and of the char-
acterization can alternatively be used to perform automatic
surgeries or medical interventions. In addition, the output
could trigger alarms based on predetermined thresholds.
Alternatively, the results can be provided to a physician to
assist in diagnosis. Furthermore, the system could provide a
suggested diagnosis based on the determination. In addition,
the system could assist 1n a screening process by determin-
ing which patients should be further referred for further
diagnosis. For instance, the output can objectively describe
hydronephrosis and define ultrasound based thresholds of
obstruction below which diuretic renography can be safely
avoided.

[0037] The segmentation algorithms described herein can
also be used for other purposes besides medical imaging and
processing. For instance, the features described herein could
be used to improve the computer and enable quicker and
more accurate segmentation for image face detection or any
other type of 1mage processing or detection of objects 1n an
image. In addition, many other medical uses can be applied
using the claimed algorithms.

[0038] An example of the process for characterizing pedi-
atric hydronephrosis 1s described in FIG. 6. In the example,
the mput to the system 100 1s a 3D ultrasound scan con-
taining the entire volume of the kidney (5200). The seg-
mentation of the kidney (S201A) can be obtained by the
automatic segmentation algorithm described above (alterna-
tively by a dedicated interactive segmentation tool with
mimimal user interaction). The system can apply an auto-
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matic kernel convolution-based kidney detector that pro-
vides an 1mitial estimation of volume. This initial segmen-
tation may be in an alternative embodiment further refined
by defining control points that constrain the deformation of
the model. In one embodiment, the system can provide
immediate visual feedback, which allows real-time response
interactions for fast and accurate kidney segmentation.

[0039] Once the kidney has been delineated, the collecting
system 1s segmented (S201B) using an active contour-based
formulation designed to replicate the evolution of hydro-
nephrosis in the collecting system of the kidney. Using local
phase analysis, the system incorporates a positive delta
detector to 1dentity the bands of adipose tissue that surround
the collecting system. This allows creating specific prob-
ability positional maps to control the propagation of the
contour. The detected adipose bands surround the dilated
collecting system and constitute a key anatomical clue for 1ts
accurate delineation, allowing differentiation from other
hypoechoic structures (e.g., renal pyramids). The algorithm
1s automatically initialized by selecting the darkest 3x3x3
block within the region delimited by the detected adipose
tissue.

[0040] Steps S201A & S201B may further include frame-
work for the semiautomatic or automatic segmentation and
quantification of renal structures (kidney and CS) in 3D
ultrasound. The framework 1s divided in two parts to deal
effectively with the particular challenges that arise when
working with ultrasound 1mage (for example, with renal
images). Described 1s a kidney segmentation algorithm
(S201A) using a Gabor-based fuzzy appearance model
(FAM). The segmentation process incorporates shape priors
and appearance model tailored to deal with the high intensity
variability and inhomogeneity of ultrasound images. Once
the kidney 1s segmented, an active contour-based formula-
tion that mimics the evolution of hydronephrosis within the
kidney 1s used 1n 1dentifying and segmenting the collecting
system (S201B). For instance, a positive delta detector can
be used to 1dentify the renal fat 1n the kidney. On this basis
a patient specific stopping function 1s defined using alpha
shapes for the accurate segmentation of the renal collecting
system.

[0041] In S201A, a weighted statistical shape model can
be used to address the contrast dependency with the propa-
gation direction of the ultrasound wave front. Additionally,
a weighted fuzzy appearance model (FAM) can be used to
deal ethiciently with the intensity variability of medical
images 1n general, and ultrasound scans 1n particular. In the
wavelront corrected statistical shape model each kidney, x,

is defined as a set of KEN * 3D landmarks distributed across
the surface. Using principal component analysis over the
aligned training set, {x_}, is possible to define a subspace of
allowed-shapes by means of the linear equation y=x+P-b,
where X is the mean shape, and P is the (3K xt) matrix formed
by the t= & ™ principal eigenvectors required to explain the
98% of the total variance 1n the training set. Generally, all
the landmarks are considered equally relevant when calcu-
lating the corresponding shape parameters b of a new
instance Y. In particular, b=P?(y—X) can be considered as the
principal component projection of y that minimizes the
squared error function ERR=|ly—x_||*. Whereas these expres-
sions provide satisfactory results 1n most medical applica-
tions, 1n ultrasound 1maging 1t 1s known that those edges
tangent to the propagation direction of the wavetront can be
aflected by fading eflects. These eflects hinder the correct
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localization of the corresponding landmarks, and hence the
segmentation process. Suppose W 1s a (3Kx3K) diagonal
matrix defining the weight (or reliability) of each landmark.
Thus, the error function can be redefined as ERR ,=(y-x )
"W (y-x), and the corresponding shape parameters, b, that
minimizes it can be obtained as b,=[P'WP]'P'W(y-X).

—>
Suppose now that d. 1s an umtary direction vector that

represents the propagation direction of the wavefront at the
1-th landmark, 1.. Defining the center of the US probe as C,

—> —)—:‘P%

d; can be approximated as d~C,1/||C,1||, where HC 1| repre-

—_—
sents the Euclidean norm of vector C,l. Therefore, the

weight w, associated with 1. in the shape model can be

—> —>
defined as a function of d;, and n,, the unitary vector normal

to the kidney surface at 1,

N 1
0,772 (dz'n_f)] : W

where a cos |, ,,(*) represents the inverse cosine function in
the range [0,m/2], and yER is a configuration parameter of

the power law function. From (1) it can be observed how the
weight 1s O for those landmarks where d; and 1_12 are ortho-

normal, and 1 11 parallel.

[0042] With regard to the Fuzzy Appearance Model
(FAM), while the shape prior model described above ensures
the legitimacy of the shapes obtained during the segmenta-
tion process, an adequate texture model 1s another important
clement. Traditionally, active shape models (ASM) appear-
ance models are based on the normalized first derivative of
the gray profiles normal to the boundary of the object and
centered at each landmark. Despite the popularity of this
simple model, more sophisticated alternatives have emerged
over time trying to overcome some of the limitations of the
original model. However, all these approaches use a single
statistical model to characterize the appearance and texture
around each landmark, assuming that there exists a struc-
tural consistency among the dataset. While this 1s just an
approximation, differences 1n the surrounding tissue
between patients, depth dependent attenuation in ultrasound
images, or 1naccuracies in the correspondence between
landmarks can lead to noisy or even uninformative appear-
ance models. With regard to an example of the kidney and
the liver, typically, the liver 1s slightly brighter than the
kidney. However, the existence of a highly echogenic bands
of adipose tissue between both organs or the location of the
probe can generate diflerent patterns of appearance. The
resulting average profile (1) 1s an uninformative intensity
pattern. As alternative to the classic single-model
approaches, the present disclosure uses multiple appearance
models for each landmark 1n order to capture the inherent
differences between datasets, whether they are due to ana-
tomical variability or imaging parameters. A fuzzy cluster-
ing theory 1s used to identity the different appearance
patterns of the anatomical region around the landmark 1..
Suppose {a..} _, . represents the training set to model the
appearance around 1., where SE # ™ is the number of training
samples. In the most general scenario, a, €R” represents
the Sth n-dimensional training sample (e.g., a n-dimensional
vector containing the intensity profile normal to the contour
and centered at 1). Thus, given {a,_} _, ., a tailored
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version of the fuzzy clustering algorithm 1s used to identify
T, different appearance patterns for each landmark, Each one
of these patterns is defined by 1, M}, 7, where n &
R” and M, €R ™" represent the mean (center) and the
norm- 1nduc:1ng matrix of the j-th cluster respectively. Unlike
other fuzzy clustering approaches, {pz, M, } defines the
inner-product norm for each cluster, (aZ S—p,l) My(aZ s—M)
which allows to generate clusters of dlﬁerent geometrical
shapes. Note that in the particular case where T,_,, M, and
1, represent the sample covariance matrix and the sample
mean, respectively, as commonly used 1n ASM. As discussed
above, the contrast, and thus the appearance, around land-
mark 1. can be significantly affected by the propagation
direction of the wavetront at that location. Thus, for each
sample, a, ., 1s possible to define a weight w, (see eq. (1))
that controls the impact of that sample when building the
appearance models. The Appendix extends the original
tuzzy clustering framework for the more general scenario of
a weighted set of samples {a, ,w, .}. The optimal number of
clusters, T,, 1s automatically defined by means of a weighted
version of a validation index. In order to increase the
robustness of the appearance model against possible 1nac-
curacies 1n the correspondence between landmarks (i.e.,
small differences in the anatomical location defined by 1.
through the training set), we expand the training set {a,_} by
including the appearance information from adjacent land-
marks. In particular, the appearance training set of landmark
1, {a, .}, consists of texture samples extracted from 1, and its
neighboring vertices within a ring of length C’.

[0043] When segmenting a new i1mage using an ASM-
based algorithm, the location of each landmark 1s updated to
that position that maximizes the probability of coming from
the learned distribution, 1.e., minimizing the Mahalanobis
distance to the mean profile learned from the traiming set.
Similarly, having now T, different models, {1, M},

, 7, the optimal location for each landmark w111 be defined by
that model that minimizes the Mahalanobis distance, using
the corresponding fuzzy mean and covariance matrix.

[0044] 'Traditional intensity-based appearance models are
particularly ineflicient when dealing with ultrasound 1images,
due also to the aforementioned inherent challenges, such as
speckle and low contrast between areas of interest, among
others. The present approach 1s able to use a Gabor filter-
based appearance model, as alternative to the classic inten-
sity-based approaches. Gabor filters can be used in ultra-
sound 1mage processing for edge detection, texture
representation and discrimination, mainly 1 2D. A Gabor
filter bank can be used to extract and characterize texture
features 1 3DUS 1mage of the prostate. The present
approach can use an ommnidirectional Gabor-based appear-
ance model for 3D ultrasound 1images. A Gabor filter can be
expressed mathematically as:

(xEHyiadt (2)
(1 ( ]
gf,g,fp(x’ Y Z): 3 €
(2m)2a3,

— j27( wx+vy+wz)
?

where u=t sin 0 cos ¢; v=I sin 0 sin ¢; and w=t cos 0; 1 1s
the central frequency of the sinusoidal plane wave, and ¢
and 0 are the orientation parameters that together with the
Gaussian scale parameter, o, determine the Gabor filter 1n
3D. The number of filters, and thus the computational cost,
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increases significantly with the number of ornentations,
especially in 3D. Typically, only a discrete number of
orientations are considered (1.e. 0, =mm/MI,_, ., and
¢,~nm/Nl, o n_1), which limits the capacity of the filter
to extract texture features 1n any direction (0, ¢). Suppose
Gre . represents the filtered 3D ultrasound volume, I, using
one of the M-N Gabor filters that sample the entire 3D space.

Suppose now the angles 0. and @, represent respectively the

—
zenith and azimuth of the vector n,, the unitary vector normal

to the kidney at landmark 1,. Thus, G¢ , can be estimated as

Gf,ei,(Pf:(l _ni) (]‘ - ﬁz) Gﬂemi,(pni-l-(]‘ _ni)BiGﬂemi,can 1+T] 7
(1 _ﬁi)iGﬁemHl’(Pni+ni|3iGﬁemi+lv(Pni+l ’ (3)7

where m=|0 /(w/M)|, n=|¢,/(7/N)|, n,=(0./(x/M))-m,, and
p~(/(WN))-1,,G.q . are omnidirectional approximations
of the discrete filter bank G.q ., computed for each land-
mark, 1, during the ASM based iterative segmentation. More
specifically, the imaginary component 1s used to create a
new texture model for each landmark. The omnidirectional
Gabor filter 1s able to 1dentify the contour of the kidney 1n
the vicinity of each landmark. Additionally, the multiscale
nature of Gabor filter banks allows to characterize textures
with different dominant sizes (i.e., using different central
frequencies, 1), and thus, to improve the robustness of the
segmentation method to local mimima. Starting with the
lowest frequency, the coarse Gabor features are used 1n the
iitial stages of the segmentation. As the algorithm evolves,
the resulting shape becomes closer to the target, using higher
values of 1. This framework enables hierarchically focusing
on different image features at diflerent stages of the algo-
rithm. Since the texture information 1s different at each
resolution, the fuzzy appearance model 1s specifically cre-
ated for each frequency, f. Thus, the Gabor-based fuzzy
appearance model for the 1-th landmark at frequency 1 1s
defined by {u; Mg}, r,- Algorithm 1 summarizes the
key elements of the kidney segmentation method. Typically,
most segmentation methods for ultrasound 1maging require
user interaction to initialize the algorithm, or impose hard
positional constraints on the location of the target object.
The presently disclosed algorithm requires minimal or no
user 1ntervention by selecting point clicks to roughly define
the principal axis of the kidney. These principal axes can be
defined as the main axis of the ellipsoid circumscribing the
kidney.

ALGORITHM 1
KIDNEY SEGMENTATION ALGORITHM

Initialization.
Detect the center of the probe, C.
fortf=1__. tof _J/ Multiscale loop.
while (NOT CONVERGENCE) or MAX ITERATIONS) do

for 1 = 1 toK// Landmarks updating process.

Calculate normal vector,m’.

Calculate d@; = Ct/Ctll, andw,using (1).
Calculate G.g ., gusing (3).

W 0 N oo

Extract texture samples.

[—
=

Update location using {|is;, Mg 1) r4// Using the Mahalano-

bis
distance;
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-continued

ALGORITHM 1
KIDNEY SEGMENTATION ALGORITHM

11. end
12. Define y by concatenating the updated landmarks and mapping
it to the normalized shape space.
13. Calculate and constraint b.,.
14. Define the new kidney shape.
15. end
16. end
[0045] In step S201B, a collecting system segmentation

example 1s described. In particular, once the contour of the
kidney has been delineated, the segmentation of the collect-
ing system inside the kidney 1s addressed by the active
contour formulation. For instance, the evolution equation
described herein incorporates a patient-specific stopping
function (SF(-)) using the renal fat as anatomical constraint.
The renal fat surrounding the collecting system 1s automati-
cally detected thanks to a positive delta detector described
herein. This fat of the renal sinus 1s used to define the alpha
shape-based patient-specific stopping function that controls
the evolution of the segmentation process.

[0046] For the active contour formulation there 1s
described an energy function that combines contour and
intensity-based terms, and incorporates a new patient-spe-
cific positional map as additional stopping criteria. Suppose
[:Q—IR * represents a 3D gray level image in the image
domain Q< R °, and U:(t,Q)—R is an implicit representa-
tion of the collecting system at time t, 1.e., the collecting
system coincides with the set of points U(t,.)=0. Here the
evolution equation of U 1s defined as

oU (4)
- = SF(I)(B- Cont(I, &, ¢, U)+ (1 = B)-Ini(I, U))

where SF(I) represents the new aforementioned stopping
function, and B<[0,1] 1s a constant that balances the contour-
and the intensity-based terms, Cont and Int respectively. In
particular,

Cont(Z K, c,U)=g(D)IVU|(K+c)+Vc)+Vg(l)- VU, (5)

where k=div(VU/IVUI)) 1s the curvature term computed on
the level set of U, cER * is a constant velocity term, and g(I)
1s an 1nverse edge indicator function of the image I.
[0047] Typically, g(I) 1s a gradient-based edge detector,
e.g. g(1)=1/(1+IVIl), where 1s a smooth version of I. How-
ever, these very simple edge detectors generally perform
poorly 1n ultrasound. Alternatively, we use a local phase-
based step function detector, the feature asymmetry (FA)
detector. The mathematical formulation of FA, and the
resulting edge based stopping function, g(I), are detailed
below.

[0048] Moreover, a formulation based exclusively on the
expansive forces described in (5) would turn ineflicient
when segmenting objects with weak or missing boundaries.
Here, we original gradient-based model 1s combined with
Int(I,U), a mimimal intensity variance term, defined as

I, D) ~(A s~ Ho+ e T4, ) VUL (6)

where u_ ., and n, are the mean intensities in the exterior
and the interior of the collecting system, respectively, A_ .
and A, are two control parameters generally defined as
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A=A =1. Intuitively, this new intensity-based term looks
for the best separating contour 1n I, and the optimal expected
values u_ . and u, . Given the hypoechoic nature of the
collecting system 1n ultrasound images (1.e. n, =0), the
second term of Equation (6) prevents the evolution of the
contour into brighter areas, whereas the first term acts as
expansive force toward dark areas (1.e. toward the collecting
system).

[0049] With regard to local Phase-Based 3D positive delta
detection, there 1s described a detection approach. In par-
ticular, with the evolution of hydronephrosis, part of the
renal fat originally located 1n the renal pelvis 1s displaced
into the kidney, surrounding the dilated collecting system.
These bands of fat constitute a key visual clue for the
radiologist to differentiate the collecting system from other
hypoechoic structures like the renal pyramids. The aim of
the new positive delta detector (PDD) described herein 1s to
identify these echogenic regions and to incorporate this
anatomical information into the new patient specific stop-
ping function SF(I). To define PDD, local phase analysis of
the monogenic signal, a n-dimensional generalization of the
Hilbert transform-based analytic representation of 1D sig-
nals, 1s used (also have potential 1n echocardiography
images). Using the Riesz transform, the monogenic signal of
a 3D ultrasound i1mage, I, 1s defined as the 4D vector,
[,~(1,,,1,); where I, 1s the resulting image of band-pass
filtering I, and 1,=(1x,.1,.1z.)=15,*h,I5,*h, 15*h,) repre-
sents the three Riesz filtered components. The spatial rep-
resentation of the Riesz filters is defined as h,=—k/(2m(x*+
yZ+z2)>'?), where k represents one of the three coordinates of
the 3D ultrasound 1mage, 1.e. k=x, y or z. Using an 1sotropic
log-Gabor filter with central frequency wg, g7 6., the mono-
genic signal can be represented in polar form as

evel, =876 wy 1 (7)
0 ddwOZ\/Ehx,y,z(g LG,wg I Rk)2 . (8)
[0050] The local phase can thus be defined as @, =a

tan(even,, /odd,, ). The local phase contains structural intor-
mation of the image, such as the location and orientation of
image features, transitions and discontinuities. Typically,
these properties are used to detect feature asymmetries in
images, e.g., step edges, i1dentifying those points whose
absolute value of the local phase 1s 0 (positive edges), or w
(negative edges):

FA — llodd,,| — |evern,,| - T,,] | (9)

2 2
- \/oddw +evens, +¢&

where | - | the operator zeros the negative values, ¢ is a small
positive constant to prevent division by zero, and T 1s a
scale specific noise threshold defined as

T =exp(mean[log((odd *+even, *)'"?)]) (10)

[0051] As alternative to the traditional intensity-based
approaches, we define the new edge detector mn (5) as
g(I)=1-FA, whose satisfactory performance as edge detector
in ultrasound 1mages 1s appreciated.

[0052] Here, local phase properties are also exploited to
detect symmetrical image features, positive deltas identified
with points whose local phase 1s close to +m/2 (1.e. points
where leven,|>>lodd | and sign(even, -odd.)>0). These
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points indicate relatively thin echogenic regions (1.e. ridges)
inside the kidney, corresponding to fat tissue. Since positive

deltas are scale-dependent features, the multi-scale PDD 1s
defined as

PDD = Z [Lleven,,| —|odd,,| —T,,]-sign(even,, -odd,,)] (11)

2 2
— \/oddw +even’, +&

[0053] It can be observed that PDD&[0,1] takes values
close to 1 near bright bands (i.e., positive delta features), and
close to zero otherwise).

[0054] Using the fat areas identified inside the kidney,
there 1s created an anatomically justified stopping criteria for
the active contour formulation able to prevent the leakage of
the contour outside the region delimited by the fat bands.
Mathematically, this region can be defined as the interior of
the continuous surface circumscribing the fat points located
via PDD (i.e., those points where PDD=1). In the present
case, those points are defined as PDD_, (I)=PDD=0.8. How-
ever, a densely-sampled point cloud 1s required by most of
the existing point set-based surface reconstruction tech-
niques. That 1s not the case i most of hydronephrotic
kidneys, where the scattered distribution of the inner thin fat
results 1n an unstructured set of dispersed points. Therefore,
the use o1 3D alpha shapes can be used as an alternative. The
concept of alpha shapes 1s a generalization of the convex
hull that formalized the intuitive notion of shape for any
random spatial point set data, including non-convex and
even non-connected sets of points 1n 3D. Given a set of
points, an alpha shape, o, 1s a family of 3D polyhedrons (1.e.
geometrical volume with flat polygonal faces) defined by the

configuration parameter &N *. An edge of S_ is defined
between two members of the finite set of points 1f there
exists a generalized sphere of radius 1/a containing the
entire point set and which has the property that the two
points lie on 1ts boundary. In particular, S, represents the
convex hull defined by the points.

[0055] Given S, defined by the set of fat points located

inside the kidney, the new stopping function SF(I) can be
defined as

SF(I)=1/1+|D(S (PDD 1, D) IV, (12)

where D(S_(PDD,(I1))) 1s the signed distance to the alpha
shape S_(PDD._,(I)), taking negative or positive values
inside and outside the region, respectively; T€[1,+) 1s a
control variable. The value of SF(I) will be 1 iside the alpha
shape, and close to zero as we move away from 1t, thus
gradually penalizing the leaking of the contour outside of
S, (PDD.,). Note that the computation of PDD (11), and
thus SF (12), can be performed ofiline for the entire 1image
domain £2.

[0056] With regard to the initialization of collecting sys-
tem segmentation, the initialization of the active contour
formulation described above 1s fully automated by selecting
the darkest region within the S, closest to the uretero-pelvic
junction (UPJ) of the kidney. UPJ 1s an anatomical region
that can be automatically identified thanks to the landmark
correspondence between cases required to create the statis-
tical shape model of the kidney. Thus, the UPJ can be
identified with the position of a predefined landmark 1n the
kidney at the junction between the ureter and the renal pelvis

of the kidney.
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[0057] The automatic initialization process provides a
valid seed 1n most of the cases. A simple interactive process
or an automatic process can be used to refine or correct
invalid seeds i necessary.

[0058] In step S202, the segmented renal structures (1.e.,
the kidney and the renal collecting system) are automatically
processed using 1image analysis techniques to extract a set of
3D morphological parameters. These parameters can be
divided in three different categories: (1) size descriptors,
including the relative volume of the collecting system and
the kidney, relative surface, and maximum and minimum
parenchyma thickness; (11) geometric shape descriptors,
such as the sphericity and the eccentricity of both, kidney
and collecting system; and (111) curvature descriptors,
including the average curvature of the kidney, and the
curvature dissimilarity between the calices and the kidney.
Examples of the morphological descriptors include: Major
and minor semi-axis of the kidney, and the maximum and
mimmum parenchymal thickness. (b) Normalized curvature
of the kidney. (¢) Normalized curvature of the collecting
system. The aim of these parameters 1s to characterize
quantitatively the anatomy of the hydronephrotic renal units,
defining potential predictive variables of the functionality of
the kidney. From the high dimensional space of predictive
variables (e.g. 90 variables), an optimal subset of features 1s
selected by a feature selection framework.

[0059] Using a predetermined threshold to define severity
(such as T1/2TH min), a support vector machine (SVM)
(S203) can be used with radial basis function kernel to
classify each case as critical (T1/2>T1/2TH min) or non-
critical (T1/2<T1/2TH min) (S204). Finally, receiver oper-
ating characteristic (ROC) curve analysis 1s used to 1dentily
probability thresholds that maximize the sensitivity of
detecting severe cases of hydronephrosis; that 1s, no case
with a washout time above the defined threshold 1s misclas-
sified.

[0060]
follows:

(1) A method for segmenting an anatomical part, including:

identifying a landmark on a contour/surface of a 2D/3D
model of the anatomical part in an ultrasound i1mage;
assigning a weight to the landmark;

identifying different appearance patterns of a region around
the landmark based on a previously stored training set; and
applying a filter to the different appearance patterns of the
region around the landmark 1n order to identify contours of
the anatomical part.

(2) The method according to (1), wherein the landmark on
the contour/surface of the 2D/3D model of the anatomical
part 1s 1dentified by comparing the 2D/3D model of the
anatomical part with a plurality of reference models.

(3) The method according to (1)-(2), wherein the weight 1s
assigned to the landmark based on an angle between a
propagation direction of an ultrasound wave front and a
vector normal with respect to the landmark.

(4) The method according to (1)-(3), wherein a fuzzy
clustering algorithm 1s used to 1dentify the different appear-
ance patterns of the region around the landmark.

(5) The method according to (1)-(4), wherein the training set
includes appearance information from adjacent landmarks
within a predetermined length from the landmark.

(6) The method according to (1)-(5), wherein the filter
characterizes textures of the anatomical part with different
dominant sizes.

Embodiments of this disclosure as described as
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(7) The method according to (1)-(6), wherein the different
appearance patterns are created for a plurality of scales.
(8) The method according to (1)-(7), wherein the anatomical
part 1s a kidney.

(9) A method for segmenting a portion of an anatomical part,
including:

identifying echogenic regions of the anatomical part 1in an
ultrasound 1mage to differentiate the portion of the anatomi-
cal part from other portions of the anatomical part;
generating, using the identified echogenic regions of the
anatomical part, a positional map of the portion of the
anatomical part; and

incorporating patient-specific constraints to delimitate the
portion of the anatomical part.

(10) The method according to (9), wherein the echogenic
regions are 1dentified as fat located inside the portion of the
anatomical part.

(11) The method according to (9)-(10), wherein the echo-
genic regions are i1dentified by exploiting local phase prop-
erties of the anatomical part.

(12) The method according to (9)-(11), wherein the echo-
genic regions result 1n a natural anatomical constraint, and
wherein the echogenic regions circumscribe the portion of
the anatomical part.

(13) The method according to (9)-(12), wherein the posi-
tional map of the portion of the anatomical part 1s generated
from the 1dentified echogenic regions using alpha shapes.
(14) The method according to (9)-(13), wherein the patient-
specific constraints are incorporated using the positional
map of the portion of the anatomical part.

(15) The method according to (9)-(14), wherein the ana-
tomical part 1s segmented by mimicking propagation of fluid
inside the anatomical part, using the patient-specific con-
straints to control a propagation process.

(16) The method according to (9)-(15), wherein the ana-

tomical part 1s a kidney, and the portion of the anatomical
part 1s a collecting system.

(17) A method for characterizing functionality of an ana-
tomical part to 1dentify severity of a medical condition, the
method including:

delineating the anatomical part and segmenting a portion of
the anatomical part 1n ultrasound 1mages;

extracting morphological features of the anatomical part and
the portion of the anatomical part using 1mage analysis;

selecting an optimal subset of the morphological features
using a supervised or an unsupervised feature selection
framework; and

classifying each feature in the optimal subset as critical or
non-critical based on a threshold and a classifier, the clas-
sifier being one of linear discriminant analysis or a support
vector machine.

(18) The method of (17), turther including;:

grouping the extracted morphological features into a plural-
ity of categories, the plurality of categories including size,
geometric shape, curvature, and texture of the anatomical
part and the portion of the anatomical part.

(19) The method of (17)-(18), further comprising;:

identifying probability thresholds that maximize sensitivity
ol detecting severe cases of hydronephrosis using receiver
operating characteristics (ROC).

(20) The method of claim (17)-(19), wherein the optimal
subset 1s selected using an area under a receiver operating
characteristics (ROC) curve.
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(21) The method of (18)-(20), wherein the size includes a
relative volume of the anatomical part and the portion of the
anatomical part, relative area and perimeter of the anatomi-
cal part and the portion of the anatomical part, and maxi-
mum and minimum parenchyma thickness.

(22) The method of (18)-(20), wherein the geometric shape
includes sphericity and eccentricity of the anatomical part
and the portion of the anatomical part.

(23) The method of (18)-(21), wherein the curvature
includes an average curvature of the anatomical part, and
curvature dissimilarity between calices and the anatomical
part.

(24) The method of (17)-(23), wherein the threshold 1s a
parameter of a function of the anatomical part, the parameter
of the function of the anatomical part including a washout
half time of at least one of 20 mins, 30 mins, or 40 mins.

(25) The method of (17)-(24), wherein the anatomaical part 1s
a kidney, the portion of the anatomical part 1s a collecting
system, and the medical condition 1s hydronephrosis.

[0061] Having now described embodiments of the dis-
closed subject matter, it should be apparent to those skilled
in the art that the foregoing 1s merely illustrative and not
limiting, having been presented by way of example only.
Thus, although particular configurations have been dis-
cussed herein, other configurations can also be employed.
Numerous modifications and other embodiments (e.g., com-
binations, rearrangements, etc.) are enabled by the present
disclosure and are within the scope of one of ordinary skill
in the art and are contemplated as falling within the scope of
the disclosed subject matter and any equivalents thereto.
Features of the disclosed embodiments can be combined,
rearranged, omitted, etc., within the scope of the invention
to produce additional embodiments. Furthermore, certain
features may sometimes be used to advantage without a
corresponding use of other features. Accordingly, Applicant
(s) intend(s) to embrace all such alternatives, modifications,
equivalents, and variations that are within the spirit and
scope of the disclosed subject matter.

1: A method for segmenting an anatomical part, compris-
ng:

identifying a landmark on a contour/surface of a 2DD/3D

model of the anatomical part in an ultrasound 1mage;

assigning a weight to the landmark;

identifying different appearance patterns of a region
around the landmark based on a previously stored
training set; and

applying a filter to the different appearance patterns of the
region around the landmark in order to identily con-
tours of the anatomical part.

2: The method according to claim 1, wherein the land-
mark on the contour/surface of the 2D/3D model of the
anatomical part 1s 1dentified by comparing the 2D/3D model
of the anatomical part with a plurality of reference models.

3: The method according to claim 1, wherein the weight
1s assigned to the landmark based on an angle between a
propagation direction of an ultrasound wave front and a
vector normal with respect to the landmark.

4: The method according to claim 1, wherein a fuzzy
clustering algorithm 1s used to 1dentify the different appear-
ance patterns of the region around the landmark.

5: The method according to claim 1, wherein the training
set 1ncludes appearance information from adjacent land-
marks within a predetermined length from the landmark.
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6: The method according to claim 1, wherein the filter
characterizes textures of the anatomical part with different
dominant sizes.

7: The method according to claim 1, wherein the difierent
appearance patterns are created for a plurality of scales.

8: The method according to claim 1, wherein the ana-
tomical part 1s a kidney.

9: A method for segmenting a portion of an anatomical
part, comprising:

1dentifying echogenic regions of the anatomical part 1n an
ultrasound 1mage to differentiate the portion of the
anatomical part from other portions of the anatomical
part;

generating, using the identified echogenic regions of the
anatomical part, a positional map of the portion of the
anatomical part; and

incorporating patient-specific constraints to delimitate the
portion of the anatomical part.

10: The method according to claim 9, wherein the echo-
genic regions are 1dentified as fat located inside the portion
of the anatomical part.

11: The method according to claim 9, wherein the echo-
genic regions are i1dentified by exploiting local phase prop-
erties of the anatomical part.

12: The method according to claim 9, wherein the echo-
genic regions result 1n a natural anatomical constraint, and
wherein the echogenic regions circumscribe the portion of
the anatomical part.

13: The method according to claim 9, wherein the posi-
tional map of the portion of the anatomical part 1s generated
from the identified echogenic regions using alpha shapes.

14: The method according to claim 9, wherein the patient-
specific constraints are incorporated using the positional
map of the portion of the anatomical part.

15: The method according to claim 9, wherein the ana-
tomical part 1s segmented by mimicking propagation of fluid
inside the anatomical part, using the patient-specific con-
straints to control a propagation process.

16: The method according to claim 9, wherein the ana-
tomical part 1s a kidney, and the portion of the anatomical
part 1s a collecting system.

17: A method for characterizing functionality of an ana-
tomical part to identify severity of a medical condition, the
method comprising:

delineating the anatomical part and segmenting a portion

of the anatomical part 1n ultrasound 1mages;

extracting morphological features of the anatomical part
and the portion of the anatomical part using image
analysis;

selecting an optimal subset of the morphological features

using a supervised or an unsupervised feature selection
framework; and

classitying each feature in the optimal subset as critical or
non-critical based on a threshold and a classifier, the
classifier being one of linear discriminant analysis or a
support vector machine.

18: The method of claim 17, further comprising;

grouping the extracted morphological features into a
plurality of categories, the plurality of categories
including size, geometric shape, curvature, and texture
of the anatomical part and the portion of the anatomaical
part.
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19: The method of claim 17, further comprising:

identifying probability thresholds that maximize sensitiv-

ity of detecting severe cases of hydronephrosis using
receiver operating characteristics (ROC).

20: The method of claim 17, wherein the optimal subset
1s selected using an area under a receiver operating charac-
teristics (ROC) curve.

21: The method of claim 18, wherein the size includes a
relative volume of the anatomical part and the portion of the
anatomical part, relative area and perimeter of the anatomi-
cal part and the portion of the anatomical part, and maxi-
mum and minimum parenchyma thickness.

22: The method of claim 18, wherein the geometric shape
includes sphericity and eccentricity of the anatomical part
and the portion of the anatomical part.

23: The method of claim 18, wherein the curvature
includes an average curvature of the anatomical part, and
curvature dissimilarity between calices and the anatomical
part.

24: The method of claim 17, wherein the threshold 1s a
parameter of a function of the anatomical part, the parameter
of the function of the anatomical part including a washout
half time of at least one of 20 mins, 30 mins, or 40 mins.

25: The method of claim 17, wherein the anatomical part
1s a kidney, the portion of the anatomical part 1s a collecting
system, and the medical condition 1s hydronephrosis.

e o e e o
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