a9y United States

US 20190324513A1

12y Patent Application Publication o) Pub. No.: US 2019/0324513 Al

Hu et al.

43) Pub. Date: Oct. 24, 2019

(54) SYSTEM AND METHOD FOR ENERGY
PROFILING ASYNCHRONOUS API CALLS

(71) Applicant: Purdue Research Foundation, West
Latayette, IN (US)

(72) Inventors: Yu Charlie Hu, West Lafayette, IN
(US); Ning Ding, Santa Clara, CA (US)

(73) Assignee: Purdue Research Foundation, West
Lafayette, IN (US)

(21) Appl. No.: 16/392,518
(22) Filed: Apr. 23, 2019

Related U.S. Application Data

(60) Provisional application No. 62/661,314, filed on Apr.

23, 2018.

Publication Classification

(51) Int. CL

GoOo6lF 1/28 (2006.01)

10 Ty Identify classes
containing
callbacks

in APl s

Modify each Class
by adding a
callback ID field

Each object
Instantiated from
class is initiated

with unigue
callback id

(52) U.S. CL
CPC oo, GOG6F 1/28 (2013.01)

(57) ABSTRACT

A method for profiling energy usage of invoking an appli-
cation programming interface (API) by an application 1 a
computing device. The method includes obtaining source
code for the API, modifying each class by adding a callback
function 1dentifier field that 1s initiated to a unique value
upon 1instantiation of each object that belongs to the class,
identifying each location 1n the source code that posts the
callback function for asynchronous execution by enqueue-
ing each object instantiated from the class containing the
callback function into the system callback queue, moditying
the source code to log the callback function identifier of
object at the location that dequeues objects from the system
callback queue, moditying source code by adding two
system logging function calls to log the callback function
identifier of the dequeued object before and after executing
the callback function, executing the application, and per-
forming energy accounting of the asynchronous API calls.

First thread logs
the callback
function id in
object and the call
stack

Second thread logs

Callback id of object
before executing

callback function

26

First thread places
object in a
callback queue for
asynchronous
execution

Second thread
executes
the callback
function

Second thread pops
an object out
of the callback
queue for
execution

Second thread logs
Callback id of object
after executing
callback function

To energy

accounting
Process

Patent Application Publication Oct. 24, 2019 Sheet 1 of 6 US 2019/0324513 Al

PANDORA

FIG. 1

Lgcreen on
HUscreen off

DN
T

(Uyw) Ablaug

SPOTIFY

US 2019/0324513 Al

Oct. 24, 2019 Sheet 2 of 6

Patent Application Publication

Z 'Ol
DUASA
" .
" 1848} dD
_ | |
VWA SIBD THtiedo N
) _ | 10hej engeu PEIIYUL
SUEAAEA yomawel4 18PUSY
!
19A.) eagp
MIOMBWEBI _
e e § s Moo R o PEOIUL

< Uxelies

isAe il

()ss81D0I418S ;—, davs

A

(J1eAe|dalepdn

US 2019/0324513 Al

Oct. 24, 2019 Sheet 3 of 6

Patent Application Publication

$$920.(
3uinunodoe
A3J2UDd O]

uol1ounj doeq||e
3U11NJ3XD J3lje

122[q0 Jo p1deq|e)
S30| peaJyl puodas

uoIuUNj
Aoeq||es ayi
$91NJ3Xd
peaJyl puolas

uolouny yoeqj|es
3U11N29X3 240J9Q

192(00 JO pI3joeq)||e)

s80| peaJyl puodas

¢ Dl

UOI1NJ3XD
10} ananb
A9Eq||E2 94yl JO
1n0 109[go ue
sdod peaJyl puodas

UOI1ND9XD
SNOUOJYDJUAse
10} @nanb oeq||ed
e ul 109lqo
sooe|d peaJyl 15414

}oels
I1E2 @Y1 pue 123lgo
ul pl uoniouNny
A3eq|[Ed /Y3
s§o| peaJyl 15414

PIAREY]|ED
2nbiun yiim

palelllul sl sse|d
WioJ) pailellueisui
129lqo Yyoe3

P21} dl APE(][ED
e sulppe AQ

sse|D yoea AJIPOIA

S |dV Ul
syoeq||e?

3uluIeIUOD
S95Se|2 AJlnuap|

01

US 2019/0324513 Al

Oct. 24, 2019 Sheet 4 of 6

Patent Application Publication

Ey 'Ol

LT (B)

ST1
10} 3|p|

Xy /%1 Auy

[X
j SWIO0?Z
104 3P|

US 2019/0324513 Al

Oct. 24, 2019 Sheet Sof 6

Patent Application Publication

v 'Ol

M (9)

SWote
404 91pi

uoREZIIIN
jo puz

S aav -
(N)™

XY /%1 Auy

Patent Application Publication Oct. 24, 2019 Sheet 6 of 6 US 2019/0324513 Al

16

‘. . e ‘

8
Time (sec)

FIG. 5

)
=
C
-
U
D
92
»
5
&
il
U
)
4O

3000
2000
1000

US 2019/0324513 Al

SYSTEM AND METHOD FOR ENERGY
PROFILING ASYNCHRONOUS API CALLS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present patent application 1s related to a co-
pending U.S. Non-provisional patent application titled
“GRAPHICS ENERGY PROFILING SYSTEM AND
METHOD” filed on the same as the present disclosure; and
to U.S. Provisional Patent Application Ser. No. 62/661,314
filed Apr. 23, 2018, the contents of each of which are hereby
incorporated by reference 1n their entireties into the present
disclosure.

TECHNICAL FIELD

[0002] The present application relates to energy profiling
of application programming interfaces (APIs), and 1n par-
ticular related to a method for determining energy usage for
asynchronous calling of APIs and functions therein.

BACKGROUND

[0003] Modern mobile devices use APIs to streamline
programming. An API 1s a set of functions and procedures
that generate simple to complex functions that access the
features and/or data of a processor. In doing so, the APIs cost
energy. Some APIs use substantial energy even in normal
processing. On the other hand, an API can be programmed
with an energy bug that causes the API to use substantial
amount of energy when no energy or only little energy
should be used.

[0004] To complicate this challenge, APIs can be called
asynchronously. This means that the functions asynchro-
nously imvoked by a plurality of APIs can be called without
a clear accounting as to which API calls which function to
an observer of energy usage. This asynchronous timing can
be particularly problematic since 1t 1s almost impossible to
debug energy usage when the sources of function calls are
unknown.

[0005] Furthermore, the challenge of profiling energy con-
sumption 1s even more complex when the APIs are multi-
layered. That 1s an API can asynchronously call functions
that in turn asynchronously call other functions, while other
multi-layered APIs also call those same functions.

[0006] There 1s therefore an unmet need to determine
energy usage ol imnvocations of APIs that are single or
multi-layered and which are called asynchronously.

SUMMARY

[0007] A method for profiling the energy usage of invok-
ing an application programming interface (API) by an
application 1n a computing device 1s disclosed. The method
includes obtaining source code “A” for the API, identifying
each class C, in the A for the API that contains a callback
function D,, and modifying each C, by adding a callback
tunction identifier field that is mitiated to a unique value V,
upon instantiation of each object O, that belongs to class C,.
The method also includes 1dentifying each location E, 1n the
A that posts the callback function D, for asynchronous
execution by enqueueing object O, instantiated from the C,
contaiming the callback function D, into the system callback
queue, modifying the A at location E; by adding a logging
tunction call L to log the callback function identifier V; and
the current call stack into the energy profiling log, and

Oct. 24, 2019

obtaining source code B 1n the operating system/framework
that asynchronously executes any D passed from the API.
Furthermore, the method includes i1dentifying each location
F 1n the B that invokes the callback function associated with
any object dequeued from the system callback queue; modi-
tying the B at the F by adding logging function calls L before
and after the callback function invocation to log the callback
function 1dentifier V; of the dequeued object when we start
and finish executing the callback function respectively to the
energy profiling log, and executing the application thereby
generating at least two threads, wherein the first thread
executes the API call that posts the callback function D, and
wherein the second thread, which can be the same as the first
thread, dequeues the callback function D, and invokes the
callback function D,. In addition, the method includes deter-
mining the caller-caller relationship between the function in
the API execution stack that posted each D, and the asyn-
chronously invoked callback function by processing the
logged callback ID and the call stack information in the
energy profiling log, determining the energy usage of invok-
ing the API call in thread 1, by monitoring activities of a
processor, the processor operating any component that con-
sumes power in the computing device 1n response to execu-
tion of the API, and determining the energy usage of
invoking each callback function 1n thread 2, by monitoring
activities of a processor, the processor operating any com-
ponent that consumes power in the computing device in
response to execution of the callback function. The method
finally includes adding the energy usage of invoking every
callback function 1n thread 2 to the energy usage of invoking
the API thus determined, and attributing the combined
energy to the API invocation.

BRIEF DESCRIPTION OF DRAWINGS

[0008] FIG. 11s a bar graph showing energy usage for two
popular apps with screen on/ofl.

[0009] FIG. 2 1s a schematic of a multi-layered application
programming interface (API).

[0010] FIG. 3 1s a block diagram of one exemplary method
according to the present disclosure;

[0011] FIG. 4a 1s schematic of power states and their
transitions for cellular connectivity (LTE) for a Galaxy S3

and S4.

[0012] FIG. 4b 1s a schematic of power states and their
transitions for WiF1 operations for a Galaxy S3 and S4.

[0013] FIG. § 1s a graph of power in mW vs. Time 1n
seconds depicting L'TE power states for Galaxy S3.

DETAILED DESCRIPTION

[0014] In the following description, some aspects will be
described in terms that would ordinarily be implemented as
software programs. Those skilled in the art will readily
recognize that the equivalent of such software can also be
constructed 1n hardware, firmware, or micro-code. Because
data-manipulation algorithms and systems are well known,
the present description will be directed in particular to
algorithms and systems forming part of, or cooperating more
directly with, systems and methods described herein. Other
aspects of such algorithms and systems, and hardware or
software for producing and otherwise processing the signals
involved therewith, not specifically shown or described
herein, are selected from such systems, algorithms, compo-
nents, and elements known 1n the art. Given the systems and

US 2019/0324513 Al

methods as described herein, software not specifically
shown, suggested, or described herein that 1s useful for
implementation of any aspect 1s conventional and within the
ordinary skill in such arts.

[0015] In the present disclosure, the term “about” can
allow for a degree of varnability 1n a value or range, for
example, within 10%, within 5%, or within 1% of a stated
value or of a stated limit of a range.

[0016] In the present disclosure, the term “substantially™
can allow for a degree of variability in a value or range, for
example, within 90%, within 95%, or within 99% of a stated
value or of a stated limit of a range.

[0017] A novel method for determining energy usage of
application programming interfaces (APIs) in modern
mobile devices that are single or multi-layered and which
are called asynchronously 1s described. The solution of the
present disclosure provides improvements to modern day
computers and computing devices.

[0018] To evidence the need to monitor energy of various
applications (apps), reference 1s made to FIG. 1 which
shows energy usage from two popular apps (SPOTIFY and
PANDORA). We used a MONSOON power monitor to
measure the energy consumption of 1-minute music stream-
ing on a NEXUS 6 phone running ANDROID 3.1. For either
app, we streamed a song from a random station. We per-
formed two sets of experiments: with the music player
activity running 1in the foreground, and with the music
playback running in the background with screen-off. The
phone used WiF1 with excellent signal strength. We unin-
stalled all other apps on the phone and stopped all back-
ground activities such as account sync or backup. We chose
songs ol about 3 minutes long, and measured the energy
drain from 60 s to 120 s, so that the song 1s fully builered
during the measurement period and there 1s little network
activity. Each experiment 1s repeated 3 times. Since both
apps have similar UI and perform the same functionality, we
expected their energy drain to be comparable 1n both sets of
experiments. With reference to FIG. 1, energy usage for the
two apps (SPOTIFY and PANDORA) are shown while the
two apps have similar energy drain with screen off, with
screen-on, SPOTIFY consumes 123% more energy than
PANDORA. This translates to excess energy usage when
various graphics APIs are called. The energy usage in FIG.
1 provides proof that various APIs consume more energy
than others. This difference i1n energy usage presents a
challenge to developers who are always seeking to lower
battery usage from energy-hungry apps.

[0019] 'To answer the aforementioned challenges, five dis-
tinct sub-challenges need to be overcome: (1) the profiling
methodology must be able to cross the entire vertical system
stack: some API processes involve traversing the entire
vertical stack of all system layers from the app, the frame-
work Java code and native code, the OpenGL ES library, and
finally to the CPU or GPU or other device component; (2)
the profiling methodology must be able to handle asynchro-
nous API calls across all the system layers: the interactions
between adjacent layers are highly asynchronous, e.g.,
through callback posting and 1nvocation; (3) the profiling
methodology must be able to handle batching: when mul-
tiple operations are batched in an asynchronous object
oriented environment, the batching operation must be able to
account (1) source thread of the object’s invocation, (11) log

that object’s 1nvocation when 1nitially invoked against the

Oct. 24, 2019

source thread, and then log that object as it 1s passed from
the batch to a termination thread when the object exits the
batch, e.g., multiple user interface (UI) updates 1ssued by the
app within the same display refresh interval (every 16.7 ms)
are batched before asynchronously sent to the framework

layer below; (4) the profiling methodology must also be able
to handle CPUs/GPUs as a “Black-box™ with closed-sourced

drivers and internal command executions independent of the
call stacks; and (5) track energy usage from the CPU/GPU
when the APIs are called.

[0020] Referring to FIG. 2, an example of a multi-layer
API 1s shown. This 1s a graphics user interface (UI) API
which includes the App layer, the Framework Java layer, the
Framework native layer, and finally the GPU layer. In each
of these layers there may be functions that are repeatedly
called, asynchronously, further exasperating the atoremen-
tioned challenge.

[0021] In answering these sub-challenges, the methodol-
ogy of the present disclosure 1s configured to track asyn-
chronous calls across all layers, track the energy drain of
method 1nvocations at each system layer as well as the
black-box CPU/GPU, and account them to the responsible
API calls. The method according to the present disclosure,
also decodes the responsible API for invocation of objects
into a batch. Thus the methodology according to the present
disclosure enables developers to (1) understand the energy
drain tradeoil of an API and its functionality, and (2) detect
energy bugs in an API wherein output that 1s to be caused by
calling the API does not change but where API calls nev-
ertheless consumes energy.

[0022] 'To track the asynchronous dependencies across the
stack layers the method of the present disclosure exploits an
API ID-tracking techmique to track the activities that caus-

ally depend on each API call across all layers.

[0023] In order to best describe the API ID-tracking of the
present disclosure an analogy 1s made to USPS mail system.
An any given point, a regional post office receives hundreds/
thousands of mail from various senders to be delivered to
various receivers. Suppose, none of the mail use stamps, but
rather use a postage-accounting system. When each sender
places a corresponding parcel in the mail box, that parcel
receives a sender-unique 1dentification number (ID) applied
to 1t. The parcel 1s then placed in the mail system batching
process to be processed (1.e., to be delivered to recipients).
Once the parcel 1s placed into the mail system, the ID 1s
logged. Then once the mail system delivers the parcel to the
recipient, the ID 1s logged again. The logging of the ID at the
initial sending and then at the receiving 1s for the purpose of
accounting costs associated with mailing the parcel. In this
simplified example, the mailing of the parcel 1s a class; the
parcel 1s analogized to an object, the sender 1s analogized to
a thread, and the mail batching process 1s analogized to a
callback function queue 1n asynchronous programming, and
the post oflice which takes out a parcel from the batching
process and delivers the parcel 1s analogized to a second
thread. The ID-tracking allows tracking of each parcel and
enables the post oflice to charge the cost of delivering each
parcel by the post oflice to the sender. However, 1n current
asynchronous programming, no IDs are assigned to an

US 2019/0324513 Al

object being placed 1n a callback function queue. Thus there
1s no accounting of that object from various perspectives,
¢.g., energy usage.

[0024] To further clanfy an object-oriented situation,
below 1s an example. Prior to providing the example, some
definitions are provided. A class 1s a system-defined or a
user-defined data structure. In other words, a class 1s a
blueprint for the data structure. The blueprint provides what
the class does to the data. A typical example provided 1n text
books for object ortented programming 1s where the class 1s
defined as a car (class car). The class car may have several
data members: e.g., model, year of make, color-combination
(outside-inside), and mileage. The class may also include
function members, e.g., current value of a car which could
be 1mnvoked to calculate the current value of the car based on
the data members (e.g., year of make, color-combination,
model, mileage, etc.). An object 1s a specific instant of the
class. For example, the object instantiation of the class car
may be “car my_car”, in which my_car 1s the object of the
class car. In the previous analogy to mailing, a class can be
personal mail or business mail, in which each class can
define a different data structure blueprint. For example, with
personal mail, the data members within the class personal
mail may include sender’s name, receiver’s name; whereas
the class business mail may include Federal ID for sender,
and Federal ID for receiver. A first thread may be associated
with the process of mailing personal mail (thus the personal
mail class) by one sender while a second thread may be the

process of delivering a mail by the post oflice. With that we
begin the example:

Oct. 24, 2019

[0025] In the above Threadl-Thread2 interaction there 1s
no explicit caller-callee relationship. In other words, the
member function “run” within the class Callback 1s executed
asynchronously and the associated energy cost 1s not ascer-
tainable as to whether it was due to Thread 1 or Thread 2
(analogy to the mailing system, without ID-tracking, the
accounting system would not be able to determine which
sender should be charged for the cost of delivering a
particular parcel incurred to the post oflice). This lack of
accounting of energy consumption 1s a driving force behind
the present disclosure.

[0026] To overcome this lack of energy accounting, the
present disclosure provides a tracking mechanism. In order
to do so, the class Callback 1s modified:

class Callback() {
// the callback_id field is initialized to a unique

unique ID upon instantiation of each
// Callback object

long callback_1d = GLOBAL_CALLBACK__ID ++;

void run()

[0027] Now when the Callback 1s instantiated into an
object, the callbacy_id field of the object 1s 1nitialized to a
unmque ID (similar to mitializing unique ID for a parcel when
a sender creates the parcel).

// we first review an example class that 1s defined by the operating system/framework:

//“Callback™

// this 1s what a class containing a callback function looks like, it has a run() method

// calling this callback.run() method will invoke the run function
class Callback() {
void run()

};

// Now let’s say Threadl posts a callback for Thread2 to run (analogy: in our mail
// example, a sender (thread 1) mails a parcel, and the postoffice (thread 2) takes the //
parcel out of the batching process, and delivers it, the code will be something like:

// Threadl:
void postCallback() {
// create a callback with customized functionality
Callback my__callback {
void run() { // with an object my__callback
printf(““run the callback™);
h

/fhere we have an instantiation of the class Callback

/' A callback queue (batch process) 1s used here.
// callback__queue 1s a data structure shared between
// Threadl and Thread2 (this 1s equivalent to a mail

// batch process such as a mailbox at a local post

// office)

callback__queue.enqueue(my__callback);

// The object my__callback 1s thus queued into the

// callback__queue

h

// Now Thread 2:
void runCallback() {

// Thread 2 pops out the object my_ callback from the callback function queue

Callback callback to_ run = callback_queue.pop();
// this will finally run the callback function posted by Threadl
callback_ to_ run.run();

t

US 2019/0324513 Al

// Thread 1:
void postCallback() {
// create a Callback instance with customized functionality

Callback my__callback {
void run() {
printf(“run the callback™);

h
h

// log the callback_id of the object that 1s being enqueued
into the callback queue and

// the call stack
/I get__callstack() function will get current thread’s call stack

Log(“callback_1d=" + my_ callback.callback_ 1d + * generated by call
stack ” + get_ callstack());

// callback__queue 1s a data structure shared between Threadl and

Thread?2 callback__queue.enqueue (my__callback);

;

[0028] Next when the object my_callback 1s dequeued and
hence passed on to Thread 2, the ID 1s logged again (analogy
1s to when the post oflice taking out a parcel from the
batching process and performs the delivery operation as
Thread 2, the parcel ID 1s logged betfore and after delivering
the parcel).

// Thread 2:

void runCallback() {
Callback callback_ to_ run = callback_queue.pop();
Log(*start running callback_ 1d=" + callback to_ run.callback_ 1d);
// this will run the customized callback function posted by Threadl
callback_to_ run.run();
Log(*“finish running callback 1d=" + callback_ to_ run.callback_1d);

;

[0029] Next the logs need to be post-processed to account
for energy usage:

//Sample logs:
/Threadl:

callback 1d=101 generated by call stack postCallback()

// Thread2:

start running callback 1d=101

// [other logging during running the callback, e.g. view rendering]
end running callback 1d=101

[0030] Using the above methodology, the logged callback
ID information can be processed to 1dentify which object
istantiation results 1n which function call asynchronously
invoked thereby resolving the 1ssue of asynchronous caller-
callee tracking.

[0031] The technique described above can be applied to
APIs with known source codes, whether of a single layer or
a multi-layer variety (e.g., shown in FIG. 2). Referring to
FIG. 3 a flowchart of the operations described above 1is
provided.

[0032] Retferring to FIG. 3, a process 10 for logging
asynchronous function calls i1s provided. The process 10
begins by i1dentifying classes in all APIs of interest (block
12). Then each class 1s modified by inserting a callback
identifier field, that can be used to log asynchronous callback
function calls triggered by an API call (block 14). Next,
during application execution, the process 10 includes the
step of instantiating an object of a class, which assigns a
unique callback function 1dentifier to the object (block 18).
Next, the process 10 involves a first thread logging the
callback function 1dentifier of the object being placed in the

Oct. 24, 2019

system callback queue for asynchronous execution and the
call stack at the moment (blocks 20). Next, the first thread
places the object into the callback queue (block 22). Later,
the object 1s popped out of the system callback queue for
execution by a second thread (block 24). The second thread
logs the callback function identifier of the object before
executing the callback function (block 26), executes the
callback function (block 28), and then logs the callback
function 1dentifier again after executing the callback func-
tion (block 30). The logging information 1s then used to
perform energy accounting of the asynchronous API call
during post-processing.

[0033] Adfter the asynchronous tracking 1s accomplished,
next the energy consumption of each callback function
invocation and that of the synchronous part of the original
API call are first independently estimated using energy
profiling for synchronous function calls. The energy con-
sumption of the caller 1s then added to that of the caller to
generate the total energy for the asynchronous API call.
[0034] Measuring the battery drain of a synchronous func-
tion call during the execution of an application 1s challeng-
ing. The simple approach of using an external power meter
can only measuring the total power draw of the phone; it
cannot measure the energy drain of individual apps and
services concurrently running on the phone. To measure the
battery drain of a synchronous function call during the
execution of an application, we use a hybrid power model
that requires no modifications to the operating systems or the

Android framework.

[0035] Power models for mobile devices in general and
wireless components such as WikF1, 3G and LTE radios have
been actively studied in recent years, and the proposed
power models fall into two major categories.

[0036] The first category of power models known as
utilization-based models for smartphones are based on the
intuitive assumption that the utilization of a hardware com-
ponent (e.g., NIC) corresponds to a certain power state and
the change of utilization 1s what triggers the power state
change of that component. Consequently, these models all
use the utilization of a hardware component as the “trigger”
in modeling power states and state transitions. Such models
thus do not capture power behavior of modern wireless
components that do not lead to active utilization such as the
promotion and tail power behavior of 3G and LTE, and thus
can incur high modeling error.

[0037] The second category of power models capture the
non-utilization based power behavior of wireless compo-
nents using finite state machines (FSMs), e.g., WiF1, 3G and
for LTE network interfaces. In a nut shell, the built-in state
machine of the wireless radio, e.g., the RRC states and
transitions 1n LTE, 1s reverse-engineered and represented in
a finite state machine that annotates each power state or
transition with measured power draw and duration values.
The triggers for the state transitions are either packet-level
traces or networking system calls.

[0038] We use Galaxy S3 and S4 phones to 1illustrate the
hybrid power modeling technique.

[0039] We determine the set of phone components to be
modeled by measuring the maximal power draw of all the
major components using micro-benchmarks one at a time,
while keeping the load on other components steady. For
example, to gauge the GPU power, we keep the CPU at a
fixed frequency, and run the GPU benchmark app that
performs 2D rendering. Based on these initial power mea-

US 2019/0324513 Al

surements, we selected the set of components showing
significant power draw, as shown 1n Table 1.

TABLE 1

Summary of power model for example device components.

Hardware component power draw Model Trigger

CPU frequency + utilization
GPU frequency + utilization
Screen brightness level

Wiki FSM + signal strength
3G/LTE FSM + signal strength

[0040] We further confirm the components are largely
independent—our model described below which assumes
different components are independent and add up to the total
power drain of the phone has an error less than 10%.

[0041] 'To accurately capture the power behavior of all the
identified power-hungry components, we develop a hybnd
utilization-based and FSM-based power model that achieves
good modeling accuracy. In particular, we resort to utiliza-
tion-based modeling to capture power behavior of CPU and
GPU whose power draw depend on utilization, and we use

FSM-based modeling for wireless interfaces such as WiF1/
3G/LTE.

[0042] In summary, the triggers for modeling all the
components are shown 1n Table 1.

CPU

[0043] As specified in the previous section, we used CPU

microbenchmarks to obtain the relationship between the
CPU power draw and CPU operating frequency and also
devised a methodology for accounting for multiple cores
running at different frequencies. For example, 1n training the
power model for Galaxy S3, we first use power meter to
measure the power draw of the CPU under different fre-
quencies with only core-0 turned on. We then repeat the
process with both cores turned on 2. Table 2 shows the CPU
power draw at 100% CPU utilization for Galaxy S3 under a
range ol frequencies. Single-core results are shown with
core-1 turned ofl.

[0044] In modeling the quad-core CPU on Galaxy S4, we
follow the following procedure. The power draw of the
quad-core CPU 1s modeled as:

P_CPU=P_{B,Nc}+Sum(u_i*P_(f i)),i=1,N_c

where N_c is the number of CPU cores, P_{PB;Nc} is the
baseline CPU power with Nc enabled cores, P_(1_1) 1s the
power increment of core 1 at frequency 1_1, and u_1 1s the
core’s utilization.

TABLE 2

Dual-core CPU power model for Galaxy S3, shown for 6 sample
frequencies per core. The unit of CPU power is mW.

Oct. 24, 2019

[0045] We first model the core-0 using the same method as
with Galaxy S3. We then varied the number of cores online,
but fix all online cores to the same frequency and 100%
utilization. The increased power when turning on core-1 1s
considered as the busy power for core-1 at this frequency.
Then we vary the frequency and repeat the process to obtain
the busy power for each core at each frequency.

[0046] Foridle power, the procedure 1s the same except we
keep the online cores 1dle instead of 100% busy. Table 3
shows the CPU power draw at 100% CPU utilization for
Galaxy S4 under a range of frequencies with varying num-
ber of online cores.

[0047] 'To use the CPU model for energy accounting of a
synchronous function call, we use system utilities to log the
frequencies of each core as well as the utilization of each app
active during duration of the synchronous function call. In
post-processing, we estimate the CPU power draw based on
the logged CPU frequency and the synchronous function
cal’s CPU utilization, 1.e., as the power draw at that
frequency under 100% utilization weighted by the function
call’s actual utilization. Finally, we integrate the power over
the synchronous function call duration to derive the GPU
energy drain of the synchronous function call.

TABLE 3

Galaxy S4 CPU power model for 3 sample frequencies with
varving number of online cores. The power unit 1s mW.

384 MHz 1026 MHz 1890 MHz

Penve Pall) Payne Pall) Paye Pally

1 86 207 86 438 86 1358
2 269 70 363 228 647 811
3 351 72 464 239 917 891
4 472 75 577 243 1205 962

Core 1 (MHz)

Core O (MHz) 0 384 594 810 1026 1242 1512

384 296 744 766 818 873 977 1047
594 359 766 814 866 921 1036 1103
810 411 818 866 918 973 1080 1154
1026 455 873 921 o7r7 1029 1136 1217
1242 555 981 1029 1084 1140 1199 1277
1512 633 1062 1106 1158 1221 1273 1351

Screen

[0048] To model the power draw of Galaxy S3/S4 which

are both AMOLED screens, we derive a power model based
on screen brightness and i1gnored screen content to reduce
our overhead.

[0049] For example, Galaxy S3 and S4 phones have
AMOLED screens, and thus in principle the screen power
model should have two triggers: the brightness, and the
content displayed on the screen.

[0050] However, logging the content will impose unac-
ceptable performance overhead. Further, we compared
screen power of 10 popular apps and games under typical
brightness settings and found the screen power differ by less
than 18.5% for different displayed contents. This 1s much
lower than the 45.5% to 77.0% screen power draw difference
between the lowest and highest brightness levels on the two
devices (fixing the displayed content). For these two rea-
sons, we strike a balance between model accuracy and
logging overhead by deriving a screen model solely based
on the brightness using the following method: we used a set
of wallpapers with various color tones, ranging from the
darkest (pure black) to the brightest (pure white), and for
cach wallpaper we measured the screen power draw under
cach brightness level. Finally, for each brightness level, we

US 2019/0324513 Al

use the average power draw across all wallpapers as the
screen power under this brightness value.

[0051] To use the screen power model for energy account-
ing of a synchronous function call, we log the screen
brightness during the entire duration of the function call. We
then predict the screen power draw based on the screen
power model, and 1ntegrate the power over the function call
duration to derive the total screen energy drain of the
synchronous function call.

GPU

[0052] We develop a power model for GPU based on the
different power states as well as accounting for the operating
frequency during each state. The GPUs on both Galaxy S3
and S4 have three power states: Active, Nap and Idle, and
can be 1n four different frequencies. Thus the GPU power

draw 1n different power state and frequency combinations
differ.

[0053] In GPU power modeling, we run GPU microbench-
marks to generate workload and in the meanwhile measure
the power draw using the power meter. The measured power
consists of three parts: CPU power, GPU power and screen
power. Hence, we logged the frequency and utilization of
CPUs, the frequency and state of GPU, as well as the
brightness of the screen.

In post-processing, we first 1solate the power draw of GPU
by subtracting the CPU and screen power (calculated by the

CPU and screen power models) from the total power, and
then calculate the average GPU power draw under each

frequency and state combination to obtain the GPU power
model. Table 4 shows the GPU power draw for Galaxy S3

and S4 under each frequency and state. The power of Idle
state 1s always 0 hence not shown.

TABLE 4

Galaxy S3 and S4 CPU power Models.

Galaxy S3
Frequency (MHz) 128 200 300 400
Active power (ImA) 729 975 1217 1482
Nap power (mA) 78 0 0 78
Galaxy S4
Frequency (MHz) 128 200 320 450
Active power (mW) 293 398 562 1034
Nap power (mW) 0 0 0 164

[0054] 'To use the GPU power model for energy account-
ing of a synchronous function call, we log the duration of
ecach GPU frequency and state combination every 1 second
during the entire duration of the function call. We then
predict the GPU power draw of each interval based on the
GPU model, and integrate the power over the function call
duration to derive the total GPU energy drain of the syn-
chronous function call.

WiF1, 3G, LTE State Machine Models

[0055] Wiky, 3G, and LTE interfaces have multiple power
states and the power draw and duration at the Active state 1s
aflected by the wireless signal strength. Further, we notice
significant CPU power draw during pure data transier work-
load, due to interrupt handling and TCP/IP stack processing,

Oct. 24, 2019

and therefore we need to carefully decouple CPU power
draw from the wireless interface power draw 1n training the
model.

[0056] The LTE interface on smartphones has four power
states. The power states and their transitions are shown in

FIG. 4a: (1) IDLE: The interface 1s 1n 1dle states when the
User Equipment (UE) does not send or receive any data. The
interface consumes little power under the IDLE state, and

periodically wakes up to check whether there are incoming
data buflered at the network. (2) CR: When the UE sends or
receives any data, the interface enters the Continuous Recep-

tion (CR) state and consumes high power. (3) Short DRX:
After the UE finishes data transter and becomes i1dle for 200
ms, the interface will enter the Short DRX state, during
which the interface consumes little power but wakes up
frequently to check for incoming traffic. (3) Long DRX: The
interface enters the Long DRX state after staying in Short
DRX for 400 ms without receiving any data. Long DRX 1s
similar to Short DRX except that the wakeup interval

becomes longer. Note 1n the power model 1n Table 5 we refer
the periodical spikes during Short DRX and Long DRX state
as Short DRX and Long DRX, respectively, and refer the
low base periods between spikes as LTE tail base, as shown
in FIG. 5, which plots the LTE power states on Galaxy S3
during a 100 KB download under good signal strength (=90
dBm). Finally, if the UE stays in Long DRX for 11 seconds
without receiving any data, the interface will return to the

IDLE state; otherwise, any data sending or receiving in
Short DRX or Long DRX states will trigger 1t to enter the
CR state.

[0057] The 3G interface has three RRC states: IDLE,
FACH and DCH, as well as transition states between RRC
states.

[0058] The Wik interface also has four power states: Tx,
Rx, Tail, and Idle, as shown in FIG. 46. The interface 1s 1n
the Idle state when there 1s no trathic, and will enter the Tx
(Rx) state when 1t starts sending (receiving) data. After data
transfer, the interface will stay in the Tail state for 210 ms
betfore 1t returns to the Idle state. The interface consumes
very little power 1n the Idle state, moderate power 1n the Tail
state, and high power 1n the Tx and Rx states.

[0059] To develop signal-strength-aware power models
for the wireless interfaces for our phone, we connect the
phone to the power meter and run data transfer microbench-
marks. While the power meter collects the power profile, we
use operating systems utilities for logging system calls such
as strace to record all the network system calls, alongside
signal strength values as well as CPU frequencies and the
CPU utilization. We vary the signal strength received by the
phone by adjusting the distance between the phone and the
AP for WiF1 experiments and changing the location of the
phone for 3G/LTE experiments. In post-processing, we
synchronize the power profile from the power meter, system
call log and s1gnal strength traces. We derive the power draw
by the radio interface(s) by subtracting the CPU power from
the total power. We 1nfer the different power states of Wiki,
3G, LTE driven by the network system calls and derive the
various parameters of the signal-strength-aware power state
machine for each interface.

[0060] Tables 5 shows the WiF1 and LTE power draw for
Galaxy S3 and S4 under different signal strength.

US 2019/0324513 Al

TABLE 5

Parameters of signal-strength-aware power models forWiFi
and LTE on Galaxy S3 and S4. The power unit is mW.

WiFE1
Galaxy S3 Galaxy S4
RSSI (dBm) Tx Rx Tail Tx Rx Tail
-50 564 396 242 654 451 289
-60 596 422 242 723 528 289
-70 641 431 242 1019 592 289
—-80 704 400 242 1113 633 289
-85 702 382 242 892 514 289
The duration of WiFi1 tail for both phones 1s 210 ms.
Galaxy S3 3G
promotion DCH tail FACH tail
-85 836 mW, 1.6 s 783 mW, 3.3 s 486 mW, 6.7 s
-95 836 mW, 1.6 s 1034 mW, 3.3 s 486 mW, 6.7 s
—-105 836 mW, 1.6 s 1224 mW, 3.3 s 486 mW, 6.7 s
Galaxy S4 3G
promotion DCH tail FACH tail
-85 647 mW, 2.1 s 57T mW, 3.3 s 332 mW, 1.7 s
=95 663 mW, 2.1 s 679 mW, 3.3 s 390 mW, 1.7 s
—-105 807 mW, 2.2 s 722 mW, 3.3 s 390 mW, 1.7 s

Galaxy S3 3G Galaxy S4 3G

RSSI (dBm) Tx (mW) Rx (mW) Tx (mW) Rx (mW)
-85 1414 1300 667 843
-95 1737 1718 835 1043
-105 2280 2060 1772 1545
Galaxy S3 LTE
Power (mW) Duration (ms) Periodicity (ms)
LTE promotion 1200 200 N/A
Short DRX 788 41 100
Long DRX 788 45 320
LTE tail base 61 11000 N/A
DRX i IDLE 570 32 1280
Galaxy S4 LTE
Power (mW) Duration (ms) Periodicity (ms)
LTE promotion 1326 200 N/A
Short DRX N/A N/A N/A
Long DRX 585 30 320
LTE tail base 69 11000 N/A
DRX in IDLE 452 24 1280
S3 LTE S4 LTE
RSRP (dBm) Tx (mW) Rx (mW) Tx (mW) Rx (mW)
-85 1218 1085 1177 938
-95 1683 1264 1849 1110
-105 1840 1271 1699 1140
[0061] To use the WiF1/3G/LTE power model for energy

accounting of a synchronous function call, we use system
utilities to log the network system calls during the duration
of the synchronous function call. In post-processing, we
estimate the network interface power draw based on the
logged network system calls and the network interface FSA
power model. Finally, we integrate the power draw over the

Oct. 24, 2019

function call duration to derive the total network energy
drain of the synchronous function call.

[0062] Finally, the total component energy drain of the
synchronous function call, e.g., for CPU, GPU, WiFi/LTE/
3G, and screen are added as the total energy drain of the
synchronous function call.

[0063] The present disclosure has been described 1n detail
with particular reference to certain preferred aspects thereotf,
but 1t will be understood that variations, combinations, and
modifications can be eflected by a person of ordinary skill in
the art within the spirit and scope of the invention.

1. A method for profiling energy usage of mvoking an
application programming interface (API) by an application
in a computing device, comprising:

obtaining source code “A” for the API;

1dentifying each class C, 1n the A for the API that contains
a callback tunction D;;

moditying each C, by adding a callback function identifier
field that 1s 1nitiated to a umique value V; upon instan-
tiation of each object O, that belongs to class C,;

identifying each location E, in the A that posts the
callback function D, for asynchronous execution by
enqueueing object O, instantiated from the C; contain-
ing the callback function D, into the system callback
queue;

modifying the A at location E;, by adding a logging
tunction call L to log the callback function identifier V,
and the current call stack into the energy profiling log;

obtaining source code B in the operating system/frame-

work that asynchronously executes any D passed from
the API;

identifying each location F 1n the B that invokes the
callback function associated with any object dequeued
from the system callback queue;

moditying the B at the F by adding logging function calls
L. before and after the callback function 1nvocation to
log the callback function identifier V; ot the dequeued
object when we start and finish executing the callback
function respectively to the energy profiling log;

executing the application thereby generating one or two
threads, wherein the first thread executes the API call
that posts the callback function D, and wherein the
second thread which can be the same as the first thread
dequeues the callback function D, and invokes the

callback function D,;

determinming the caller-caller relationship between the
function in the API execution stack that posted each D,
and the asynchronously invoked callback function by
processing the logged callback function ID information
and call stack information in the energy profiling log;

determining the energy usage of invoking the API call 1n
thread 1, by monitoring activities of a processor, the
processor operating any component that consumes

power 1n the computing device 1n response to execution
of the API;

determining the energy usage of invoking each callback
function 1n thread 2, by monitoring activities of a
processor, the processor operating any component that
consumes power in the computing device 1n response to
execution of the callback function;

US 2019/0324513 Al Oct. 24, 2019

adding the energy usage of invoking every callback
function 1n thread 2 to the energy usage of invoking the
API thus determined; and

attributing the combined energy to the API invocation.

e e e e e

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description/Claims
	Page 15 - Claims

