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CROSS-DOMAIN TIME SERIES DATA
CONVERSION APPARATUS, METHODS,
AND SYSTEMS

BACKGROUND

A time series 1s a sequence of data points, typically
consisting of successive measurements made over a time
interval. Time series data 1s used in a wide variety of
applications, and 1s often analyzed to extract meaningiul
information about a time series and/or to forecast future
events or time series values. For example, time series data
may be analyzed using machine learning techniques. A
variety of types of machine learning methods exist (e.g.,
linear regression model, naive Bayes classifier). Machine
learning 1s commonly used for addressing “Big Data” prob-
lems 1n which the volume, variety, and velocity of data are
high and/or real time data processing may be desired. There
are many different domains from which time series data can
be collected, many types of time series data, and many
different sources from which time series data may be col-
lected or generated. Typically, for a particular method of
time series analysis or machine learning, a specific type of
time series data 1s input to produce the desired results, such
as a detection or prediction of some characteristic or event.

SUMMARY

The present disclosure provides a new and innovative
apparatus, methods, and systems for cross-domain time
series data conversion. In an example embodiment, a
method includes receiving a first time series of a first type of
data, storing the first time series of the first type of data,
encoding the first time series of the first type of data as a first
distributed representation for the first type of data, convert-
ing the first distributed representation to a second distributed
representation for a second type of data which 1s different
from the first type of data, and decoding the second distrib-
uted representation for the second type of data as a second
time series of the second type of data.

In an example embodiment, an apparatus includes a data
collection device configured to collect a first type of data
over a period of time, a memory configured to store time
series data collected by the data collection device, an
encoder configured to convert the first time series of the first
type of data into a first distributed representation for the first
type of data, a data type converter configured to convert the
first distributed representation into a second distributed
representation for a second type of data which 1s different
from the first type of data, and a decoder configured to
convert the second distributed representation for the second
type of data into a second time series of the second type of
data.

In an example embodiment, an apparatus includes a
memory configured to store time series data collected by a
data collection device and distributed representation data, a
first encoder configured to convert a first time series of the
first type of data into a first distributed representation for the
first type of data, a first decoder configured to convert the
first distributed representation for the first type of data into
the first time series of the first type of data, a first data type
converter configured to convert the first distributed repre-
sentation 1nto a second distributed representation for a
second type of data which 1s different from the first type of
data, a second data type converter configured to convert the
second distributed representation into the first distributed
representation, a second encoder configured to convert a
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second time series of the second type of data into the second
distributed representation for the second type of data, a
second decoder configured to convert the second distributed
representation for the second type of data into the second
time series of the second type of data, a third data type
converter configured to convert the first distributed repre-
sentation 1nto a third distributed representation for a third
type of data which 1s different from the first type of data and
the second type of data, a fourth data type converter con-
figured to convert the third distributed representation into
the first distributed representation, a third encoder config-
ured to convert a third time series of the third type of data
into the third distributed representation for the third type of
data, and a third decoder configured to convert the third
distributed representation for the third type of data into the
third time series of the third type of data.

Additional features and advantages of the disclosed
method and apparatus are described 1n, and will be apparent
from, the following Detailed Description and the Figures.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1s a block diagram of an example of an edge
device, according to an example embodiment of the present
disclosure.

FIG. 2 1s a block diagram of an example time series data
conversion module, according to an example embodiment of
the present disclosure.

FIG. 3 1s high-level block diagram illustrating a hetero-
geneous group ol edge devices, according to an example
embodiment of the present disclosure.

FIG. 4 1s a flowchart illustrating an example process of
time series data conversion, according to an example
embodiment of the present disclosure.

FIG. § 15 a flow diagram 1illustrating an example process
for time series data conversion, according to an example
embodiment of the present disclosure.

FIG. 6A 1s a block diagram illustrating a data type
conversion graph, according to an example embodiment of
the present disclosure.

FIG. 6B 1s a block diagram illustrating a data type
conversion graph, according to an example embodiment of
the present disclosure.

FIG. 7 1s a block diagram 1illustrating a data type conver-
sion graph including a data type fusion, according to an
example embodiment of the present disclosure.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

FIG. 1 1s a block diagram of an example of an edge device
100, according to an example embodiment of the present
disclosure. In an example embodiment, the edge device 100
may be a thermal video camera. In another example embodi-
ment, the edge device 100 may be an ultrasound detector.
The example edge device 100 1s a device that 1s capable of
performing communication with other devices, performing
data collection, performing machine learning, and perform-
ing time series data conversion. In an example embodiment,
an edge device 100 1s on the edge, or outermost layer, of a
large distributed network of data connected devices, includ-
ing central servers, intermediate servers, data repositories,
gateways, routers, and the like. Edge devices 100 may
include a wide variety of devices including recording
devices (e.g., digital cameras, video cameras, audio record-
ers), city management devices (e.g., parking sensors, traflic
sensors, water quality devices), vehicles (e.g., cars, trucks,
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airplanes), body sensors (e.g., activity sensors, vital signs
sensor, pedometers), environmental sensors (e.g., weather
sensors, pollution sensors, air quality sensors), wearable
computing devices (e.g., smart watch, glasses, clothes),
personal computing devices (e.g., mobile phone, tablet,
laptop), home devices (e.g., appliances, thermostats, light
systems, security system), advertising devices (e.g., bill-
boards, information kiosks), etc. The edge device 100 may
include a communication module 102, a data collection
device 104, a memory 106, a machine learning module 108,
a time series data conversion module 110, and a coordination
module 112.

The communication module 102 1s configured to com-
municate with other devices including other edge devices
100 of the same type (e.g., multiple thermal video cameras)
or of a different type (e.g., a thermal video camera and an
ultrasound detector). For example, as described in further
detail below, the communication module 102 may be con-
figured to communicate with other devices via one or more
networks or communications channels, including the Inter-
net, or any suitable wide area network, local area network,
gateway, or other communication channel or network. For
example, the communication module 102 may be configured
for wireless communications via multiple protocols
employed by cellular networks (e.g., 4G, 3G, GSM), wire-
less local area network (e.g., Wi-F1), satellite (e.g., VSAT),
or any suitable form of wireless communication (e.g., Blu-
etooth, RFID, NFC, IrDA, Li-Fi1). Also, for example, the
communication module 102 may be configured for a wired
connection to another edge device 100 (e.g., Ethernet, DSL,
USB, RS-232, coaxial cable). Further, the communication
module 102 may communicate with a user, for example, via
a graphical user interface which may be implemented with
a touch screen display. The user may be able to request the
edge device 100 to perform a specific task and/or receive
information from the edge device 100. Thus, the communi-
cation module 102 may include hardware and/or software
configured to communicate via one or more communication
interfaces using one or more communication protocols.

A data collection device 104 may be a sensor, detector, or
any device suitable for real time collection of data repre-
sentative of real world characteristics (e.g., ultrasound lev-
els, speed, acceleration, items 1n a shopping cart, hand
movements, shapes, temperature, angles, voice recognition,
word recognition, torque, slip levels). The data collection
device 104 may receive a continuous data stream or collect
data on a periodic basis (e.g., every millisecond, second,
minute), which may generally depend on the type of data
being collected and the variability of the data stream. A time
series of data type X may be referred to herein as x, where
X=<X,, X5, X3, . . . X,>>. A data collection device 104 typically
includes specific hardware and/or physical structures spe-
cifically configured to collect a certain type of data (e.g., an
image sensor, an ultrasonic sensor, an accelerometer, a
gyroscope sensor, a thermometer, an altimeter, a Hall effect
sensor, a velocimeter, a photodetector, a bolometer, a flow
sensor, a strain gauge, a torque sensor, a tachometer, a
clinometer, a microphone, a magnetometer, a voltmeter, an
ammeter, an ohmmeter, a chemical sensor, a pressure sensor,
a rain sensor, a hygrometer, a humistor, an anemometer, a
seismometer, a Geiger counter, etc.). In an example embodi-
ment, one edge device 100 may include multiple different
data collection devices 104 that collect different types of
data. The data collection device 104 provides the collected
data to the memory 106. In an example embodiment, the
memory 106 may be specialized memory for receiving and
storing large amounts of data, such as video 1image data (e.g.,
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VRAM). Thus, the memory 106 may have specialized
hardware that 1s task specific, for example, to meet high
throughput and low latency specifications of the edge device
100. The memory 106 may include different tiers of
memory, such as buflers, shift registers, and the like. The
memory 106 may be configured to store the collected data
temporarily, and may be overwritten once the collected data
1s no longer needed by the machine learning module 108
and/or the time series data conversion module 110.

A machine learning module 108 may execute a machine
learning model using the time series data collected by the
data collection device 104 and stored in memory 106. The
machine learning module 108 receives the collected time
series data as inputs and executes the machine learning
model using the collected data to make a forecast, a predic-
tion, a classification, a clustering, an anomaly detection,
and/or a recognition, which 1s then output as a result. The
machine learning model may iteratively update the result.
For example, the machine learning model may continuously
execute using all available collected data stored 1n memory,
and may produce a continuous result or a periodic result. If
the volume and velocity of data collected 1s relatively low
(sparse and/or slow), for example, the machine learning
model may only periodically execute, and may be dormant
for a period of time after each result 1s output, while new
data 1s collected. Each machine learning model relates to a
predefined task (e.g., detecting a faulty steam trap, predic-
tion of an item, recognition of sweethearting theft, recogni-
tion of a suspect for a be-on-the-lookout (BOLO) alert,
classification of cornering speeds). For example, for a
machine learning model for an ultrasound detector edge
device 100, the predefined task may be detecting a faulty
steam trap. The ultrasound detector edge device 100 may be
mounted on equipment (e.g., a steam trap on a boiler) 1n a
manufacturing facility, and may detect a time series of
ultrasound decibel levels at different frequencies. The
machine learning module 108 of the ultrasound detector
edge device 100, using the detected time series of ultrasound
levels, may output a detection that a steam trap 1s developing
a problem. The detection may provide an early warning that
a steam trap may be plugged, leaking, or blowing, which
may allow preventative maintenance to occur which may
avold a more costly failure and/or more downtime for a
boiler, especially 1n the case of fast acting steam traps. The
ultrasound detector edge device 100 may provide optimal
early detection of steam trap problems, however, ultrasound
decibel levels are often difhicult to collect, as 1t may be
manpower 1ntensive and/or physically problematic (e.g.,
high elevation, obstructed access). Thus, 1t may not be
practicable to use the ultrasound detector edge device 100
for all steam traps 1n a facility.

Another edge device 100 which may be used for detecting
a faulty steam trap 1s thermal video imaging or infrared
video thermography. Thermal video images may be con-
verted 1to a matrix representing temperature changes in
cach section of the images of the steam trap. Ultrasound
levels may produce an earlier indication of a problem than
thermal video 1maging or other techniques for detecting
faulty steam traps. In general changes 1n ultrasound decibel
levels may appear prior to an increase in temperature or an
increase 1n low-irequency vibration levels, so ultrasound
levels generally provide the best detection of problems for
steam traps. However, thermal video imaging 1s typically
casier to collect because a thermal video camera may collect
data from a distance. Also, thermal video 1images may appear
to show that fast acting steam traps are malfunctioning when
they are actually not malfunctioning. Accordingly, a trade
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ofl between cost and quality of fault detection and ease of
implementation may exist in many cases. Thermal video
imaging data cannot directly be used as an mput of the
ultrasound level machine learning model which detects
steam trap faults because these two data types are 1n different
domains. Although the same task 1s being performed, dii-
ferent machine learning models are used by a machine
learning module 108 for the different types of data (e.g.,
thermal video 1mage data and ultrasound level data). These
two types of data both provide information about the same
phenomenon (or are correlated with an underlying phenom-
enon), which allows for a time series conversion between
these data types.

A time series data conversion module 110 1s configured to
convert a first type of time series data (e.g., thermal video
pixel data) into a different second type of time series data
(e.g., ultrasound levels data), which 1s desired. A desired
type of data may be referred to as a target type of data or
target time series data. As described 1n greater detail below,
time series data conversion may be performed using distrib-
uted representations. Time series data conversions may be
trained using a variety of methods. In an example embodi-
ment, an autoencoder using a recurrent neural network 1s
used to determine a distributed representation for particular
type of time series data (e.g., thermal video 1image of a steam
trap). The distributed representation 1s a version of time
series data that has reduced dimensionality but generally
preserves the most important information, and 1n some cases
may be nearly lossless. The time series data conversion
module 110 may convert a time series of a first data type
(e.g., thermal video pixel data) into a distributed represen-
tation of the first type, then, convert the distributed repre-
sentation of the first type to a distributed representation of a
second type (e.g., ultrasound levels data), and may then
convert the distributed representation of the second type into
time series data of the second type, or the target time series
data. Thus, for example, a thermal video camera may collect
time series data, which may be converted into ultrasound
level data, which may then be 1input into a machine learning
model that provides improved detection of faulty steam traps
in comparison to a machine learning model which uses
thermal video data as 1ts input. The different data types may
be 1in entirely different domains (e.g., video 1mage, ultra-
sound, voltage, acceleration, temperature, radioactivity).
Conversion of data between domains 1s referred to herein as
cross-domain data conversion.

A coordination module 112 may coordinate the processes
of the communication module 102, the data collection
device 104, the memory 106, the machine learning module
108, and the time series data conversion module 110. An
edge device 100 may have a central processing unit, and
may also have one or more additional processors dedicated
to various specific tasks. Each edge device 100 may use one
Or more processors, memories, buses, and the like. Also,
each one of the communication module 102, the data col-
lection device 104, the memory 106, the machine learning
module 108, the time series data conversion module 110,
and the coordination module 112 may use one or more
processors, memories, buses, and the like. A processor,
memory, and any other component may be shared by one or
more of the communication module 102, the data collection
device 104, the memory 106, the machine learning module
108, the time series data conversion module 110, and the
coordination module 112. In an example embodiment, each
one of the communication module 102, the data collection
device 104, the memory 106, the machine learning module
108, the time series data conversion module 110, and the

10

15

20

25

30

35

40

45

50

55

60

65

6

coordination module 112 uses some dedicated hardware and
software that 1s distinct from each other module or compo-
nent.

FIG. 2 1s a block diagram of an example time series data
conversion module 110, according to an example embodi-
ment of the present disclosure. The time series data conver-
sion module 110 may include an encoder 202, a data type
converter 204, a decoder 206, a path determination module
208, a fusion module 210, and an interface module 212. The
encoder 202 receives time series data (e.g., thermal video
pixel data over a period of time) and encodes the time series
data as a distributed representation (e.g., dense representa-
tion of thermal video temporal features). An encoder 202 for
a data type X may be trained using a set of time series {x,,
X,, . .. X}, all of data type X (e.g., using an autoencoder).
The data type converter 204 converts a distributed repre-
sentation of one data type (e.g., thermal video data) into a
distributed representation of a different target data type (e.g.,
ultrasound level data). The decoder 206 decodes a distrib-
uted representation (e.g., dense representation of ultrasound
temporal features) as a target time series (e.g., ultrasound
decibel levels of several frequencies over a period of time).
A decoder 206 for a data type Y may be trained using a set
of time series {y,, V,, . . . v, }, all of data type Y (e.g., using
an autoencoder). A distributed representation for a data type
X may be referred to herein as DR(x). A data type converter
204 from data type X to data type Y may be trained using a
data set of pairs (DR(x), DR(y)) (e.g., using recurrent neural
network techniques). Accordingly, collected time series data
that 1s desired to be analyzed may be converted from one
type to another type using the encoder 202, the data type
converter 204, and the decoder 206.

Further, multiple conversions may occur 1n series and/or
in parallel. For example, 1t may be desirable to convert a data
type A 1nto a target data type C, however, it may not be
possible to perform a conversion directly from data type A
to data type C. In this case, 1f data type A can be converted
into a data type B, which can be converted into data type C,
then a serial set of conversions may allow the data to be
converted indirectly through intermediate data type B. In
some cases, for example, 1n a system with dozens of data
types, there may be many conversion paths that could be
employed to convert a collected time series ito a different
type of data. As the number of data types which may need
to be converted increases, a combinatorial explosion may
occur in the number of possible conversion paths that are
possible. The path determination module 208 determines
which conversion path should be used to perform such
conversions. The fusion module 210 fuses data of different
data types to form more robust, information-rich data types
that are better suited for producing reliable, accurate, precise
and/or quick recognition results in machine learming analysis
or the like. For example, ultrasound level time series data
may be fused with thermal video image data, which may
result 1n a richer, more robust data type. The interface
module 212 1s an interface between the time series data
conversion module 110 and other modules or components
within the edge device 100 (e.g., memory 106, communi-
cation module 102, data collection device 104, machine
learning module 108, coordination module 112, another time
series data conversion module 110 outside the edge device
100).

It should be appreciated that the time series data conver-
sion module 110 1illustrated 1 FIG. 2 1s merely a non-
limiting example, as a time series data conversion module
110 may include multiple different encoders 202, multiple
different data type converters 204, multiple different decod-
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ers 206, and/or multiple different fusion modules 210, or the
like depending on the circumstances. In some cases, an edge
device 100 will only have one purpose, collecting a specific
type of time series data, encoding the collected time series
data as a distributed representation, converting that distrib-
uted representation into a distributed representation of dif-
ferent type of data (1.e., the target data type), decoding that
distributed representation as a different type of time series
than the collected data (1.e., the target time series), and
executing a machine learning module 108 using the different
type of time series data. For example, such edge devices 100
may be hard coded to perform specific data collection, data
conversion, and machine learning tasks (e.g., using an
ASIC). However, some edge devices 100 may be multi-
purpose machines that may be requested to handle a variety
of different tasks at different times or simultaneously, be
configurable to handle new tasks as needed, or the like.
These edge devices 100 typically have many different
encoders 202, data type converters 204, and decoders 206,
and may include configurable software modules which can
add and/or update encoders 202, data type converters 204,
decoders 206, path determination modules 208, and/or
fusion modules 210. Moreover, a single device may include
the ability to perform many different types of conversions.
Such a device may be referred to as a hub device.

FIG. 3 1s high-level block diagram 1llustrating a hetero-
geneous group of edge devices, according to an example
embodiment of the present disclosure. The heterogeneous
group 300 includes two edge devices 302a and 3025, which
are both the same type of edge device 100 (e.g., both thermal
video cameras 302). The heterogeneous group 300 also
includes three more edge devices 304, 306, and 308, which
are each different types of devices 100 (e.g., one ultrasound
detector, one multi-axial accelerometer, and one thermistor).
A server 310 may communicate with one or more of the edge
devices 302a, 3025, 304, 306, 308 via a network 312. The
server 310 may communicate with one or more edge devices
100. In an example embodiment, the server 310 i1s an
intermediate server, which communicates with one or more
edge devices 100 and with one or more different servers
(e.g., a central server). In an example embodiment, server
310 may be part of a “cloud” which performs cloud com-
puting.

The server 310 may provide information and/or com-
mands to edge devices 100, and may receive information,
for example, regarding history and/or accuracy of encoders
202, data type converters 204, decoders 206, and machine
learning models. For example, the server 310 may provide
an updated encoder 202, data type converter 204, decoder
206, or machine learning model based on a manufacturer
update. The server 310 may perform many of the same
functions as an edge device 100, but unlike an edge device
100, a server 310 does not perform data collection using a
data collection device 104. A server 310 may be a hub
device, and may provide data conversion to and from dozens
or even hundreds of data types. The network 312 may
include one or more networks and/or communication paths,
and may be configured as a peer-to-peer network. In an
example embodiment, the heterogeneous group 300 may be
configured 1n any type of network 312 (e.g., LAN, WAN,
Wi-Fi, BT, Z-wave, satellite, terrestrial, etc.) and may be
configured 1n any suitable network topology (e.g., mesh,
bus, grid, ring, star, tree, line). For example, the heteroge-
neous group 300 may be provided as a semi-connected mesh
network of edge devices 302a, 30256, 304, 306, 308, with
each type of edge device collecting a different type of time
series data. In this scenario, the ability to convert time series
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data of a first type 1nto a second type may be particularly
advantageous. For example, 1f a preferable data type (e.g.,
ultrasound levels data) 1s only intermittently available, an
inferior data type (e.g., thermal video 1maging) may also be
used for when the preferable data type 1s not available.

In an example embodiment, multiple different types of
network communications (e.g., Wi-F1, 4G, BT, NFC, Li-Fi,
IrDA) may be used within a heterogeneous group 300. In an
example embodiment, the network 312 may be a wireless
mobile ad hoc mesh network (e.g., MANET, VANET,
SPAN). In an example embodiment, the network 312 may be
a scatternet. A group 300 1s often susceptible to variations in
the heterogeneous group 300. For example, edge devices
100 1n the heterogeneous group 300 may unexpectedly lose
communication with the group 300. For example, an edge
device 100 may lose power (e.g., unplugged and/or batteries
die), may be moved to an area with limited or no connec-
tivity due to interference (e.g., mountains, rain), or may be
turned ofl by a user. Thus, a heterogeneous group 300 may
be operating in heterogeneous environment that 1s not static,
but rather, may change dynamically with different edge
devices 100 spontaneously and/or unexpectedly entering
and leaving the heterogeneous group 300. Thus, 1f an edge
device 100 collecting time series data of a first type becomes
unavailable or loses connectivity, different types of collected
time series data may need to be converted to a data type that
can be mput into a particular machine learning model 1 a
machine learning module 108. Likewise, alternate data
conversion paths may be required in the event that a pre-
ferred data conversion path becomes unavailable when a
device with a required data type converter 1s not available.
In an example embodiment, the heterogeneous group 300
may have edge devices 100 including one or more of thermal
video cameras, ultrasound level detectors, accelerometers,
thermistors, shopping carts, automobiles, surveillance cam-
eras, automatic teller machines, GPS devices, medical
devices, robots, remote controls, smoke detectors, head
mounted displays, or any other edge device 100, as dis-
cussed 1n the present application. In an example embodi-
ment, the heterogeneous group 300 includes a plurality of
edge devices 100 which are part of the Internet of Things
(IoT), which 1s rapidly growing and already includes billions
of devices, which collect a vast array of different types of
data. As the IoT continues to evolve, more and more types
of time series data will be available from more and more
edge devices 100 in many different domains.

FIG. 4 1s a flowchart 1llustrating an example process for
machine learning 1n a heterogeneous group of edge devices,
according to an example embodiment of the present disclo-
sure. Although the process 400 1s described with reference
to the tlowchart illustrated in FIG. 4, 1t will be appreciated
that many other methods of performing the acts associated
with the process 400 may be used. For example, the order of
some of the blocks may be changed, certain blocks may be
combined with other blocks, certain blocks may be itera-
tively performed or repeated, and some of the blocks
described are optional.

The example process 400 may begin with collecting time
series data that 1s a first type of data (block 402). For
example, thermal video 1mages of a steam trap may be
recorded for analysis of the steam trap, such as detecting any
problems and/or indications that maintenance may be
required. The collected time series data of the first data type
1s stored (block 404 ). For example, pixel data for the thermal
video 1mages of the steam trap 1s stored 1n a video data
memory. In an example embodiment, a thermal video cam-
era with 320x240 resolution may provide 76,800 pixels of
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raw data at each video frame or time step. The time series
data 1s encoded as a first distributed representation for the
first type of data (block 406). For example, the thermal video
images ol the steam trap are converted to a distributed
representation of the thermal video images. In an example >
embodiment, the 76,800 pixels may be encoded as a dis-
tributed representation having 30 dimensions. Thus, at each
time step, for example, the encoder 202 may receive a
76,800-tuple as an 1put, and output a distributed represen-
tation that 1s a 30-tuple. The distributed representation that
1s output may be far more dense and rich than the collected
thermal video pixel time series data. Collected time series
data 1s often noisy, but a distributed representation of the
collected time series data extracts the most important infor-
mation with minimal noise, and the distributed representa-
tion may capture time dependencies that are not apparent in
the time series data.

The first distributed representation for the first type of
data 1s converted to a second distributed representation for
a different second type of data (block 408). For example, the
distributed representation of the thermal video 1s converted
into a distributed representation of ultrasound data, the target
data type. In an example embodiment, the second distributed
representation has an equal dimensionality as the first dis-
tributed representation (e.g., 30-tuple) or a different dimen-
sionality (e.g., 18-tuple, 36-tuple). The second distributed
representation for the second type of data 1s decoded as time
series data of the second type of data (block 410). For
example, the distributed representation of the ultrasound
data 1s converted to a time series of ultrasound data. In an
example embodiment, the target ultrasound time series data
includes decibel levels for each of many different specific
frequencies within the ultrasound range. The ultrasound
time series data may be the same data type as that which
would be provided by an ultrasound detector. Moreover, the
accuracy of the decoded time series data may be very close
to time series data that would have been provided by the
actual ultrasound detector. In an example embodiment, the
decoder 202 may output a 160-tuple as an output. Machine
learning 1s executed using the time series data of the second
type of data (block 412). For example, the ultrasound time
series data 1s used to detect that the steam trap 1s faulty. The
target time series may be used 1n a forecasting model (e.g.,
autoregressive mtegrated moving average) or a detection or
classification model (e.g., support vector machine, random
forest), the output of which may be transmitted to a user
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device. A user may be notified of a problem via a user °°
interface on the user device, and may take corrective or
precautionary action accordingly. The example process 400
provides for cross-domain time series data conversion, and
advantageously allows for faster and more reliable detection

of a faulty steam trap than using a thermal video 1imaging
machine learning model. Thus, the advantages of improved
accuracy and reliability of using ultrasound detection are
provided, without the disadvantages of generally more dif-
ficult and/or expensive data collection, via the presently
disclosed cross-domain time series data conversion.

FIG. 5 1s a flow diagram 1llustrating an example process
for time series data conversion, according to an example
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embodiment of the present disclosure. Although the process
500 1s described with reference to the flow diagram 1llus-
trated 1 FIG. 5, 1t will be appreciated that many other
methods of performing the acts associated with the process
500 may be used. For example, the order of some of the
blocks may be changed, certain blocks may be combined
with other blocks, certain blocks may be iteratively per-
formed or repeated, and some of the blocks described are
optional or may be performed by different devices.

Certain types of industrial equipment may require moni-
toring to ensure that the equipment 1s operating properly and
rece1ving maintenance as needed to avoid or delay failures
that may incur costly downtime and/or repairs. In the
example process 500, a user needs to use a machine learning
model that uses data type B, however 1t 1s not practicable for
the user to collect data type B (time series b 508), but the
user can collect data type A (time series a 502). Thus, a time
series a 502 (e.g., thermal video 1mage data) 1s collected by
a data collection device 104 (e.g., thermal video camera).
The time series a may be stored in a memory 106 or
processed 1n real-time as the data collection device 104
collects the time series a 502.

As a simplified example, each thermal video image 1n the
time series a 502 1s used to determine the difference in
temperature between a steam trap and 1ts surrounding ambi-
ent environment. A single thermal video 1image may contain
multiple steam traps, but for simplicity, this example
embodiment includes only one steam trap per thermal video
image. The steam trap may be located in the center area of
the video thermal image, with four surrounding areas
directly adjacent to the sides of the steam trap (e.g., above,
to the right, below, and to the left). Of course, a finer
granularity of the surrounding areas and the steam trap 1tself
may be used, but for simplicity of this example embodiment,
the temperature of the steam trap 1s T, and the temperature
of four surrounding areas are T1, T2, T3, and T4, respec-
tively. Thus, the temperature information at a single time
step can be represented as a S-tuple: (1, T-T1, T-T2, T-T3,
T-T4)=(T, AT1, AT2, AT3, AT4). This 5-tuple contains the
temperature of the steam trap (1), and the temperature
differentials between the steam trap and the surrounding
areas (AT1-AT4). A time series or vector a represents the
temperature information for four time steps i an exemplary
time series. At each time step, there 1s a corresponding
S-tuple, as illustrated below 1n Table 1.

TABLE 1
1:2 1:3, t4

(Ty, AT1,, AT2,,
AT3,, AT4,)

(T3, AT1;, AT2;3,
AT3;, AT4,)

(T4, AT1,, AT2,,
AT3,, AT4,)

As explained below, the above time series a 502 will be
converted into the target time series b 508 (e.g., ultrasound
level data). Relevant ultrasound frequencies in this example
embodiment may range from 1-20 MHz, and if measure-
ments are made at many different frequencies, the time

series may have a very high dimension. However, 1n this
simplified example embodiment, ultrasound dB levels are
collected only at three frequencies, ., [, and y. At each time
step, ultrasound information i1s represented by a 3-tuple
consisting of dB levels at those three respective frequencies.
The time series or vector b represents the time series of
ultrasound dB level information over four time steps, as
illustrated below 1n Table 2.
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TABLE 2

) t ty t,

b (o, P> Y1) (0, B2, ¥2) (03, B3, ¥3) (Cgs Bas Ya)

Exemplary sample data 1s illustrated below in Table 3,
where AT1 increases slightly, ultrasound dB levels at fre-
quency a increase substantially.

TABLE 3
tl t2 t3 t4

a  (30,0,0,0,0.1)
b (10, 12, 15)

(30, 0.1, 0, 0, 0.1)

(11.3, 12.1, 15.1)  (11.82, 12.2, 15.1)

The above exemplary values of time series a illustrate
why temperature time series data from thermal 1maging may
be less eflective than ultrasound level time series data in
quickly detecting problems in fast-acting steam traps. For
example, the increase 1n AT1 1s relatively small at t, and 1t
increases only minimally. The change in temperature may
not be immediately recognizable or distinguishable from
noise. If time series a were 1input 1nto a detection model, the
model may detect the problem, but only at a later time step.
By contrast, in the ultrasound time series b, the value of a
increases a significant amount immediately at t,. This
increase may allow a detection model using ultrasound data
to detect a problematic steam trap earlier than a detection
model using temperature data. In this example embodiment,
a and b are measures of the same phenomenon, which results
in an underlying relationship relating a to b. For example,
AT1 may be related to ultrasound dB level at a by a vanation
of the sigmoid function, which 1s non-linear and time
dependent. It should be appreciated that this example
embodiment, the time dependent relationships between time
series a and time series b are greatly simplified only for ease
of understanding, 1n contrast to a real-life application which
may include hundreds or thousands of temperature difler-
entials and hundreds of ultrasound frequencies.

After the time series a 502 has been collected, the time
series a 502 1s provided as the input to the encoder 202. The
encoder 202 may include multiple layers between the input
layer and the output layer, which outputs the distributed
representation. The encoder 202 then encodes time series a
and outputs DR(a) 504 (i.e., a distributed representation of
the time series a). In the simplified example embodiment
described with reference to Tables 1-3, the DR(a) 504 may
be a 2-tuple, although typically, the dimensionality of a
distributed representation would be significantly greater, and
the reduction 1n dimensionality would be far greater. The
DR(a) 504 may be provided directly from the output of the
encoder 202 to the mput of the data type converter 204,
stored 1n memory 106, and/or transmitted to another device
via the communication module 102.

The data type converter 204 converts the DR(a) 504 1nto
the DR(b) 506. Thus, the thermal image video data 1s
transformed 1nto ultrasound level data. Because the DR(a)
504 and the DR(b) 506 are dense representations of temporal
features of the underlying phenomena captured in both
respective time series a and b, it 1s possible to perform a data
type conversion in less computation time, with less memory,
and with possibly greater accuracy than would otherwise be
possible. Typically, converting raw time series data of a first
type to time series data of a different second type of data 1s
not practicable from a computational standpoint, thereby
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requiring users to use sub-optimal data types for machine
learning models (e.g., thermal video 1image models), which
result 1n sub-optimal prediction or detection results, or
alternatively, use burdensome methods to obtain optimally
usetul data (e.g., extra man-hours to obtain ultrasound level
data). However, according to the present disclosure’s advan-
tageous features, it may be more practicable to train the data
type converter 204 to allow for use of pre-existing machine

learning models (e.g., using data type B), rather than train a

(30, 0.5, 0, 0.1, 0.2) (30, 1.0, 0, 0.2, 0.2)
(12.69, 12.3, 15.3)

new machine learning model for each type of collected time
series (e.g., train a machine learning model for data type A).
The data type converter 204 provides the DR(b) 506 to the

decoder 206, which decodes the DR(b) 506 to output the

time series b 508. The decoder 206 may include multiple
layers between the input layer, which receives the DR(b) 506
and the output layer, which outputs the time series b 508.
The time series b 508 may then be used as the mnput to a
machine learning model that uses data type B. The disclosed
conversion of time series data may maintain the quality, or
even improve the quality of the data by removing noise, thus
providing improved accuracy 1n results output from machine
learning models. Also, in an example embodiment, a
machine learning model may receive a distributed represen-
tation as an input, rather than a time series. Accordingly, for
example, 1t may be unnecessary for the decoder 206 to
convert the DR(b) 506 into the time series b 508, if a
machine learning model 1s configured to accept DR(b) 506
as 1ts input.

It should be appreciated that the steam trap example using
thermal video 1maging as discussed above 1s merely exem-
plary, and conversion of time series data may relate to any
type of data, and the associated machine learning models
may relate to any suitable predefined task. A data collection
device 104 may sense or detect any real world time series
data from the surrounding environment to provide the time
series data if 1t provides information relevant to any pre-
defined task. In an example embodiment, a machine learning
model may be directed to determining a target cornering
speed for an automobile. For example, an automobile may
include self-driving features, such as automatic braking
based on a predicted collision, and alerts or alarms for the
driver. In an example embodiment, an automobile may be an
edge device 100 that includes data collection devices 104
such as a video camera for analyzing upcoming corners
(e.g., curves or turns 1n the road). The data collection devices
104 may provide a data stream of time series data that 1s used
to determine a sharpness of a bend, a slope of the road, and
a camber of the road, a current speed or velocity, a slip angle,
a tire-pavement friction, a weight of automobile, a distribu-
tion of weight, a moisture level, a temperature, etc. The
machine learning model may output a target speed for each
upcoming corner, which may be used by the automobile for
applying the brakes, alerting the user of a dangerous con-
dition, or the like. The collected video data may undergo one
or more data conversion processes, including encoding, data
type conversion, decoding, and/or fusion with other col-
lected time series data (e.g., acceleration time series data,
road camber time series data).
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FIG. 6A 1s a block diagram illustrating a data type
conversion graph 600, according to an example embodiment
of the present disclosure. As discussed above, multiple data
type conversions may be required to convert an available
data type 1nto a desired data type. As shown 1n FIG. 6A, data
types A, B, C, D, E, and F are represented as nodes 602, 604,
606, 608, 610, and 612, respectively. These data types may
be converted according to the above discussed data conver-
sion process, as represented by the connecting line seg-
ments. With reference to FIG. 5, time series a 502 and time
series b 508 may correspond to data type A 602 and data type
B 604, respectively. Thus, the connection between data type
A 602 and data type B 604 may include an encoder 202 for
time series a, an encoder 202 for time series b, a decoder 206
for time series a, a decoder 206 for time series b, a data type
converter 204 for converting from DR(a) to DR(b), and a
data type converter 204 for converting from DR(b) to DR(a).
These components are omitted for brevity in this figure.

Each connecting line segment between data types includes a
data type converter 204. An encoder 202 or decoder 206 may
not be required in each connecting line segment between
data types, for example, 1f a multi-node conversion 1is
required, and the mput and output of the node will both be
distributed representations.

In an example embodiment, data type A 602 is collected
by an edge device 100 including a vibration sensor (e.g.,
accelerometer) located at a non-optimal position on a piece
of manufacturing equipment. It should be appreciated that in
many cases, 1t 1s not possible to mount an edge device 100
in an optimal location due to the particular environment, the
s1ze of the edge device 100, etc. Data type B 604 may be data
collected by the same vibration sensor located 1n an optimal
position on the piece of manufacturing equipment. Data type
A 602 and data type B 604 may be for the vibration sensor
manufactured by a first manufacturer, but the data type C
606 may be for the same type of vibration sensor that 1s
manufactured by a different second manufacturer. Accord-
ingly, the non-optimally positioned vibration sensor of a first
manufacturer may provide time series data that can be
converted to an optimally positioned vibration sensor of a
second manufacturer. Thus, time series data collected from
sensing equipment operating in various non-ideal place-
ments and/or made by different manufacturers may all be
converted to the same data type. This may allow all collected
data to be used with pre-existing machine learning models
that may already be owned or licensed by the user. In an
example embodiment, data type D 608 may be infrared
intensities, data type E 610 may be temperature levels, and
data type F 612 may be ultrasound levels. Thus, available
vibration data type A 602 may be converted into ultrasound
data type F 612. Thus, each different data type may be data
in entirely different domains, or may be a similar or the same
type of data, but with some characteristic that causes the
collected data to be different (e.g., different placement of
sensors, different manufacturers, different time period or
sampling frequency, different altitudes, ditierent ambient air
temperature). Thus, different sources (e.g., data collection
devices 104) which provide generally the same type of data
(e.g., vibration data) may be referred to herein as providing
different types of data, to the extent that a data type con-
version 1s provided that can convert data of one source to be
equivalent to data of the other source, as described above.
Thus, different types of data may be the same type of data
from different sources, so all different data types are pro-
vided from different sources, and not all different sources
provide different data types. Also, a single edge device 100
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(e.g., an automobile) may have several different sources or
sensors that provide various different types of data.

As shown 1n FIG. 6A, a conversion of data type A 602 to
data type F 612 would require five data conversions in
series, through data type B 604, data type C 606, data type
D 608, and data type E 610. In some cases, particularly 1f
numerous data type conversions are required, degradation of
the desired data to be output may occur, resulting 1n dimin-
1shed accuracy. FIG. 6B 1s a block diagram 1illustrating a data
type conversion graph 650, according to an example
embodiment of the present disclosure. In FIG. 6B, the data
type conversion graph 600 includes a data hub (e.g., data
type C). In this case, rather than requiring five data type
conversions from data type A to data type F, only two
conversions are required. As shown i FIG. 6B, the data type
C can be directly converted to or from any other data type
in the data type conversion graph 650. However, even when
a data hub 1s provided, 1t may still be typical to require
multiple data type conversions. For example, data type F
612 cannot be directly converted to data type D 608. In this
case, there are two sequences of two data type conversions
(e.g., FtoCand Cto D, or F to E and E to D). In another
example embodiment, there may be dozens, hundreds, or
thousands of possible data type conversion sequences avail-
able. Accordingly, finding an optimal path through a data
type conversion graph 650 may be performed by the path
determination module 208.

In an example embodiment, determining a conversion
path may be performed by the path determination module
208 as described below. For example, the accuracy of the
conversion made by a connecting line segment may be
represented as acc{e}, where

O=acc{e}=l

If the conversion errors for each connecting line segment
in the conversion path are independent, the error of using the
path consisting of connecting line segments ¢,, €5, €5,...¢€
1s upper bounded by

7t

ﬁl accie;}

Taking the log of the product results 1n

Z log(accie;})
i=1

In order to find the optimal path with the smallest total
conversion error, the path determination module 208 deter-
mines the maximum weighted path between nodes X and Y
where each connecting line segment e 1s associated with a
weight of log(acc{e, }). Thus, the path determination module
208 may determine a sequence of data type conversions that
will occur when a multiple data type conversions are
required.

In an example embodiment, the path determination mod-
ule 208 may use the average (either unweighted or
weighted) of the conversion results of multiple paths. The
path determination module 208 lets {P,, P,, P,, ..., P}
represent the set of possible paths from input data node X to
target data node Y 1n the data type conversion graph, and lets
S represent a subset of these paths, S={P,,, P,,, P35, .. . P,.}.
For example, S may contain the k most accurate paths 1n the
set {P,, P,, P, ..., P, }. The path determination module 208
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lets V be a set of m subsets of paths S, V={S,, S,
S.,...,S L Forevery S, inV, input data X is converted
to target data Y through all paths 1n S,. For every S,, the path
determination module 208 averages the converted values of
Y generated by the paths 1n S,. For every S, the conversion
accuracy of the average 1s calculated by the path determi-

nation module 208 using an error function and the training
data set {(X,Y)}. The path determination module 208 selects
the S, in V with the highest average conversion accuracy.
The averaged value of Y from the subset of paths 1n S, 1s
considered to be the converted value of Y.

Further, a data hub 1s not necessarily required to convert
to or from all other data types. In some cases, a data type of
a data hub may not have a strong enough correlation with
another data type, resulting 1n a lack of expression power for
the data conversion, and/or the data conversion may lack
suilicient training data to adequately act as a data hub for one
or more data types. Further, a data hub may be entirely
located within a single hub device (e.g., server 310) or
distributed over several different devices. For example, one
physical device may include many data type converters 204,
but not 1include any encoders 202 or decoders 206.

Furthermore, 1n a large system including many different
data types (e.g., hundreds or thousands of types of data),
multiple data hubs may be utilized. For example, 1t may not
practicable for one data type to provide suitable conversion
properties to all other data types. Also, having several data
hubs may reduce the total required number of data type
conversions, and thus, the total amount of data type con-
verter 204 training s that are required for a system.

In some cases, a single data collection device 104 may not
able to capture enough information for its data type to be
converted to the target data type with suflicient accuracy. In
such cases, the fusion module 210 may fuse information
from multiple data collection devices 104 to create a single,
more information-rich, data type. The resulting fused data
type can then be converted to the target data type to provide
improved accuracy in analysis of the target data type due to
the collective information of the individual data types.

When multiple time series of different data types are
synchronized, these time series may be aligned by time and
fused to create a new time series that represents more
information about the situation being observed. In other
cases, the time series are not synchronized. For example,
different data collection devices 104 may be triggered by
different external events to take measurements, resulting 1n
unsynchronized time series. In this case, the time series may
be aligned, for example, by imputing missing values in order
to create aligned data points.

It should be appreciated that in a manufacturing facility,
failure of a key piece of equipment can cause huge financial
losses and/or create a safety risk to employees. Accelerom-
eters that detect vibration in rotating components can pro-
vide early detection of potential problems with the equip-
ment and enable the facility operator to take preventative
action of repairing or shutting down the piece of equipment
betore failure occurs. Vibration time series data 1s generally
collected from accelerometers that are permanently mounted
near rotating components. Frequently, a single rotating com-
ponent may be monitored by multiple accelerometers. For
example, a common technique mvolves monitoring a rotat-
ing component with three accelerometers, one each to mea-
sure vibration along the vertical (X), tangential (Y), and
radial (7) axes. Depending on 1ts complexity and size, a
single piece of machinery may have hundreds or thousands
of momitored rotating components.
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Vibration time series data can indicate problematic trends
or anomalies, which may be detected by machine learning
models. For example, machine learning analysis of gear
mesh frequency in power transmission units may detect
small sand or dirt particles lodged between the teeth of
gears, which introduces metal particles into the gearbox. In
an example embodiment, vibration time series data 1s used
for 1dentification of imbalance conditions in rotating equip-
ment such as fans and/or for detection of defects in the
bearings of rotating equipment. Also, for example, fre-
quency analysis may be used to determine 11 rotating equip-
ment 1s rotating at frequencies that approach the natural
frequencies of the supporting structure. Models for a large
variety of tasks have already been trained on vibration time
series data, so vibration time series data 1s generally very
useful for predictive maintenance. However, collection of
vibration time series data requires a large number ol per-
manently mounted accelerometers, which may not be prac-
ticable depending on the machinery and factory setting.
Other types of data representing machine functioning may
be available, but trained machine learning models for spe-
cific tasks using these data may not be available. It 1s not
always practicable to train many machine learning models
for many specific tasks using many different data types.
Alternatively, machine learning models may be available for
the available time series types, but the machine learning
models may have poor accuracy, for example, due to insui-
ficiency or sparseness of training data.

FIG. 7 1s a block diagram 1illustrating a data type conver-
sion graph 700 including a data type fusion, according to an
example embodiment of the present disclosure. In an
example embodiment, a machine learning model for predic-
tive maintenance requires an input of data type Z 708. The
data type X 702 and data type Y 704 are available to be
collected by data collection devices 104; however, the data
type X 702 alone 1s not rich enough to provide an accurate
conversion to data type 7. Likewise, the data type Y 704 1s
also not rich enough to provide an accurate conversion to
data type 7 708. Thus, the data type X 702 and data type Y
704 may be fused together by the fusion module 210 to
create a more robust and information rich data type XY 706.
The data type XY 706 may be suitable for a data type
conversion to the target data type Z 708. In an example
embodiment, the data type X 702 1s thermal video image
time series X, the data type Y 704 1s ultrasonic level time
series y, and the data type Z 708 1s vibration time series z.
For simplicity, in this example embodiment, the thermal
video 1mage time series X 1s represented as a 5-tuple, with a
center area of the video thermal 1image focused on a rotating
component, with four surrounding areas directly adjacent to
the sides of the rotating component (e.g., above, to the right,
below, and to the left). Thus, similar to the example
described above, the thermal video 1mage information at a
single time step can be represented as a S-tuple: (T, T-T1,
T-T2, T-T3, T-T4)=(T, AT1, AT2, AT3, AT4). This S-tuple
represents the temperature of the rotating component (1),
and the temperature difierentials between the rotating com-
ponent and the surrounding areas (AT1-AT4). A time series
or vector X represents the temperature information for four
time steps 1n an exemplary time series. Also, in this simpli-
fled example embodiment, ultrasound dB levels are col-
lected only at three frequencies, o, [, and y. At each time
step, ultrasound information i1s represented by a 3-tuple
consisting of dB levels at those three respective frequencies.
The time series or vector y represents the time series of
ultrasound dB level information over four time steps. Thus,
at each time step, there 1s a corresponding 5-tuple for time
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series X and a corresponding 3-tuple for time series y, as
illustrated below 1n Table 4, and simplified exemplary data
1s also 1illustrated below 1n Table 5.

TABLE 4
t1 1:2 t3 t4

X (T,, AT1,, AT2,, (T,, AT1,, AT2,, (T4, AT1,, AT2,,

AT3,, AT4)) AT35, AT4,) AT3;, AT4,) AT3,, AT4,)
Y (g, Brs Y1) (C, B2, Y2) (03, B3, Y3) (Ctg Pas Ya)
TABLE 5
t, t ts t,

(30,0,0,0,0) (30,0.1,0,0,0.1)
y (10, 12, 15)  (11.3, 12.1, 16.3)

S

(30, 0.5, 0, 0.1, 0.5)
(11.82, 12.2, 16.8)

The manner of fusing the data types together may impact
how well important relationships between the two data types
are captured. Thus, in an example embodiment, the time
series X may be fused with the time series y by pairing each
temperature differential individually with all three ultra-
sound frequencies, as shown below 1n Table 6.

TABLE 6
£y 5

(Ty, AT1,, ay, By, Y1), (T, AT1,, s, Bo, Y2),
(Ty, AT2y, ay, By, Y1) (Ty, AT2,, s, B2, Y2),
(Tla AT?’I? Ay, I?’l? Yl)a (T27 AT327 oy, 627 Y2)7
(Ty, AT4,, ay, B, Y1) (Ty, AT4,, as, Ba, ¥2)

XY

As shown above, the fused time series data xy, for each
time step 1s represented by four 5-tuples, in which all three
ultrasound dB measurements are paired with each tempera-
ture differential. In another example embodiment, the time

series X may be fused with the time series y by pairing each
temperature differential individually with each ultrasound
frequency individually, as shown below 1n Table 7.

TABLE 7
ty 5
XYo (T, AT}D ay), (T, AT;~2> ),
(Tla ATI) I‘))l)a (T27 AT2: [52)9
(TD AT-~1> Yl)a (T2> AT-~27 Y2)>

(Tla ATzla al)a
(Tla ATzla Bl)a
(Ty, AT24, vy),
(T}, AT3y, ay),
(Tb AT31> l?)l)a
(Ty, AT34, v1),
(Tb AT41> a'l)a
(TD AT417 I‘))l)a
(Ty, AT4y, v1)

(T5, AT25, @),

(T2> AT22> [‘))2)7
(T5, AT25, ¥5),

(T5, AT3,, o),

(T29 AT32> B2)>
(T, AT35, ¥2),

(Ty, AT4,, o),
(T27 AT42> [-))2)7
(T27 AT427 Y2)

As shown above, the fused time series data Xy, for each
time step 1s represented by twelve 3-tuples, 1n which each
individual ultrasound dB measurement 1s paired with each
individual temperature differential. The fused time series
data xy, may be more able to capture individual relation-
ships than the fused time series data xy, depending on how
the temperature temporal variations 1n specific regions inter-
play with the temporal variations in the specific ultrasound
frequencies. For example, 11 each of the temperature difler-
entials 1n the different areas have diflerent temporal corre-
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lations vis-a-vis each of the three ultrasound frequencies,
fused time series data Xy, may provide a richer distributed
representation than fused time series data xy,. The fusion

(T,, AT1,, AT2,,

(30, 1.0, 0, 0.2, 1.0)
(12.6, 12.3, 17.7)

module 210 may more efliciently be able to create fused time
series data as shown 1n Table 6. In a typical example, rather
than a 5-tuple and 3-tuple as shown above 1n the simplified
example, there may be dozens or hundreds of temperature
differentials and ultrasound frequencies, and/or other vari-
ables, which may result 1n a combinatorial explosion. On the
other hand, if each of the temperature differentials in the
different areas have very similar temporal correlations vis-
a-vis all three of the ultrasound frequencies, then the fusion
technique shown 1n Table 7 may be unnecessary, signifi-
cantly increasing the required computation to fuse the data
without significantly increasing accuracy available through
the fused data type. Thus, the fusion module 210 may weigh
the benefits of performance and computational load of
different possible fusion technmiques to determine which
specific type of fusion to perform. Typically, a plurality of
options for fusing data may exist, the fusion module 210
may determine which option should be used.

Based on the above exemplary data 1in Table 5, the fused
time series data xy, 1s shown as below 1n Table 8.

TABLE 8

t t ty t,

xy, (30,0,10), (30,0.1,11.3), (30,0.5, 11.82), (30, 1.0, 12.6),
(30, 0, 12), (30, 0.1, 12.1), (30, 0.5, 12.2), (30, 1.0, 12.3),
(30, 0, 15), (30, 0.1, 16.3), (30, 0.5, 16.8), (30, 1.0, 17.7),
(30, 0, 10), (30,0, 11.3), (30,0, 11.82), (30, 0, 12.6),
(30, 0, 12), (30,0, 12.1), (30, 0, 12.2), (30, 0, 12.3),
(30, 0, 15), (30,0, 16.3), (30, 0, 16.8), (30, 0, 17.7),
(30, 0, 10), (30,0, 11.3), (30, 0.1, 11.82), (30, 0.2, 12.6),
(30, 0, 12), (30,0, 12.1), (30, 0.1, 12.2), (30, 0.2, 12.3),
(30, 0, 15), (30,0, 16.3), (30, 0.1, 16.8), (30, 0.2, 17.7),
(30, 0, 10), (30, 0.1, 11.3), (30, 0.5, 11.82), (30, 1.0, 12.6),
(30, 0, 12), (30, 0.1, 12.1), (30, 0.5, 12.2), (30, 1.0, 12.3),
(30,0, 15)  (30,0.1,16.3) (30, 0.5, 16.8) (30, 1.0, 17.7)

As shown 1n FIG. 7, the fusion module 210 outputs data
type XY 706. For example, the fused time series xy may be
encoded as a distributed representation, DR(Xy), which may
then be converted into a target data type Z, as DR(z), which
may then be decoded as a time series z for use 1n the machine
learning model that uses time series z as 1ts input.

In an example embodiment, the vibration time series z
includes four different rotating components (V1-V4), each
with accelerometer time series data being collected to mea-
sure vibration in three axes. Thus, at each time step, there 1s
a corresponding 3-tuple for each rotating component 1n time
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series Z, as 1llustrated below in Table 9, and simplified
exemplary data 1s also illustrated below 1n Table 10.

20

edge device 100. However, we recognize that the variability
of available data types and sources that may be collected for

TABLE 9
) t ty t,

z V1 (V1X,, VIY,, V1Z,), (V1X,, V1Y,, V1Z,), (V1Xs, V1Y, V1Z,), (V1X4, V1Y, V1Zy),
V2 (V2X,, V2Y,,V2Z,), (V2X,, V2Y,, V27,), (V2X,, V2Y., V2Z,), (V2X,, V2Y,, V2Z,),
V3 (V3X,, V3Y,, V3Z,), (V3X,, V3Y,, V3Z,), (V3X,, V3Y,, V3Z,), (V3X,, V3Y,, V3Z,),
V4 (V4X,, VAY,, V4Z,) (V4X,, VAY,, VAZ,), (V4X,, VAY,, VAZ,), (V4X,, VAY,, VAZ,),

TABLE 10
) t ts t,
7 V1 (3.2,5.0,00), (3.0,5.0,04), (1.8,5.0,2.1),  (0,5.0,4.2),
V2 (6.0, 6.0,6.0), (6.0,60,60), (6.0, 6.0, 60),  (6.0,6.0,6.0),
V3 (5.0,5.0,5.0), (5.0,50,50), (50,50,50),  (50,5.0,5.0),
V4 (4.0, 4.0, 4.0) (4.0, 4.0, 4.1) (4.0, 4.0, 4.6) (4.0, 4.0, 5.6)
20

As 1illustrated above, while V2 and V3 are unchanged
through the four time steps, V1 undergoes a rotation of the
axis of vibration from the X-Y plane to the Y-Z plane, as the
X-coordinate begins at 3.2 and decreases to 0, while the
Z-coordinate begins at 0 and increases to 4.2. The value of
V1X decreases 1n the time series z because of the underlying
relationship between V1X to AT1 and o.. On the other hand,
the value of V17 increases 1n the time series z because of the
underlying relationship between V17 to AT4 and . Also, V4
shows an increase 1n vibration only in the direction of the
Z-axis based on the underlying relationship between V47
and AT1. The underlying relationships may include time
dependencies and/or cross-domain dependencies that may
not be readily apparent. The fused time series xy may be
converted to DR(xy) which captures the cross-domain rela-
tionships, such as the relationships between AT1 and a,
between AT4 and vy, and temporal relationships, such as
between V47 and ATI1. Thus, fusing this data together as
data type XY, allows for encoding the time series xy as
DR(xy), which includes information that would not be
represented 1n either of DR(X) or DR(y) generated by the
unfused data. Thus, DR(xy) may provide more accurate
machine learning results than can be accomplished with
either of data type X or data type Y individually, or even with
data types X and Y 1n combination as mputs to a machine
learning model. It should be appreciated that in a typical
embodiment, the underlying relationships are far more com-
plex than those described 1n regard to the above simplified
example. Moreover, fusing data types as described above
may allow for improved extraction of information from
available data, which may result 1n 1improved predictive
maintenance, less equipment downtime, lower repair costs,
improved safety, and the like.

Further, although the above example embodiments only
include two data types being fused together, more than two
data types may be fused in the same manner as described
above to create a complex data fusion. For example, data
type C 606, data type E 610, and data type F 612 may be
fused to create a data type G. Also, an already fused data
type (e.g., data type XY 706) may be fused with another
non-fused data type (e.g., data type U) or another already
fused data type (e.g., data type UVW).

Previously existing machine learning methods (e.g., for
industrial predictive maintenance) were generally useful for
handling some specific types of time series data, for
example, 1n a homogeneous environment or within a specific
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analysis, particularly in heterogeneous environments such as
the Io'T, cannot be adequately handled using the existing
methods. For example, it 1s not practicable to train accurate
machine learning models for each specific type of data
and/or for each specific source of data. Attempting to
address this problem with better and faster computer and/or
networking hardware proves mnadequate, as even the most
technologically advanced computer hardware, software, and
networking capabilities are not suitable for handling the ever
expanding data domains, types of data, and specific data
sources ol heterogeneous environments which are typically
encountered. In other words, the existing techmiques are
generally insuthicient for handling machine learning in a
heterogeneous environment with a wide variety of diflerent
data types and sources that provide time series data. On the
other hand, collection of time series data for machine
learning or the like as proposed herein takes a different
technological approach that was not possible using previ-
ously existing methods and systems. Accordingly, machine
learning devices, particularly when using edge devices 100
in heterogeneous environments such as the IoT, are
improved by using the methods and systems as described
herein. For example, the technology of fault detection and
predictive maintenance in relation to steam traps and manu-
facturing equipment may be greatly improved by the present
disclosure.

It will be appreciated that all of the disclosed methods and
procedures described herein can be implemented using one
or more computer programs, modules, or components.
These modules or components may be provided as a series
of computer instructions on any conventional computer
readable medium or machine readable medium, including
volatile or non-volatile memory, such as RAM, ROM, flash
memory, magnetic or optical disks, optical memory, or other
storage media. The instructions may be provided as software
or firmware, and/or may be implemented in whole or 1n part
in hardware components such as ASICs, FPGAs, DSPs or
any other similar devices. The instructions may be config-
ured to be executed by one or more processors, which when
executing the series of computer instructions, performs or
facilitates the performance of all or part of the disclosed
methods and procedures. As used in the following claims,
the terms “means” and/or “step” may be used to invoke
means plus function treatment under 35 U.S.C. 112(1), and
means plus function treatment 1s not intended to be invoked
unless the terms “means™ or “step” are recited in the claims.
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It should be understood that various changes and modi-
fications to the example embodiments described herein will
be apparent to those skilled in the art. Such changes and
modifications can be made without departing from the spirit
and scope of the present subject matter and without dimin-
1shing 1ts intended advantages. It 1s therefore intended that
such changes and modifications be covered by the appended
claims.

The invention 1s claimed as follows:

1. A method comprising:

receiving a first time series of a first type of data;

storing the first time series of the first type of data;

encoding the first time series of the first type of data as a

first distributed representation for the first type of data;
converting the first distributed representation to a second
distributed representation for a second type of data
which 1s different from the first type of data; and
decoding the second distributed representation for the
second type of data as a second time series of the
second type of data,

wherein a dimensionality of the first distributed represen-

tation 1s lower than a dimensionality of the first time
series of the first type of data, and a dimensionality of
the second distributed representation 1s lower than a
dimensionality of the second first times series of the
second type of data.

2. The method of claim 1, wherein the first time series of
the first type of data 1s infrared thermography and the second
time series of the second type of data 1s ultrasound decibel
levels.

3. The method of claim 2, wherein the first time series of
the first type of data 1s provided by an infrared camera
monitoring a steam trap.

4. The method of claim 3, further comprising inputting the
second time series of the second type of data into a detection
model.

5. The method of claim 4, wherein the detection model
determines that the steam trap 1s faulty using the second time
series of the second type of data.

6. The method of claim 1, further comprising inputting the
second time series of the second type of data into a predic-
tion model.

7. The method of claim 6, further comprising transmitting
an output of the prediction model based on the second time
series of the second data type to a user device.

8. The method of claim 1, further comprising transmitting
at least one of the first distributed representation and the
second distributed representation from a first device to a
second device.

9. The method of claim 1, further comprising;:

encoding the second time series of the second type of data

as the second distributed representation for the second
type of data;

converting the second distributed representation to a third

distributed representation for a third type of data which
1s different from the first type of data and the second
type of data; and

decoding the third distributed representation for the third

type of data as a third time series of the third type of
data.

10. The method of claim 9, further comprising transmit-
ting at least one of the first distributed representation, the
second distributed representation, the second time series, the
third distributed representation, and the third time series
from a first device to a second device.
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11. The method of claim 1, wherein converting the first
distributed representation to the second distributed repre-
sentation includes:

converting the first distributed representation to a third

distributed representation for a third type of data which
1s different from the first type of data and the second

type of data; and

converting the third distributed representation to the sec-
ond distributed representation without decoding the
third distributed representation.

12. The method of claim 1, wherein the second type of
data 1s an intermediate data type between the first type of
data and a third type of data, which a prediction model 1s
configured to receive as an mput, and wherein a plurality of
different sequences of data type conversions exist between

the first type of data and the third type of data,

further comprising determining a sequence of data type
conversions to perform from the plurality of different
sequences.

13. The method of claim 12, wherein the sequence of data
type conversions includes at least two data type conversions
provided 1n a hub device.

14. The method of claim 1, wherein the first type of data
and the second type of data are both 1n the same domain of
data, and the first type of data 1s collected from a different
source than the second type of data.

15. The method of claim 14, wherein the diflerent source
1s at least one of manufactured by a different manufacturer
and positioned differently relative to equipment being moni-
tored.

16. An apparatus comprising;:

a data collector configured to collect a first type of data

over a period of time;

a memory configured to store time series data collected by
the data collection device;

an encoder, executed by one or more processors, config-
ured to convert a first time series of the first type of data
into a first distributed representation for the first type of
data;

a data type converter, executed by the one or more
processors, configured to convert the first distributed
representation into a second distributed representation
for a second type of data which 1s different from the
first type of data; and

a decoder, executed by the one or more processors,
configured to convert the second distributed represen-
tation for the second type of data into a second time
series of the second type of data,

wherein a dimensionality of the first distributed represen-
tation 1s lower than a dimensionality of the first time
series of the first type of data, and a dimensionality of
the second distributed representation 1s lower than a
dimensionality of the second first time series of the
second type of data.

17. The apparatus of claim 16, wherein configuring the
encoder includes training the encoder on a first set of
training data of the first type of data, configuring the decoder
includes training the decoder on a second set of training data
of the second type of data, and configuring the data type
converter includes training the data type converter on a third
set of training data including pairs of distributed represen-
tations of the first type of data and the second type of data.

18. The apparatus of claim 16, wherein the encoder
includes an 1mput layer and a plurality of encoder layers and
the decoder includes an output layer and a plurality of
decoder layers.
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19. An apparatus comprising:

a memory configured to store time series data collected by
a data collection device and distributed representation
data;

a first encoder, executed by one or more processors,
configured to convert a first time series of a first type of
data into a first distributed representation for the first
type of data;

a first decoder, executed by the one or more processors,
configured to convert the first distributed representation
for the first type of data into the first time series of the
first type of data;

a first data type converter, executed by the one or more
processors, configured to convert the first distributed
representation into a second distributed representation
for a second type of data which 1s different from the
first type of data;

a second data type converter, executed by the one or more

processors, configured to convert the second distributed
representation into the first distributed representation;

a second encoder, executed by the one or more processors,
configured to convert a second time series of the second
type of data into the second distributed representation
for the second type of data;

a second decoder, executed by the one or more processors,
configured to convert the second distributed represen-
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tation for the second type of data into the second time
series of the second type of data;

a third data type converter, executed by the one or more
processors, configured to convert the first distributed
representation 1nto a third distributed representation for
a third type of data which 1s different from the first type
of data and the second type of data;

a fourth data type converter, executed by the one or more
processors, configured to convert the third distributed
representation into the first distributed representation;

a third encoder, executed by the one or more processors,
configured to convert a third time series of the third
type of data into the third distributed representation for
the third type of data; and

a third decoder, executed by the one or more processors,
configured to convert the third distributed representa-
tion for the third type of data into the third time series
of the third type of data,

wherein a dimensionality of the first distributed represen-
tation 1s lower than a dimensionality of the first time
series of the first type of data, and a dimensionality of
the second distributed representation i1s lower than a
dimensionality of the second first time series of the
second type of data.

20. The apparatus of claim 19, wherein the apparatus 1s

one device 1n a chain of a plurality of different devices.
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