US 20090138518A1

a2y Patent Application Publication o) Pub. No.: US 2009/0138518 A1

a9 United States

Rodgers et al.

43) Pub. Date: May 28, 2009

(54) PROXY SERVER FOR DISTRIBUTING

AIRCRAFT SOFTWARE PARTS
(75) Inventors: Michael K. Rodgers, Kirkland, WA
(US); Walter R. Beck, Salkum, WA
(US); Olga C. Walker, Mercer

Island, WA (US)

Correspondence Address:
DUKE W. YEE
YEE & ASSOCIATES, P.C., P.O. BOX 802333
DALLAS, TX 75380 (US)
(73)

Assignee: THE BOEING COMPANY,

Chicago, IL (US)

@
(22)

Appl. No.: 12/276,728

Filed: Nov. 24, 2008

Related U.S. Application Data

Provisional application No. 60/990,442, filed on Nov.
27, 2007.

(60)

Publication Classification

(51) Int.CL

GOGF 17/30 (2006.01)
(52) US.CL 707/104.1; 707/E17.044; 707/E17.01
(57) ABSTRACT

A computer implemented method, apparatus, and computer
program product for managing aircraft software parts. In one
advantageous embodiment, a method includes retrieving a set
ofaircraft software parts and metadata about the set of aircraft
software parts from a library in an aircraft network data
processing system to form a set of retrieved aircraft software
parts. The set of aircraft software parts is stored in a file
system. Metadata is stored in a database. The set of aircraft
software parts and the metadata is sent to an onboard elec-
tronic distribution system, a communications link between an
on ground component interface, and the onboard electronic
distribution system. Status information about activity on the
communications link is maintained.

e
i___|SIGNED
PARTS AVIONICS
GATEWAY
148 > -
CISMS
| L~ 164
| 166 —{ | | — 0
PHONE
(oo] (e) (o) =
AIRPLANE
7 V4 S ~ 118
SYSTEMS 168 170 172 AIRCRAFT
AIRPLANE SYSTEMS
LIBRARY
128 103 AIRLINE SERVER
108 INTRANET ¢\ COMPUTER
- 105
PROXY SERVER TEMPORARY ' ‘-LIBRARY
COMPUTER PART STORAGE \ %2
A 110 1 111 *-E!E
101 114 -7 109 M e MAINTENANCE
AIRPORT = E!E LAPTOP 106

US 2009/0138518 A1l

May 28, 2009 Sheet 1 of 57

Patent Application Publication

dOLdV1 = LHOJHIY
30! JONVNIINIVIA Eﬂ = - 601 i
EMW = ol 9 ~{[s (01) 990 o \wS
S— / LEE — oLt
=l @ \ 9VHOLS Luvd 7H§5n_s_8
0L ~{ advyan |gb N m? AHVHOdNAL H3INHIS AXOHd
c01 B —
. A1
HA1NdINQD o/ LINVHINI 801
HAAHAS INTHIV % SINIT
AHVHEN ANNOHD-HIY
e gpasAsaNvIwY (Y T
. 14VHOHIV NNfF o\N F w\@ F SINIISAS
b~ INVIdHIY
— SS9 43 NSO
oot _ _ _ . B
_ SYND
79l — _ _
SIN/SID 9G1L
>« =0 — 8yl
= 121N 1100 Y :
AVYMILYD 091 ~Lns _ | gel
SOINOIAY 2l - [swvd] el 2
290 f INSO JINDIS _ Sa3d0 790
/8§l — [! Sy
291 j
oct A su = g T_\,“m
. N y
[DIH 9e 1

Patent Application Publication

May 28, 2009 Sheet 2 of 57 US 2009/0138518 A1l

[T~~~ T T T oo e |
! 204 206 208 |
I \ / / I
I PROCESSOR PERSISTENT l
: UNIT MEMORY STORAGE | |
I 1 ~200
- m P
D < >
| |
| |
| |
COMMUNICATIONS | | INPUT/QUTPUT
: UNIT UNIT DISPLAY :
: / N N :
| 210 212 214 I
L o e |
220 COMPUTER 218
READABLE MEDIA
PROGRAM CODE
N 500
216 s
502 ~J"RECEIVE AND STORE PARTS
FIG. 2 504~]" D\STRIBUTE COMMANDS
506" DISTRIBUTE PARTS
508~ RECEIVE DOWNLINK DATA
FIG. 5
300
302~ RECEIVING MODULE
304~ LIBRARY
PROXY SERVER SOFTWARE
306" APPLICATION MAINTENANCE TOOL [™308
310—] ONBOARD ELECTRONIC DISTRIBUTION SYSTEM

FIG. 3

US 2009/0138518 A1l

May 28, 2009 Sheet 3 of 57

Patent Application Publication

S1INN 318v30V1ddd ANI

A / .
NN/_” oth Y ‘DIA
y vmwuﬁ
gey~| vivd ARy
MNIINMOQ) VIVA | -Obp 207 .
SNFINMOQ A g
NOILYDddY =
pep~] _ Sidvd > | WIS | e « 1001
JHYMLI0S 0L SIVd | ey ALVdd
14vHOHIV JUVYMLA0S [H31NdINOD
3I0IAJ0 IDVHOLS NS LveIdIv t
HIAYIS
73 71 AHVHEIT
¢t acy
%€y | by HILNANOD HIAHIS .
W31SAS NOILNEIHLSI] R 14Yd
9INOYLDI T3 QHVOEND 0Ly JHYMI40S
HILNAINDD LIVHOHIY ! 14VHOUIY
LAVHOHIY 9iy vy | eer
77 /
1001
{44 > | JoNvNIINVA | [
IYYMLH0S X
8Ly 00p
H3LNdNOD T19V.HOd INIWNCHIANG
ININIDVYNYIN

14Vd JHYML40S

Patent Application Publication = May 28, 2009 Sheet 4 of 57 US 2009/0138518 A1

upLINK commanp | 692
600 4 | DownLInk commanp |~ 604
DELETE COMMAND ~
606
700 -
\ FIG. 6
<Cmd xmlins="http://www.boeing.com/787/obeds" >
<Msgld>kmad09ce87i6ef3c</Msgld> — 702
<Type>uplink</Type>_~ 704
<System>CIS-MS</System>_~ 706
<Appld>0SM</Appld>_~ 708
<LinkLabel>SMT</LinkLabel>—~— 710
<ServerAddress>172.24.10.50 </ServerAddress >~ 712
<DataType>LSAP </DataType>—~— 714
< Resource type="LSAP">PNU 120 0JSDO </Resource>—~~— 716
</Cmd>
FIG. 7
800 802 804 806
\ \ / /
GROUND
SYSTEM OBEDS FTS LRU
CONNECT
MAKE COMMAND
UPLINK M2
AVAILABLE | commanD /
REQUEST M3 CHECK
SOQURCE / :SIGNATURE
MAKE CRATE
UPLINK M4
~ VALIDATE
REQUEST M5
AIRCRAFT
TRANSFER /| SOFTWARE PART _ VB
N7
 STATUS
N
M7

FIG. 8

Patent Application Publication

May 28, 2009 Sheet 5 of 57

US 2009/0138518 A1l

800 802 804 806
Q \ 2 -
GROUND
SYSTEM OBEDS i -
. CONNECT
/
MAKE N1
(;:\SMM\%TE DOWNLINK N2 N3
» COMMAND / DOWINLINK - 14
>~ REQUEST / | ;ouvanD /
DowNLNK N5 | PROCESS
 REQUEST DATA /1
N
crae | N6
. AND SIGN
ADD
CRATE METADATA
/
N7 FIG. 9
800 802 804 806
\ \ / -
GROUND
SYSTEM OBEDS i -
CONNECT
/
MAKE 01
AVAILABLE | DELETE 02
~ COMMAND /
CHECK
SIGNATURE| 0
- DELETE 04
REQUEST / COMMAND /
DELETE
" RESOURCE
~ REQUEST B
N
CRATE 05
CRATE . AND SIGN
= /
06 FIG. 10

Patent Application Publication = May 28, 2009 Sheet 6 of 57

US 2009/0138518 A1l

1100~

STORE AN AIRCRAFT
SOFTWARE PART IN A LIBRARY

!

1102~

IDENTIFY AN AIRCRAFT FOR THE
AIRCRAFT SOFTWARE PART TO
FORM AN IDENTIFIED AIRCRAFT

!

1104

SEND THE AIRCRAFT SOFTWARE PART
TO A PROXY SERVER APPLICATION

!

1106

SEND THE AIRCRAFT SOFTWARE PART TO
AN ONBOARD ELECTRONIC DISTRIBUTION
SYSTEM ON THE IDENTIFIED AIRCRAFT

END
FIG. 11

1200~

CRATE TOOL RECEIVES A CRATE

!

1202 ~

CRATE TOOL VALIDATES
AND UNPACKS THE CRATE

!

1204~

CRATE TOOL VALIDATES THE
SIGNATURE FOR THE PART

!

12061

CRATE TOOL INSPECTS CRATE CONTENTS

!

1208

CRATE TOOL SIGNS AIRCRAFT SOFTWARE
PART WITH AIRLINE SIGNATURE

!

1210

CRATE TOOL PLACES THE AIRCRAFT
SOFTWARE PART IN A LIBRARY

END
FIG. 12

Patent Application Publication = May 28, 2009 Sheet 7 of 57 US 2009/0138518 A1

(_ START)

Y

1300 ~| PROXY SERVER APPLICATION
RECEIVES AND PROCESSES
QUEUED COMMANDS

Y
PROXY SERVER APPLICATION
1302 ~] CONNECTS TO THE ONBOARD
ELECTRONIC DISTRIBUTION
SYSTEM ON THE AIRCRAFT

PROXY SERVER APPLICATION
AUTOMATICALLY
1304~] TRANSFERS COMMANDS
FOR AIRCRAFT TO THE
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM

Y
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM
1306 READS COMMANDS AND
EXECUTES COMMANDS

Y
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM
1308] VERIFIES CRATED
COMMANDS

\
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM
1310 RETURNS STATUS OF
THE TRANSFER

Y

(END)
FIG. 13

Patent Application Publication

May 28, 2009 Sheet 8 of 57

US 2009/0138518 A1l

1400 PROXY SERVER APPLICATION
™ CONNECTS TO ONBOARD
ELECTRONIC DISTRIBUTION SYSTEM
1402~ PROXY SERVER APPLICATION
RECEIVES DOWNLINK OF DATA
PROXY SERVER APPLICATION
1404—-1 PLACES DOWNLINK DATA IN
A LOCAL INVENTORY
v START
PROXY SERVER APPLICATION
1406—] SENDS TD:éNL'\l'E%'R'\KEEATA 10 SOFTWARE MAINTENANGE
TOOL CONNECTS TO | -1600
ONBOARD ELECTRONIC
END DISTRIBUTION SYSTEM
FIG. 14 SOFTWARE MAINTENANCE TOOL
RECEIVES DOWNLINK OF DATA |_~1602
FROM ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM
SOFTWARE MAINTENANCE 1604
TOOL PLACES DATA IN -
LOCAL INVENTORY
SOFTWARE MAINTENANCE
TOOL DISCONNECTS FROM | -
ONBOARD ELECTRONIC 1606
DISTRIBUTION SYSTEM
SOFTWARE MAINTENANCE
TOOL CONNECTS TO NETWORK [™-1608
SOFTWARE MAINTENANCE
TOOL SENDS DOWNLINK K_4 644
DATA TO THE LIBRARY
END

FIG. 16

Patent Application Publication

1500~ SOFTWARE MAINTENANCE
TOOL CONNECTS TO NETWORK
SOFTWARE MAINTENANCE TOOL RETRIEVES
1502 ~

A SET OF UPLINK COMMANDS AND CRATES
WITH AIRCRAFT SOFTWARE PARTS

!

1504 ~4

SOFTWARE MAINTENANCE TOOL
DISCONNECTS FROM THE NETWORK

!

1506 ~

SOFTWARE MAINTENANCE TOOL
CONNECTS TO ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM ON AIRCRAFT

May 28, 2009 Sheet 9 of 57 US 2009/0138518 A1l

Y

1518~

SOFTWARE MAINTENANCE TOOL RECEIVES
SELECTION OF AIRCRAFT SOFTWARE PART

1508
vy [/

!

1520

SOFTWARE MAINTENANCE TOOL ISSUES
UPLINK COMMAND TO ONBOARD
ELECTRONIC DISTRIBUTION SYSTEM

SOFTWARE MAINTENANCE
TOOL AUTOMATICALLY
TRANSFERS THE SET OF
UPLINK COMMANDS TO
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM

V‘

A

1510

ONBOARD ELECTRONIC DISTRIBUTION
SYSTEM READS THE SET OF COMMANDS
AND RECEIVES THE SET OF CRATES

!

1512

ONBOARD ELECTRONIC DISTRIBUTION
SYSTEM VERIFIES THE SET OF CRATES

!

1514

ONBOARD ELECTRONIC DISTRIBUTION
SYSTEM RETURNS A STATUS OF TRANSFER
TO SOFTWARE MAINTENANCE TOOL

!

1516

SOFTWARE MAINTENANCE
TOOL RETURNS STATUS

END
FIG. 15

Patent Application Publication = May 28, 2009 Sheet 10 of 57 US 2009/0138518 A1l

LIBRARY 1702~ USER INTERFACE |
1700 SYSTEM B
MANAGEMENT
COMPONENTS |, ~1710 1706
SECURITY e s
MANAGER |« INTERFACES
17?6 1722 MESSAGING
/ SERVICE
PARTS ~
vAULT [1712 1;14
COMMAND [I~ i
DISPATCHER - HTTP)
7 172 F> SERVICE
1724 /) 6)
COMMAND | | R
QUEUE MANAGER | WEB SERVICE
N
SYSTEM
CONFIGURATOR [1716
/
1728 1;30 STORAGE
IMPORTED FILES |« FILE SYSTEM
AGGREGATOR [>
1720
REPORT [AL
)ﬂANAGER < DATABASE
1732 15)’4 ;\
|
EVENTLOGGER [T~ / B’:C;BE;D 1708

FIG. 17

US 2009/0138518 A1l

May 28, 2009 Sheet 11 of 57

Patent Application Publication

¢c8l
81 ODIA [
INVN 371
INIINMOQ
0¢81
/
ain
98l 9e81 881
N \ p 818l
ANVN INVN 371 veal ANYNI T C
T4 314D L4vd Q3Lve0 p BO1LNIAT HIANNN TIVL
vv8L cesl INVYN
N\ - /BE% ERFEIN) an 30130
N N
981 9181
ANVN INVN
dvs ANDINN ANDINN ain 30IA30 a1va
/ / / / N A
crv8l o8l 8e8L 0€81 ve8l 451"
INHOYY 133HSAYIYS 1Sd L4vd 901 INIINMOQ
/ / / / N N
¢i8l 0181 8081 9081 v081 c081
ONI9VLS
0081

Patent Application Publication = May 28, 2009 Sheet 12 of 57 US 2009/0138518 A1l
1900 1902 1904
QUEUE QUEUE QUEUE
COMMANDS COMMANDS COMMANDS
% 7 N 2002
1906 1908 1910 e
Y CRATE
FIG. 19
AIRCRAFT
SOFTWARE
PART
Delete Command: N
//A list of file name to be deleted 2000
String[] fileNames; ~_ 2102
//0r a list of part ID to be deleted FiIG. 20
FIG. 21 long (] partlds;_2104
//A list of airplane ID receiving command
2100 4 long [] airplanelds;—__ 2106

FIG. 22

//A list of device ID to serve the command
long [] devicelds;—_ 2108

//the destination system to receive the command
long sysAppld; ~_ 2110

//device ID that request the command.
String user; —~_ 2112

[Uplink Command:

long partld; ~-99202

2200+

String USEr~_ 9910

//part ID this command include

//A list of airplane ID receiving command
long [] airplanelds;—_ 2204

//A list of device ID to serve the command
long [] devicelds;~_ 2906

//the destination system to receive the command
long sysAppld; —_ 2908

//device 1D that request the command.

Patent Application Publication = May 28, 2009 Sheet 13 0of 57 US 2009/0138518 A1l

[Downlink Command:

//Airplane downlink report data type
long dateTypeId;_2302

//A list of airplane ID receiving command
long[] airplanelds;_2304

23004 //A list of device ID to serve the command
long[] devicelds;_2306
//the destination system to receive the command
long sysAppld; —_ 2308
//device ID that request the command.
String user; ~_ 92310
FIG. 23
2400
Ta]|
& Command Queues Uplink Commands (2) 2408 Reset || Refresh | | Dispatch| [
XCommandDISpaicher {| Airplane Tail # Proxy Server(s) SMT(s)
2 Uplink -~ || Al A []None [JAII []None
Downlink -0 402 3 : -
Delet ' -
e/e i 2\20 s B123 MINNEAPOLIS
2406 B3422 PS_A3841707 SMT 123
Boeing123 — || | PS_DEFAULT — || [SMT Seattle
Boeing295 PS_Devicel SMT super
Boeingd36 2410 PS_MIKE 9419 SHT 2414
Boeings81 —— PS_PETERZ —— SMT2 —
Boeing789 PS_SEATTLE SMTSeattle
Boeing928 SEATTLE 2416 SMT_Devicel |
J1234 Y1 | testDevicel {_ YA [LSMT Device? y
A}
2418 pegination Sysieml Airplane Condition’ Monitoring Function (ACM) ml
AY
YXX-7—-A000- 2426
< Parts Vaul Part ftem | XXY-2-A000-0100 | { >> | o 2428
2% Wainfenance IP Owner | XXX82 2420 Product Status| BLUE_LABEL / /|
' . e i
&) Sysem Senvies Ap;;lzugls STD, | 140972 | Cert. Expiration Date| ARINC665-2 |
XXX82-A000-0100
¥ Reports 2424J | v

FIG. 24

=
m S S ; _ = > spoday S\
o N OFISL) L00Z'ST 995 QP/8igoyyy) IBIBOGDIIEI6A501 19889 6LSETVA 626 NTINKOC BLSSTVA
= aamaq” 7 07 d - §801MaS WaysAS 7
= R OFISL) L002°ST 95 8y19£9999)1£09)L0SPTFYISLOS0o9PIA 9L86TVA 626 NTINKOC 9L86TVA -
—
m 89189 54 TGCGL) L002°GT 405 IPBEICEIYIGIVTO0SHIBSIISIOPIOPIP STV TVATISE EIEYEl ¥STVA 90UDUBUIDA £33
M 201090754 766 L0027°6Z oS B/699PS99DZ6HHID9GSZPRORI00LEGSH SUYTIVATISH EIENE(| RIKTIVA HNDA SHDg %
= 201090754 IG6GL) L002°6Z 95 G9Z0BPe00IDGPGS) I Z000YO0PPOSBIPL 6LSETVAT LSS 70 BLSSTVA Joyojodsig pubuiioy 3¢
— 20108054 TGEGL) L00Z'ST 995 955965E8THTLIG007/BOGEPOQICION 9LB6TVATIS6 T 9/86TVA
m 21090754 YERGL) L002°S 485 GOPEARFOLPE910000LPOILIPEHR099 FETITIVATZEE 710 ¥ETITVA
= | ey EUGL) L0076 doS 84G101L1GIBSBSYPOIPLOTZCLSIZH® QOFTIVA ZSE 70 BOKTTVA
w | YERGL) L002°ST 995 19DOIPIG0}040076/647ITTPIOPIONDY GLSTTVA 256 EIERE(BLSETVA
= — _
72 810805 YERSL) L007'ST 405 J090RIL0581990T 19QRPRGSI00SEH OLBETVATZE6 T 9/86TVA
m 201090754 OVSSL) L002°GZ 495 QOPEERLITPIVP IPREBIOLSETSOBI060L STV VA L6 NTINKOC PETITVA
M, 8180 54 OFSL) L00Z'SE 495 8BSL//SEYPGTO0T0ERLS0896%19L6%) BOVTIVA ESH NTINKOC 89KTTVA
ﬂ 201000754 0¥SSL) 002°6Z 405 12787408/61909590PS | /CS/OLI0LL® GLSSTVATESH NTINKOC BLSSTVA
m 291090754 OFSSL) L002°GZ 95 D99 |¥BPCSPRCYYSHIPISYY ITDIBI609E 9LB6TVATSEE NTINKOC 9L86TVA
P AL 0Z:L560 £00Z'Z0 190 POGCEPGIIGSSPR6USTEI909010010088 £TIAT¥SH NN £718 807
s 005¢ s 0Z:£8°60 £002'Z0 190 0OPYIPZRLIOICIOSIOOPYELYIPIISL 7ZHSH¥S6 NN AALY: /
= — - - SpUDWWIOY) IopIosy
s 7 ‘DL uns GEL660 L00Z'Z0 190 H¥TDOOCOO6OPEPTISCHELIBOIB00PIO8 £74ATEH NN £218
w NS GELE%60 L00Z'Z0 190 869950073L051£009995ESHYIONADR ZZHEH L6 NN e 0S¢ _\omm Bmm
— _ - 7
M 016z M~ uns F'85:60 £007'20 10 4SIPI6SOISO01PIPPIBEOPILOGROSS £74ATE6 NN £718 spubwuio{ penanbag
= 0:86:60°£002'20 190 * 622096 199°)5961978099¢D8IPH6PI6 SPUDLULLOY" POJROBX]
.m 0P| ML VR P 30l QKD 4 [0 dNO¥D | <3dAL QWD |4 2 |sHTIVL 4 e {3040 |4 splowwoy Bupuay
[="
\'
m = SNVIHOD ONIONId () s> X [J=] || senenty puowwoy 47
m —_—
~
=W

=
w < | . _ | 3 mtoqow_w
12 ry (T 1599 ONWY TPOTLl YS0CS) TIVT Mg AN 1TSS
(o] [
= 05985 7-699 NV 65691 G107 uny VT YOV SNV saojuig weyshs (3
S~
m 7608 7-599 NV erRsLl ¥S0T'SH e TIVTYOVIE JOVITS BUDUBIUIDA ¢
N 0iLy X Qisddy SHOELL YS0T'S) I TIGVT (34 "NoSap Hous Jouyol 0 S| S| T00)-TOW-VeaNH
= Blgacs X QLsddy 9IS ZOT'0Z uor TIGVTQ3 IS Hous Jouyou 0 S| S| TE0Z-99BL-VORX
- Y0845 1699 ONWY SOEL) YS0TS) I VT YOV 100-0000-72998 APG0-0000-22308
m 1967 1-699 ONRY SHOELL YE0T'S) I VTV [AR TTITIVIINIIIT
w 0ith 1-699 ONMY SHOsL) YS0T'S) I TV VY ESTRT
g 9686V6 X Qlsddy 9IISEHI 070707 uor TIGVT Q3 *Hos9p Hous Jouyol 0 s| syl RTZ0-Z089-VORX
7 it X Qisddy OUSEHI OZ0T'07 uor TIGYITQ3 9SO Hous ool 0 §| S| I/G9-GLT6-VOKL
2 20814 X Qisddy QUGS OZOT'0Z uor TIVT Q3 “Hosap Hous Jouod 0 §| syl FOZT-0690-VZAKY
<
N 09891 X Qlsddy 91'SEY 020007 uor TIGVTG3 “HoS9p Hous Jouyol 0 §| sly| F506-90%6-VORK
R
< R¥656 X Q1sddy QUISEHI DZOT'0Z uor TIGVT 03 oS Hous Jouoi 0 §| syl RZ06-9575-VEIKY
S 9108 X Qlsddy 91'SEY) 20007 uor TIGVTQ3 "HoS9p Hous Jouyol 0 S| Syl TI0L-GIZE-VOO 0007 8092
e 0F 1056 X Qlsddy O1iGS) 020707 uor TIGVT Q3 *“Hosap Hous Jouyol 0 §| siy| TE0-8R9G-VORNX /
g 009¢ Y809 7-599 ONIAY SFRELL HSOLSH I TVTYOVTE ANIKNZ O05-0500-B7ON] pooz \ P Ajno3
= . 158 X Qisddy RYgL) YSOT'S) I TIGVT Q3 *HoSap Hous Jouod 0 S| S| 767-G9-[86-END sping pauidx3
3 . L)
= 9¢ OId e ; - TR AT ¢09¢ gny buwosu
= U601 1-699 N e9EL) YE0T'S) I TV 001-0-000V-78XXX 00F0-0007~Z-F0K \ Hod Bujwioau)
o X isddy e9iL) YS0T'S) I T "S9P Hols 0 S| 841 0-9GF~E71-7-NOd
S op 1 g = .
= 098 YE0T'S) I 959p Hols 0 S| Siy| nop suog 23
2 S TIQYONAAY {4 & | 3190 NOLVHAXI {F ¢ NOULINGOMI Y4 | LVONTHON | WK 14 | |y ooy 3¢
=3
—_— ~
m = 0192 siavd anvA) [=] _U s> X _U m sanand puDWWO) 45
Lﬁlw —_—
&
[~W

Patent Application Publication

2700~

RECEIVE AN AIRCRAFT
SOFTWARE PART

2702

METADATA FOR
AIRCRAFT SOFTWARE
PART CORRECT

2704~

REGISTER A TEMPORARY
ENTRY IN DATABASE

!

2706~

CREATE DIRECTORY
STRUCTURE IN FILE SYSTEM

May 28, 2009 Sheet 16 of 57

2730
/

GENERATE ERROR

US 2009/0138518 A1l

2708 .
RECEIM
AIRCRAFT SOFTWARE

NO 2710

PART COMPLETE

v/
UPDATE PROGRESS
IN DATABASE

!

SAVE FILE FRAGMENTS

AIRCRAFT SOFTWARE
PART INTEGRAL? /lN FILE|SYSTEM
2714 2712
CRATE AIRCRAFT
2716-" SOFTWARE PART
CRATING NO ¢
SUCCESSFUL 1
GENERAT¢E ERROR 5794
MARK PART AS
REMOVE ENTRY
2720~ COMPLETE IN DATABASE FROM DATABASE [-27%6
SAVE CRATED PART
2792 IN FILE SYSTEM REMOVE Si\VED DATA \9728
v
(_END) FIG. 27

Patent Application Publication

May 28, 2009 Sheet 17 of 57

2800~ RECEIVE USER REQUEST
RECEIVE REQUEST [~3000
TO CREATE /I COMMAND FROM DEVICE
2802~ |
|DENT|FY A COMMAND TYPE QUERY DATABASE |~ 3002
I FOR COMMANDS
2804 ~_| GENERATE A LIST OF PARAMETERS v 2004
AND POSSI?LE VALUES RECEIVE RESULT s
2806 ~_ SELECTIVELY PRESENT CREATE COMMAND
USER LIST AIND VALUES DATASTRUCTURE 3006
RECEIVE USER INPUT !
RETURN COMMAND DATA
2808 SELECT'Nf VALUES STRUCTURE TO DEVICE [™-3008
VALIDATE CONTEXT END
2810 OF PARAMETERS
T FIG. 30
CREATE A SET OF COMMANDS
28121 ‘
SAVE THE SET OF COMMANDS START
2814 - IN THE DATABASE
RECEIVE A REQUEST FOR A | ~3100
END COMMAND FROM A DEVICE
FIG. 28 QUERY DATABASE | ~3102
FOR COMMAND
START RECEIVE RESULTS | ~3104
2900~ SEND COMMAND STRUCTURES !
CREATE A COMMAND FILE |\ _
2900 I ‘ 3106
o SEND COMIMAND FILES CRATE THE COMMAND FILE
y ™\-3108
SEND AIRCRAFT v
2904 SOFTWARE PARTS RETURN CRATE
TO THE DEVICE ™\-3110
END
END
FIG. 29

FIG. 31

US 2009/0138518 A1l

Patent Application Publication

3200~

RECEIVE REQUEST FOR
AIRCRAFT SOFTWARE
PART FROM DEVICE

!

3202~

QUERY DATABASE FOR
AIRCRAFT SOFTWARE PART

!

3204~

RETRIEVE CRATED
AIRCRAFT SOFTWARE PART
FROM THE FILE SYSTEM

!

3206

RETRIEVE METADATA
FROM DATABASE

!

32081

PERFORM INTEGRITY CHECK

AIRCRAFT
SOFTWARE
PART VALID?

3210

May 28, 2009 Sheet 18 of 57

US 2009/0138518 A1l

3300~

RECEIVE NOTIFICATION OF
COMMAND EXECUTION

!

3302~

LOOK UP COMMAND AND
ITS ASSOCIATED GROUP

!

3304~

MARK AND DEQUEUE
COMMAND

!

3306

DEQUEUE ALL OTHER
COMMANDS IN GROUP

!

3308

SAVE STATUS

Y

3212

RETURN CRATED AIRCRAFT
SOFTWARE PART TO DEVICE

RETURN ERROR
MESSAGE

N

2

A

(_END)
FIG. 32

3214

END
FIG. 33

Patent Application Publication = May 28, 2009 Sheet 19 of 57 US 2009/0138518 A1l
A7 NEW COMMANDS
NEW \ AND PARTS
COMMANDS
AND PARTS A8 SOFTWARE
7 > PROXYSERVER [\ COMMAND STATUS MANAGEMENT
A APPLICATION TOOL
3400 A9 DOWNLINK AND 3404
COMMAND A2 N EVENTLOG
LBRARY | “crarls
b A(l NEW COMMANDS
3402 AND PARTS
3402 ONBOARD
ON GROUND ELECTRONIC
DOWNLINK COMPONENT |« COMMAND STATUS | p|STRIBUTION
AND EVENT 3408 % SYSTEM
LO? FILES — || ™ powwunkres | 3406
) N
A3 A6
FIG. 34
3500
PROXY SERVER APPLICATION
3508 3512
/ /
~{ ON GROUND ON GROUND
COMPONENT 1= coMPONENT
3502 3506 3504 INTERFACE
\
CONTROL FILE
PROCESS sySTEM | [PATABASE
A Y
| SOFTWARE
"| MAINTENANCE
™| TOOL INTERFACE
N
3510
FIG. 35

Patent Application Publication

3602
3604
3606
3608

3610
3612
3614
3616

COMMAND RESULT
DATABASE TABLE
3600

3

Command_results

~
~
™N
~

-Command_result_id (pk)
-Command _id
-Ground_status
-Airplane_status
_~Date_result_reported
_1Command_type
_1Airplane_id
_1Ps_device_name

FIG. 36

COMMAND
DATABASE TABLE
3800

\

Commands

3804 ~
3806 ~\
3808 ~\
3810~
3812~
3814~

3816
3818
3820
3822
3824 -
3826

-Command_id (pk)
-Airplane_id
-Application_name
-Command_type
-Device_name

- System_name
-Created date
-Servicing_status

- Priority
-Command_group
- Crated_command
-Crated _command_path

May 28, 2009 Sheet 20 of 57

3702~
3704 ~
3706 ~
3708~

DOWNLINK FILE
DATABASE TABLE
3700

N

US 2009/0138518 A1l

Downlink_files

-Downlink file id (pk)
- Airplane_id
~Recvd_from_device

- Date_recvd

3710 -1 File_name

37‘]2/—File_url
3714/—File_status

FIG. 37

COMMAND RESQURGES
DATABASE TABLE
3802

{

Command_resources

AN\

Command_resource_id — 3828
Data_type — 3830
Application_standard — 3832
Part_expiration_date —— 3834
Ip_owner — 3836

Name — 3838
Production_status ~ 3840
Release_date~_ 3842

Supplier ~ 3844

Path~_ 3846
Crate_expiration_date ~_ 3848

Command_id (fk) ~— 3850

FIG. 38

Patent Application Publication = May 28, 2009 Sheet 21 of 57 US 2009/0138518 A1l

AIRPLANE COMMAND
DATABASE TABLE
3900

\

Airplane_commands

3902 ~,

~Airplane_command_id (pk)
3904~ Message_id
3906 Y Airplane_id

3908 _+Command_type

FIG. 39

[ProxyServer/
4002 ~ cratedCommands/
4004 ~ crates/
4006 ~ downlinkFiles/
tailNumber1/
tailNumber2/
tailNumberN/

4008 ~ downlinkFiles_archive/
DIRECTORY tailNumber1/
STRUCTURE tailNumber2/

4000, tailNumberN/
4010——downlinkFiles_partial/
tailNumber1/
tailNumber2/
tailNumberN/
401 QfeventLogsArch/
4014 ———smt_eventLogs/
smiDeviceName1/
smiDeviceName2/
smiDeviceNameN/

4016——"mp/
FIG. 40

Patent Application Publication

May 28, 2009

4100~

IDENTIFY SUCCESSFULLY
EXECUTED COMMANDS

!

4102~

SEND IDENTIFIED
COMMANDS TO LIBRARY

!

4104~

REQUEST COMMAND
LIST FROM LIBRARY

!

4106 ~

RECEIVE RESPONSE

4108

COMMAND LIST \NO

Sheet 22 of 57

FIG. 41

US 2009/0138518 A1l

RECEIVED?

4110~

DELETE COMMANDS
NOT ON COMMAND LIST

!

41127

STORE NEW COMMANDS
IN DATABASE

2

\

41141

SELECT AN
UNPROCESSED
NEW COMMAND

!

41167

REQUEST CRATE
CONTAINING COMMAND

!

41187

RECEIVE CRATE

!

4120

STORE CRATE
IN FILE SYSTEM

MORE
UNPROCESSED

COMMANDS
?

4122

4124

UPLINK
COMMANDS

PRESENT
?

(END)

SELECT AN
UNPROCESSED
UPLINK COMMAND

™ 4126

YES

Y

CRATE
PRESENT IN FILE
SYSTEM?

4128

NO [
Yy
REQUEST CRATE
CONTAINING AIRCRAFT ~4130
SOFTWARE PART
RECEIVE CRATE ~_ 4132
STORE CRATE ~ 4134

A

Patent Application Publication

IDENTIFY DOWNLINK
RECORDS FOR
UNTRANSFERRED DOWNLINK
DATA IN DATABASE

|~ 4200

4202

UNPROCESSED

RECORDS PRESENT
?

NO

YES |
A
SELECT AN | 4904
UNPROCESSED RECORD
SEND FILE CONTANING |- 4206
DOWNLINK DATA TO LIBRARY
ARCHIVES SENT FILE ~— 4208
UPDATE RECORD
AS ARCHIVED ™~ 4210
ADDITIONAL YES

UNPROCESSED RECORDS
PRESENT?

IDENTIFY RECORDS IN
DATABASE OLDER
THAN A THRESHOLD

~-4214

!

DELETE ANY IDENTIFIED
RECORDS FROM DATABASE

~-4216

-

\

(C Eenp)
FIG. 42

May 28, 2009 Sheet 23 of 57

US 2009/0138518 A1l

4300 ~

COMPARE CURRENT
LOG FILE WITH A COPY
FROM A PREVIOUS
PROCESSING CYCLE

!

4302 ~

IDENTIFY NEW EVENTS
FROM THE COMPARISON

!

4304 ~

SEND EVENTS FOR NEW
ENTRIES TO LIBRARY

!

4306 ~

ARCHIVE A COPY OF FILES
SENT IN THE FILE SYSTEM

!

4308 ~

SEND ANY
ROLLOVER LOG FILES

!

4310 ~J

ARCHIVE ANY FILE IN THE FILE
SYSTEM SENT TO THE LIBRARY

!

4312

DELETE ROLLOVER LOG
FILES SENT TO LIBRARY

!

4312

DELETE PREVIOUS COPY
AND SET CURRENT FILE
TO THE COPY

!

43141

LOOK FOR DEVICE
NAME SUBDIRECTORIES

!

4316

LOOK FOR EVENT LOG FILES IN
ANY FOUND SUBDIRECTORIES

!

4316

SEND FOUND EVENT LOG
FILES TO THE LIBRARY

!

4318

DELETE SENT FILES AND
EMPTY SUBDIRECTORIES

END
FIG. 43

Patent Application Publication = May 28, 2009 Sheet 24 of 57 US 2009/0138518 A1l

RECEIVE REQUEST FOR
4400~ NEXT COMMAND FROM
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM

!

4402~ GET NEXT COMMAND
IN QUEUE

!

UPDATE DATABASE
4404~ RECORD TO

INDICATE COMMAND
HAS BEEN SERVICED

4420

AIRCRAFT

DOWNLINKING
7

NO

4424

IS NEXT
IS NEXT NO
YES_~COMMAND A DELETE COMMAND A DOWNLINK 4429
COMMAND COMMAND)
? | FIND AND RETURN
NEXT COMMAND
4408

AIRCRAFT
UPLINKING

NO FIND AND RETURN
NEXT UPLINK OR
™
DELETE COMMAND | ~ 4426

Y

FIND AND RETURN
NEXT DELETE -
COMMAND - 4416

AIRCRAFT

DOWNLINKING
?

YES

IS NEXT
COMMAND AN UPLINK
COMMAND
?
.| NO
Y
FIND AND RETURN
4414-"| NEXT COMMAND

FIND AND RETURN
NEXT DOWNLINK OR >
DELETE COMMAND - 4418

YES

4412

F

y

(C_END)
FIG. 44

Patent Application Publication

May 28, 2009 Sheet 25 of 57

4500~

RECEIVE REQUEST FOR A
CRATE CONTAINING AN
AIRCRAFT SOFTWARE
PART FROM AN ONBOARD
ELECTRONIC
DISTRIBUTION SYSTEM

US 2009/0138518 A1l

RECEIVE CALL FROM
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM

WITH COMMAND STATUS

_~ 4600

!

!

4502 ~

LOCATE CRATE
CORRESPONDING
TO THE REQUEST

INSERT NEW RECORD
IN COMMAND RESULTS
DATABASE TABLE

™~ 4602

!

4504

RETURN CRATE TO
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM

END
FIG. 45

END
FIG. 46

RECEIVE CALL FROM
SOFTWARE
MAINTENANCE TOOL

|~ 4800

!

4900~

RECEIVE REQUEST FROM
SOFTWARE MAINTENANGE
TOOL FOR A LIST OF
COMMANDS

INSERT A NEW RECORD

IN COMMAND RESULTS

DATABASE TABLE FOR
THE COMMAND

|~ 4802

!

!

4902 ~|

LOCATE COMMANDS
CORRESPONDING TO THE
REQUEST IN DATABASE

MARK RECORD AS
SOFTWARE MAINTENANCE
TOOL REPORTED SUCCESS

~_ 4804

!

!

4904

RECEIVE RESULTS

!

4906 |

SEND RESULTS TO
SOFTWARE
MAINTENANCE TOOL

RETURN CONFIRMATION
TO SOFTWARE
MAINTENANCE TOOL

- 4806

!

END
FIG. 49

MARK LOCAL COPY OF
COMMAND AS SENT

- 4808

END
FIG. 48

Patent Application Publication = May 28, 2009 Sheet 26 of 57 US 2009/0138518 A1l

4700 ~ | RECEIVE CALL FROM
ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM

Y

4702 ~| RECEIVE DATA FOR
DOWNLINK FILE

DATAFOR A
PARTIALLY DOWNLOADED
DOWNLINK
FILE?

YES
4718

PARTIAL

DOWNLINK
FILE PRESENT
4706 ~| CREATE A
DOWNLINK FILE
P \ i
v 1 SEND ERROR TO
P STORE DATA IN THE ONBOARD ELECTRONIC
4708 DOWNLINK FILE DISTRIBUTION SYSTEM
\
4720
MORE DATA

RECEIVED?

STORE FILE IN ~
FILE SYSTEM -
\
4714
MARK FILE AS
A PARTIALLY

4716 -"| DOWNLOADED
DOWNLINK FILE

x

A

C END)
FIG. 47

Patent Application Publication = May 28, 2009 Sheet 27 of 57 US 2009/0138518 A1l

RECEIVE REQUEST FOR
5000 A LIST OF AIRCRAFT
N SOFTWARE PARTS
FROM SOFTWARE
MAINTENANCE TOOL
5002 ~| SEND QUERY
TO DATABASE
5004 - RECEIVE fESULTS
SEND LIST TO SOFTWARE
START 5006 | MAINTENANCE TOOL
RECEIVE REQUEST END
5100 ~] FROM SOFTWARE
MAINTENANCE TOOL FIG. 50
TO DOWNLINK FILE
5112
5102 S)
DIRECTORY
CREATE
FOR AIRCRAFT -
PRESENT SUBDIRECTORY
?
5110
/
FILE ALREADY ADD TIMESTAMP | _
PRESENT? TO FILE NAME
5104 157
\
WRITE FILE INTO
SUBDIRECTORY
e
5106 FOR AIRCRAFT
INSERT A NEW RECORD
5108 | N DOWNLINK FILES
DATABASE TABLE
END

FIG. 51

Patent Application Publication = May 28, 2009 Sheet 28 of 57 US 2009/0138518 A1l

(START)
!

RECEIVE REQUEST
0200~ 10 DOWNLINK AN
EVENT LOG FILE

5202

SUBDIRECTORY
PRESENT FOR
DEVICE?

CREATE
0208~ o BDIRECTORY

FOR DEVICE

-

ADD TIMESTAMP
5204-"| TO FILE NAME

!

WRITE FILE INTO
_~ DEVICE NAME
0206 SUBDIRECTORY

END
FIG. 52

Patent Application Publication = May 28, 2009 Sheet 29 of 57 US 2009/0138518 A1l

NEW
COMMANDS Ef1
AND PARTS /
COMMAND E2

LIBRARY ~ STATUS / NEW

5302 [* COMMANDS E7
DOWNLINK AND E3 ANDPARTS /|
| EVENTLOGFILES / | SOFTWARE ONBOARD
N MAINTENANCE | COMMAND E8 | ELECTRONIC
NEW TOOL - STATUS /| DISTRIBUTION
COMMANDS ~ E4 5300 | SYSTEM
ANDPARTS / _— DOWNLINK AND E9Q 5306

 EVENT LOG FILES / =
PROXY COMMAND E5 -

SERVER | STATUS /
APPLICATION [*

5304 DOWNLINK AND E6
 EVENT LOG FILES /

FIG. 53

SOFTWARE MAINTENANCE TOOL 5400
5408 ~
» S MANAGER |« .
A\

5404
LIBRARY ((I)(IJ\IIV?PR(?NUEI\I]\JDT ON GROUND
SERVICE DATABASE ke o T [o] COMPONENT

FILE
SYSTEM

FIG. 54

Patent Application Publication = May 28, 2009 Sheet 30 of 57 US 2009/0138518 A1l

Commands Table

Command Resource Table
9504~ commandid
5506 "_A|rp|ane|d /5500 Commandldf5532
5508 -~ systemName CommandResogJé%%df5534
9510-1~L ApplicationName DataType ——
551 2’_Cg%mand]’ype 5502\ CrateNamef5538
5514 ~L PriorityOrder CratePath ——5540
551 6 T~ DeviceName > CrateFileSize — 5542
551841 DeviceType ProductionStatus —_
5520 T CreatedDateTime ApplicationStandard—~_ 5546
5509 41 ServicingStatus IpOwner ~— 5548
5524 T ExecutionStatus Supplier ~— 5550
5506 < PercentComplete CrateExplratlonDate—\,5552
5528 4T ExecutionCompletionDate ReleaseDate —_ 5554
5530 -p T SMTCommandResourceList
FIG. 55
5600
Partial Downlink Table
9602 T™Messageld
5604’\—Airplaneld
5606 L-1DownlinkFile
5608 -1 PartialFileXML 5700
FIG. 56 Downlinks Table ,/
5702 1~LFileName
5704~ FilePath
9706 T~rAirplaneld
5708 1~ SystemName
37101 DataType
o711 T~ AppName
571 2‘/~FiIeSize
5714 -} DownlinkStatus
57161 DownlinkReceived
5718-}-TisSentToLibrary
5720+ T DownlinkSentToLibrary

FIG. 57

Patent Application Publication = May 28, 2009 Sheet 31 of 57 US 2009/0138518 A1l

FIG. 58 ;

C:\787\SMT
5802 ~ Parts\ >800
5804 ~ Downlinks\ '
<airplaneTailNumber>\

<airplaneTailNumber>\
5806 ~ DownlinksUnpackDin\
5808 ~ Route\
5810~ App\
SMT.log
EventLogger.log
EventLogger.log. <date> (saved by date when create new one)
EventsConsoleLog.ixt
5812 ~ Logs\
EventLogger.xml
5814~ Conf\
Ground.properties
SMTPropertiestditorDefinition.xml
Ogc.log
Ogc.logging.properties

9900

s

USER INTERFACE COMPONENTS

CONNECTION VIEW |~ 5902

UPLINK COMMAND QUEUE VIEw |~ 2904

UPLINK LOCAL INVENTORY VIEW |~ 2906

DOWNLINKED FILES VIEW ~- 5908

EVENTS CONSOLE VIEW ~- 5910

RETRIEVE FROM LIBRARY VIEW |~_ 5912

FIG. 59

v

<« .

® 09 DIA

K ~ ~

o (s)und paposjas Bunjuidn Aisy

s

S = =

S

K

wn

-

~

v,

S

o

o

n

E

=

n

N

m n| snjojs Hpuidn | ez By | ainjpjouswioN | adA] | ~jouyseq suojdiy | Apou | uolpJidxy | way Asojusau|

B@a \ anany pupwiwo) yuydn —/

>

&

=

s

.m (s)puowiwio) 8jsja

2]

z 0109 8009 9009 7009 2009 gy oo o
\ \ / / / _

.m 0009 " @_,mm AIDJqI W0 4 9ABLLBY _ 2|0SUOY) SLUSAT _ $9|14 payuljumoq _boEoE_ _So._.v_c__%__go:o_ucoEEoo pidnE)|

= 1

= | weuuo) | [a] ysouipool o sq380 [~ 109 ¢ 109 ~ sjypag NS 89lAsQ

=3

= diof _spoof aiif

m __X__M__H (z'| uoisieA) |00] BOUDUBJUIDN 8IDM}LOS

=

A

US 2009/0138518 A1l

May 28, 2009 Sheet 33 of 57

Patent Application Publication

0009 "

[9 DIA
=
0c¢19 w{m w{@ 7119 | (s)Hod pepejes buptuidn Adsy owz wo_E @QJE vo,E
{ \ \ \ y)))
2 S m— — 7 ‘\ [I
OJJ| *sseaBoud uy yuydn | 89gBSE | Buog | I~ |19 WSOSIO | SLZ) | “"G:TZ 02-10-0Z0C [“Z HI65-094L
]| *+ssesbosd u yuydn | 18yLIGL | SN |oJeusy | d¥S] dIYANOV:NOY | #LT) | U€R00 ¥L-L0-PSOT | diZ'0-9Gy-£T)
[Cl]| *ssesBosd uj yuidn | I18¥11GL | SN [Dousy | dvS] dNSSI:SID | 0£Z) | 200 ¥i-L0-¥£0T | diZ°0-9Gy—€T|
(]| ssesbosd u yuydn | 18YL1GL | SN [oeuad | dVS] NSO:SID | 99ZL | ""£:00 ¥1-L0-¥£0Z | diz'0-9GK-ST
)| vsseaboud upquidn | 18YLLGL | SIIN |DJBUs) | dVST dnN3d3d | 29Z) | €00 ¥i-L0-E0T | diZ'0-9Gy-£7)
|| wsseaboud up qujdn | 18¥LIGL | SIIN DJBUs) | dVST NSOINSD | 8GZL | €00 ¥1—-L0-¥£0Z | diz'0-9G¥-€T|
(]| *ssesBosd u yuydn | 187L1GL | SN [pdeusd | d¥S] WSO'NSD | ¥SZL | “"€:00 ¥1-L0-¥£0Z | diz'0-95K-SC)
OOO0OO0)| ssseaboud up quidn | 1871161 | SIMN pJeusy | dvST dn3d3d | €STL | €00 vi-L0-¥£07 | diz'0-9Gv-£7)
"01d SNYDIS Huyidn | snyois Hjuydn | 8zig ejiy | eumyojouswoy | edA) | weyskg uoyouyseq | Ao | uoyoldxy | way| Ao
JYSLYN eupjdaty Joj snanp pupbwwoe) yuydn —
\ A 18SONIF08 -
€019 WSO uoypolddy ‘S|o wisisAs of paxuiidn oq o} diz'Sd0™0NAd¥Z 896509 L~0TXXX -
dI44WOY uoyooyddy ‘Kov woishks of peyuidn eq of diz'0-9gy-€7i-7-1SL -
019 dnssy uoyodliddy ‘SS9 woyshs of payuldn oq o} diz’g-9Gy-£Z1-7-1S1- !
\ B WSO _s_so__m% SI9 e%»m o vs_c__n: °q o} M_No 9§7-£74-7-1S1 |
a0t dniJl voypoyddy ‘34 weyshs of peyuidn eq o} diz'0-9Gy-5Z}-Z-1SL-4 |
Spubwwon oajs|e
() . 0019 NSD uoyooyddy NSO wejsAs o peyulidn eq o} diz'0-9gy-574~Z-1S1 - !
NSO uoyojddy ‘g9 woayskg of peyulidn aq of diz’g-9gy-¢7)-Z-1S1-1 |
dn3Jl uopoyddy ‘33| weyshg of peyujdn eq of diz’0-95y-€Z7)-Z-1SL |
W 05@ 88 88 goo NS@ gm_wu-
[
@wmm Apiqn Eo: o>o_:£__o_omcoo S{UBAT] _ 9|4 vov_c__c;oc _boEoE_ [020] V_c__a::%o:o nccEEoo yudn _M__

| ,Go::wom_o | _ﬂ_

fsoyjooo] 4o 50380 [V7109

€109~ 2yGI¥N eunjdily o} pajosuuod sjjpag JNS 8olaq

djefy sjool 8|1

_ﬁx_ﬂ__n

(Z'| uoisian) 00| 8OUDUBIUIDY BIDM}}OS T

v
«
& c9 ODIH
% > S
«o Alojuanu| pajosjas AjuQ Auidn 8jqo) u) Aiojusau] Iy juidn
S
2 < [T
S
K
5 __
90¢9

~
v,
S
o
<t
&
m — ¥¢¢9 ¢¢ed 0229|8129 91¢9 v1¢9 AYAY 0129 8029 —
Z f g S G / !))
2 OO0OO00) | ingssevons yuidn | 95Z11GH | “*¥vd §Z1ISIL | Ldvd (341) Juawuiopiajud bl 4-u)| JYSI¥N Z8vS9-/86-7-SIN
K old yuydp | snjojs yuidn | 8ziS 8jiy | enjpjouswop | adAj | uolpuysaq supjdaty | q| supjdily |ajpq uoypuidx] | way| Adojusau
B@a \ Ipjoq way AojusAu] —
= d|z"1100-2000- 4510079080~ 200Z24040PeIDES ™IS 84042 Ul T100-2000-4£10D ..._
&
= bojuanu] pajoslas ai3iog diZ-ONINOIS ™ ONVANOD ™ SHLI"90-80~Z00Z8H00PeIDaS™10SD &4Dio U] ONINOIS ONVANOO ISuld -

diz'Sd0TSYNOE 28 arE6—-S00L-0ZXXX P40 Ul (¥£6-500L-0ZXXX ..._
- Kiojuenu) ysaijoy 0029 diz' | A00—-0000-8¥908 90~ mw_NBonE%c_sm T10SD @010 Ul 1A00-0000-87998 [H
S wm 96— me _ Ez 9§pJo Ul 68/-9G-v¢Z—-|-UJN L_
= /7029 ! 25¥59-/86-Z-SIN|E=H
.m 7029 \ \co,EoE_ 8|qD[IDAY A||D207—L— 3
=
z | [o o 0109 8009 9008 v009 2009
.m 0009 Apaqi EoL_..__o>o_L_+mm__m_ow=oo. SJusAj i so|l{ pajuljumoq [| Adojusau| |pooT yuljdn [Jfanany pupbwiwoy yuidn
.m | toauuoasiq | ER.RN&.NE {p mn_umo_.\uioo ¢ 109 ~— 4G I¥N supjdily o} pajoauuod ajjjpag [NS @dlAag
= 7 —
Z 9109 dieH sjooT]
m x[Iol = (z'| uoisisr) |oo] eoupusjuiD 8DMOS T
£

US 2009/0138518 A1l

May 28, 2009 Sheet 35 of 57

Patent Application Publication

0009 "

£9 DIH
S
< [E_
90€9 —
¥¢€9 ¢ce9 0¢€9 81€9 91€9 v1€9 —CILEI 0LEY 80€9
\ \) 3) / / / 4
:7 ¢} deg ny| Injsseoons jujjumoq | ¥e¥eT6l | “\LNS\/8L\:D **00 70SNN NSd WSd QUGIPN | NN NSI QYSIFN
iz g1 deg ny| Injssaoons yujjumoq | 26260004 | “*\LNS\/8Z\:D ‘00 TOSNN NSO WSI QUSIPN | NN~ WNSD DYSIPN
:7 ¢) deg ny| Inyssaoons Nujlumoq | 16750004 | “\LNS\/8.\:D **0070SNN NSD WSD JYGLYN | ""NNTWSITJYG N
ioq uiumoq | Snjpjg Jfuljumoq | #ziS 9|l | uoydiasaq | adA] pjpg | *royddy | WajsAg | | supjduyy | SWDN 3|14
JYSIYN 104 DipQ paxuljumoq —
¥0€9
. 00€9
Syuljumoq {alipay diz:00£0-81 75225 160200 INIINMOTT0SNN~ WSO DS PN o
diz:00£0- 1 175225 1602002 ANITNMOT10SNN WSO 4GS 1PN -
diz00£0-92¥5225 160£00Z MNIINMOT " TOSNN~WSI DS kPN -
sjujumoq puadsng AT
0109 8009 9009 009
9109 / N N) /
. ¢0€9 Aipiqry wouf arsuijay | ajosuo] sjuang [sajly paxujjumoq [| AMojuaau] ' |pao7 quijdp|enanp pupwwio) yuiidp

A}
[1osuuoosig | _ﬂ_

fsoyjoo| 4o sg3g0 |- 109

€109 ~— DyG YN supjdily o} papsuuod B|4DaS WS B3N

dieH sjool 8|if

(Z'| uoisiaA) |00] 80UDUBIUIDY 8.DM{}OS T

US 2009/0138518 A1l

May 28, 2009 Sheet 36 of 57

Patent Application Publication

r9 OIH

7079 —~ sjosuoy spusaz ooy ajosuoy spusaj aans [-—— ¢0F9

< [(|

£0-9Z7572€ 160200 YNINMOT " TOSNN—-NSI~0¥G I 7N \Algxoodunsyuljumog \LNS\/8/\ ws}| peuljumoq — p|8Zbn - /007 1Qd S:¥S'LL ¥) deg 4
upuDIqr] dVS] 8Y4 o4 sejy paxulumop Buipiomioy — pigzbn - /007 1ad 01:65:60 ¥} deS W4

.>__ooo_ W8y} peAacwsl pub upblubDIgIT dyST O} Spubwwod vov_c__a=|>__:+mmwoosm { P8pibmiog - c—wNU= - /002 1ad 01:69:60 ¥ amm [°F|
uDuDIQI] dYS] ©Of SPUDWLWOD ||nissedons Buipsomoy — pIBZbN - /007 1Gd S0:65:60 ¥1 deS W4

801°£TZ'9/°76) b UDWDJQIT dVST 04 Pejosuue) — oigzbn — 007 10d 00:6G:60 ¥} doS M4

Q¥GI¥N - Bupjdily wouy paposuucdsiq - olgzbn - £007 L0d 16:8G:60 ¥} deS M4

D¥GI¥N eup|daD Joj 190 SUIAO Of Paposuu0d A||nyssesong - D|gZbn - /007 10d ££:8S:60 ¥ doS 4

JYGI¥N — subjdiy o} pajosuuc) — pjgzbn — £007 1Ad ££:85:60 ¥} deS M4

- (8/9N1306 8upjdiip oy diz°c7-68/-9G—M—dNSOHDIO Jo} pubwiwiod pajeeq — pgZbn — £007 14d Z0:07:60 ¥} deS M4
00¥9 sppd/INS/ 181/ hiogoeuip up so4pId |0 pappo| A||nyssedang — p|gzbn — /007 1G4 ¥1°56:80 ¥ dsS M4
SHDd/INS/ 282/ Aiojpadip Ul seypid ||p pappo| A||nysseddng — plgzbn — £007 L1Ad | 14680 ¥} deS M4

sppd/INS/ 181/ woiy sajpio Aojusaul Buippol — pigzbn — £007 10d £0:¥5:80 ¥) dos M4

0109 8009 9009 009 <009
1 \ \ /) /
0009 " 9109 Auniqr] wouy arsuiysy [ejosuoy sjusag] sepy peyuiumoq | Aiojusau) ‘oo yuidn|eneny puowwoy yuydp
[y
A
[Twewuoseig | [a 8012229261 1o Uouoiqrl dsvi |~ ¥109 S01LLTSL'T5) 0, WOUOLGT dSV1 Of pasBuLcD oS, LN 92pag
2109 djsff spool o|J

(Z'| uoisian) 00| BOUDUBJUIDN BiDMIIOS 2

§9 DId

£0-68/-95_M-dIS
£-00cml L -7-W,
75759-186-Z-SIN

qo} snany pubwioy juidn uj punoj 8q ubd AuojuaAul

US 2009/0138518 A1l

Aioiqn) wouy Aiojusau| pajosjes sAaljay 8/-96-¥5Z— L -Y4N
e, / £-95-7.68-Z-NN9
3 8059 787-59-£86-EN9
- . 0059 68.~9-GS-IN9
< f 9059 ~£759-£86-Z-N39
£ / VC-£7—G9.L-Z-Nd4
72 —Q/9-CyC—7—

uoyouny Buuopuop uoyipuoy supjdlly | uoyouyse 6-8/9-GyE--dXd
o Ja[(4nov) uoyouny Bunioyuop uoyipuog supiduy | uolouyseg A i A
<
o~ Um_m—.vz h__ OCU_QL_< le.vmlewlNIO_m
%a _ﬂ_ 7 _ y-¢¢1-130-Z-08Y
o 7069
nMa N (Iouoydg) Aojusau] Joj uoypulyseq — Aipiqr] asmoug _ _ % _ Aipaqr] ul spng

- uDUDIqIT JVYS] WOJ4 Sway| AIOjusAU| 8ABlEY—

=
=
.m 4069 —] suoyjopsupa) Aiougn wJolsd
= 0409 8009 9009 ¥009 2009
£ { \ / . /
S 0009 " 9109 Apiq wiody' eAsiyey [| sjosuo sjuaag | sajiy pexuiumoq | Adojusau [poo7 yuydp|enenp pubwwog yuydp
o {
= A
3]
= | tosuuods)g | __ﬂ_ 801°£27°94°C61 b upLiDIqT dSYT] _.\:v_.oo 801°L22°9L7C6] ,6\ ubuDIqr) dSYT Of pajosuuod 3jpag NS 83lAa(
=,
= f — p——
= ¢1H09 disH_sioo[ay!3
m __X_D_H (7| uoisiar) 00] 9OUDUBJUIDN 8IDMILOS LI
S
A

Patent Application Publication = May 28, 2009 Sheet 38 of 57 US 2009/0138518 A1l

SOFTWARE MAINTENANCE TOOL 6600
ey — com/tréms |- 6610
6602 - > 'y 6620
: LIBRARY ! 6612/
SERVICE DATABASE |« 0GC
—| INTERFACE
PROXY 6608 ! — 6606
SERVER | | | | FILE v /
APPLICATION SYSTEM Ll osc ld— opeps
/ N
6604 6614 N
| 6622
UPLINK UPLINK UPLINK
LOCAL COMMAND |+ |COMMAND
INVENTORY QUEUE |le—»l QUEUE
VIEW MANAGER VIEW
/ N b N
6616 6617 6618
FIG. 66
6714 6718
N /
) | DOWNLINKS DOWNLINKED
LIBRARY <« TABLE |*] | FILESVIEW
. LIBRARY APPLICATION
SERVICE paTaBase | || ose 6702
y INTERFACE brle
6724]
o || | &2 6716 4710 !
SERVER R R FILE § OBEDS
APPLICATION [T "| sysTEM [0GC 6704
7 7 S ;
6722 6700 6712 6708 RUS
SOFTWARE MAINTENANCE TOOL 6706

FIG. 67

Patent Application Publication

May 28, 2009 Sheet 39 of 57

US 2009/0138518 A1l

6802 6804
/ /
B FILE PROCESS
LIGBBRSSY B < SYSTEM EVENT LOGGER
LIBRARY ‘
A SERVICE
PROXY 6812 ¥
SERVER |« EVENT
APPLICATION CONSOLE VIEW
/ N
6810 6800 6806
SOFTWARE MAINTENANCE TOOL
FIG. 68
6908
/
LUBRARY b <« RETRIEVE
6902 lets | FROM
OV "1 LBRARY |<] LIBRARY VIEW
SERVICE
PROXY |, 6306
SERVER | | FILE
APPLICATION [[SYSTEM
/ N
6904 6900 6910
SOFTWARE MAINTENANCE TOOL

FIG. 69

Patent Application Publication = May 28, 2009 Sheet 40 of 57 US 2009/0138518 A1l

SOFTWARE MAINTENANCE TOOL 7000
N _| RETRIEVE FROM
B LIBRARY VIEW
«—»| COMMANDS N
LIBRARY |« ™1 TABLE 7002
7006 |«f—= LIBRARY 701/ . 1 7018 7024
— SERVICE I,)
7004 DATABASE |« 0GC
E— I —{ INTERFACE
PROXY « 4 3 [
SERVER | | || FLE L
APPLICATION > SYSTEM L1 .l oge e oBEDS
/ N
7008 7010 N N
! 7022 7026
UPLINK UPLINK UPLINK
LOCAL COMMAND |+ | COMMAND
INVENTORY QUEUE |le—s QUEUE
VIEW MANAGER VIEW
’ N N
7012 7020 7028
FIG. 70
7106
/ 7102
UPLINK LOCAL /
UPLINK Lf |NVENTORY |« MEDIA
LOCAL MANAGER
INVENTORY
VIEW !
7108 FILE
| SYSTEM
N
7100 7104
SOFTWARE MAINTENANCE TOOL

FIG. 71

Patent Application Publication = May 28, 2009 Sheet 41 of 57 US 2009/0138518 A1l

ESTABLISH A CONNECTION BETWEEN A
7200 ~] PORTABLE DATA PROGESSING SYSTEM AND
SOURCE THROUGH A GROUND NETWORK
TO FORM AN ESTABLISHED CONNECTION

!

7202 RETRIEVE A SET OF UPLINK COMMANDS
™ FROM A SOURCE THROUGH THE
ESTABLISHED CONNECTION

!

RETRIEVE A SET OF AIRCRAFT SOFTWARE PARTS
7204 ~_ CORRESPONDING TO THE SET OF UPLINK
COMMANDS FROM THE SOURCE THROUGH THE
ESTABLISHED CONNECTION TO FORM A SET OF
RETRIEVED AIRCRAFT SOFTWARE PARTS

!

STORE THE SET OF RETRIEVED AIRCRAFT

7206 ~ SOFTWARE PARTS IN PORTABLE DATA

PROCESSING SYSTEM TO FORM A SET OF
STORED AIRCRAFT SOFTWARE PARTS

!

DISCONNECT THE PORTABLE DATA PROCESSING
7908 -1 SYSTEM WITH THE STORED AIRCRAFT SOFTWARE
PARTS FROM THE GROUND NETWORK

!

CONNECT THE PORTABLE DATA PROCESSING
SYSTEM WITH THE STORED AIRCRAFT

7210 - SOFTWARE PARTS TO AN AIRCRAFT DATA

PROCESSING SYSTEM IN AN AIRCRAFT

!

ISSUE AN UPLINK COMMAND FROM THE
SET OF UPLINK COMMANDS TO THE
7912] AIRCRAFT DATA PROCESSING SYSTEM
THROUGH AN ON GROUND COMPONENT IN
THE PORTABLE DATA PROCESSING SYSTEM

!

SEND A STORED AIRCRAFT SOFTWARE PART
214| TOTHE ARCRAFT DATA PROCESSING SYSTEM
7214 THROUGH THE ON GROUND COMPONENT

END
FIG. 72

Patent Application Publication = May 28, 2009 Sheet 42 of 57 US 2009/0138518 A1l

RECEIVE REQUEST TO PERFORM TRANSACTION

!

7302~ RETRIEVE LIST OF UPLINK COMMANDS SENT TO
ONBOARD ELECTRONIC DISTRIBUTION SYSTEM

7300 ~

7304 ~ CALL S¢0URCE
7306 ~ SEND LIST oi COMMANDS
7308 ~ DELETE COMMAND¢S FROM DATABASE
7310~ ALl SOURCE TO RET:IEVE NEW COMMANDS
7312~ RECEIVE A LIST¢OF COMMANDS

'

7314 - DELETE COMMANDS NOT IN LIST FROM DATABASE

A

7316 SELECT UNPROCESSED COMMAND

CRATE
PRESENT FOR
COMMAND?

YES

7318
7320 -1 RETRIEVE THE CRATE

A

MON
UNPROCESSED YES

COMMANDS

7324 - ADD COMMANDS TO A QUEUE

!

7326 -1 UPDATE INVENTORY OF AIRCRAFT SOFTWARE PARTS

FIG. 73 END

Patent Application Publication = May 28, 2009 Sheet 43 of 57 US 2009/0138518 A1l

7400 DETECT CONNECTION TO
™ ONBOARD ELECTRONIC
DISTRIBUTION SYSTEM
7402
NO COMMAND
IN QUEUE?
7414 7404
N\
| RETURN UPLINKING
NULL DATA?
END

SEND REQUEST TO
ONBOARD ELECTRONIC
7406 —| DISTRIBUTION SYSTEM
TO UPLINK CRATE

!

OBTAIN STATUS
7408 -] OF THE UPLINK

NO _| GENERATE
ERROR

Y

7410 YYES 7216

UPDATE TABLE
I

FIG. 74

1412]

Patent Application Publication

May 28, 2009 Sheet 44 of 57

7500~

RECEIVE CALL TO RETRIEVE
PARTIAL DOWNLINK FILE

YES

DOWNLINK FILE IN
PARTIAL DOWNLINKS
TABLE?

7504
N

RECEIVE CALL TO GET HANDLE
TO THE DOWNLINK FILE

IS THERE
ENOUGH DISK SPACE
FOR DOWNLINK
FILE?

7528 7508

N v N
RETURN PARTIAL CREATE THE DOWNLINK
DOWNLINK FILE FILE IN DOWNLINKS/ AND
INFORMATION RETURN ITS FILE HANDLE

K

4

7510

STORE THE DOWNLINK DATA
INTO THE DOWNLINK FILE IN
THE DOWNLINKS/ DIRECTORY

WAS
STORING ALL OF
THE DOWNLINK DATA
SUCCESSFUL

7522 -

7524]

US 2009/0138518 A1l

7526

/
RETURN NULL SIGNALING
NOT ENOUGH DISK T
SPACE TO DOWNLINK

7514
vy
ADD DOWNLINK FILE
INFO TO THE DOWNLINKS
DATABASE TABLE

!

UPDATE THE DOWNLINK
FILES VIEW TO SHOW
NEW DOWNLINK FILE

7512
RECEIVE CALL TO STORE
THE PARTIAL DOWNLINK FILE
I DELETE PARTIAL DOWNLINK
CREATE RECORD FOR PARTIAL ?ﬁgﬁﬁﬂ#ﬁgﬁigﬁg
DOWNLINKS DATABASE TABLE
- ¥ v
Y
(v) FIG. 75

Patent Application Publication = May 28, 2009 Sheet 450f 57 US 2009/0138518 A1l
7602
7607 f
N
COMMAND MASS STORAGE
AIRCRAFT
AIRCRAFT SOFTWARE
SOFTWARE ONBOARD PARTS
PART
é)(l)\llv(ﬁPROO,\llJEl\ll\lDT ON GROUND \ » ELECTRONIC 7616 7\81 4
NTEREACE |+— COMPONENT | 7610 ;050 | DISTRIBUTION | N
7604 A SYSTEM DOWNLINK
7606 —_— DOWNLINK 7600 FILES
FILE
) STATUS
STATUS INFORMATION
- '\ \
7612 L 7618
FIG. 76
ON GROUND ON GROUND ONBOARD ELECTRONIC
COMPONENT INTERFACE COMPONENT DISTRIBUTION SYSTEM
4 4 S
7700 7702 7704
POLL THE | | _
GROUND | [getCmd(airplanelD) 1. pollOGC(airplanelD) 7
/ N
T2 T
Cmd xml OR FILE URL
FOR CRATED Cmd FILE Cmd TO AIRPLANE
/ N
13 T4

-—1—]

______{

.77

Patent Application Publication

May 28, 2009 Sheet 46 of 57

US 2009/0138518 A1l

ON GROUND ON GROUND ONBOARD ELECTRONIC
COMPONENT INTERFACE COMPONENT DISTRIBUTION SYSTEM
’ / N
7700 7702 7704
DELIVER statusAvail
STATUS (airplanelD, STATUS, reportStatus
10 THE cratedCmdResult) (StatusMassage)
GROUND N 7 N N
u2 u U1
1 1 1
| | |
! ! !

FIG. 78
ON GROUND ON GROUND ONBOARD ELECTRONIC
COMPONENT INTERFACE COMPONENT DISTRIBUTION SYSTEM
’ ’ N
7700 7702 7704
REQUESTTO| | V2 getPartialDownlink | . i
DOWNLINK ~\{ (airplanelD, downID) downlinkPrep
TO THE — (DownCmd)
GROUND NULL GSPartialFile.doc . S
(NO PARTIAL requestDownFile Vi
AVAIL) (fileSize, downLinkinfo) OKAY (OR NOT)
¢ downFile location (File) TOPROCEED
7900 V4 OR NULL IF NO SPACE S
— 7 "L V6 -
V5
RDESVL\’”E\I?_ITNLO getPartialDownlink
T0 THE 1. (airplanelD, downID) mP downlinkPrep(DownCmd) 7
GROUND Vg b/?
(WITH
PARTIAL GSPartialFile.doc WITH OKAY TO PROCEED,
AVAIL) FILE TO APPEND TO DOWN QFFSET TO USE
< >
1902 V9 V10

4 T
!
1
1

Patent Application Publication = May 28, 2009 Sheet 47 of 57 US 2009/0138518 A1l

ON GROUND ON GROUND ONBOARD ELECTRONIC
COMPONENT INTERFACE COMPONENT DISTRIBUTION SYSTEM
’ ’ N
7700 7702 7704
DELIVER 1 W2 requestDownFile | i
DOWNLINK \ (fileSize, downLinkinfo)
TO THE - Downlink(DownFile)
GROUND DOWNLINK FILE OR < <
(NO NULL IF NOT SPACE W1
PARTIAL) | | [7 D
— W3 storeDownlink WRITE INTO FILE
B (downlinkToStore) DONE GOT N BYTES |
8000 ~— N -
L L W4 ||
Wb
DELIVER | ™7 NULL GSPartialFile.doc [, , B
DOWNLINK 7 ™ | Downlink(DownFile)
TO THE W7 B S
GROUND getPartialDownlink W6
(WITH (airplanelD, downID)
PARTIAL) “ /
—/ g
we D WRITE INTO FILE
GSPartialFile.doc WITH DONE GOT N BYTES
1. FILETO APPEND TO S >
b / — Wg T
8002 W10 i i
- 1 1
| |

Patent Application Publication

May 28, 2009 Sheet 48 of 57

US 2009/0138518 A1l

ON GROUND ON GROUND ONBOARD ELECTRONIC
COMPONENT INTERFACE COMPONENT DISTRIBUTION SYSTEM
’ / N
7700 7702 7704

8202

<Resource.../> (OR

NULL IF NOT AVAIL)

OKAY TO PROCEED,

i
Y7

DOWN OFFSET TO USE

N
Y8

PARTIALLY | e
DELIVER downlink(DownFile) /
DOWNLINK h
T0 THE ...NORMAL DOWNLINK
GROUND SEQUENCE...
storePartialDownlink TRANSFER
1. (downlinkToStore)) CONNECTION
8100 [Iy 7 | FAILS/STOPS |
X2 | |
FIG. 81
ON GROUND ON GROUND ONBOARD ELECTRONIC
COMPONENT INTERFACE COMPONENT DISTRIBUTION SYSTEM
’ ’ N
7700 7702 7704
REQUEST | | a uplinkPrep(upCmd, |
UPLINK Y2 getResource upResource,
FROM THE \, (cmd, resource) requestedStart(0))
GROUND - “ N
(NO PARTIAL <Resource.../> (OR Y1
NULL IF NOT AVAIL
REQUESTE/D) 7), Resource (OR NULL
Y3 y4 IFNOTAVALL),
8200 \ availableStart(0)) -
GET UPLINK uplinkPrep(upCmd,
FROM THE | 4 getResource == upResource, ==
GROUND B (cmd, resource) requestedStart(0))
(NO / S
PARTIAL) Y6 Y5

Patent Application Publication = May 28, 2009 Sheet 49 of 57 US 2009/0138518 A1l

ON GROUND ON GROUND ONBOARD ELECTRONIC
COMPONENT INTERFACE COMPONENT DISTRIBUTION SYSTEM
’ ’ N
7700 7702 7704
REQUEST | I i uplinkPrep(upCmd, |
UPLINK 72 getResource upResource,
FROM THE \ (cmd, resource) requestedStart(Offset))
GROUND “ N S
(PARTIAL <Resource.../> (OR 71
NULL IF NOT AVAIL
WD/) 7) > Resource (OR NULL
73 74 IFNOT AVALL),
8300 \ availableStart(Offest)) -
GET UPLINK Uplink(upCmd,
FROMTHE | getResource RE upResource, L
GROUND J (cmd, resource) requestedStart(Offset))
(PARTIAL) ~ / - S
/6 /5
<Resource.../> (OR OKAY TO PROCEED,
8302 NULL IF NOT AVAIL) DOWN OFFSET TO USE
- / - N -
i 7 /8

FIG. 83

Patent Application Publication

(_ START)

Y

RECEIVE UPLINK COMMAND
TO UPLINK AN AIRCRAFT
SOFTWARE PART

8400~

AIRCRAFT
SOFTWARE PART PARTIALLY
UPLINKED?

May 28, 2009 Sheet 50 of 57

YES

REQUEST AIRCRAFT
SOFTWARE PART

8404~

\

y

US 2009/0138518 A1l

REQUEST UNSENT PORTION

| -8420

Y

RECEIVE DATA FOR
AIRCRAFT SOFTWARE PART

8406~

TRANSMISSION OF
DATA STOPPED?

8408

AIRCRAFT
SOFTWARE PART

NO

|

COMPLETE?
8410

A

4

STORE AIRCRAFT SOFTWARE

8412-"] PART IN A STORAGE DEVICE

Y

STORE RECEIVED PORTION
OF AIRCRAFT SOFTWARE
PART IN STORAGE DEVICE

8416

RETURN STATUS TO ON

8414~ GROUND COMPONENT

\

y

STORE STATUS

™-8418

X

A

C END)
FIG. 84

Patent Application Publication

8500 ~

SEND REQUEST TO
SEND A DOWNLINK FILE

8502

RECEIVE

INDICATION TO \NO

May 28, 2009 Sheet 51 of 57

SEND DATA
2

8504 ~|

SEND DOWNLINK DATA

TRANSMISSION
STOPPED?

ALL OF
DOWNLINK DATA
SENT?

8510

SEND STATUS OF
COMPLETION

STORE
STATUS

D
8512

END
FIG. 85

US 2009/0138518 A1l

Patent Application Publication = May 28, 2009 Sheet 52 of 57 US 2009/0138518 A1l

CRATE 8600 8606
8604~_| | AIRCRAFT N Jd
soFTwaRe | | [CRATE | [corey
PART TOOL
8662
FIG. 86
CRATE TOOL 8700
USER INTERFACE | 8704~ SIGNATURE
/
8702 8;06 8708~ CRATE
UNPACK AND INSPECT
8716 8714
710 g712~, 10 FLESYSTEM B
N METADATA || CRATES
UPLOAD

FIG. 87

Patent Application Publication

May 28, 2009 Sheet 53 of 57

US 2009/0138518 A1l

8800~1)5eR 8802~ craTE TOOL LiBrary |~ 8804
8886 | USER OPENS CRATE |
| 1 USING THECRATE |
'NggMEG L[]\ INSPECTION TOOL
12 CRATE INFORMATION 4
.\ ISDISPLAYED /) SIGNATURE
USER INSPECTS CRATE '\’/“AFSSX'TAETD'OANNE
CONTENTS AND CHOOSES
TO UNPACK CRATE CRATE CONTENTS
7 » |.__|IS UNPACKED TO
USER CHOOSES TO FILE SYSTEM
13" UPLOAD UNPACKED T
PART TO LIBRARY |
I5 USING UPLOAD |
\\ LIBRARYTOOL
ADD PART TO UPLOAD
|6 FROM UNPACKED
\\ CRATE LOCATION
|7 UPLOAD LIBRARY
\\ BUTTON IS GLICKED
PROMPT FOR LIBRARY
LOGIN CREDENTIALS
¢ LIBRARY CREDENTIALS
18 ENTERED
/ PROMPT FOR
19 5IGNING PASSWORD
¢ SIGNING PASSWORD
ENTERED
-l- / = L
1 APPLIES
SIGNATURE
PART IS
| TOPARTFILES UPLOADED
112 PART UPLOAD AND CONTENTS
IS INITIATED ___| | VERIFIED
OPERATION STATUS L
IS RETURNED . 114
EVENT LOG RS -
OPERATION STATUS 'S INTIATED N >]
LL IS RETURNED OPERATION STATUS L
) IS RETURNED . 117
| 19 T N T EVENTLOG IS
' ! 118 ' UPLOADED

US 2009/0138518 A1l

May 28, 2009 Sheet 54 of 57

Patent Application Publication

68 DIH
VeO8~J youa3 saluIdoud |
dSTNV 40 ALITIEILYdINOD 7068
2268~] 4100 /82 HLMOIHD | . wm% 9068
0L H3ISN IHLONNEYNT [an /
aeai|dn
X08 DOTVIA ¥ AV1dSIa V130 ALVHD 2168 oow mu._m. p ()aneS
ONINHOM | / 1o19p (Jasop
S3714 3LVHD I9YNVIN ANY 31VH) ()area10 ()uado
0268~] SIUNLYNDIS [0/ALVHD | ONINHOM SNOLLYH3d0 (Jmau
JLVAIVA ‘SINIINOD 35019 31vdJ ONIMHOM SNOILYH3d0
J1VHD 193dSNI ‘ HO N3d0 A 103rodd
- 1 manaLsn 1
mo<_\y_whm_mmw W_Hﬂ__”_uomE mhoE) SR S .
8168—1 NIsSLIssvuorany [7168 Nw% zo:%mn_%
1HYd GINDIS MOVdNN <
J1VLS FUNLYNDIS — 0168
0068
ANV J4NLYNDIS .
9168~ vLOIA SL ONIAYYDHIY 33v444INI 3Sn

NOILVINHOINI AV'1dSId

US 2009/0138518 A1l

May 28, 2009 Sheet 55 of 57

Patent Application Publication

a3doLs sl
3ON343434d NOILYOOT

N
| o106

J3HS34434
SI1SI731vd)

J Y /

9006

{d413740 HO d3JAON
JHV ST114 A1VHO

J /
006

SINILINOD dI1S
| eSS ONIVHOV HLIM ONOY 06 DI
> YvaddV S1TNSTH MIVdNN

A A
8¢06) omom N g314I00W SI
\ ¢06 ¢c06 1S NOLLYI0T
aaLvanva s on/&z: [SN
JUNLYNDIS 1D HOV3 SI 3LVHD 106 8006
ry [} /
(anva) (anva)
(AHOL19FHIA/INYN)
aaLvanva sl aaLvarvA s NOLLYDOT MAN HO4
(@vAnD \ FUNLYNDIS ALVHD /' (qva z_vAm%Ezo_m 31vdd Q3LNOHd SIH3sN
\ A f 1
9¢06 Oiovdnn 8106 NOILYDO0T| NOILYDOT
31VHD SMOMJ) ALYHO M3IN saav SIAOW3IY
SILVANVA HISN SHIVANN H3SN HIsN ¥3Isn v
> M3IIA NOILDIJSNI 3LVHD X0d 9011vId MIIA MOVANN ANV LO3JSNI
S3S070 HIsn
| 31v4D S1DAdSNI
(3Lvadn SYOI9) / HISN N
NOILYINHOANI ILvdd| 2006 0006

S3aLvadn 43sn

Em: oL
QIAV1dSIa S|
NOILYWHOdNI 3Ly / 9408

!

3114 INOH4 Av3d SI
NOILVINHOANI 31VHO 7106

SNOILYOO0T N4Im13d
S31vd) SIAOW HO ST1I4
31v43 S313130 43sn

Patent Application Publication

May 28, 2009 Sheet 56 of 57

US 2009/0138518 A1l

OPEN NEW/EXISTING |~9100
PROJECT
CREATE PRIMARY 1 9102
CONFIGURATION | CREATE WORKING CRATE
9104 _ITEM CREATE1TON
| SIGNED PUA(S)
\ ’
RECEIVE INITIAL Y
CRATE METADATA - SELECT ASSET FROM
AND CONFIGURATION "1« THE SYSTEM. ENTER
ITEM IDENTIFIER METADATA CREATE SEALED CRATE
T 7 9120 USER INDICATES
SELECT A SET o118 | °) S/HE WANTS TO SIGN
DATA FILES FROM | AT RELEASE PACKAGE
FILE SYSTEM AND B METADATA ENTRIES !
ENTER METADATA DISPLAY
/ 9108 ATTEESTATION
9106 | FORM. USER ENTERS
VALIDATE USER'S . PASSWORD
METADATA ENTRIES !
T | CREATE XML FILE,
ATTACH ONE SIGNED
CONFIGURATION ITEM [~ PROJEGT [~ 9116 9122 PART AND ONE OR
. OJEC I MORE SIGNED
9112 RECEIVE USER ASSETS, DIGITALLY
o | - PASSWORD SIGN, AND PLACE
RECEIVE USER ‘ XML FILE ON FILE
- SYSTEM
PASSWORD CREATE DIGITALLY
! b SIGNED XML FILES,
CREATE DIGITALLY AND STORE ON
SIGNED XML FILE AND FILE SYSTEM
SAVE IN FILE SYSTEM 71
7 9124
9114

FIG. 91

Patent Application Publication = May 28, 2009 Sheet 57 of 57 US 2009/0138518 A1l

(START)
!

9200~ ReGEIVE A CRATE

!

9202 ~ PRESENT INFORMATION
ABOUT THE CRATE

UNPACK
CRATE?

NO

VALIDATE SIGNATURES
9206 FOR CRATE

SIGNATURES
FOR THE CRATE

NO | RETURN

ERROR
VALID? N
9208 9212
STORE AIRCRAFT

9210—"| SOFTWARE PART

END
FIG. 92

US 2009/0138518 Al

PROXY SERVER FOR DISTRIBUTING
AIRCRAFT SOFTWARE PARTS

RELATED PROVISIONAL APPLICATION

[0001] The present invention is related to and claims the
benefit of priority of provisional U.S. Patent Application Ser.
No. 60/990,442 entitled “A Proxy Server for Distributing
Software Aircraft Parts”, filed on Nov. 27, 2007, which is
hereby incorporated by reference.

BACKGROUND INFORMATION

[0002] 1. Field

[0003] The present disclosure relates generally to an
improved data processing system and, in particular, to a
method and apparatus for managing software for aircraft. Still
more particularly, the present disclosure relates to a computer
implemented method, apparatus, and computer usable pro-
gram product for managing loadable software airplane parts,
as well as other documents related to the parts known as part
usage assets or simply as assets.

[0004] 2. Background

[0005] Modern aircraft are extremely complex. For
example, an aircraft may have many types of electronic sys-
tems on board. A particular electronic system on an aircraft
may also be referred to as a line replaceable unit (LRU). Each
line replaceable unit may take on various forms. A line
replaceable unit may be, for example, without limitation, a
flight management system, an autopilot, an in-flight enter-
tainment system, a communications system, a navigation sys-
tem, a flight controller, a flight recorder, and a collision avoid-
ance system.

[0006] Line replaceable units may use software or pro-
gramming to provide the logic or control for various opera-
tions and functions. The software used in these line replace-
able units is commonly treated as parts in the airline industry.
In particular, a software application for use in a line replace-
able unit on an aircraft may also be tracked separately and
referred to as a loadable aircraft software part, or aircraft
software part. This software application also may be consid-
ered part of an airplane’s configuration.

[0007] When an entity (i.e. an airline, maintenance, repair,
and overhaul service provider (“MRO”), or military squad-
ron) receives an aircraft, aircraft software parts are typically
already installed in the line replaceable units in the aircraft.
An airline, for example, may also receive copies of these
aircraft software parts in case the parts need to be reinstalled
or reloaded into the line replaceable units in the aircraft that
have failed and have been replaced. Further, the airline also
may receive updates to the loadable aircraft software parts
from time to time. These updates may include additional
features not present in the currently installed aircraft software
parts, and may be considered upgrades to one or more line
replaceable units.

[0008] The current system for managing, handling, and
distributing loadable aircraft software parts is cumbersome
and time consuming. Currently, aircraft software parts are
stored on physical media, such as diskettes, compact discs, or
digital versatile discs (DVD). An airline receives a delivery of
the physical media and stores that physical media in a location
such as, for example, filing cabinets. The media also may be
kept on board the aircraft in many cases.

[0009] Maintenance operations may be performed on the
aircraft to install or reinstall aircraft software parts from time

May 28, 2009

to time. When an aircraft software part is needed, the media
containing that part must be located and retrieved for use by
maintenance personnel. This type of storage and retrieval
system and process takes up both space and time.

[0010] Thus, it would be advantageous to have an improved
method and apparatus for distributing aircraft software parts
that solves the above-described problems.

SUMMARY

[0011] The different advantageous embodiments provide a
computer implemented method, apparatus, and computer
program product for managing aircraft software parts. In one
advantageous embodiment, a method includes retrieving a set
ofaircraft software parts and metadata about the set of aircraft
software parts from a library in an aircraft network data
processing system to form a set of retrieved aircraft software
parts. The set of aircraft software parts is stored in a file
system. Metadata is stored in a database. The set of aircraft
software parts and the metadata is sent to an onboard elec-
tronic distribution system, a communications link between an
on ground component interface, and the onboard electronic
distribution system. Status information about activity on the
communications link is maintained.

[0012] Inanother advantageous embodiment, an apparatus
comprises, a file system, a database, a set of aircraft software
parts stored in the file system, a set of commands stored in the
database, an on ground component, a control process, and a
data processing system. The on ground component is capable
of exchanging information with a plurality of onboard elec-
tronic distribution systems on a plurality of aircraft. The
control process is capable of receiving the set of commands
and the set of aircraft software parts from a library and send-
ing the set of commands and the set of aircraft software parts
to a plurality of aircraft. The file system, the database, the set
of aircraft software parts, the set of commands, the on ground
component, and the control process are software components
on the data processing system.

[0013] In yet another advantageous embodiment, a com-
puter program product comprises a computer readable media
and program code stored on the computer readable media.
Program code is present for retrieving a set of aircraft soft-
ware parts and metadata about the set of aircraft software
parts from a library in an aircraft network data processing
system to form a set of retrieved aircraft software parts. Pro-
gram code is stored on the computer readable media for
storing the set of aircraft software parts in a file system.
Program code also is present for storing the metadata in a
database. Program code is stored on the computer readable
media for sending the set of aircraft software parts and the
metadata to an onboard electronic distribution system, a com-
munications link between an on ground component interface,
and the onboard electronic distribution system. Program code
is present for maintaining status information about activity on
the communications link.

[0014] The features, functions, and advantages can be
achieved independently in various embodiments of the
present disclosure or may be combined in yet other embodi-
ments in which further details can be seen with reference to
the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The novel features believed characteristic of the
advantageous embodiments are set forth in the appended

US 2009/0138518 Al

claims. The advantageous embodiments, however, as well as
a preferred mode of use, further objectives, and advantages
thereof, will best be understood by reference to the following
detailed description of an advantageous embodiment of the
present disclosure when read in conjunction with the accom-
panying drawings, wherein:

[0016] FIG.1isadiagram ofadataprocessing environment
in accordance with an illustrative embodiment;

[0017] FIG. 2 is a diagram of a data processing system in
accordance with an illustrative embodiment;

[0018] FIG. 3 is a diagram illustrating an aircraft software
part management apparatus in accordance with an advanta-
geous embodiment;

[0019] FIG. 4 is a block diagram of a software part man-
agement environment in accordance with an advantageous
embodiment;

[0020] FIG. 5 is a table illustrating modes of operation for
a software part management environment in accordance with
an advantageous embodiment;

[0021] FIG. 6 is a diagram illustrating command types in
accordance with an advantageous embodiment;

[0022] FIG. 7 is a format for commands in accordance with
an advantageous embodiment;

[0023] FIG. 8 is a message flow diagram illustrating pro-
cessing of uplink commands in accordance with an advanta-
geous embodiment;

[0024] FIG. 9 is a messaging diagram illustrating process-
ing of a downlink command in accordance with an advanta-
geous embodiment;

[0025] FIG. 10 is a message flow diagram illustrating pro-
cessing of a delete command in accordance with an advanta-
geous embodiment;

[0026] FIG.11isahighlevel flowchart of a process used to
distribute an aircraft software part in accordance with an
advantageous embodiment;

[0027] FIG. 12 is a flowchart for receiving and storing
aircraft software parts in accordance with an advantageous
embodiment;

[0028] FIG. 13 is a flowchart of a process for distributing
commands through a proxy server in accordance with an
advantageous embodiment;

[0029] FIG. 14 is a flowchart of a process for receiving and
distributing downlink data through a proxy server application
in accordance with an advantageous embodiment;

[0030] FIG. 15 is a flowchart of a process for distributing
aircraft software parts using a software maintenance tool in
accordance with an advantageous embodiment;

[0031] FIG.16 is aflowchart of a process for receiving data
using a software maintenance tool in accordance with an
advantageous embodiment;

[0032] FIG. 17 is a functional block diagram of a library in
accordance with an advantageous embodiment;

[0033] FIG. 18 is a diagram illustrating a file system direc-
tory layout in accordance with an advantageous embodiment;
[0034] FIG. 19 is a block diagram illustrating an organiza-
tion of commands in queues in accordance with an advanta-
geous embodiment;

[0035] FIG. 20 is a block diagram of an aircraft software
part in accordance with an advantageous embodiment;
[0036] FIG. 21 is a command data structure for a delete
command in accordance with an advantageous embodiment;
[0037] FIG. 22 is a diagram illustrating a command data
structure for an uplink command in accordance with an
advantageous embodiment;

May 28, 2009

[0038] FIG. 23 is a diagram illustrating a data structure for
a downlink command in accordance with an advantageous
embodiment;

[0039] FIG. 24 is a diagram of a user interface for dispatch-
ing commands in accordance with an advantageous embodi-
ment;

[0040] FIG. 25 is a diagram illustrating a user interface for
viewing commands in accordance with an advantageous
embodiment;

[0041] FIG. 26 is a diagram of a user interface for viewing
parts in accordance with an advantageous embodiment;
[0042] FIG. 27 is a flowchart of a process for receiving
aircraft software parts in a library in accordance with an
advantageous embodiment;

[0043] FIG. 28 is a flowchart of a process for creating a
command in accordance with an advantageous embodiment;
[0044] FIG. 29 is a high level flowchart of a process for
managing aircraft software parts in accordance with an
advantageous embodiment;

[0045] FIG. 30 is a flowchart of a process for dispatching
command structures in accordance with an advantageous
embodiment;

[0046] FIG. 31 is a flowchart of a process for dispatching
command files in accordance with an advantageous embodi-
ment;

[0047] FIG. 32 is a flowchart of a process for dispatching
parts in accordance with an advantageous embodiment;
[0048] FIG. 33 is a flowchart of a process for dequeuing
commands in accordance with an advantageous embodiment;
[0049] FIG. 34is a diagram illustrating data flow in a proxy
server application in accordance with an advantageous
embodiment;

[0050] FIG. 35 is a diagram illustrating a proxy server
application in accordance with an advantageous embodi-
ment;

[0051] FIGS. 36-39 are diagrams illustrating data struc-
tures in accordance with an advantageous embodiment;
[0052] FIG. 40 is a diagram of a proxy server file system
directory structure in accordance with an advantageous
embodiment;

[0053] FIG. 41 is a flowchart of a process for receiving
information from a library in accordance with an advanta-
geous embodiment;

[0054] FIG. 42 is a flowchart of a process for sending down-
link files to a library in accordance with an advantageous
embodiment;

[0055] FIG. 43 is a flowchart of a process for sending event
files to a library in accordance with an advantageous embodi-
ment;

[0056] FIG. 44 is a flowchart of a process for sending infor-
mation to an aircraft in accordance with an advantageous
embodiment;

[0057] FIG. 45 is a flowchart of a process for receiving
aircraft software parts in accordance with an advantageous
embodiment;

[0058] FIG. 46 is a flowchart of a process for receiving
command status information from an aircraft in accordance
with an advantageous embodiment;

[0059] FIG. 47 is a flowchart of a process for receiving
downlink files in accordance with an advantageous embodi-
ment;

[0060] FIG. 48 is a flowchart of a process for receiving
status information from a software maintenance tool in accor-
dance with an advantageous embodiment;

US 2009/0138518 Al

[0061] FIG. 49 is a flowchart of a process for sending infor-
mation to a software maintenance tool in accordance with an
advantageous embodiment;

[0062] FIG. 50 is a flowchart of a process for sending lists
of aircraft software parts to a software maintenance tool in
accordance with an advantageous embodiment;

[0063] FIG. 51 is a flowchart of a process for receiving
downlink files from a software maintenance tool in accor-
dance with an advantageous embodiment;

[0064] FIG. 52 is a flowchart of a process for receiving
event log files from a software maintenance tool in accor-
dance with an advantageous embodiment;

[0065] FIG. 53 is a diagram illustrating data flow and a
software maintenance tool in accordance with an advanta-
geous embodiment;

[0066] FIG. 54 is a block diagram of a software mainte-
nance tool in accordance with an advantageous embodiment;
[0067] FIG. 55 is a diagram of commands and command
resource tables in accordance with an advantageous embodi-
ment;

[0068] FIG. 56 is a diagram of partial downlink data in
accordance with an advantageous embodiment;

[0069] FIG. 57 is a diagram of a downlinks table in accor-
dance with an advantageous embodiment;

[0070] FIG. 58 is a diagram of a software maintenance tool
file system directory structure in accordance with an advan-
tageous embodiment;

[0071] FIG. 59 is a diagram illustrating interface compo-
nents implemented in a software maintenance tool in accor-
dance with an advantageous embodiment;

[0072] FIGS. 60-65 are example implementations of user
interfaces for user interface components in accordance with
an advantageous embodiment;

[0073] FIG. 66 is a diagram illustrating data flow through a
software maintenance tool in sending commands and aircraft
software parts to an aircraft in accordance with an advanta-
geous embodiment;

[0074] FIG. 67 is a diagram illustrating data flow in a soft-
ware maintenance tool processing downlinked files in accor-
dance with an advantageous embodiment;

[0075] FIG. 68 is a diagram illustrating data flow and log-
ging importing events by a software maintenance tool in
accordance with an advantageous embodiment;

[0076] FIG. 69 is a diagram illustrating data flow in a soft-
ware maintenance tool retrieving parts from a library in
accordance with an advantageous embodiment;

[0077] FIG. 70 is a diagram illustrating data flow in a soft-
ware maintenance tool during retrieving and creating of com-
mands in accordance with an advantageous embodiment;
[0078] FIG. 71 is a diagram illustrating uploading of air-
craft software parts from alternative sources in accordance
with an advantageous embodiment;

[0079] FIG. 72 is a high level flowchart of a process for
managing aircraft software parts in accordance with an
advantageous embodiment;

[0080] FIG. 73 is a more detailed flowchart of a process for
managing aircraft software parts in accordance with an
advantageous embodiment;

[0081] FIG. 74 is a flowchart of a process for sending air-
craft software parts from a software maintenance tool to an
onboard electronic distribution system in accordance with an
advantageous embodiment;

May 28, 2009

[0082] FIG. 75 is a flowchart of a process for receiving
downlink data in accordance with an advantageous embodi-
ment;

[0083] FIG. 76 is a diagram of components used to transfer
information with an aircraft in accordance with an advanta-
geous embodiment;

[0084] FIG. 77 is a message flow diagram illustrating mes-
sage flow used to poll for a command in accordance with an
advantageous embodiment;

[0085] FIGS. 78-79 are message flow diagrams illustrating
the sending of status information in accordance with an
advantageous embodiment;

[0086] FIG. 80 is a message flow diagram for downlinking
data in accordance with an advantageous embodiment;
[0087] FIG. 81 is a diagram illustrating message flow when
the file is only partially delivered in accordance with an
advantageous embodiment;

[0088] FIG. 82 is a message flow diagram illustrating an
uplink process in accordance with an advantageous embodi-
ment;

[0089] FIG. 83 is a diagram illustrating message flow in an
uplink process in accordance with an advantageous embodi-
ment;

[0090] FIG. 84 is a flowchart of a process for uplinking data
in accordance with an advantageous embodiment;

[0091] FIG. 85 is a flowchart of a process for downlinking
data in accordance with an advantageous embodiment;
[0092] FIG. 86 is a diagram illustrating a crate tool in
accordance with an advantageous embodiment;

[0093] FIG. 87 is a diagram illustrating a crate tool in
accordance with an advantageous embodiment;

[0094] FIG. 88 is a message flow diagram illustrating the
processing of a crate in accordance with an advantageous
embodiment;

[0095] FIG. 89 is a diagram illustrating one implementa-
tion of a user interface for a crate tool in accordance with an
advantageous embodiment;

[0096] FIG. 90 is adiagram illustrating data flow in inspect-
ing and unpacking crates in accordance with an advantageous
embodiment;

[0097] FIG. 91 is a diagram illustrating the data flow in
creating a crate in accordance with an advantageous embodi-
ment; and

[0098] FIG. 92 is a flowchart of a process for processing a
received crate in accordance with an advantageous embodi-
ment.

DETAILED DESCRIPTION

[0099] With reference now to the figures and, in particular,
with reference to FIG. 1, an exemplary diagram of a data
processing environment is provided in which the advanta-
geous embodiments may be implemented. It should be appre-
ciated that FIG. 1 is only exemplary and is not intended to
assert or imply any limitation with regard to the environments
in which different embodiments may be implemented. As
used herein, the term exemplary refers to an example and not
necessarily an ideal implementation. Many modifications to
the depicted environments may be made.

[0100] Turning now to FIG. 1, a diagram illustrating a
network data processing system in which a software part
management environment may be implemented is depicted in
accordance with an advantageous embodiment. In this
example, network data processing system 100 is a network
data processing system in which information may be trans-

US 2009/0138518 Al

ferred between aircraft network 101 and ground network 103.
This information may include, for example, without limita-
tion, commands, aircraft software parts, downlink data, error
logs, usage history, flight data, status information, and manu-
als. Ground network 103 includes networks and computers
located on the ground. Aircraft network system 101 is a
network and computers located on an aircraft.

[0101] In these examples, commands may be generated on
library 102 located on library server computer 104. Library
server computer 104 and other data processing systems, such
as server computers 105 and 106, connect to intranet 108.
[0102] These commands may be distributed to on ground
component (OGC) 109 on proxy server computer 110
through a network, such as Internet 112. Intranet 108 and
Internet 112 may include connections such as, for example,
wires, fiber optic cables, or wireless communications links.
Proxy server computer 110 may be located in a facility, such
as airport 114. Proxy servers, such as proxy server computer
110, may be located at other airports and other locations, such
as maintenance locations. Proxy server computer 110 pro-
vides for temporary part storage 111 for commands and parts
received from library 102.

[0103] The commands and aircraft software parts also may
be sent to software maintenance tools on portable computers,
such as software maintenance tool 115 on maintenance laptop
116. Proxy server computer 110 and maintenance laptop 116
are referred to collectively as ground tools. A ground tool may
be any data processing system that is configured with an
appropriate application to transfer information, such as com-
mands, aircraft software parts, and downlink data.

[0104] Proxy server computer 110 may connect to aircraft
118 through various types of connections or links. For
example, wireless unit 120 may establish wireless connection
122 with wireless unit 124 on aircraft 118. Wireless unit 124
connects to open data network 126 in aircraft 118. Mainte-
nance laptop 134 has software maintenance tool 136 and on
ground component (OGC) 138 and may communicate with
aircraft 118 establishing communications link 140 with cabin
wireless access unit 142. Communications link 140 is a wire-
less virtual private network tunnel. Cabin wireless access unit
142 connects to open data network 126 in these examples.
Open data network 126 provides an interface for various
communications links, such as wireless link 122. Addition-
ally, satellite unit 128 connected to proxy server computer
110 at airport 114 may establish satellite link 130 with satel-
lite unit 132, which is also connected to open data network
126.

[0105] Open data network 126 connects to aircraft data
processing system 144, which contains onboard electronic
distribution system (OBEDS) 146. Storage device 148 also is
located in aircraft data processing system 144. Storage device
148 provides a location to store information, such as aircraft
parts. Aircraft data processing system 144 also includes file
transfer system (FTS) 150, onboard storage manager (OSM)
152, onboard data load function (ODLF) 154, and signer-
crater module (SCM) 156. In these examples, signer-crater
module 156 may be implemented as a Java® library compiled
into onboard electronic distribution system 146. Also, aircraft
data processing system 144 may take the form of a crew
information system/maintenance system computer.

[0106] Filetransfersystem 150 is used to transfer files from
storage device 148 to a line replaceable unit. Onboard storage
manager 152 manages information stored in storage device
148. Onboard data load function 154 is a software component

May 28, 2009

used to load aircraft software parts onto line replaceable units.
Signer-crater module 156 is used to process incoming crates
and store the contents of those crates in storage device 148.
Additionally, signer-crater module 156 may crate download
data for downloading to proxy server computer 110.

[0107] All command processing, in these examples, is ini-
tiated by onboard electronic distribution system 146 located
in aircraft data processing system 144. Onboard electronic
distribution system 146 monitors the air-to-ground link status
and determines whether a communications link has been
established. If a link becomes available, onboard electronic
distribution system 146 connects to a ground data processing
system via the link.

[0108] In other advantageous embodiments, maintenance
laptop 158 may establish communications link 164 with iso-
lated data network 166. Maintenance laptop 158 has software
maintenance tool 160 and on ground component 162. Com-
munications link 164 may be a wired connection. The line
replaceable units may be, for example, central server module
(CSM) 168, electronic flight bag (EFB) 170, and cabin ser-
vices system (CSS) 172. Central server module 168 provides
common networking functions for the different networks in
aircraft 118. These services include, for example, packet rout-
ing, firewall, and wireless access. Cabin services system 172
provides applications to control systems in the aircraft, such
as lighting, cabin doors, and address system.

[0109] Ifonboard electronic distribution system 146 estab-
lishes a connection to a ground device, onboard electronic
distribution system 146 requests a list of commands queued
or stored for aircraft 118. Onboard ground components 109,
138, or 162, on data processing systems, such as proxy server
computer 110, maintenance laptop 134, and/or maintenance
laptop 158, communicate with onboard electronic distribu-
tion system 146 on aircraft data processing system 144 in
these examples. This type of software component provides an
application program interface to the ground tool to uplink
commands and aircraft software parts to aircraft 118 as well
as downlinking data or files.

[0110] The illustration of particular components and con-
figurations in network data processing system 100 are not
meant to imply architectural limitations to the manner in
which different embodiments may be implemented. For
example, although only a single aircraft is shown in aircraft
network 101, multiple aircraft may be present within aircraft
network 101. As another example, airline network 108 in
ground network 103 may connect to computers, such as proxy
server computer 110, at airports, such as airport 114, through
other types of networks other than Internet 112. For example,
a wide area network (WAN) may be used in place of, or in
conjunction with, Internet 112.

[0111] Turning now to FIG. 2, a diagram of a data process-
ing system is depicted in accordance with an advantageous
embodiment. In these examples, data processing system 200
is an example of a data processing system that may be used to
implement data processing systems, such as library server
computer 104, maintenance laptop 116, proxy server com-
puter 110, maintenance laptop 134, maintenance laptop 158,
and aircraft data processing system 144 in FIG. 1.

[0112] In this illustrative example, data processing system
200 includes communications fabric 202, which provides
communications between processor unit 204, memory 206,
persistent storage 208, communications unit 210, input/out-
put (I/0) unit 212, and display 214.

US 2009/0138518 Al

[0113] Processor unit 204 serves to execute instructions for
software that may be loaded into memory 206. Processor unit
204 may be a set of one or more processors or may be a
multi-processor core, depending on the particular implemen-
tation. Further, processor unit 204 may be implemented using
one or more heterogeneous processor systems in which a
main processor is present with secondary processors on a
single chip. As another illustrative example, processor unit
204 may be a symmetric multi-processor system containing
multiple processors of the same type.

[0114] Memory 206, in these examples, may be, for
example, a random access memory or any other suitable
volatile or non-volatile storage device. A storage device is
hardware that is capable of storing program code in a func-
tional form for execution by a processor or other hardware
device. Persistent storage 208 may take various forms
depending on the particular implementation. For example,
persistent storage 208 may contain one or more components
or devices. For example, persistent storage 208 may be a hard
drive, a flash memory, a rewritable optical disk, a rewritable
magnetic tape, or some combination of the above. The media
used by persistent storage 208 also may be removable. For
example, a removable hard drive may be used for persistent
storage 208.

[0115] Communications unit 210, in these examples, pro-
vides for communications with other data processing systems
or devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either or both physi-
cal and wireless communications links.

[0116] Input/output unit 212 allows for input and output of
data with other devices that may be connected to data pro-
cessing system 200. For example, input/output unit 212 may
provide a connection for user input through a keyboard and
mouse. Further, input/output unit 212 may send output to a
printer. Display 214 provides a mechanism to display infor-
mation to a user.

[0117] Instructions for the operating system and applica-
tions or programs are located on persistent storage 208. These
instructions may be loaded into memory 206 for execution by
processor unit 204. The processes of the different embodi-
ments may be performed by processor unit 204 using com-
puter implemented instructions, which may be located in a
memory, such as memory 206. These instructions are referred
to as program code, computer usable program code, or com-
puter readable program code that may be read and executed
by a processor in processor unit 204. The program code in the
different embodiments may be embodied on different physi-
cal or tangible computer readable media, such as memory 206
or persistent storage 208.

[0118] Program code 216 is in a functional form and
located on computer readable media 218 and may be loaded
onto or transferred to data processing system 200 for execu-
tion by processor unit 204. Program code 216 and computer
readable media 218 form computer program product 220 in
these examples. In one example, computer readable media
218 may be in a tangible form such as, for example, an optical
or magnetic disc that is inserted or placed into a drive or other
device that is part of persistent storage 208 for transfer onto a
storage device, such as a hard drive that is part of persistent
storage 208. In a tangible form, computer readable media 218
also may take the form of a persistent storage, such as a hard
drive or a flash memory, which is connected to data process-

May 28, 2009

ing system 200. The tangible form of computer readable
media 218 is also referred to as computer recordable storage
media.

[0119] Alternatively, program code 216 may be transferred
to data processing system 200 from computer readable media
218 through a communications link to communications unit
210 and/or through a connection to input/output unit 212. The
communications link and/or the connection may be physical
or wireless in the illustrative examples. The computer read-
able media also may take the form of non-tangible media,
such as communications links or wireless transmissions con-
taining the program code.

[0120] The different components illustrated for data pro-
cessing system 200 are not meant to provide architectural
limitations to the manner in which different embodiments
may be implemented. The different illustrative embodiments
may be implemented in a data processing system including
components in addition to, or in place of, those illustrated for
data processing system 200. Other components shown in
FIG. 2 can be varied from the illustrative examples shown.
[0121] For example, a bus system may be used to imple-
ment communications fabric 202 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using any
suitable type of architecture that provides for a transfer of data
between different components or devices attached to the bus
system. Additionally, a communications unit may include one
or more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, memory 206 or a cache such as found in an interface
and memory controller hub that may be present in communi-
cations fabric 202.

[0122] The different advantageous embodiments provide a
computer implemented method, apparatus, and computer
usable program product for managing aircraft software parts.
[0123] With reference now to FIG. 3, a diagram illustrating
an aircraft software part management apparatus is depicted in
accordance with an advantageous embodiment. In this
example, aircraft software part management apparatus 300
includes receiving module 302, library 304, proxy server
application 306, software maintenance tool 308, and onboard
electronic distribution system 310.

[0124] Receiving module 302 is capable of receiving an
aircraft software part from a source and sending the aircraft
software part to library 304 for storage. The source may
include, for example, an aircraft manufacturer, a software
vendor, a library supplier, or an airline.

[0125] In these examples, library 304 is located on a data
processing system, such as library server computer 102 in
FIG. 1. Library 304 provides a storage system for the aircraft
software part. Also, library 304 may be used to manage the
aircraft software parts. The management of the parts may
include, for example, without limitation, organizing aircraft
software parts, deleting aircraft software parts, and distribut-
ing aircraft software parts. Security and versioning control
processes may be used to manage the aircraft software parts.
[0126] Proxy server application 306 may be located on the
same data processing system or a different data processing
system, depending on the particular implementation. Proxy
server application 306 is in communication with library 304
and is capable of serving different aircraft clients.

[0127] Software maintenance tool 308 may be a software
maintenance tool located on a portable computer that pro-
vides an alternate route to send the aircraft software part to

US 2009/0138518 Al

onboard electronic distribution system 310 from library 304.
Software maintenance tool 308 may receive the aircraft soft-
ware part directly from library 304 or through proxy server
application 306, depending on the particular implementation.
[0128] Onboard electronic distribution system 310 is an
example of an aircraft client located on an aircraft. Onboard
electronic distribution system 310 is a software client that
executes on a data processing system on the aircraft. Onboard
electronic distribution system 310 may receive an aircraft
software part for the aircraft from library 304 through proxy
server application 306. After the aircraft software part has
been received by onboard electronic distribution system 310,
the aircraft software part may be installed in a line replaceable
unit for use.

[0129] In addition to using aircraft software part manage-
ment apparatus 300 to distribute aircraft software parts to an
aircraft, this apparatus also may be used to receive data gen-
erated by the aircraft. This data also is referred to as downlink
data. For example, a flight recorder may generate data
describing different events occurring during a flight. This data
may be downlinked through onboard electronic distribution
system 310 through proxy server application 306 and/or soft-
ware maintenance tool 308 back to library 304 for later use
and analysis. This data also may include configuration data
about the aircraft software part, the line replaceable unit, or
the airplane configuration.

[0130] With reference now to FIG. 4, a block diagram of a
software part management environment is depicted in accor-
dance with an advantageous embodiment. Software part man-
agement environment 400 is an example of one implementa-
tion for aircraft software part management apparatus 300 in
FIG. 3.

[0131] Inthisexample, cratetool 402 executes on computer
404. Crate tool 402 is an example of one implementation of
receiving module 302 in FIG. 3. Library 406 is located on
server computer 410. Library 406 is an example of one imple-
mentation of library 304 in FIG. 3. Proxy server application
412 executes on server computer 414 and is an example of an
implementation of proxy server application 306 in FIG. 3.
Software maintenance tool 416 executes on portable com-
puter 418. Software maintenance tool 416 is an example of
software maintenance tool 308 in FIG. 3. Onboard electronic
distribution system 420 runs on aircraft computer 422 on
aircraft 424. Onboard electronic distribution system 420 is an
example of one implementation for onboard electronic dis-
tribution system 310 in FIG. 3.

[0132] In these examples, crate tool 402 may receive and
process software parts, such as aircraft software part 426 in
crate 428. Crate 428 is a packaging system for aircraft soft-
ware part 426 and is not a physical object. Crate 428, in these
examples, is a file that contains aircraft software part 426.
Crate 428 may be, for example, a zip file using a zip file
format.

[0133] A zip file format is a data compression and archival
format in which the zip file may contain one or more files that
have been compressed. Other examples of packaging systems
for files include, for example, JAVA® archive (JAR) files.
These files also may be encrypted or digitally signed, depend-
ing on the particular implementation. Of course, any type of
mechanism that provides a wrapper for aircraft software part
426 may be used. In these examples, the wrapper is a security
wrapper that is designed to meet various security require-
ments that may be set or required for aircraft software part
426.

May 28, 2009

[0134] Aircraft software part 426 may be a software appli-
cation for use on a data processing system in the aircraft in
these examples. The data processing system may be one
located within line replaceable units 430 in aircraft 424. The
application may include a set of files. The set of files may
include, for example, one or more programs, data files, librar-
ies, configuration files, or other information or code. As used
herein, “a set” refers to one or more items. As an example, a
set of aircraft software parts is one or more aircraft software
parts, and a set of commands is one or more commands.
[0135] Cratetool 402 receives crate 428 and processes crate
428 to store aircraft software part 426 in aircraft software
parts 432 in library 406. This processing may include, for
example, validating signatures for crate 428 and aircraft soft-
ware part 426. This validation may be performed to ensure
that no corruption or errors has occurred in crate 428 or
aircraft software part 426. The different parts stored within
library 406 may be distributed to an aircraft, such as aircraft
424, through the proxy server application.

[0136] Library 406 provides a component within software
part management environment 400 to perform various man-
agement operations on aircraft software parts 432. These
management operations may include, for example, without
limitation, distributing aircraft software parts to an aircraft,
organizing aircraft software parts, deleting aircraft software
parts, receiving data from aircraft on which aircraft software
parts are present, and receiving new aircraft software parts.
[0137] Proxy server application 412 may obtain a set of
aircraft software parts from aircraft software parts 432 and
send those parts to onboard electronic distribution system
420. Proxy server application 412 is in communication with
onboard electronic distribution system 420 through a com-
munications link. This communications link may take various
forms. For example, a wireless communications link may be
used. In this manner, aircraft parts and data may be exchanged
while the aircraft is on ground or even in flight. In other
examples, server computer 414 may be connected to aircraft
computer 422 through a wired link in a network.

[0138] Onboard electronic distribution system 420 pro-
cesses the set of aircraft parts and stores these parts as aircraft
software parts 434 within storage device 436 on aircraft com-
puter 422. As needed, an aircraft software part from aircraft
software parts 434 may be installed in line replaceable units
430. Data, such as an aircraft software part, manuals, docu-
mentation, and commands, sent to the aircraft are referred to
as uplink data.

[0139] Additionally, data may flow in the other direction
from aircraft 424 through proxy server application 412 back
to library 406. This type of data is referred to as downlink
data. In these examples, line replaceable units 430 may gen-
erate downlink data 438, which is temporarily stored in stor-
age device 436. Onboard electronic distribution system 420
may send downlink data 438 to proxy server application 412.
In turn, proxy server application 412 sends downlink data 438
to library 406 for storage. This data may then be processed
and analyzed. This data also may include, for example, the
status of software on an aircraft. This status information may
be used to send an operator to the aircraft to initiate loading
and installation of the line replaceable unit on the aircraft.
[0140] Additionally, software maintenance tool 416 on por-
table computer 418 provides an alternative route for transfer-
ring aircraft software parts and downlink data. Portable com-
puter 418 may be, for example, a laptop computer. Portable
computer 418 may obtain an aircraft software part from air-

US 2009/0138518 Al

craft software parts 432 through proxy server application 412
or directly from library 406, depending on the particular
implementation. Thereafter, portable computer 418 may be
transported to aircraft 424 and establish a communications
link with onboard electronic distribution system 420 on air-
craft computer 422 to send the aircraft software part to
onboard electronic distribution system 420.

[0141] This type of distribution of aircraft software parts is
especially useful when network connections or communica-
tions links cannot be established between server computer
414 and aircraft computer 422 on aircraft 424. This type of
situation may occur depending on the type of equipment
available at an airport or maintenance facility. Further, in
some cases, the network or communications systems provid-
ing communications links may be temporarily unavailable or
require repair. In this manner, software maintenance tool 416
may transfer an aircraft software part to onboard electronic
distribution system 420. Further, software maintenance tool
416 may also receive downlink data 438 while in communi-
cation with onboard electronic distribution system 420.
[0142] In this manner, the different advantageous embodi-
ments provide a computer implemented method, apparatus,
and computer usable program code for managing aircraft
software parts. Further, the different advantageous embodi-
ments also may provide for the transfer of data from an
aircraft to a facility or location for later analysis or review.
[0143] Turning now to FIG. 5, a table illustrating modes of
operation for a software part management environment is
depicted in accordance with an advantageous embodiment. In
this example, table 500 illustrates some of the different modes
of'operation that may occur within software part management
environment 400 in FIG. 4. In these examples, the different
modes of operation include receive and store parts mode 502,
distribute commands mode 504, distribute parts mode 506,
and receive downlink data mode 508. These different modes
of operations illustrated in table 500 are ones that may occur
in one or more components within software part management
environment 400 in FIG. 4.

[0144] In receive and store parts mode 502, aircraft soft-
ware parts may be received and stored within library 406 in
FIG. 4. Distribute commands mode 504 is used to send com-
mands to the aircraft. These commands may be, for example,
to uplink data. This data may include, for example, sending
aircraft software parts to an aircraft. The uplink data also may
include commands to send documentation or other informa-
tion to an aircraft. Distribute parts mode 506 is the mode of
operation in which aircraft software parts are actually sent to
the aircraft. Receive downlink data mode 508 is a mode of
operation in which data is sent from various components in an
aircraft to the library in the software part management envi-
ronment.

[0145] With reference now to FIG. 6, a diagram illustrating
command types is depicted in accordance with an advanta-
geous embodiment. In this example, command types 600
include uplink command 602, downlink command 604, and
delete command 606. Uplink command 602 is used to send
information from a library to an aircraft. This information
may include, for example, aircraft software parts, configura-
tion information, and other data. Downlink command 604 is
used to initiate the transfer of data from an aircraft to a library.
This information may include, for example, status informa-
tion on the uplinking of aircraft software parts and reports of
configuration of line replaceable units on the aircraft. Delete
command 606 is employed to delete information on the air-

May 28, 2009

craft. For example, delete command 606 may be used to
delete a selected aircraft software part on an aircraft. In these
examples, these different commands are sent to the aircraft in
a crate.

[0146] Turning now to FIG. 7, a format for commands is
depicted in accordance with an advantageous embodiment. In
this example, command 700 takes the form of an extensible
markup language (XML) data structure. Command 700, in
this example, is an uplink command.

[0147] Message identifier element 702 in command 700
provides a unique identifier for the command. Type element
704 indicates the type of command. In this example, the type
of command is identified as an uplink command. System
element 706 identifies the target system for the command.
Application identifier element 708 identifies the application
on the target system to receive the command.

[0148] Link label element 710 identifies the type of net-
work link used to transfer the command from the library to the
aircraft. For example, the link may be a wired link or a
wireless link. Server address element 712 identifies the
address of the identified device. Data type element 714 pro-
vides an identification of the type of information that is sub-
jecttothe command. Resource type element 716 identifies the
particular file that is subject to the command.

[0149] Turning now to FIG. 8, a message flow diagram
illustrating processing of uplink commands is depicted in
accordance with an advantageous embodiment. In this
example, processing of an uplink command involves ground
system 800, onboard electronic distribution system (OBEDS)
802, file transfer system (FTS) 804, and line replaceable unit
(LRU) 806. In these examples, ground system 800 is, for
example, a proxy server application on a computer or a soft-
ware maintenance tool located on a laptop computer.

[0150] The process begins by onboard electronic distribu-
tion system 802 establishing a connection with ground sys-
tem 800 (message M1). In response to the connection, ground
system 800 makes the next command available. In this
example, the next command is an uplink command. Ground
system 800 sends the uplink command to onboard electronic
distribution system 802 (message M2). Onboard electronic
distribution system 802 checks the signature for the uplink
command.

[0151] Thereafter, onboard electronic distribution system
802 sends a request for the source to ground system 800
(message M3). Ground system 800 makes the crate corre-
sponding to the request available for transfer. The request in
message M3 is identified from the uplink command received
in message M2.

[0152] Onboard electronic distribution system 802 uplinks
the crate from ground system 800 (message M4). After
receiving the crate, onboard electronic distribution system
802 validates the signatures on the crate. This validation
includes validating the signature on the crate as well as the
signatures for the aircraft software part.

[0153] Thereafter, onboard electronic distribution system
802 sends a transfer request to file transfer system 804 (mes-
sage M5). In response, file transfer system 804 transfers the
aircraft software part to line replaceable unit 806 (message
Me).

[0154] The status is then transferred from file transfer sys-
tem 804 to onboard electronic distribution system 802 (mes-
sage M7).

[0155] Turning now to FIG. 9, a messaging diagram illus-
trating processing of a downlink command is depicted in

US 2009/0138518 Al

accordance with an advantageous embodiment. In this
example, the same components as in FIG. 8 are present for
processing a downlink command. In this example, onboard
electronic distribution system 802 connects to ground system
800 (message N1). Ground system 800 makes the next com-
mand available for processing.

[0156] A downlink command is sent to onboard electronic
distribution system 802 (message N2). Onboard electronic
distribution system 802 sends a request to file transfer system
804 to send the downlink command to line replaceable unit
806 (message N3). In turn, file transfer system 804 sends the
downlink command to line replaceable unit 806 (message
N4). Line replaceable unit 806 processes the command and
then sends downlink data to file transfer system 804 (message
N5). File transfer system 804 sends a request to onboard
electronic distribution system 802 to send downlink data to
ground system 800 (message N6). In response, onboard elec-
tronic distribution system 802 crates and signs the downlink
data. Additionally, onboard electronic distribution system
802 also adds metadata to the crate. Thereafter, onboard elec-
tronic distribution system 802 sends the crate to ground sys-
tem 800 (message N7).

[0157] Turning now to FIG. 10, a message flow diagram
illustrating processing of a delete command is depicted in
accordance with an advantageous embodiment. The same
components as depicted in FIGS. 8 and 9 are used to process
a delete command. The process begins with onboard elec-
tronic distribution system 802 connecting to ground system
800 (message O1). In response, ground system 800 makes the
next command for onboard electronic distribution system 802
available. Onboard electronic distribution system 802
receives the delete command (message 02).

[0158] Thereafter, onboard electronic distribution system
802 checks the signature for the command. If the signature is
valid, onboard electronic distribution system 802 sends a
request to file transfer system 804 to send the delete command
to line replaceable unit 806 (message O3). In these examples,
the only time the signature on the command is checked is if
the command is issued from the proxy server. The same
occurs for the downlink command. Thereafter, file transfer
system 804 sends the delete command to line replaceable unit
806 (message O4).

[0159] In response to receiving the delete command, line
replaceable unit 806 deletes the resource identified by the
delete command.

[0160] File transfer system 804 sends a request to onboard
electronic distribution system 802 to send the status to ground
system 800 (message O5). This status indicates whether the
resource was successfully deleted by line replaceable unit
806. In response to receiving this request, onboard electronic
distribution system 802 crates and signs the status. Thereat-
ter, the crate is sent to ground system 800 (message 06).
[0161] Turning now to FIG. 11, a high level flowchart of a
process used to distribute an aircraft software part is depicted
in accordance with an advantageous embodiment. The pro-
cess illustrated in FI1G. 11 is an example of a process that may
be found in software part management environment 400 in
FIG. 4 to install an aircraft software part on an aircraft.
[0162] The process begins by storing an aircraft software
part in a library (operation 1100). In these examples, the
library is a software aircraft management component, such as
library 406 in FIG. 4. The process then identifies an aircraft to
receive the aircraft software part to form an identified aircraft
(operation 1102). In operation 1102, an operator of the library

May 28, 2009

may select aircraft software parts for distribution to a set of
aircraft. In other embodiments, the target aircraft for aircraft
software parts may be preselected through a communication
or file received from another system.

[0163] Thereafter, the aircraft software part is sent to a
proxy server application (operation 1104) in the form of an
uplink command. The proxy server application sends the
uplink command and the aircraft software part to an onboard
electronic distribution system on the identified aircraft (op-
eration 1106), with the process terminating thereafter.
[0164] Turning now to FIG. 12, a flowchart for receiving
and storing aircraft software parts is depicted in accordance
with an advantageous embodiment. The process illustrated in
FIG. 12 may be implemented in software part management
environment 400 in FIG. 4. This process is an example of
steps that may be performed in receive and store parts mode
502 in FIG. 5.

[0165] Theprocessbegins with a crate tool receiving a crate
(operation 1200). This tool may be, for example, crate tool
402 in FIG. 4. In this example, the crate contains an aircraft
software part that may be requested from a point of origin,
such as a manufacturer of the aircraft or line replaceable units
in the aircraft. The aircraft software part may be received in
response to a notification of the availability of the aircraft
software part and delivered through some transport mecha-
nism. The crate may be received on a physical or tangible
media, such as a compact disc, flash memory, or digital ver-
satile disc. In other embodiments, the crate may be received
through a transmission media, such as a communications link
over a network.

[0166] The crate tool validates and unpacks the crate (op-
eration 1202). In this operation, a notification is generated if
the signature is invalid or the digest does not match the one
calculated by the crate tool. If no problems are detected, the
crate is unpacked into various locations for additional pro-
cessing. Next, the crate tool validates the signature for the
aircraft software part (operation 1204). If the signature is
invalid or the digest for the aircraft software part does not
match the one calculated, a notification is generated. If no
problems are detected, the part is now ready to be signed after
the contents of the crate have been validated or verified.
[0167] The crate tool then inspects the crate contents (op-
eration 1206). In this operation, the contents of the crate may
be displayed for an inspector to verify the contents. In other
embodiments, this operation may be performed automati-
cally for a comparison of the contents with a file or configu-
ration information identifying the expected contents of the
crate.

[0168] Once the contents have been verified, the crate tool
signs the aircraft software part with the airline’s signature
(operation 1208). Depending on the implementation, another
entity’s signature may be used. For example, the signature
may be that of a customer or other party that manages the
library. If no errors occur in signing the aircraft software part,
the part is ready for storage.

[0169] Thereafter, the crate tool places the aircraft software
part into a library (operation 1210), with the process termi-
nating thereafter. This operation involves moving the aircraft
software part from its current location on the file system to the
storage area for the library containing the different aircraft
software parts. In these examples, this library may be, for
example, library 406 in FIG. 4.

[0170] Referring to FIG. 13, a flowchart of a process for
distributing commands through a proxy server is depicted in

US 2009/0138518 Al

accordance with an advantageous embodiment. The process
illustrated in FIG. 13 may be implemented in software part
management environment 400 in FIG. 4. In particular, this
process is an example of one executed during distribute com-
mands mode 504 in FIG. 5.

[0171] The process begins by the proxy server application
receiving and processing queued commands (operation
1300). In these examples, queued commands are sent in
crates, referred to as command packages. The crates are pro-
cessed and sent to appropriate aircraft command queues in the
library. The proxy server application may access and retrieve
the queued commands from queues in the library. If these
commands include uplink commands, crated aircraft soft-
ware parts also are placed into local inventory of the proxy
server. In these examples, the commands are placed into
crates for distribution to the proxy server.

[0172] Thereafter, the proxy server application connects to
the onboard electronic distribution system on the aircraft
(operation 1302). The proxy server application may connect
to multiple aircraft at the same time. In these examples, the
aircraft connects to the proxy server application through a
wireless connection or communications link. Once the com-
munications link is established, information may flow
between the proxy server application and the onboard elec-
tronic distribution system. This information may include, for
example, commands, data, aircraft software parts, configura-
tion files, manuals, and status information.

[0173] The proxy server application then automatically
transfers the crate commands for the aircraft to the onboard
electronic distribution system (operation 1304). In these
examples, the crate commands designated for the aircraft are
available for retrieval by the onboard electronic distribution
system.

[0174] The onboard electronic distribution system reads
the commands and executes the commands (operation 1306).
Inthese examples, the onboard electronic distribution system
polls the command queue on the proxy server application and
retrieves each command for the aircraft one command at a
time. The onboard electronic distribution system then verifies
the crated commands (operation 1308). If the crate is verified,
the command is passed on to the designated system and
application. Thereafter, the onboard electronic distribution
system returns the status of the transfer for the commands
(operation 1310), with the process terminating thereafter.
[0175] Turning nextto FIG. 14, a flowchart of a process for
receiving and distributing downlink data through a proxy
server application is depicted in accordance with an advanta-
geous embodiment. The process illustrated in FIG. 14 may be
implemented in software part management environment 400
in FIG. 4. In particular, the process illustrated in FIG. 14 is an
example of operations that occur during receive downlink
data mode 508 in FIG. 5.

[0176] The process begins with the proxy server applica-
tion connecting to the onboard electronic distribution system
on an aircraft (operation 1400). Thereafter, the proxy server
application receives the downlink of the data (operation
1402). In these examples, the onboard electronic distribution
system generates a downlink for each item in the queue con-
taining downlink data.

[0177] Thereafter, the proxy server application places the
downlink data in a local inventory (operation 1404). This
downlink data is stored for transfer back to the library based
on some event. In these examples, the event may be a period
event, such as the expiration of a timer. In other examples, the

May 28, 2009

event may be a non-period event, such as a request generated
by a user. Afterwards, the proxy server application sends the
downlink data to the library (operation 1406), with the pro-
cess terminating thereafter. In operation 1406, the downlink
data is placed in a directory for later use or analysis.

[0178] Turning now to FIG. 15, a flowchart of a process for
distributing aircraft software parts using a software mainte-
nance tool is depicted in accordance with an advantageous
embodiment. The process illustrated in FIG. 15 may be
implemented in software part management environment 400
in FIG. 4. The different operations in this process are
examples of operations that occur during distribute parts
mode 506 in FIG. 5.

[0179] The process begins with the software maintenance
tool connecting to the network (operation 1500). This is the
network in which the library is present. In this example, parts
are not present and located on the software maintenance tool.
Next, the software maintenance tool retrieves a set of uplink
commands and crates with aircraft software parts (operation
1502).

[0180] Thereafter, the software maintenance tool discon-
nects from the network (operation 1504). The software main-
tenance tool is then moved and connected to the onboard
electronic distribution system on the aircraft (operation
1506). In these examples, the connection requires a human
operator to initiate the connection. The software maintenance
tool automatically transfers the set of uplink commands to the
onboard electronic distribution system (operation 1508). In
these examples, the commands are sent to the onboard elec-
tronic distribution system one command at a time. Each time
a command is sent within operation 1508, a check is made as
to whether the onboard electronic distribution system is done
uplinking the command or other information before sending
the next command.

[0181] The onboard electronic distribution system reads
the set of commands and receives the set of crates containing
the aircraft software part (operation 1510). In these examples,
each command in the set of commands is retrieved one at a
time by the onboard electronic distribution system from the
software maintenance tool. The onboard electronic distribu-
tion system verifies the set of crates (operation 1512). If the
crates are verified, the aircraft software parts are then passed
on for storage and distribution in the aircraft.

[0182] Then, the onboard electronic distribution system
returns a status of the transfer to the software maintenance
tool (operation 1514). The software maintenance tool then
returns the status of the transfer (operation 1516), with the
process terminating thereafter. In this example, the software
maintenance tool returns the status to a source of the aircraft
software part, such as a library or proxy server application.
[0183] In these examples, the uplink commands may be
manually added rather than automatically received from the
library. For example, an operator of the software maintenance
tool may select aircraft software parts for transfer to an air-
craft. This selection results in the software maintenance tool
generating the appropriate commands to transfer the aircraft
software parts. The process still receives crates for the aircraft
software parts.

[0184] Inthis type of implementation, however, the process
proceeds from operation 1508 to receive a selection of the
aircraft software part (operation 1518). This selection is
based on user input in these examples. Thereafter, the soft-
ware maintenance tool issues an uplink command to the
onboard electronic distribution system (operation 1520). This

US 2009/0138518 Al

command may be placed in a command queue for the onboard
electronic distribution system to retrieve.

[0185] Turning now to FIG. 16, a flowchart of a process for
receiving data using a software maintenance tool is depicted
in accordance with an advantageous embodiment. The pro-
cess illustrated in FIG. 16 may be implemented using soft-
ware part management environment 400 in FIG. 4. The opera-
tions illustrated in FIG. 16 are examples of operations that
may occur during receive downlink data mode 508 in FIG. 5.
[0186] The process begins with the software maintenance
tool connecting to the onboard electronic distribution system
(operation 1600). The software maintenance tool receives a
downlink of data from the onboard electronic distribution
system (operation 1602). The onboard electronic distribution
system initiates a downlink for each item within its queue of
downlink data.

[0187] Thereafter, the software maintenance tool places the
data in the local inventory (operation 1604). In this operation,
the software maintenance tool accepts the downlink and
places the data in its inventory. Other data associated with the
downlink data may be displayed in a user interface. This user
interface may allow a user to sort downlink data into filtered
downlink data using various parameters. These parameters
may include, for example, without limitation, aircraft identi-
fication, system identification, application identification, or
data type.

[0188] Next, the software maintenance tool disconnects
from the onboard electronic distribution system (operation
1606). The software maintenance tool is moved from the
aircraft to another location to transfer the downlink data. The
software maintenance tool connects to the network (operation
1608). The software maintenance tool then sends the down-
link data to the library (operation 1610), with the process
terminating thereafter.

[0189] FIGS. 17-33 describe a library in a software part
management environment. In particular, these figures illus-
trate one example of an implementation of library 406 in
software part management environment 400 in FIG. 4.
[0190] With reference to FIG. 17, a functional block dia-
gram of a library is depicted in accordance with an advanta-
geous embodiment. Library 1700 is a more detailed example
of library 406 in FIG. 4. Library 1700 includes user interface
system 1702 and backend 1704. Backend 1704 includes inter-
faces 1706, storage 1708, and management components
1710.

[0191] Interfaces 1706 include messaging service 1712,
hypertext transport protocol (HTTP) service 1714, and web
service 1716. Storage 1708 contains file system 1718 and
database 1720. In these examples, management components
1710 include parts vault 1722, command dispatcher 1724,
command queue manager 1726, system configurator 1728,
imported files aggregator 1730, report manager 1732, event
logger 1734, and security manager 1736.

[0192] User interface system 1702 provides an operator
access to backend 1704 to perform different tasks and opera-
tions. User interface system 1702 may be a graphical user
interface. More specifically, user interface system 1702 may
be a web-based application that allows a user to access library
1700 from a remote location.

[0193] Interfaces 1706 contain a number of different inter-
faces that may be used to transfer information into and out of
library 1700. Within interfaces 1706, messaging service 1712
allows various components within management components
1710 to communicate with other applications. In these

May 28, 2009

examples, report manager 1732 uses messaging service 1712
to distribute reports in response to requests. Messaging ser-
vice 1712 may be implemented using various types of mes-
saging services. For example, messaging service 1712 may be
implemented using Java® Messaging Service, which is part
of'the Java® 2 Enterprise Edition Suite. This product is avail-
able from Sun Microsystems, Inc.

[0194] Web service 1716 may be implemented using any
web service system. Web service 1716 is designed to provide
interaction between library 1700 and other devices over a
network. Web service 1716 in interfaces 1706 may be imple-
mented using application programming interfaces accessed
over a network, such as the Internet. Web service 1716 may be
implemented using various protocols such as, for example,
simple object access protocol (SOAP) or web surface descrip-
tion language (WSDL). Hypertext transport protocol (HTTP)
service 1714 may be implemented to provide a request and
response system to manage responses made by clients. These
requests are typically referred to as HTTP requests.

[0195] Inthese examples, hypertext transport protocol ser-
vice 1714 may be used to send and receive information, such
as files. These files may be, for example, files containing
aircraft software parts, commands, downlink data, and other
suitable information. In these examples, hypertext transport
protocol service 1714 is used by parts vault 1722, command
dispatcher 1724, imported files aggregator 1730, report man-
ager 1732, and event logger 1734.

[0196] As depicted, the different components from compo-
nents within management components 1710 may access stor-
age 1708 for various reasons. Storage 1708 contains the dif-
ferent storage systems used to store information within
backend 1704 of library 1700, such as file system 1718 and
database 1720. Storage 1708 is a functional component that
stores information and may be located on one or more storage
devices, such as a hard drive or a random access memory.
Storage 1708 may be, for example, located on a single storage
device, such as a hard drive.

[0197] Inother embodiments, storage 1708 may be located
onmultiple storage devices, which may be located in the same
physical location or in different physical locations. Within
storage 1708, file system 1718 provides a structure or archi-
tecture for storing data. This data may include, for example,
aircraft software parts, documentation, downlink data, and
other files. Database 1720, in these examples, may contain,
for example, metadata and commands related to files located
within file system 1718. Additionally, database 1720 may
include other commands for performing other functions such
as, for example, deleting files on an aircraft or downloading
downlink data.

[0198] Parts vault 1722 provides processes to manage the
storage and distribution of aircraft software parts to difterent
aircraft. In particular, parts vault 1722 provides for a secure
distribution of parts. These processes may receive new air-
craft software parts, as well as package or crate aircraft soft-
ware parts for distribution to an aircraft.

[0199] Command queue manager 1726 is a component that
manages aircraft commands. Command queue manager 1726
may allow a user or operator, through user interface system
1702, to inspect, reorder, and change the status of commands
within database 1720. The inspection of commands may
allow a user to see different commands or filter commands
based on different criteria.

[0200] Command dispatcher 1724 is a component that
manages creation and dispatching of commands. This com-

US 2009/0138518 Al

ponent may allow a user or operator, through user interface
system 1702, to create uplink, delete, and downlink com-
mands. Command dispatcher 1724 also provides validations
of input parameters when creating these various types of
commands. This component provides a mechanism to group,
crate, and dispatch commands when external devices request
by various criteria.

[0201] In these examples, system configurator 1728 man-
ages the configuration of data to support operations per-
formed by command dispatcher 1724. System configurator
1728 allows a user to define, select, or import information to
define external devices that may be connected to library 1700.
Additionally, this component may allow defining of aircraft
models, particular aircrafts, and destination systems for the
aircraft software parts. These destination systems, in these
examples, may include line replaceable units located in the
aircraft.

[0202] Imported files aggregator 1730 performs concurrent
importing of large files sent from external devices to library
1700. Report manager 1732 allows an operator to define
reports that may be generated by library 1700. These reports
may be ones that include information from the event logs that
may be aggregated from various sources pertinent to the
operation of the software part management environment. For
example, report manager 1732 may allow a user to define a
report that identifies successful uplinking of a specific type of
aircraft software part to a specific model of aircraft being
managed within the software part management environment.
[0203] Event logger 1734 logs events with respect to the
operation of library 1700. Additionally, event logger 1734
may aggregate logs from different devices connected to
library 1700. These events may include, for example, without
limitation, aircraft software parts received from outside
sources, successful transfers of aircraft software parts to air-
crafts, commands generated for uplinking data, commands
generated for downlinking data, and commands generated to
delete aircraft software parts.

[0204] Next, security manager 1736 provides a mechanism
to manage access to library 1700 by operators using user
interface system 1702. Security manager 1736 may be imple-
mented using roles and responsibilities that may be config-
ured for particular users. This type of access may provide
users privileges to access different features or functionalities
within library 1700. Further, security manager 1736 also may
provide for secure communications between external devices
and library 1700. As an example, security manager 1736 may
ensure that communications through interfaces 1706 occur
through mechanisms, such as encryption or virtual private
networks.

[0205] In operation, library 1700 may receive aircraft soft-
ware parts from an external program such as, for example,
crate tool 402 in FI1G. 4. In this type of operation, the external
program connects a service, such as hypertext transport pro-
tocol service 1714 and interfaces 1706. Security manager
1736 performs authentication of the connection and deter-
mines whether aircraft software parts can be imported. If the
connection is allowed, hypertext transport protocol service
1714 may then send a request to parts vault 1722 to handle the
input process. In this process, parts vault 1722 writes meta-
data about the aircraft software parts into database 1720 while
storing the actual aircraft software parts within file system
1718 in some selected file directory.

[0206] When managing parts in library 1700, aircraft soft-
ware parts may be retrieved from file system 1718 through

May 28, 2009

parts vault 1722 and sent to a user for inspection or review.
Further, aircraft software parts may be archived in file system
1718. This type of archiving saves the part in some designated
directory or other storage device. Further, parts vault 1722
also may scan certificates for parts within file system 1718 to
identify whether any certificates signing the part have
expired. A notification of expiration may be generated in
advance through user interface system 1702. Further, expira-
tion of a certificate also causes parts vault 1722 to disable any
commands that contain the part.

[0207] Library 1700 also may be used to create and distrib-
ute commands to outside devices. These commands may be
created by an operator through user interface system 1702.
User interface system 1702 allows a user to enter information
for commands. Once the commands are generated, these
commands are stored within database 1720.

[0208] When these commands are needed by external
devices, the commands may be crated and sent via interfaces
1706. In particular, web service 1716 may be used to send
these commands to an outside component, such as a proxy
server application or software maintenance tool. If aircraft
software parts are specified by a command, these parts may be
sent in a separate transfer through hypertext transport proto-
col service 1714 in these examples. These aircraft software
parts may be sent when requested or sent as part of the
transfer, depending on the particular implementation.

[0209] Additionally, reports are examples of other data that
may be stored in file system 1718. These reports may be, for
example, spreadsheets, parts lists, and live reports.

[0210] Information obtained from downlinking data, such
as files and device logs, may be stored within file system
1718. These files may be aggregated using imported files
aggregator 1730. This component may accept files and create
metadata entries in database 1720, in addition to saving the
files within file system 1718.

[0211] The different components illustrated for library
1700 are presented as one example of communication for
different functions. The presentation and organization of
these different components is not intended to imply architec-
tural limitations to the manner in which the components may
be implemented. For example, the different components
within library 1700 may be subdivided or combined in other
fashions other than that as displayed. Additionally, in other
implementations, some functions may be omitted or other
functions may be added. Further, some functions may be
combined and implemented as a single module or application
within library 1700. As another example, interfaces 1706 may
be implemented using other interfaces in addition to, or in
place of, the ones illustrated.

[0212] Turning now to FIG. 18, a diagram illustrating a file
system directory layout is depicted in accordance with an
advantageous embodiment. File system directory layout
1800 is an example of a layout or schema used within file
system 1718 in FIG. 17. In this example, file system directory
layout 1800 defines information used to locate files within file
system 1718 in FIG. 17. The file types include, for example,
downlink 1802, log 1804, part 1806, alternate part sign list
(APSL) 1808, spreadsheet 1810, and archive 1812.

[0213] Each of these types of files is identified within file
system directory layout 1800 with different types of informa-
tion. For example, downlink 1802 includes date 1814, device
1816, tail number 1818, unique identifier (UID) 1820, and
downlink file name 1822. Date 1814 identifies the creation
date of the downlink file. Device 1816 identifies the device

US 2009/0138518 Al

that transferred the downlink data from the aircraft to the
library. This device may be, for example, a proxy server
application or software maintenance tool. Tail number 1818
identifies a particular aircraft on which the downlink data was
located. Unique identifier 1820 uniquely identifies the file
within the file system. Downlink file name 1822 is the name
of the downlink file.

[0214] Next, log 1804 includes device 1824, unique iden-
tifier (UID) 1826, and eventlog filename 1828. Part 1806 is
for an aircraft software part and includes unique identifier
(UID) 1830, crated 1832, crate file name 1834, and crated part
file name 1836. Crated 1832 identifies a directory in which
the crate, containing the aircraft software part, is located.
Crate file name 1834 is a name of the crate file. Crated part file
name 1836 is the name of the file containing the aircraft
software part.

[0215] Alternate part signature list 1808 includes unique
name 1838, and spreadsheet 1810 includes unique name
1840. Archive 1812 includes aircraft software part (SAP)
1842, unique identifier (UID) 1844, and crate file name 1846.
[0216] File system directory layout 1800 is provided as an
example of one implementation for file system 1718 in FIG.
17. In other advantageous embodiments, other file system
layouts or schemas may be used, which are suitable for the
particular implementation.

[0217] With reference now to FIG. 19, a block diagram
illustrating an organization of commands in queues is
depicted in accordance with an advantageous embodiment. In
this example, queues 1900, 1902, and 1904 are examples of
queues that are located in database 1720 in FIG. 17.

[0218] Queue 1900 includes commands 1906; queue 1902
includes commands 1908; and queue 1904 includes com-
mands 1910. Commands 1906, 1908, and 1910 are com-
mands destined for a particular aircraft in these examples. The
commands may be, for example, uplink commands, downlink
commands, or delete commands. An uplink command is a
command that sends information from library 1700 in F1G. 17
to an aircraft, while a downlink command is a command that
sends information from an aircraft to library 1700 in FIG. 17.
[0219] A delete command is a command that is used to
delete information on the aircraft. This information may be,
for example, an aircraft software part, a configuration file, or
a manual. Each of these queues, in these examples, is associ-
ated with a particular ground tool or device. In these
examples, queues 1900, 1902, and 1904 are associated or
designated for different devices that are to distribute the com-
mands to aircraft.

[0220] For example, queue 1900 may be associated with a
first proxy server application, queue 1902 with a second
proxy server application, and queue 1904 with a software
maintenance tool. When different devices contact library
1700 in FIG. 17, commands are distributed to those devices
based on whether commands are present in the queues asso-
ciated with those devices.

[0221] Turning now to FIG. 20, a block diagram of an
aircraft software part is depicted in accordance with an advan-
tageous embodiment. In this example, aircraft software part
2000 is stored in crate 2002. Crate 2002 is stored within file
system 1718 in FIG. 17.

[0222] Crate 2002 is a file in these examples. Crate 2002
may be, for example, without limitation, in a zip file format.
Crate 2002 also may, in some embodiments, contain more
than one aircraft software part. Aircraft software part 2000
may include a set of files that provide functionality for the

May 28, 2009

particular part. These files may include, for example, execut-
able files, data files, configuration files, and library files.
[0223] In the depicted embodiments, crate 2002 and air-
craft software part 2000 are signed. In other words, aircraft
software part 2000 is signed with one digital signature, while
crate 2002 is signed with another digital signature. These
digital signatures may be the same or different, depending on
the particular embodiment. Of course, in other implementa-
tions, aircraft software part 2000 may not be stored in crate
2002.

[0224] With reference now to FIGS. 21-23, examples of
command data structures are depicted in accordance with an
advantageous embodiment. The different command data
structures illustrated in these figures are examples of tempo-
rary data structures created from commands stored in queues,
such as queues 1900, 1902, and 1904 in FIG. 19.

[0225] Turning now to FIG. 21, a command data structure
for a delete command is depicted in accordance with an
advantageous embodiment. In this example, delete command
data structure 2100 includes parameters 2102, 2104, 2106,
2108, 2110, and 2112.

[0226] Parameter 2102 identifies a set of file names to be
deleted. Parameter 2104 identifies a set of part identifiers to
be deleted. Parameter 2106 is a set of airplane identifiers that
identify the particular aircraft to receive the delete command.
This list of airplane identifiers may be, for example, tail
numbers. Parameter 2108 identifies a set of devices that are to
send the command. These devices may be, for example,
ground tools, such as a proxy server application or software
maintenance tool.

[0227] Parameter 2110 identifies the destination system to
receive the command. In these examples, the destination sys-
tem is the particular line replaceable unit that is to receive the
command. Parameter 2112 identifies a user that requests the
command.

[0228] In FIG. 22, a diagram illustrating a command data
structure for an uplink command is depicted in accordance
with an advantageous embodiment. In this example, uplink
command data structure 2200 includes parameters 2202,
2204, 2206, 2208, and 2210. Parameter 2202 identifies the
aircraft software part to be uplinked or sent. Parameter 2204
identifies a set of airplanes to receive the commands. These
parameters contain aircraft identifiers. Parameter 2206 is a set
of device identifiers for devices to process the command.
Parameter 2208 is a set of parameters identifying the desti-
nation system to receive the command. Parameter 2210 iden-
tifies the user that requested the command.

[0229] Turning nextto FIG. 23, adiagram illustrating a data
structure for a downlink command is depicted in accordance
with an advantageous embodiment. In this example, down-
link command data structure 2300 includes parameters 2302,
2304, 2306, 2308, and 2310.

[0230] Parameter 2302 identifies the type of data that is
being downlinked. Parameter 2304 identifies a set of aircraft
to receive the command to downlink data. Parameter 2306 is
for a set of devices to send the command to the set of aircraft.
Parameter 2308 identifies a set of line replaceable units on the
set of aircraft to receive the command. Parameter 2310 iden-
tifies a user that requests the command.

[0231] These command data structures are abbreviated
forms of the commands that allow devices, such as a proxy
server application or software maintenance tool, to begin
processing the commands referenced by the command data
structures. These command data structures may reduce the

US 2009/0138518 Al

amount of traffic across various communications links in
these examples. The devices may request the actual com-
mands after receiving these command data structures. These
command data structures are deleted after being sent to the
ground tools in these examples.

[0232] With reference now to FIG. 24, a diagram of a user
interface for dispatching commands is depicted inaccordance
with an advantageous embodiment. Window 2400 is an
example of a user interface that may be presented through
user interface system 1702 for command dispatcher 1724 in
FIG. 17.

[0233] In this example, a user may select between creating
commands, such as uplink commands and downlink com-
mands. This selection may be made through controls 2402
and 2404. Control 2402 may be used to generate an uplink
command, while control 2404 may be used to generate a
downlink command. Control 2406 may be used to generate
delete commands.

[0234] In this depicted example, control 2402 has been
selected, resulting in section 2408 being displayed within
window 2400. Section 2408 provides a user an ability to input
information to create an uplink command. For example, the
user may select an airplane tail number from list 2410. These
airplane tail numbers are unique to particular aircraft.

[0235] The user also may select a device in the form of a
proxy server application from list 2412 to distribute the com-
mand. Also, devices in the form of software maintenance
tools may be selected through list 2414. The destination sys-
tem on the aircraft may be selected through field 2416. The
destination system is a particular line replaceable unitin these
examples. Field 2418 allows the entry of a part number. Entry
of'this part number provides other information about the part
shown in fields 2420, 2422, 2424, 2426, and 2428. The par-
ticular information displayed about the part may vary,
depending on the particular implementation.

[0236] Field 2416 has different selectable values for differ-
ent command types.

[0237] FIGS. 25-26 are diagrams of graphical user inter-
faces in accordance with an advantageous embodiment.
These graphical user interfaces are examples of interfaces
that may be presented through user interface system 1702 in
FIG. 17. These depicted graphical user interfaces are pre-
sented for purposes of illustrating one particular implemen-
tation and not meant to limit the manner in which a graphical
user interface may be designed or presented by user interface
system 1702 in FIG. 17.

[0238] Turning to FIG. 25, a diagram illustrating a user
interface for viewing commands is depicted in accordance
with an advantageous embodiment. In this example, window
2500 is an example of a graphical user interface that may be
displayed through user interface system 1702 for command
queue manager 1726 in F1G. 17. In this example, the user may
view the status of various commands. In particular, specific
types of commands may be viewed through window 2500.

[0239] Commands may be viewed using controls 2502,
2504, and 2506. Pending commands may be viewed by
selecting control 2502, executed commands may be viewed
by selecting control 2504, and dequeued commands may be
viewed by selecting control 2506. A user may reorder or
change the order in which commands are stored in the queue
through control 2508. In this example, pending commands
have been selected and are displayed within section 2510 of
window 2500.

May 28, 2009

[0240] With reference now to FIG. 26, a diagram of a user
interface for viewing parts is depicted in accordance with an
advantageous embodiment. Window 2600 is an example of a
graphical user interface presented through user interface sys-
tem 1702 for parts vault 1722 in FIG. 17.

[0241] In this depicted example, aircraft software parts
within the library may be viewed. Valid parts may be viewed
through the selection of control 2602, incoming parts may be
viewed through the selection of control 2604, expired parts
may be viewed through the selection of control 2606, and
faulty parts may be viewed through the selection of control
2608. In this example, control 2602 has been selected, and
valid parts located within the library are displayed within
section 2610 of window 2600.

[0242] With reference now to FIG. 27, a flowchart of a
process for receiving aircraft software parts in a library is
depicted in accordance with an advantageous embodiment.
The process illustrated in FIG. 27 may be implemented in
library 1700 in FIG. 17. In particular, these processes may be
implemented in parts vault 1722 within management compo-
nents 1710 of library 1700 in FIG. 17.

[0243] The process begins by receiving an aircraft software
part (operation 2700). In receiving the aircraft software part,
metadata is received as well as a stream of data for the aircraft
software part. The process determines whether the metadata
for the aircraft software part is correct (operation 2702). In
these examples, the metadata is data that is associated with
and/or describes the aircraft software part.

[0244] In these examples, the following metadata may be
checked: whether part name conforms to the regular expres-
sion ["~/:*?\"< >, |.\\]* and less or equal to 200 characters;
whether the production status is BLACK_LLABEL, RED_
LABEL, or BLUE_L ABEL; whether the applicable standard
is of a length greater or equal to 0 and less or equal to 500
characters; whether the intellectual property owner is of a
length greater or equal to 0 and less or equal to 100 characters;
whether the release date has a correct date format; and
whether the description is of a length greater or equal to 0 and
less or equal to 2000 characters.

[0245] If the metadata for the part is correct, the process
registers a temporary entry in the database in the library
(operation 2704). This temporary entry is used to provide a
status of the process for receiving the part. The entry initially
indicates that the receiving of the part has begun. The process
also creates a directory structure in the file system (operation
2706). This directory structure is used to save portions or
fragments of the file containing the aircraft software part as
the file is received.

[0246] A determination is made as to whether the receipt of
the aircraft software part is complete (operation 2708). If the
receipt of the aircraft software part is not complete, the
progress is updated in the database (operation 2710), and the
file fragments received are saved in the file system (operation
2712). This progress may be displayed in the user interface.
The process then returns to operation 2708 to continue check-
ing the status of the received operation for the aircraft soft-
ware part.

[0247] When the receipt of the aircraft software part is
complete in operation 2708, the process determines whether
the part is integral (operation 2714). This operation is per-
formed to determine whether the aircraft software part is
complete and whether the part has errors. The check may be
made by matching a certificate to the received part.

US 2009/0138518 Al

[0248] If the aircraft software part is integral, the process
crates the aircraft software part (operation 2716). The process
then determines whether the crating operation was successful
(operation 2718). If the crating was successful, the part is
marked as complete in the database (operation 2720). The
crated part is saved in the file system for later retrieval (opera-
tion 2722), with the process terminating thereafter.

[0249] With reference again to operation 2718, if the crat-
ing operation is not successful, an error is generated (opera-
tion 2724). Thereafter, the process removes the entry from the
database (operation 2726), and removes the saved data for the
aircraft software part (operation 2728), with the process ter-
minating thereafter. With reference again to operation 2714, if
the aircraft software part is not integral, the process also
proceeds to operation 2724. Operations 2726 and 2728 are
performed to clean up the database entry and the file system
entry for the failed receipt of the aircraft software part.
[0250] With reference again to operation 2702, if the meta-
data for the aircraft software part is not correct, the process
generates an error (operation 2730), with the process termi-
nating thereafter. The errors generated in operations 2730 and
2724 may be stored in a log for later use.

[0251] Turning now to FIG. 28, a flowchart of a process for
creating a command is depicted in accordance with an advan-
tageous embodiment. The process illustrated in FIG. 28 may
be implemented in library 1700 in FIG. 17. In particular, this
process may be implemented in command dispatcher 1724 in
FIG. 17.

[0252] The process begins by receiving a user request to
create a command (operation 2800). This command may be
received through a user interface, such as that provided
through user interface system 1702 in FIG. 17. A user may
select one of three command types in these examples. The
command types include uplink, downlink, and delete. The
process identifies a command type from the user input (opera-
tion 2802).

[0253] In response to the type of command identified, the
process generates a list of parameters and possible values
(operation 2804). This list includes, for example, aircraft tail
numbers, applicable device name lists, and destination line
replaceable units to receive the command. The process then
selectively presents the list and values to the user (operation
2806). Inthese examples, the list is a context-sensitive list that
provides additional options or values, depending on the pre-
vious selections made by the user.

[0254] The process receives user input selecting values
from the presented list and values (operation 2808). The
process then validates the context of the parameters (opera-
tion 2810). In these examples, the context sensitive values
exist in user interface system 1702 in FIG. 17. This interface
implements what is allowable within a command type the
values of destination systems. Operation 2810 rechecks these
rules at backend 1704 in FIG. 17. Backend 1704 may serve
other user interfaces other than user interface system 1702 in
FIG. 17 that may not have the same validation rules.

[0255] The process creates a set of commands (operation
2812). In operation 2812, the process creates a command for
each combination of command type, tail number, and device
name. Of course, other rules and policies may be used to
identify what commands are created from the user selections.
Typically, all commands of the same type and target to the
same aircraft may be logically grouped. Thereafter, the set of
commands is saved in the database in the library (operation
2814), with the process terminating thereafter.

May 28, 2009

[0256] With reference to FIG. 29, a high-level flowchart of
a process for managing aircraft software parts is depicted in
accordance with an advantageous embodiment. The process
illustrated in FIG. 29 may be implemented in library 1700 in
FIG. 17 in these examples.

[0257] The process begins by sending command structures
to distribution devices (operation 2900). These command
structures may be, for example, delete command data struc-
ture 2100 in FIG. 21, uplink command data structure 2200 in
FIG. 22, or downlink command data structure 2300 in FIG.
23. These command structures are sent in response to requests
for commands from various devices, such as a proxy server
application or software maintenance tool.

[0258] Thereafter, command files are sent to the devices
(operation 2902). These command files are sent in response to
requests for the commands themselves when a particular
device executes a command. Command structures are sent
instead of sending command files to reduce the amount of
traffic that may occur from constant polling by various
devices. Instead, command files are sent when devices actu-
ally begin executing the commands. Thereafter, the process
sends the aircraft software parts (operation 2904), with the
process terminating thereafter. In this operation, the aircraft
parts are sent as part of the execution of a command.

[0259] Turning now to FIG. 30, a flowchart of a process for
dispatching command structures is depicted in accordance
with an advantageous embodiment. The process illustrated in
FIG. 30 is a more detailed description of operation 2900 in
FIG. 29.

[0260] The process begins by receiving a request from a
device (operation 3000). In these examples, the device may
be, for example, a proxy server application or a software
maintenance tool. Of course, the device may be any device
that contacts or connects to the library to obtain commands.
[0261] The process then queries the database for com-
mands associated or placed in a command queue for the
particular device (operation 3002). Operation 3002 may be
implemented using command queue manager 1726 in FIG.
17. The process receives a result from the query (operation
3004).

[0262] Thereafter, the process creates a command data
structure containing the commands for the device (operation
3006). The process then returns the command data structure
to the device (operation 3008), with the process terminating
thereafter. In these examples, the command data structures
are created upon a request by a device for commands. In other
embodiments, the command data structures may be created
and broadcast to many devices based on some event or on a
period event, such as the expiration of a timer.

[0263] Turning now to FIG. 31, a flowchart of a process for
dispatching command files is depicted in accordance with an
advantageous embodiment. The process illustrated in FIG. 31
is a more detailed description of operation 2902 in FIG. 29.
The process illustrated in FIG. 31 may be implemented in a
component, such as command dispatcher 1724 in FIG. 17.
[0264] At this point in the process, the device has received
a command data structure for processing. The device may
perform some processing of the command based on this com-
mand data structure. For example, the device may begin to
establish a communications link with the aircraft. The com-
mand data structure provides sufficient information for the
device to perform various processes. The propagation of the
command to the aircraft, however, requires additional infor-
mation in a command file.

US 2009/0138518 Al

[0265] The process begins by receiving a request for a
command file from a device (operation 3100). The process
queries the database for the command identified by the device
(operation 3102). This query is made using a unique identifier
previously sent in the command structure.

[0266] The process then receives results from the database
(operation 3104). Operation 3102, in these examples, queries
the database based on a command ID and retrieves all the
information about the command which is used to create a
crated version of the command in extensible markup lan-
guage. Operation 3104 could be redundant. These results are
used to create a command file (operation 3106). The process
crates the command file (operation 3108). Thereafter, the
process returns the crate to the device (operation 3110), with
the process terminating thereafter.

[0267] With reference now to FIG. 32, a flowchart of a
process for dispatching parts is depicted in accordance with
an advantageous embodiment. The process illustrated in FIG.
32is amore detailed description of operation 2904 in FIG. 29.
The process in this example may be implemented using com-
mand dispatcher 1724 in FIG. 17.

[0268] The process begins by receiving a request for an
aircraft software part from a device (operation 3200). The
process queries the database for the aircraft software part
(operation 3202). The process retrieves the crated aircraft
software part from the file system (operation 3204), and
retrieves metadata for the aircraft software part from the
database (operation 3206). The process then performs an
integrity check on the aircraft software part (operation 3208).
The integrity check is performed to ensure that the aircraft
software part has not been corrupted while being stored. This
integrity check may be made using various error checking
processes, including hashing.

[0269] A determination is made as to whether the aircraft
software part is valid based on the integrity check (operation
3210). If the aircraft software part is valid, the crated aircraft
software part is returned to the device (operation 3212), with
the process terminating thereafter. On the other hand, if the
aircraft software part is not valid, an error message is returned
(operation 3214), with the process terminating thereafter.
[0270] Turning now to FIG. 33, a flowchart of a process for
dequeuing commands is depicted in accordance with an
advantageous embodiment. The process illustrated in FIG. 33
may be performed by command queue manager 1726 in F1G.
17. This process is used to remove commands from the queue
in the database after the commands have been processed.
[0271] The process begins by receiving notification of a
command execution (operation 3300). In this example, the
notification is received from the device executing the com-
mand. The process looks up the command and its associated
group (operation 3302). This lookup is performed using a
unique identifier for the command. Additionally, other com-
mands associated with the executed commands are redundant
commands that may have been sent to different devices for the
same aircraft.

[0272] The process marks and dequeues the command from
the command queue in the database (operation 3304). The
process also dequeues all other commands in the group (op-
eration 3306). This dequeuing of other commands prevents
redundant commands being dispatched to different devices in
the future. Thereafter, the status is saved (operation 3308),
with the process terminating thereafter.

[0273] Turning now to FIG. 34, a diagram illustrating data
flow in a proxy server application is depicted in accordance

May 28, 2009

with an advantageous embodiment. Proxy server application
3400 interacts with components such as library 3402, soft-
ware management tool 3404, and onboard electronic distri-
bution system 3406. In these examples, on ground component
3408 provides for transfer of information between library
3402 and onboard electronic distribution system 3406.
[0274] Library 3402 may send new commands and aircraft
software parts to proxy server application 3400 (message
A1). The results of the processing of those commands and
parts may be returned to library 3402 by proxy server appli-
cation 3400 as command status information (message A2).
Additionally, proxy server application 3400 also may send
downlink and event log files to library 3402 (message A3).
[0275] With respect to transferring information with
onboard electronic distribution system 3406, on ground com-
ponent 3408 and proxy server application 3400 may send new
commands and aircraft software parts to onboard electronic
distribution system 3406 (message A4). Command status
information may be returned to on ground component 3408
identifying the status of commands and parts sent to onboard
electronic distribution system 3406 (message A5). Addition-
ally, onboard electronic distribution system 3406 may send
downlink files to on ground component 3408 (message A6).
[0276] Proxy server application 3400 may send new com-
mands and parts to software management tool 3404 (message
AT). Software management tool 3404 may return command
status after the processing of those files (message A8) and
send downlink files or event logs (message A9). In these
examples, software management tool 3404 may communi-
cate with onboard electronic distribution system 3406. Soft-
ware management tool 3404 provides an alternate route for
exchanging information with onboard electronic distribution
system 3406. Software management tool 3404 is located in a
portable data processing system, which may be moved from a
location associated with proxy server application 3400 to the
aircraft in which onboard electronic distribution system 3406
is located. These details are described in more detail with
respect to the description of software management tool 3404
below.

[0277] Although the different interactions have been
described in a particular order, any of the different messages
and interactions may occur simultaneously at any time.
[0278] For example, proxy server application 3400 may
send commands and aircraft parts to onboard electronic dis-
tribution system 3406 at the same time onboard electronic
distribution system 3406 downloads downlink data to proxy
server 3400. Further, proxy server application 3400 may
simultaneously service multiple aircraft clients, such as soft-
ware management tool 3404 and onboard electronic distribu-
tion system 3406.

[0279] With reference now to FIG. 35, a diagram illustrat-
ing a proxy server application is depicted in accordance with
an advantageous embodiment. Proxy server application 3500
is an example implementation of proxy server application
3400 in FIG. 34. In this example, proxy server application
3500 includes control process 3502, database 3504, file sys-
tem 3506, on ground component interface 3508, software
maintenance tool interface 3510, and on ground component
3512. These two interfaces may be implemented using appli-
cation programming interface (API) calls in these examples.
[0280] Database 3504 contains commands processed by
control process 3502. Each of the records in database 3504
may identify the status of a command. For example, a record
may identify whether a command has been processed, as well

US 2009/0138518 Al

as the target aircraft and target line replaceable unit on the
aircraft. File system 3506 stores aircraft software parts and
downlink data in these examples.

[0281] On ground component 3512 is a software compo-
nent in proxy server application 3500 that communicates with
the onboard electronic distribution system on the aircraft. On
ground component interface 3508 has application program-
ming interfaces that provide calls that may be used by control
process 3502 to exchange information with on ground com-
ponent 3512.

[0282] On ground component 3512 functions to allow any
processes, such as control process 3502 in proxy server appli-
cation 3500, to communicate with an onboard electronic dis-
tribution system without having to be specifically designed to
communicate with the onboard electronic distribution sys-
tem. As a result, control process 3502 may be changed or
modified without having to include protocols used to com-
municate with the onboard electronic distribution system.
Further, changes to an onboard electronic distribution system
may occur without requiring changes to all of the processes in
proxy server application 3500. Instead, modification or
changes may be made to on ground component 3512.

[0283] Software maintenance tool interface 3510 has appli-
cation programming interfaces that provide calls that may be
used by control process 3502 to communicate with a software
maintenance tool. The structure and organization of database
3504 and file system 3506 may be similar to that used in a
library within the aircraft software part maintenance environ-
ment.

[0284] Turning to FIGS. 36-39, diagrams illustrating data
structures used in database 3504 in FIG. 35 are depicted in
accordance with an advantageous embodiment. Command
result database table 3600 illustrates information and records
for command results. Command result database table 3600
includes command result identifier 3602, command identifier
3604, ground status 3606, aircraft status 3608, date 3610,
command type 3612, aircraft identifier 3614, and device
name 3616.

[0285] Command result identifier 3602 uniquely identifies
a specific command result record, and command identifier
3604 uniquely identifies a specific command record. Com-
mand identifier 3604 may be found in various tables to relate
data in the tables to a specific command record. Ground status
3606 identifies the origination of the command status mes-
sages, which may be from an on ground component or an
onboard electronic distribution system in these examples.
Aircraft status 3608 is a command status message that can
originate from an on ground component or an onboard elec-
tronic distribution system. The ground status identifies the
status of the uplink or downlink of the file being uplinked or
downlinked.

[0286] This information provides the percentage complete-
ness of the actual uplink or downlink of the file. Each per-
centage may be reported as a separate status. Using an uplink
as an example, a status message of one-quarter done, fol-
lowed by a one-half done status message, then a three-quar-
ters done message, and finally a done status message would
all be sent as the contents of the file were being sent to the
onboard electronic distribution system. The reporting of each
message would be an indication that the appropriate amount
of'the file contents had been successfully delivered. The same
may occur with file contents being written to the ground
component during a downlink operation.

May 28, 2009

[0287] Date 3610 identifies the date that the particular
device sent the command result. Command type 3612 iden-
tifies the type of command, such as uplink, downlink, or
delete. Aircraft identifier 3614 is a unique value identifying a
specific aircraft within an airline’s fleet of aircraft. Device
name 3616 identifies the name of the device sending the
command result to the proxy server application.

[0288] Turning now to FIG. 37, adiagram of a downlink file
database table is depicted in accordance with an advanta-
geous embodiment. In this example, downlink file database
table 3700 illustrates information in a downlink file database
table. Downlink file database table 3700 includes downlink
file identifier 3702, airplane identifier 3704, device 3706, date
3708, file name 3710, file universal resource locator 3712,
and file status 3714.

[0289] With reference now to FIG. 38, command and com-
mand resource database tables are depicted in accordance
with an advantageous embodiment. In this example, com-
mand database table 3800 represents commands, while com-
mand resources database table 3802 represents command
resources. Command database table 3800 includes command
identifier 3804, airplane identifier 3806, application name
3808, command type 3810, device name 3812, system name
3814, date 3816, servicing status 3818, priority 3820, com-
mand group 3822, crated command 3824, and crated com-
mand path 3826.

[0290] Command resources database table 3802 includes
command resource identifier 3828, data type 3830, applica-
tion standard 3832, part expiration date 3834, owner 3836,
name 3838, production status 3840, release date 3842, sup-
plier 3844, path 3846, crate expiration date 3848, and com-
mand identifier 3850. Command resources identified in com-
mand resources database table 3802 are aircraft software
parts in crates for uplink commands, file or configuration
reports for downlink commands, and files or aircraft software
part files for delete commands.

[0291] Command identifier 3804 uniquely identifies this
specific command result record. Airplane identifier 3806
identifies a particular aircraft. Application name 3808 identi-
fies the line replaceable unit and the aircraft. For example,
application name 3808 may identify a particular line replace-
able unit. Device name 3812 identifies the different devices
for which the command is dispatched to an aircraft. The
device name identifies, for example, a particular proxy server
application or software maintenance tool.

[0292] Inthese examples, the name may be a specific name
for the particular proxy server application or software main-
tenance tool. System name 3814 identifies the name of the
system on which the application is present. Date 3816 iden-
tifies the date that the command was created by the command
dispatcher in the library.

[0293] Servicing status 3818 is used to identify the status of
acommand. This field may identify commands that have been
successfully sent to the onboard electronic distribution sys-
tem and to identify commands that a software maintenance
tool has reported as being successfully uplinked to an onboard
electronic distribution system.

[0294] Priority 3820 is a value used to order commands
within queues for distribution to an onboard electronic distri-
bution system. Command group 3822 may be used to group
commands. Crated command 3824 is the name of the file
containing the crated format of the command. Crated com-
mand path 3826 is a path identitying the location of where the
crated command is stored.

US 2009/0138518 Al

[0295] In command resources database table 3802, com-
mand resource identifier 3828 uniquely identifies the com-
mand resource record. Data type 3830 identifies the type of
data for the resource. Application standard 3832 identifies a
standard applicable to the aircraft software part. Part expira-
tion date 3834 indicates when the aircraft software part
expires and/or is no longer usable. For example, the data type
may be an aircraft software part or a file. Owner 3836 iden-
tifies the intellectual property owner of the aircraft software
part. Name 3838 is the name of'the file or the aircraft software
part in these examples.

[0296] Production status 3840 identifies the production sta-
tus of the aircraft software part within a crate. This status may
be, for example, red label, blue label, or black label. A red
label part is a non-deliverable, production quality hardware or
software part under engineering development. A blue label
part is controlled and maintained and is restricted for use in a
laboratory environment only. A black label part is considered
production ready and can be delivered to an airline customer.
[0297] Release date 3842 identifies the date that the aircraft
software part in the crate was released. Supplier 3844 identi-
fies the supplier of the aircraft software part. Path 3846, in
these examples, identifies the location of the aircraft software
part. For example, a universal resource locator string may be
used for retrieving the part. Crate expiration date 3848 is the
date that the certificate used to sign the crate expires. Com-
mand identifier 3850 identifies the specific aircraft command
record.

[0298] Crated command files may be associated with
records in the command table by storing the file name in the
crated command field in combination with the file path string.
Aircraft software part crate files may be associated to records
in the command resource table in command resources data-
base table 3802 by storing the file name in name 3838 in
combination with a file path string.

[0299] In FIG. 39, a diagram illustrating an airplane com-
mand database table is depicted in accordance with an advan-
tageous embodiment. In this example, airplane command
database table 3900 provides an example of information
found for airplane commands. Airplane command database
table 3900 includes airplane command identifier 3902, mes-
sage identifier 3904, airplane identifier 3906, command type
3908, and command XML 3910.

[0300] Airplane command identifier 3902 is used to
uniquely identify the particular aircraft command record.
Message identifier 3904 is an identifier for partial downlinks
related to a particular downlink command. This identifier is
generated for downlink files that are not the result of a down-
link command sent to the onboard electronic distribution
system. Command XML 3910 identifies the extensible
markup language document file format of the particular
downlink command that the onboard electronic distribution
system sent that will be retrieved when the onboard electronic
distribution system requests a partial downlink file.

[0301] In these examples, the different tables may be
related to each other through the command identifier. The
different database table definitions are for different data ele-
ments handled by the proxy server application. Different
processes may use one or more of these tables to indicate
when a record is inserted, updated, or deleted.

[0302] Turning now to FIG. 40, a diagram of a proxy server
file system directory structure is depicted in accordance with
an advantageous embodiment. In this example, directory
structure 4000 represents a file system directory structure.

May 28, 2009

Directory structure 4000 is an example of one type of direc-
tory structure that may be implemented in file system 3506 in
FIG. 35. Directory structure 4000 may identify different
types of files stored within a file system on a proxy server
application.

[0303] Inthese examples, directory structure 4000 includes
crated commands 4002, crate 4004, downlink files 4006,
downlink files archive 4008, downlink files partial 4010,
archived event file logs 4012, event log 4014, and temporary
files 4016. This type of directory structure is used to store files
in the file system, as well as to identify or locate files within
the file system in these illustrative examples.

[0304] Turning now to FIG. 41, a flowchart of a process for
receiving information from a library is depicted in accordance
with an advantageous embodiment. In this example, the pro-
cess illustrated in FIG. 41 may be implemented in control
process 3502 in FIG. 35. This process is used to receive
commands and parts from a library in the aircraft software
part maintenance environment. This process may be initiated
in response to an event. For example, the event may be the
expiration of a timer. In other embodiments, the event may be
caused by other sources. For example, the event may be
initiated by a user input.

[0305] The process begins by identifying successfully
executed commands (operation 4100). These commands are
ones that the proxy server application sent to a set of aircraft
in which the processing of the commands occurred success-
fully. The commands may be, for example, to delete a soft-
ware aircraft file, load a software aircraft file, or downlink
data from a line replaceable unit on the aircraft.

[0306] These commands may be identified from a database
within the proxy server application, such as database 3504 in
FIG. 35. The particular commands may be identified from
command identifiers in acommand result database table, such
as command result database table 3600 in FIG. 36. The iden-
tification of these commands forms a list of commands that is
sent to the library (operation 4102). Operations 4100 and
4102 are used to send command status information to the
library.

[0307] Next, the process requests a command list from the
library (operation 4104). Operation 4104 is performed to
initiate processing of new commands for distribution to a set
of aircraft. The process receives a response from the request
(operation 4106). A determination is made as to whether a
command list is received in the response (operation 4108). If
acommand list is not received, the process terminates with no
new command present to process. Otherwise, the process
deletes commands stored within the database that are not
found on the new command list received from the library
(operation 4110).

[0308] Inoperation 4110, the commands that are present in
the database with the proxy server application that are not
included in the list of commands retrieved from the library are
considered to be unnecessary for the proxy server application
to process or handle. This feature makes the library the
authoritative source for commands that are supposed to be
processed and found on different proxy server applications in
these examples.

[0309] Ifthe proxy server application receives a command
and the command is canceled by a user before processing, the
command dispatcher in the library deletes the command for
the device. As a result, the proxy server application will not
receive the command in the list of commands during a future
cycle in which commands are requested. In this manner, a

US 2009/0138518 Al

user may remove all the commands for a particular proxy
server application by deleting pending commands for that
proxy server application from a command queue screen.
[0310] Thereafter, the process stores new commands in the
database (operation 4112). In these examples, the command
list may be in the form of a command data structure. The
proxy server application will selectively request the actual
commands themselves either immediately or at some other
point in time.

[0311] The process then selects an unprocessed new com-
mand for the process (operation 4114). The process requests
acrate containing the command (operation 4116). Inresponse
to the request, the process receives the crate (operation 4118).
The received crate is then stored in the file system (operation
4120). The process then determines whether any unprocessed
new commands are still present (operation 4122). If addi-
tional unprocessed new commands are present, the process
returns to operation 4114 to select another unprocessed new
command for processing.

[0312] Otherwise, in operation 4122, the process deter-
mines whether uplink commands are present in the new com-
mands received (operation 4124). If uplink commands are
present, an unprocessed uplink command is selected for pro-
cessing (operation 4126). The process then determines
whether a crate containing an aircraft software part is already
present in the file system (operation 4128). If a crate is
present, the process returns to operation 4124 as described
above.

[0313] Ifacrateis not present, the process requests the crate
containing the aircraft software part corresponding to the
command from the library (operation 4130). Thereafter, the
process receives the crate (operation 4132) and stores the
crate in the file system (operation 4134).

[0314] The process then returns to operation 4124 to deter-
mine whether additional unprocessed uplink commands are
present. If additional unprocessed uplink commands are not
present, the process terminates. Otherwise, the process
returns to operation 4126 to select another unprocessed
uplink command as described above.

[0315] During execution of the process in FIG. 41, three
types of event log messages are created and recorded. A
record indicating that the proxy server application success-
fully connected to the library is one event recorded in the log.
An event indicating that a list of received commands has been
received from the library is another event that is recorded. An
event is also recorded for each command that is placed into a
queue for an aircraft identified by the command. The list of
successful commands sent to the library may be used in aiding
an airline with planning maintenance operations.

[0316] Turning now to FIG. 42, a flowchart of a process for
sending downlink files to a library is depicted in accordance
with an advantageous embodiment. The process illustrated in
FIG. 42 may be implemented in a control process, such as
control process 3502 in FIG. 35. This process illustrates the
different operations that occur when a proxy server applica-
tion sends a downlink file received from an onboard elec-
tronic distribution system to a library. This process may be
initiated by an event, such as a timer. This process may be
initiated at a different time from the process for handling
commands that is illustrated in FIG. 41 to help spread out a
traffic network and reduce congestion.

[0317] Theprocess begins by identifying downlink records
for untransferred downlink data in the database (operation
4200). A determination is made as to whether unprocessed

May 28, 2009

records are present in the database (operation 4202). If
unprocessed records are present, an unprocessed record for a
downlink file is selected for processing (operation 4204). The
process sends the file containing the downlink data to the
library (operation 4206).

[0318] Thereafter, the process archives the file sent to the
library (operation 4208). The process then updates the data-
base record for the file as being archived (operation 4210). A
determination is then made as to whether additional unproc-
essed records are present (operation 4212). If additional
unprocessed records are present, the process returns to opera-
tion 4204.

[0319] Otherwise, the process identifies records in the data-
base that are older than some selected threshold (operation
4214). This threshold may be, for example, some selected
number of hours since the date and/or time in the timestamp
indicating when the downlink file was received. The process
deletes any identified records from the database (operation
4216), with the process terminating thereafter. With reference
again to operation 4202, if unprocessed records are not
present, the process also terminates.

[0320] Turning now to FIG. 43, a flowchart of a process for
sending event files to a library is depicted in accordance with
an advantageous embodiment. The process illustrated in FIG.
43 may be implemented in a proxy server application com-
ponent, such as control process 3502 in FIG. 35. As with the
other processes, the process illustrated in FIG. 43 may be
initiated in response to an event, such as a timer.

[0321] The process in this figure supports sending event
logs back to the library for analysis for use in planning opera-
tions, such as maintenance operations. The event log sent to
the library in FIG. 43 captures event messages that are the
result of user interaction with an application user interface
system and/or interface interaction between application com-
ponents. This type of information may be used during busi-
ness processes of an airline for reporting during an audit to
ensure that various processes are followed for specific opera-
tions.

[0322] The process begins by comparing a current log file
with a copy of the log file from a previous processing cycle
(operation 4300). The process identifies any new events that
have occurred from the comparison of the two log files (op-
eration 4302). The process then sends events for new entries
found in comparison to the library (operation 4304). A copy
of'thefiles sent to the file system is archived (operation 4306).
The process then sends any rollover log files to the library
(operation 4308). Rollover log files are files present from a
previous period of time, such as a previous date.

[0323] The process archives a copy of any file in the file
system sent to the library (operation 4310). The process then
deletes the rollover log files sent to the library (operation
4312). Next, the previous copy of the log file is deleted and the
current log file is set as the copy for use in the next comparison
(operation 4312). The process then looks for device name
subdirectories within the event logs direction (operation
4314). In operation 4314, subdirectories with a device name
are created when a proxy server application writes event log
files for received files from a software maintenance tool into
the file system.

[0324] The process looks for event log files in any found
subdirectories (operation 4316). Afterwards, the process
sends any event log files found in the subdirectories to the

US 2009/0138518 Al

library (operation 4316). The process then deletes all of the
sent files and empties the subdirectories (operation 4318).
The process then terminates.

[0325] Turning now to FIG. 44, a flowchart of a process for
sending information to an aircraft is depicted in accordance
with an advantageous embodiment. In these examples, the
process illustrated in FIG. 44 may be implemented in a soft-
ware component, such as control process 3502 within proxy
server application 3500 in FIG. 35. In these examples, the
information takes the form of commands and aircraft soft-
ware parts sent to an onboard electronic distribution system
on the aircraft.

[0326] The process begins by receiving a request for a next
command from the onboard electronic distribution system
(operation 4400). Thereafter, the process obtains the next
command requested by the onboard electronic distribution
system (operation 4402). In these examples, the actual file for
the command is located in the file system of the proxy server
application. The record in the database contains the metadata
about the command in the file system.

[0327] The process then updates the database record for the
command to indicate that the command has been serviced
(operation 4404). The process makes a determination as to
whether the next command is a delete command (operation
4406). If the next command to be processed is not a delete
command, the process then makes a determination as to
whether the aircraft is currently uplinking information (op-
eration 4408).

[0328] Ifthe aircraft is currently uplinking information, the
process determines whether the aircraft is also downlinking
information (operation 4410). If the process is not downlink-
ing information, a determination is made as to whether the
next command is an uplink command (operation 4412). If the
next command is not an uplink command, the process finds
the next command and returns that command to the onboard
electronic distribution system (operation 4414), with the pro-
cess terminating thereafter.

[0329] With reference again to step 4406, if the next com-
mand to be processed is a delete command, the process pro-
ceeds to step 4414 as described above. With reference againto
operation 4412, if the next command is an uplink command,
the process finds and returns the next downlink command or
delete command for the aircraft (operation 4418), with the
process terminating thereafter. With reference again to opera-
tion 4410, if the aircraft is downlinking, the process finds and
returns the next delete command in the queue for the aircraft
(operation 4416), with the process terminating thereafter.
[0330] Withreferenceback to operation 4408, if the aircraft
is not uplinking, a determination is made as to whether the
aircraft is downlinking (operation 4420). If the aircraft is not
downlinking in operation 4420, the process finds and returns
the next command for the aircraft (operation 4422), with the
process terminating thereafter. If the aircraft is downlinking
in operation 4420, a determination is made as to whether the
next command for the aircraft is a downlink command (opera-
tion 4424).

[0331] If the next command is not a downlink command,
the process proceeds to operation 4422 as described above.
Otherwise, the process finds and returns the next uplink com-
mand or delete command (operation 4426), with the process
terminating thereafter.

[0332] In these examples, the different decisions in deter-
mining which command to send to the aircraft is performed to
avoid sending too many uplink and/or downlink commands to

May 28, 2009

the same aircraft at the same time. This type of processing is
employed to improve or optimize the use of bandwidth while
the aircraft is communicating with the proxy server applica-
tion. An event log message is written to a log file during this
process that reports when the aircraft software part was
uplinked to an aircraft. In other advantageous embodiments,
other types of decisions may be used to implement other
policies that may be desired. For example, certain types of
commands may be given preference over other types of com-
mands. Selected types of aircraft may be given priority over
others.

[0333] With reference next to FIG. 45, a flowchart of a
process for receiving aircraft software parts is depicted in
accordance with an advantageous embodiment. The process
illustrated in FIG. 45 may be implemented in a software
component, such as control process 3502 in FIG. 35. The
process illustrated in this example is used to obtain aircraft
software parts from a proxy server application.

[0334] The process begins by receiving a request for a crate
containing an aircraft software part from an onboard elec-
tronic distribution system (operation 4500). The process
locates the crate corresponding to the request (operation
4502). The process then returns the crate to the onboard
electronic distribution system (operation 4504), with the pro-
cess terminating thereafter.

[0335] Turning now to FIG. 46, a flowchart of a process for
receiving command status information from an aircraft is
depicted in accordance with an advantageous embodiment.
The process illustrated in FIG. 46 may be implemented in a
software component, such as control process 3502 in FI1G. 35.
This process is used to receive status information from an
onboard electronic distribution system on an aircraft.

[0336] The process in FIG. 46 is employed to obtain status
information regarding the processing of commands on an
aircraft. The status information may indicate whether the
sending of the command was successtul with respect to the
particular line replaceable unit. Further, with uplink com-
mands, the status also will indicate whether the aircraft soft-
ware part is stored on the aircraft and ready for installation. In
these examples, the installation of the aircraft software part
on the line replaceable unit is one initiated by a mechanic or
technician. In other embodiments, this type of installation
may be automatic.

[0337] The process begins by receiving a call from the
onboard electronic distribution system with a command sta-
tus (operation 4600). The process inserts a new record in the
command results database table with the information from
the command status (operation 4602), with the process ter-
minating thereafter.

[0338] With this information, the proxy server application
may send the status information back to the library as to
whether the command was successful. This information
allows an identification of when aircraft software parts are
present on an aircraft and ready for installation on a line
replaceable unit. In these examples, three event log messages
are created. A message indicates whether the specific com-
mand was successful. Messages also are sent back indicating
which deleted files within a command were successfully
deleted. Additionally, the identification of commands that
failed also is logged in the status messages.

[0339] Turning now to FIG. 47, a flowchart of a process for
receiving downlink files is depicted in accordance with an
advantageous embodiment. The process illustrated in FIG. 47
may be implemented in a software component, such as con-

US 2009/0138518 Al

trol process 3502 in FIG. 35. This flowchart illustrates the
processes that occur when a downlink file is sent to a proxy
server application from an onboard electronic distribution
system.

[0340] The process begins by receiving a call from the
onboard electronic distribution system to download downlink
data (operation 4700). In these examples, the on ground com-
ponent identifies a partial downlink when a file writing opera-
tion was previously interrupted and the entire contents of the
file were not written into the file. If the file writing operation
completed successfully, the downlink is a completed down-
link. Ifthe call is to send additional data for the downlink, then
the information received is added onto the file previously
stored for the downlink on the file system with the proxy
server application.

[0341] The process then receives data for the downlink file
(operation 4702). Next, the process determines whether the
data is for a partially downloaded downlink file (operation
4704). If the data is for a new downlink file, the process
creates a downlink file (operation 4706). Thereafter, the data
is stored in the downlink file (operation 4708). A determina-
tion is then made as to whether additional data is received for
the downlink file (operation 4710). If additional data is
received, the process returns to operation 4708. Otherwise,
the process determines whether the file is complete (operation
4712). Ifthe file is complete, the file is stored in the file system
on the proxy server (operation 4714), with the process termi-
nating thereafter.

[0342] With reference again to operation 4712, if the file is
not complete, the process marks the file as a partially down-
loaded downlink file (operation 4716), with the process ter-
minating thereafter. With reference again to operation 4704, if
the data to be downloaded is for a partially downloaded down-
link file, the process determines whether a partial downlink
file is present for the data (operation 4718).

[0343] Ifthe downlink file is present, the process proceeds
to operation 4708 as described above. Otherwise, the process
sends an error to the onboard electronic distribution system
(operation 4720), with the process terminating thereafter.
This area indicates that a partial downlink file for the data to
be sent by the onboard electronic distribution system is not
present on the proxy server. In this situation, the onboard
electronic distribution system may resend the entire file in
another data transfer.

[0344] In these examples, the onboard electronic distribu-
tion system may send downlink files to the proxy server
application at the same time that the onboard electronic dis-
tribution system is receiving commands from the proxy
server application. This process takes into account that inter-
ruptions may occur during the downlinking of data to the
proxy server application. If the sending of downlink data is
interrupted, the successful written part is saved for later when
the rest of the data can be written. In this manner, rewriting of
earlier data is not necessary. In these examples, an event log
message may be recorded that indicates that the downlink
data was received from the proxy server application from a
specific aircraft.

[0345] With reference now to FIG. 48, a flowchart of a
process for receiving status information from a software
maintenance tool is depicted in accordance with an advanta-
geous embodiment. The process illustrated in FIG. 48 may be
implemented in control process 3502 in FIG. 35. This process
illustrates the different operations that occur in receiving
status messages from a software maintenance tool.

May 28, 2009

[0346] The process begins by receiving a call from a soft-
ware maintenance tool with command status information for
a command (operation 4800). Thereafter, the process inserts
a new record in the command results database table for the
command identified in the call (operation 4802). The process
marks the record as software maintenance tool reported suc-
cess (operation 4804).

[0347] The process returns a confirmation to the software
maintenance tool (operation 4806). These different messages
may be collected with other messages to transfer back to the
library. The process then marks the local copy of the com-
mand as sent to the aircraft (operation 4808), with the process
terminating thereafter. This process prevents the proxy server
application from resending the command back to the software
maintenance tool.

[0348] Turning now to FIG. 49, a flowchart of a process for
sending information to a software maintenance tool is
depicted in accordance with an advantageous embodiment.
The process illustrated in FIG. 49 may be implemented in
control process 3502 in FIG. 35. The process sends informa-
tion in the form of uplink commands and aircraft software
parts to the software maintenance tool.

[0349] The process begins by receiving requests from the
software maintenance tool for a list of commands (operation
4900). This operation may be for various types of commands.
For example, the request may be for any commands that have
been designated for the particular software maintenance tool.
The request may obtain commands for a particular aircraft, a
particular line replaceable unit on the aircraft, or some iden-
tifier.

[0350] In response to receiving this request, the process
locates commands corresponding to the request in the data-
base (operation 4902). The process then receives a result from
the database (operation 4904). The process sends the results
back to the software maintenance tool (operation 4906), with
the process terminating thereafter. The software maintenance
tool may request the crates containing the aircraft software
parts using a process similar to the one illustrated in FIG. 45
for sending aircraft software parts to an onboard electronic
distribution system.

[0351] Turning now to FIG. 50, a flowchart of a process for
sending lists of aircraft software parts to a software mainte-
nance tool is depicted in accordance with an advantageous
embodiment. This process may be implemented in a software
component, such as control process 3502 in FIG. 35. This
process may be used to identify what aircraft software parts
are available on the proxy server application.

[0352] The process begins by receiving a request for a list
of aircraft software parts from the software maintenance tool
(operation 5000). The process then sends a query to the data-
base to identify the aircraft software parts stored in the file
system (operation 5002). Results are received from the data-
base (operation 5004). The list of aircraft software parts are
sent to the software maintenance tool (operation 5006), with
the process terminating thereafter.

[0353] In these examples, the lists returned in operation
5006 may contain unique aircraft software part names that are
in the inventory of the proxy server application even if the
aircraft software part is on the proxy server application only
to support a command that was dispatched specifically to that
proxy server application and not for other devices.

[0354] With reference now to FIG. 51, a flowchart of a
process for receiving downlink files from a software mainte-
nance tool is depicted in accordance with an advantageous

US 2009/0138518 Al

embodiment. The process illustrated in this example may be
implemented in a proxy server application component, such
as control process 3502 in FIG. 35.

[0355] The process begins by receiving a request from a
software maintenance tool to downlink a file (operation
5100). In operation 5100, this request may be made as a
hypertext transport protocol request. A determination is made
as to whether a directory is present for the aircraft (operation
5102). If a directory is present, a determination is made as to
whether the file is already present in the directory (operation
5104).

[0356] If the file is not present in the directory, the file is
written into the subdirectory for the aircraft (operation 5106).
Thereafter, the process inserts a new record in a downlink files
database table for the downloaded file (operation 5108), with
the process terminating thereafter.

[0357] With reference again to operation 5104, if the file is
already present in the subdirectory, a timestamp is added to
the file name (operation 5110), with the process then proceed-
ing to operation 5106 as described above.

[0358] In operation 5110, a timestamp is added to the file
name to allow an additional copy of the same file to be written
without overriding or losing the original file. As a result, the
original file name is present along with an additional file
having a file name that is similar except for the addition of the
timestamp. The contents of the files may be identical in some
cases. With reference again to operation 5102, if the directory
for the aircraft is not present, the process creates a subdirec-
tory for the aircraft (operation 5112). The process then pro-
ceeds to operation 5106 as described above.

[0359] In FIG. 52, a flowchart of a process for receiving
event log files from a software maintenance tool is depicted in
accordance with an advantageous embodiment. The process
illustrated in FIG. 52 may be implemented in control process
3502 within proxy server application 3500 in FIG. 35.

[0360] The process begins by receiving a request from a
software maintenance tool to downlink an event log file to the
proxy server application (operation 5200). The process then
determines whether a subdirectory is present for the device
(operation 5202). In this example, the device is a software
maintenance tool. Ifa subdirectory is present for the device, a
timestamp is added to the file name of the file received from
the software maintenance tool (operation 5204). The process
then writes the file into the device name subdirectory (opera-
tion 5206), with the process terminating thereafter.

[0361] With reference again to operation 5202, if a subdi-
rectory is not present for the device, the process creates a
subdirectory for that device (operation 5208). The process
then proceeds to operation 5204 as described above.

[0362] Within aircraft software part management apparatus
300 in FIG. 3, the different advantageous embodiments pro-
vide a computer implemented method, apparatus, and com-
puter program product for managing aircraft software parts.
The different advantageous embodiments provide a software
maintenance tool located on a portable data processing sys-
tem that may be used to establish connection to a source
through a ground network. A set of uplink commands may be
retrieved from the source through this connection. A set of
aircraft software parts corresponding to the uplink commands
are retrieved from the source through the established connec-
tion to form a set of retrieved aircraft software parts. The set
of aircraft software parts is stored in the portable data pro-
cessing system.

May 28, 2009

[0363] This portable data processing system may then be
disconnected from the ground network and connected to an
aircraft network in an aircraft. An uplink command is issued
from the set of uplink commands to the aircraft network
through an on ground component located in the portable data
processing system. The stored aircraft software part corre-
sponding to the uplink command may then be sent to the
aircraft network through the on ground component.

[0364] This software maintenance tool may be utilized in
situations in which an aircraft network is unable to establish
a connection with a ground network. For example, at some
airports, the aircraft network may be incompatible with the
particular ground network that is present. In other examples,
a failure or error in the ground network may prevent the
aircraft network from communicating with the ground net-
work to receive commands and aircraft software parts.
[0365] Further, the software maintenance tool on the por-
table data processing system also may be employed to receive
data from the aircraft. This data may be, for example, a
downlink file.

[0366] With reference next to FIG. 53, a diagram illustrat-
ing data flow and a software maintenance tool is depicted in
accordance with an advantageous embodiment. Software
maintenance tool 5300 interacts with components, such as
library 5302, proxy server application 5304, and onboard
electronic distribution system 5306. These components also
are referred to as sources. In these examples, software main-
tenance tool 5300 provides for the transfer of information
between library 5302 and/or proxy server application 5304
and onboard electronic distribution system 5306.

[0367] Library 5302 may be, for example, library 304 in
FIG. 3, while proxy server application 5304 may be proxy
server application 306 in FIG. 3. Onboard electronic distri-
bution system 5306 may be, for example, onboard electronic
distribution system 310 in FIG. 3.

[0368] Library 5302 sends new commands and parts to
software maintenance tool 5300 (message E1). The results of
processing these commands in parts may be returned to
library 5302 by software maintenance tool 5300 (message
E2). Additionally, software maintenance tool 5300 also may
return downlink and event log files (message E3).

[0369] Depending on the particular implementation or use,
software maintenance tool 5300 may receive new commands
and parts indirectly from library 5302 through proxy server
application 5304 (message E4). In a similar fashion, software
maintenance tool 5300 may return command status (message
E5) and downlink and event log files (message E6) to proxy
server application 5304, which in turn sends this information
to library 5302.

[0370] With respect to transferring information with
onboard electronic distribution system 5306, software main-
tenance tool 5300 may send new commands and aircraft
software parts to onboard electronic distribution system 5306
(message E7). Software maintenance tool 5300 may receive a
command status from onboard electronic distribution system
5306 (message E8). The command status also may include
the status of software directory parts sent to onboard elec-
tronic distribution system 5306. Onboard electronic distribu-
tion system 5306 may send downlink and event log files to
software maintenance tool 5300 for transfer to library 5302
(message F9).

[0371] Examples of these types of transfers are described in
more detail below. Further, these steps and interactions may
occur in a particular order, and any of the different messages

US 2009/0138518 Al

and interactions may occur simultaneously at any time. For
example, software maintenance tool 5300 may send new
commands and aircraft software parts to onboard electronic
distribution system 5306 at the same time software mainte-
nance tool 5300 receives downlink files from onboard elec-
tronic distribution system 5306. In these examples, software
maintenance tool 5300 executes on a portable data processing
system, such as a laptop computer. Data processing system
200 in FIG. 2 is an example of the data processing system that
may be used to implement a laptop computer.

[0372] Software maintenance tool 5300 may be transported
from one location to another location to distribute aircraft
software parts and to download information, such as down-
load data or files from line replaceable units on an aircraft. In
the different advantageous embodiments, software mainte-
nance tool 5300 establishes a direct connection with onboard
electronic distribution system 5306. In these examples, a
direct connection may be a wire connection or a wireless
connection. This type of connection is made without a net-
work connecting the data processing system or systems on the
aircraft to the data processing system on which software
maintenance tool 5300 is located.

[0373] Turning now to FIG. 54, a block diagram of a soft-
ware maintenance tool is depicted in accordance with an
advantageous embodiment. In this example, software main-
tenance tool 5400 includes library service 5402, database
5404, file system 5406, manager 5408, on ground component
interface 5410, and on ground component 5412.

[0374] Library service 5402 provides an interface to com-
municate with other components within an aircraft software
part management apparatus. Library service 5402 provides
software maintenance tool 5400 an interface to communicate
with components such as, for example, a library and a proxy
server application. Database 5404 contains information, such
as metadata about commands in aircraft software parts or
parts in file system 5406.

[0375] Additionally, database 5404 also may contain infor-
mation about downlink information. This information is
stored in the form of tables and records within database 5404.
Further, database 5404 may store commands received from a
proxy server application for execution by an onboard elec-
tronic distribution system on an aircraft data processing sys-
tem in the aircraft.

[0376] File system 5406 stores files, such as commands,
aircraft software parts, and downlink files. The different files
may be stored within crates in file system 5406, depending
upon the particular implementation. Manager 5408 includes
processes for managing the operation of software mainte-
nance tool 5400. In these examples, manager 5408 may incor-
porate processes for presenting user interface views to a user.
These views may provide a user an interface to initiate opera-
tions and to view information.

[0377] On ground component interface 5410 provides an
interface to on ground component 5412. On ground compo-
nent interface 5410 may be implemented using application
programming interface calls in these examples. On ground
component 5412 communicates with the aircraft. In these
examples, on ground component 5412 may communicate
with an onboard electronic distribution system located on the
aircraft data processing system in the aircraft. By having an
interface to on ground component 5412, on ground compo-
nent 5412 may be changed or modified for particular aircraft
or types of aircraft without affecting the other components
within software maintenance tool 5400.

May 28, 2009

[0378] Turning now to FIG. 55, a diagram of commands
and command resource tables is depicted in accordance with
an advantageous embodiment. In this example, commands
table 5500 represents commands, while command resource
table 5502 represents command resources. These tables are
examples of tables that may be found in database 5404 in
software maintenance tool 5400 in FIG. 54.

[0379] Commands table 5500 includes command identifier
5504, airplane identifier 5506, system name 5508, applica-
tion name 5510, command type 5512, priority order 5514,
device name 5516, device type 5518, date 5520, servicing
status 5522, execution status 5524, percent complete 5526,
execution completion date 5528, and command resource list
5530. Command resource table 5502 includes command
identifier 5532, command resource identifier 5534, data type
5536, crate name 5538, crate path 5540, crate file size 5542,
production status 5544, application standard 5546, owner
5548, supplier 5550, crate expiration date 5552, and release
date 5554.

[0380] The different fields illustrated for commands table
5500 and command resource table 5502 represent fields that
may be found in tables within a software maintenance tool
database. In commands table 5500, command identifier 5504
uniquely identifies the particular record. Command identifier
5504 may be found in various tables to point to a specific
command record. Airplane identifier 5506 identifies a spe-
cific aircraft. In these examples, the identifier may identify an
aircraft uniquely within a fleet of aircraft for a particular
airline. System name 5508 identifies the name of the line
replaceable unit on which the aircraft software partis located.
System name 5508 includes routing information to identify
the line replaceable unit. Data type 5510 identifies the appli-
cation generating the command. Command type 5512 iden-
tifies the type of command. Priority order 5513 indicates
whether and what a priority may be for a command file.
Device name 5516 identifies a particular device. Device type
5518 identifies the type of device. Date 5520 identifies the
date and time that a command was created in the library.
Servicing status 5522 identifies commands that have been
successfully sent to the onboard electronic distribution sys-
tem and identifies commands that have been reported to the
library as having been successfully uplinked or executed on
the onboard electronic distribution system.

[0381] Execution status 5524 provides a notification of
whether the command has been executed on the aircraft. In
particular, this command provides information as to whether
the onboard electronic distribution system on the aircraft has
executed the command. Percent complete 5526 indicates the
progress of the uplinking of an aircraft software part in a crate
by the onboard electronic distribution system in these
examples. Execution completion date 5528 identifies when
the command execution is complete. Command resource list
5530 identifies a data structure containing information about
the crate, such as command resource table 5502 in FIG. 55.

[0382] Incommand resource table 5502, command identi-
fier 5532 is similar to command identifier 5504 in commands
table 5500 and provides an identification of a specific com-
mand record. Command resource identifier 5534 is used to
identify specific command resource records in the database.
Data type 5536 identifies the type of data for the resource. For
example, the resource may be an aircraft software part or a
file. In these examples, each command allows different types
of information to be associated with the particular command.

US 2009/0138518 Al

[0383] Crate name 5538 identifies the name of the crate in
which the aircraft software part is located. Crate path 5540
identifies the location of the crate containing the aircraft
software part. Crate file size 5542 identifies the size of the
crate. Production status 5544 indicates the production status
of the particular aircraft software part contained within the
crate. These values may be, for example, red label, blue label,
or black label.

[0384] Application standard 5546 identifies the applicable
standard for the aircraft software part in these examples.
Owner 5548 identifies the owner of any intellectual property
of the aircraft software part contained within the crate.
Release date 5554 identifies the release date of the aircraft
software part.

[0385] With reference now to FIG. 56, a diagram of partial
downlink data is depicted in accordance with an advanta-
geous embodiment. In this example, partial downlink table
5600 is an example of a table that may be found in a database
within a software maintenance tool, such as database 5404 in
FIG. 54. As depicted, partial downlink table 5600 contains
message identifier 5602, airplane identifier 5604, downlink
file 5606, and partial file XML 5608.

[0386] Message identifier 5602 is a command identifier for
partial downlinks related to a downlink command sent to an
onboard electronic distribution system. This identifier is gen-
erated by the onboard electronic distribution system on an
aircraft for downlink files and is not the result of the downlink
command sent to the onboard electronic distribution system
by the library through a proxy server application or the soft-
ware maintenance tool. Airplane identifier 5604 identifies the
particular aircraft within a set of aircraft.

[0387] Downlink file 5606 specifies the full directory path
to the partially downlinked file. When an onboard electronic
distribution system requests a downlink file for which an
attempt has already been made to downlink the file at a prior
time, the software management tool returns the path to the
partially downlinked file.

[0388] Partial file XML 5608 contains information about
the partially downlinked file. This information may be used
by the onboard electronic distribution system to resume
downlinking ofthe downlinked file from where the downlink-
ing was previously interrupted. In this manner, the downlink-
ing of the file may begin from where it was interrupted to
avoid having to resend the entire file.

[0389] Turning next to FIG. 57, a diagram of a downlinks
table is depicted in accordance with an advantageous embodi-
ment. Downlinks table 5700 is an example of a table in a
database in a software maintenance tool, such as database
5404 in FIG. 54. Downlinks table 5700 stores information
about each downlinked file sent by an onboard electronic
distribution system in these examples. Downlinks table 5700
includes file name 5702, file path 5704, airplane identifier
5706, system name 5708, data type 5710, AppName 5711,
file size 5712, downlink status 5714, downlink received 5716,
is sent to library 5718, and downlink sent to library 5720.
[0390] File name 5702 identifies the name of the file con-
taining the downlink information. File path 5704, in these
examples, identifies the location of the file containing the
downlink information. Airplane identifier 5706 identifies the
aircraft from which the downlink file was received. This
identifier is a unique identifier for a set of aircraft, such as
aircraft for a particular airline. This identifier may be a tail
part number. System name 5708 identifies the name of the
line replaceable unit on which the aircraft software part is

May 28, 2009

located. Data type 5710 identifies the type of data. In the case
of downlink information, the data is identified as a file. App-
Name 5711 identifies an application on the aircraft data pro-
cessing system that is responsible for obtaining the aircraft
software part.

[0391] File size 5712 identifies the size of the file contain-
ing the downlink data. Downlink status 5714 indicates the
status of the downlink operation. In these examples, downlink
status 5714 shows successful downlinks. In some embodi-
ments, partial downlinks may be identified by downlink sta-
tus 5714. Library 5718 indicates the time when the file was
downlinked to the software and maintenance tool. Downlink
sent to library 5720 indicates the time when the downlinked
file is sent to the library or proxy server application. This
information is used to determine when to delete the down-
linked file from the software maintenance tool. Downlinked
files may be deleted after a configurable amount of time past
the time the downlinked file was sent to ensure that the down-
linked file was backed up on the library or proxy server
application to which the downlinked file was sent.

[0392] Turning now to FIG. 58, a diagram of a software
maintenance tool file system directory structure is depicted in
accordance with an advantageous embodiment. In this
example, directory structure 5800 represents a file system
directory structure that may be used in a file system, such as
in file system 5406 in FIG. 54. Directory structure 5800
identifies different types of files to work within the file system
on a software maintenance tool. In these examples, directory
structure 5800 includes parts 5802, downlinks 5804, down-
links unpacked dir 5806, route 5808, application 5810, logs
5812, and conf 5814.

[0393] Parts 5802 identifies a directory that stores crates
received from a library, directly from the library or through a
proxy server application. In these examples, the crates may
include commands and/or aircraft software parts. Further, the
crates also may be loaded from media, such as a flash memory
or hard drive attached to the laptop in which the software
maintenance tool is located. The crates in this directory may
be sent to the onboard electronic distribution system on an
aircraft.

[0394] Downlinks 5804 are a directory used to store down-
link files and partial downlink files received from an onboard
electronic distribution system. In these examples, the down-
link files may be organized by the tail number of the aircraft
from which the files originated. Downlinks 5804 may include
subdirectories named by the aircraft tail numbers in these
examples. The downlink files are stored in crated form in
these examples. Downlink files that have already been sent to
the library are not automatically deleted from downlinks
5804. Instead, these files may be deleted after some selected
amount of time from when they are sent to the library or proxy
server application.

[0395] DownlinksUnpackDir 5806 identifies a directory
used by the software maintenance tool to unpack the contents
of crates. These crates are unpacked to extract information
about a downlink file. The file, in uncrated form, may be
stored in a directory within downlinks unpacked dir 5806
using the name of the file.

[0396] Route 5808 identifies the directory that contains a
SMT-route info.xml file. This file contains a list of systems,
applications, and commands sorted by each of the applica-
tions. The contents of these files are used by the software
maintenance tool and indirectly by the library to ensure that
uplink commands are sent to the appropriate aircraft systems.

US 2009/0138518 Al

[0397] App 5810 identifies the directory in which the dif-
ferent processes for the software maintenance tool are
installed. Additionally, logs related to the software mainte-
nance tool also may be stored in this directory. These logs
include, for example, events that may be recorded during the
operation of the software maintenance tool.

[0398] Logs 5812 is a subdirectory within app 5810 and
contains the event logger.xml file last sent to the library and/or
proxy server application in these examples. Conf 5814 is a
subdirectory within app 5810 and contains property files to
define the operation or behavior of the software maintenance
tool as to define the behavior of various components within
the software maintenance tool.

[0399] Turning now to FIG. 59, a diagram illustrating inter-
face components implemented in a software maintenance
tool is depicted in accordance with an advantageous embodi-
ment. In this example, user interface components 5900 are
examples of user interface components that may be imple-
mented in manager 5408 within software maintenance tool
5400 in FIG. 54. User interface components 5900 include
connection view 5902, uplink command queue view 5904,
uplink local inventory view 5906, downlinked files view
5908, events console view 5910, and retrieve from library
view 5912.

[0400] Connection view 5902 is a user interface component
that provides an area to display functionality tabs. In these
examples, the user interface provides device identification
information as well as a dropdown box allowing a user to
select between various components, such as an onboard elec-
tronic distribution system, a library, a proxy server applica-
tion, or other devices. Further, this interface component also
may provide a control to connect the software maintenance
tool to the particular device selected from the dropdown box.

[0401] Uplink command queue view 5904 provides an
interface to view the progress of uplinking commands and
parts. This view also has a control to delete commands and
aircraft software parts. Uplink local inventory view 5906
provides a user interface to allow an operator of the software
maintenance tool to load or import aircraft software parts
from a media. This view allows a user to create uplink com-
mands without being connected to a ground network. The
user may select aircraft software parts for uplinking to spe-
cific line replaceable units on specific aircraft. This media
may be, for example, a portable media, such as a flash
memory, a portable hard drive, a compact disc, or a digital
versatile disc. Downlinked files view 5908 provides a user
interface to view downlink files received from the onboard
electronic distribution system. A user also may use this view
to delete downlink files as well as issue downlink control
commands.

[0402] Events console view 5910 allows a user to view
different events that have occurred during the execution of
various processes of the software maintenance tool. For
example, events console view 5910 may present a different
action that occurred in sending an aircraft software part to an
onboard electronic distribution system. These events may
include, for example, connection to the aircraft, sending of
the file, and identification of a successful loading of the file.
[0403] Retrieve from library view 5912 is a user interface
that may be used to initiate processes for obtaining com-
mands and aircraft software parts from a library or proxy
server application. Commands table 5500 in FIG. 55 identi-
fies fields that may be found in commands table 5500. This

May 28, 2009

view also sends back successfully uplinked commands,
downlink files, and event logs.

[0404] With reference next to FIGS. 60-65, example imple-
mentations of user interfaces for user interface components
5900 in FIG. 59 are depicted. With reference first to FIG. 60,
window 6000 illustrates a main screen or interface that may
be presented in user interface components 5900 in FIG. 59. In
particular, window 6000 is an example of connection view
5902 in FIG. 59. Window 6000 includes tabs 6002, 6004,
6006, 6008 and 6010. These tabs may be selected to present
controls and information for various functions and processes
within a software maintenance tool.

[0405] Section 6012 displays information about the soft-
ware maintenance tool. In this example, section 6012 indi-
cates that the software maintenance tool is connected to an
aircraft identified by the tail number. List 6014 provides a list
of other components to which a software maintenance tool
may establish connections. Control 6016 allows a user to
initiate a connection to another component. In these
examples, a user may select various components, such as an
onboard electronic distribution system, a library, or a proxy
server application from a set of proxy servers.

[0406] With reference now to FIG. 61, a selection of tab
6002 initiates an uplink command queue view in window
6000. In this example, this uplink command queue view is an
example of the user interface presented by uplink command
queue view 5904 in FIG. 59. In this example, section 6100
displays commands for a particular aircraft in a tree queue. A
user may delete a set of commands from section 6100 by
selecting those commands and pressing delete command
6102. The status information about commands is presented in
section 6103.

[0407] Information that may be displayed includes, for
example, item 6104, expiration 6106, priority 6108, destina-
tion system 6110, file type 6112, nomenclature 6114, file size
6116, uplink status 6118, and uplink status progress 6120.
Item 6104 identifies the particular item, such as an aircraft
software part name. Expiration 6106 is an expiration date for
a particular command. Priority 6108 identifies the order in
which commands are to be uplinked to the destination system
onthe aircraft. Destination system 6110 identifies the particu-
lar line replaceable unit in an application on the aircraft in
which parts are to be sent. Type 6112 identifies the type of
item contained in the crate, such as a file or an aircraft soft-
ware part.

[0408] Nomenclature 6114 provides a short identification
or description of the part. File size 6116 identifies the size of
the crate containing the particular item. Uplink status 6118
provides a status as to the process, success, or failure of a
command. Uplink status progress 6120 provides a graphical
progress bar showing the percent complete for a particular
command.

[0409] With reference now to FIG. 62, a diagram illustrat-
ing a user interface for an uplink local inventory view is
depicted in accordance with an advantageous embodiment. In
this example, tab 6004 has been selected, and a user interface
for uplink local inventory view 5906 in FIG. 59 is presented.
This particular view allows a user to load crates or aircraft
software parts from a local source. This type of functionality
allows a user to load an aircraft software part from another
source in the event that access to a library or proxy server
application may be unavailable or interrupted. Additionally,
new parts that may not be found in the library or proxy server
application or updated versions of aircraft software parts also

US 2009/0138518 Al

may be loaded in this manner. A local inventory of aircraft
software parts or other items may be found on storage
devices, such as a hard drive, a flash memory, a compact disc,
or a digital versatile disc.

[0410] Section 6200 illustrates an identification of local
inventory that may be loaded onto the software maintenance
tool. These items may include aircraft software parts and
commands. A particular item may be loaded by selecting that
item in section 6200 and pressing load inventory from media
button 6202. The current inventory found on a particular
storage device may be refreshed by pressing refresh inventory
6204.

[0411] Details about selected items in section 6200 may be
displayed in section 6206. In these examples, the information
may include, for example, inventory item 6208, expiration
date 6210, airplane identifier 6212, airplane destination 6214,
type 6216, nomenclature 6218, file size 6220, uplink status
6222, and uplink status progress 6224. This information is
similar to the information displayed for aircraft software parts
received from a library proxy server application as displayed
in window 6000 in FIG. 61.

[0412] With reference now to FIG. 63, a diagram of a user
interface for a downlinked files view is depicted in accor-
dance with an advantageous embodiment. In this example,
window 6000 displays a user interface for a user interface
component, such as downlinked files view 5908 in FIG. 59.
This view is presented in response to a selection of tab 6006.
In this user interface, information about data downlinked
from different aircraft is displayed in section 6300.

[0413] A user may suspend or stop downlinks from an
onboard electronic distribution system on an aircraft by
selecting suspend downlinks button 6302. When this button is
selected, a software maintenance tool does not receive any
additional downlinks or information from the aircraft to
which the connection is present. Downlinks may be resumed
by pressing a resume button that is displayed.

[0414] Further, a user may redirect downlinks destined for
a proxy server application to the software maintenance tool
by selecting redirect downlinks button 6304. Selection of this
button causes the onboard electronic distribution system to
reroute all downlink information destined for a proxy server
application to be sent to the software maintenance tool. If the
software maintenance tool is disconnected from the onboard
electronic distribution system, the downlinks are then auto-
matically sent to the original destination.

[0415] Section 6306 displays additional information for
downlink data presented in section 6300. Further, a user may
view or delete downlink files in section 6306. Deletions may
be made by selecting a particular downlink file and initiating
the delete command.

[0416] Information presented about downlinked files in
section 6306 include, for example, file name 6308, airplane
identifier 6310, system 6312, application 6314, data type
6316, description 6318, file size 6320, downlink status 6322,
and downlink date and time 6324. File name 6308 identifies
the name of the file downlinked or received from the aircraft.
Airplane identifier 6310 identifies the aircraft from which the
data is received. System 6312 identifies the line replaceable
unit from which the data is received. Application 6314 iden-
tifies the aircraft software part on the line replaceable unit
associated with the data.

[0417] Data type 6316 identifies the type of data generated
by the application. The software maintenance tool receives
downlinked files with a data type to represent an unsolicited

May 28, 2009

downlink in these examples. Description 6318 identifies the
name of the file downlinked in this example. File size 6320
identifies the size of the downlinked file. Downlink status
6322 identifies whether the data was successfully downlinked
to the software maintenance tool. Downlink date and time
6324 identifies when the downlink is completed. This
completion may be a successtul completion, a failure, or a
partial downlink, depending upon the particular situation.
[0418] Turning now to FIG. 64, a diagram illustrating a user
interface for an event console is depicted in accordance with
an advantageous embodiment. In this diagram, window 6000
displays a user interface for a user interface component, such
as events console view 5910 in FIG. 59. In the depicted
example, this particular view is presented in window 6000 in
response to selecting tab 6008. Section 6400 presents activity
that occurs with a particular software maintenance tool ses-
sion. In these examples, a software maintenance tool session
is a period of time during which the software maintenance
tool is operating. The events illustrated in section 6400 may
be presented in real time.

[0419] In these examples, these events may be saved by
selecting save events console button 6402. Events may be
cleared from display in section 6400 by selecting clear events
console button 6404. Additionally, the software maintenance
tool may automatically save events without user intervention.
In these examples, each entry displayed in section 6400
includes a date and time stamp, a user identifier of the user
performing a particular action, and a message identifying the
action that has been performed.

[0420] Turning now to FIG. 65, a diagram illustrating a user
interface for a retrieve from library view is depicted in accor-
dance with an advantageous embodiment. In this example,
window 6000 displays a user interface for retrieve from
library view 5912 in FIG. 59. This user interface is presented
in response to a selection of tab 6010. This user interface may
be used to retrieve commands from a library or a proxy server
application as well as browsing or looking at the various
aircraft software parts. Additionally, this is when the loss may
be used to create commands to uplink aircraft software parts
to an onboard electronic distribution system.

[0421] Parts that are available in the library are displayed in
section 6500. Particular aircraft software parts designated for
the software maintenance tool may be retrieved by pressing
perform library transactions button 6502. A user also may
create commands to uplink aircraft software parts to an
onboard electronic distribution system using this interface. A
user may also select an aircraft software part from section
6500 and designate a particular aircraft and line replaceable
unit using list 6504 and list 6506. List 6504 provides identi-
fications of aircraft. List 6506 identifies a particular line
replaceable unit on the aircraft for the aircraft software part.
[0422] After these identifications have been made, the air-
craft software part may be retrieved from the library by press-
ing retrieve selected inventory from library button 6508.
Selection of this button causes the aircraft software part to be
retrieved and a command to be created to uplink the aircraft
software part to the aircraft.

[0423] Turning now to FIG. 66, a diagram illustrating data
flow through a software maintenance tool in sending com-
mands and aircraft software parts to an aircraft is depicted in
accordance with an advantageous embodiment. In this
example, data sending flow is shown for software mainte-
nance tool 6600 to the sending of commands and aircraft
software parts from library 6602 or proxy server application

US 2009/0138518 Al

6604 to onboard electronic distribution system (OBEDS)
6606 on an aircraft. Each of the different steps and the results
of'those steps performed by software maintenance tool 6600
may be logged as events for downloading to library 6602 or
proxy server application 6604.

[0424] In this example, the process begins when a user
initiates a transactions process with library 6602 or proxy
server application 6604 using a user interface from a user
interface component, such as retrieve from library view 5912
in FIG. 59. Library service 6608 retrieves a list of uplink
commands that have been successfully uplinked to onboard
electronic distribution system 6606. Library service 6608
then makes a call to either library 6602 or proxy server appli-
cation 6604 and passes a list of the command identifiers for
commands that were successfully uplinked to onboard elec-
tronic distribution system 6606. Library service 6608
retrieves a list of uplink commands that have been success-
fully uplinked from commands table 6610. Commands table
6610 is an example of a table found in database 6612. Com-
mands table 5500 in FIG. 55 identifies fields that may be
found in commands table 6610.

[0425] For every command identifier sent to library 6602 or
proxy server application 6604, the corresponding command
is deleted from commands table 6610 in database 6612. Addi-
tionally, library service 6608 also may send downlink files
and event logs from file system 6614.

[0426] Thereafter, library service 6608 may make a call to
library 6602 or proxy server application 6604 to obtain a list
of commands. These commands are compared with com-
mands that should be in queues for distribution to different
aircraft. If commands are present in commands table 6610
that are not in the list of commands received from library 6602
or proxy server application 6604, those commands are
deleted from this table. However, commands generated by an
operator of software maintenance tool 6600 will be retained.
The deletion of commands, in these examples, occurs for
commands previously sent from library 6602 or proxy server
application 6604.

[0427] For each new command received, library service
6608 determines whether a crate already exists for the aircraft
software part within file system 6614. If the crate for the
aircraft software part is not present for the command, then
library service 6608 retrieves a crate containing the aircraft
software part from library 6602 or proxy server application
6604. Any retrieved crates are stored in file system 6614. If
the crate is successfully retrieved or a crate already exists, the
new command is placed into commands table 6610 in data-
base 6612. If the crate is successfully retrieved or the crate
already exists, the new command is added to a queue in uplink
command queue manager 6617. Uplink command queue
view 6618 may show information for commands managed by
uplink command queue manager 6617.

[0428] Thereafter, uplink local inventory view 6616 is
updated or refreshed. In this example, uplink local inventory
view 6616 is a user interface component, such as uplink local
inventory view 6004 as displayed in window 6000 in FIG. 62.
This view allows an operator to see the different aircraft
software parts that are stored within the software maintenance
tool. By knowing what aircraft software parts are present in
file system 6614, an operator may create new commands to
uplink those aircraft software parts using the software main-
tenance tool. Thereafter, uplink command queue view 6618 is
updated. This view may be, for example, uplink command
queue view 6002 as displayed in window 6000 in FIG. 61.

May 28, 2009

[0429] Thereafter, the operator may disconnect software
maintenance tool 6600 from library 6602 or proxy server
application 6604. Software maintenance tool 6600 may then
be transported to the aircraft and connected to onboard elec-
tronic distribution system 6606. When this connection is
established, uplink command queue view 6618 automatically
uplinks all commands that have not been successfully
uplinked for the particular aircraft to onboard electronic dis-
tribution system 6606 through on ground connection (OGC)
interface 6620.

[0430] On ground connection interface 6620 creates a com-
mand for on ground component (OGC) 6622 and adds this
command to a list of commands for on ground component
6622 to retrieve one at a time. These commands are identified
in uplink command queue manager 6617.

[0431] When on ground component 6622 calls on ground
component interface 6620, on ground component interface
6620 determines whether the aircraft is already uplinking
data. If the aircraft is already uplinking data, a null value is
returned to on ground component 6622, and commands are
not changed in the command list. In these examples, on
ground component 6622 communicates with onboard elec-
tronic distribution system 6606 to determine whether the
aircraft is uplinking data in these examples.

[0432] If the aircraft is not already uplinking, the oldest
uplink command in the command queue is passed to on
ground component 6622. In turn, on ground component 6622
communicates with onboard electronic distribution system
6606 to start uplinking the crate identified in the command.
On ground component 6622 may obtain status information
during uplinking of aircraft software parts. Further, on ground
component interface 6620 may update uplink command
queue view 6618 to show a progress bar, such as those illus-
trated in uplink status progress 6120 in FIG. 61.

[0433] Whenthe command has been successfully executed,
uplink command queue view 6618 updates the information in
commands table 6610. Additionally, uplink command queue
view 6618 also updates the execution status of the command
field in commands table 6610.

[0434] Turning now to FIG. 67, a diagram illustrating data
flow in a software maintenance tool processing downlinked
files is depicted in accordance with an advantageous embodi-
ment. In this example, software maintenance tool 6700 may
receive downlinked files initiated by application 6702 execut-
ing on a laptop computer connected to onboard electronic
distribution system (OBEDS) 6704. Additionally, unsolicited
downlink files from line replaceable units (LRU’s) 6706 also
may be received by software maintenance tool 6700. When
software maintenance tool 6700 establishes a connection to
onboard electronic distribution system 6704, on ground com-
ponent 6708 is the component that provides the communica-
tion with onboard electronic distribution system 6704.
[0435] On ground component (OGC) 6708 communicates
through on ground component (OGC) interface 6710 with
other components in software maintenance tool 6700. In this
example, a downlink file is downlinked and stored in file
system 6712. When the downlink file is transferred to file
system 6712, on ground component interface 6710 inserts a
new record in downlinks table 6714 in database 6716.
[0436] The different downlink files stored within file sys-
tem 6712 may be viewed using downlinked files view 6718.
This view is an example of a user interface component, such
as downlinked files view 5908 in FIG. 59. This view may be
used to identify what downlink files have been received as

US 2009/0138518 Al

well as manipulate downlink files. Downlinks table 5700 in
FIG. 57 shows examples of fields that may be found in down-
links table 6714.

[0437] Thereafter, software maintenance tool 6700 may be
moved and establish a connection with library 6720 or proxy
server application 6722. When this connection is established,
library service 6724 identifies downlink files that have not yet
been sent to library 6720 or proxy server application 6722.
The identification of these files may be found in downlinks
table 6714.

[0438] In these examples, partially downlink files are not
sent to library 6720 or proxy server application 6722. For
each of the downlink files identified in downlinks table 6714,
library service 6724 confirms that these files are still stored in
file system 6712. Library service 6724 then forwards all of the
located downlinked files to library 6720 or proxy server appli-
cation 6722. Any files sent to proxy server application 6722
are eventually sentto library 6720 by proxy server application
6722.

[0439] In some cases, files may be only partially down-
linked to the software maintenance tool because of an inter-
ruption. The different advantageous embodiments provide a
mechanism through which partially downlinked files are
saved by the software maintenance tool within file system
6712. These partial downlinked files are saved, and additional
or remaining portions of the downlink may be retrieved at a
later time and added to these partial downlinked files to form
a complete downlink file. In this manner, if an interruption
occurs, the downlinking of data may pick up where it left off
without having to downlink the entire file again.

[0440] Turning now to FIG. 68, a diagram illustrating data
flow and logging importing events by a software maintenance
tool is depicted in accordance with an advantageous embodi-
ment. In this example, software maintenance tool 6800 logs
events in file system 6802 using process event logger 6804.
Process event logger 6804 is an example of a process that may
be found in manager 5408 in FIG. 54.

[0441] In these examples, process event logger 6804 may
log all of the different steps and results of those steps per-
formed by software maintenance tool 6800 in uplinking and
downlinking data. This type of information may be displayed
in event console view 6806, which is an example of a user
interface component in user interface components 5900 in
FIG. 59. An example user interface is window 6000 in FIG.
64. When software maintenance tool 6800 connects to library
6808 or proxy server application 6810 through library service
6812, a user input is received to transfer data and log files
stored in file system 6802 and are forwarded on to library
6808 and proxy server application 6810. If the event logs are
successfully sent, the event log files are renamed for archival
purposes.

[0442] Turning now to FIG. 69, a diagram illustrating data
flow in a software maintenance tool retrieving parts from a
library is depicted in accordance with an advantageous
embodiment. In this example, software maintenance tool
6900 may connect to library 6902 or proxy server application
6904 through library service 6906. A user may retrieve from
library view 6908 to identify parts stored on library 6902
and/or proxy server application 6904.

[0443] Retrieve from library view 6908 is an example of
retrieve from library view 5912 in FIG. 59 within user inter-
face components 5900 in FIG. 59. Window 6000 in FIG. 65 is
an example of a user interface for this particular view. The
parts may be displayed and retrieved from retrieve from

May 28, 2009

library view 6908. A user may select a set of parts and retrieve
those parts from library 6902 and/or proxy server application
6904 and store the aircraft software parts in file system 6910.
The parts are then displayed for users to create uplink com-
mand(s).

[0444] Turning now to FIG. 70, a diagram illustrating data
flow in a software maintenance tool during retrieving and
creating of commands is depicted in accordance with an
advantageous embodiment. In this example, software main-
tenance tool 7000 may retrieve parts and create commands
using retrieve from library view 7002. Retrieve from library
view 7002 is an example of a user interface component, such
as retrieve from library view 5912 in FIG. 59 as presented in
window 6000 in FIG. 65.

[0445] When library service 7004 is connected to library
7006 or proxy server application 7008, a user may view a list
ofparts retrieved from retrieve from library view 7002. A user
may select parts through this view and initiate downlinking of
those parts by library service 7004. The parts retrieved by
library service 7004 are stored in file system 7010. In these
examples, the aircraft software parts are stored as crates.
Uplink local inventory view 7012 may be refreshed.

[0446] With retrieve from library view 7002, a user may
create commands that are stored in commands table 7014 in
database 7018. These commands may be added to uplink
command queue manager 7020 for execution by on ground
component (OGC) 7022 through on ground component
(OGCQ) interface 7024 to onboard electronic distribution sys-
tem (OBEDS) 7026. Uplink command queue manager 7020
is an example of a component within manager 5408 in soft-
ware maintenance tool 5400 in FIG. 54. The status of this
process may be viewed through uplink command queue view
7028.

[0447] With reference now to FIG. 71, a diagram illustrat-
ing uploading of aircraft software parts from alternative
sources is depicted in accordance with an advantageous
embodiment. In this example, software maintenance tool
7100 may upload aircraft software parts from media 7102 into
file system 7104 through uplink local inventory manager
7106. This view is an example of uplink local inventory view
5906 in FIG. 59. This view uses a graphical user interface,
such as window 6000 in FIG. 62.

[0448] The control of this uploading or uplinking process
from media 7102 may be performed using uplink local inven-
tory view 7108. Aircraft software parts may be uploaded into
software maintenance tool 7100 from other sources other
than a library or a software proxy server application. By
allowing for this type of flexibility, software maintenance tool
7100 may allow for last minute parts or new parts not yet
available from normal sources to be uploaded to an aircraft or
if a connection to the library or proxy server application is
unavailable.

[0449] Turning next to FIG. 72, a high level flowchart of a
process for managing aircraft software parts is depicted in
accordance with an advantageous embodiment. The process
illustrating in FIG. 72 may be implemented in a software
maintenance tool, such as software maintenance tool 5400 in
FIG. 54.

[0450] The process begins by establishing a connection
between a portable data processing system and a source
through a ground network to form an established connection
(operation 7200). Thereafter, the process retrieves a set of
uplink commands from a source through the established con-

US 2009/0138518 Al

nection (operation 7202). The source may be, for example, a
proxy server application, a library, or even a local storage
device.

[0451] The process then retrieves a set of aircraft software
parts corresponding to the set of uplink commands from the
source through the established connection to form a set of
retrieved aircraft software parts (operation 7204). The pro-
cess stores the set of retrieved aircraft software parts in the
portable data processing system to form a set of stored aircraft
software parts (operation 7206).

[0452] The process then disconnects the portable data pro-
cessing system with the stored aircraft software parts from the
ground network (operation 7208). In these examples, the
portable data processing system is moved to a location to
allow the portable data processor to connect to an aircraft
network on an aircraft. Next, the process connects the por-
table data processing system with the stored aircraft software
parts to an aircraft data processing system in an aircraft (op-
eration 7210).

[0453] The process then issues an uplink command from
the set of uplink commands to the aircraft data processing
system through an on ground component in the portable data
processing system (operation 7212). The process sends a
stored aircraft software part corresponding to the uplink com-
mand in the set of stored aircraft software parts to the aircraft
data processing system through the on ground component
(operation 7214), with the process terminating thereafter.
[0454] Turning now to FIG. 73, a more detailed flowchart
of'aprocess for managing aircraft software parts is depicted in
accordance with an advantageous embodiment. The process
illustrated in FIG. 73 may be implemented in a software
maintenance tool, such as software maintenance tool 5400 in
FIG. 54. The process in this figure illustrates the different
steps that occur in a software maintenance tool when con-
nected to a source, such as a library or a proxy server appli-
cation.

[0455] The process begins by receiving a request to per-
form transactions (operation 7300). In this example, the pro-
cess to perform transactions may be initiated by a user
through a user interface within user interface components
5900 in FIG. 59. In particular, the process may be initiated by
auser entering user input into retrieve from library view 5912
in FIG. 59 with a user interface, such as window 6000 as
illustrated in FIG. 65.

[0456] Theprocess then retrieves a list of uplink commands
sent to an onboard electronic distribution system (operation
7302). In this example, the list of uplink commands are ones
in which the aircraft software parts identified by the uplink
command has been successfully sent to the onboard elec-
tronic distribution system. These different commands may be
stored in a table in a database, such as commands table 5500
in FIG. 55. Each of the records within commands table 5500
in FIG. 55 may include an indication as to whether a com-
mand was successfully sent.

[0457] Thereafter, the process calls a source (operation
7304). The source may be, for example, a library or a proxy
server application. The process sends these lists of commands
to the source (operation 7306). The commands sent to the
source are then deleted from the database and the software
maintenance tool (operation 7308).

[0458] The process then calls the source to retrieve new
commands (operation 7310). A list of commands is received
from the source (operation 7312). In operation 7312, the
commands are received in an uncrated form unlike the man-

May 28, 2009

ner in which a proxy server or application receives commands
from a library. The process then deletes commands not in the
list from the database (operation 7314). As a result, the source
is the authority or provides an override as to what commands
are to be executed by the software maintenance tool.

[0459] If a user desires to remove commands or delete
commands for execution on an aircraft, these commands may
be deleted at the source. The list of commands sent to the
software maintenance tool results in any commands not in the
list being deleted. As a result, this type of process allows for
updating commands to be executed on the software mainte-
nance tool.

[0460] The process selects an unprocessed command for
processing (operation 7316). A determination is made as to
whether a crate containing an aircraft software part is present
for the command (operation 7318). In operation 7318, the
process checks the file system on the software maintenance
tool to determine whether a crate containing the aircraft soft-
ware part is already stored in the file system. If a crate is not
present, then the process retrieves the crate (operation 7320).
[0461] Next, a determination is made as to whether addi-
tional unprocessed commands are present (operation 7322).
If additional unprocessed commands are present, the process
returns to operation 7316. The process proceeds to operation
7322 from operation 7318 if a crate is present for the com-
mand. The process then adds the commands to a queue (op-
eration 7324). The process then updates the inventory of
aircraft software parts (operation 7326), with the process
terminating thereafter.

[0462] FIG. 74 illustrates operations that occur in a soft-
ware maintenance tool when a portable data processing sys-
tem, on which the software maintenance tool is located, is
connected to an aircraft network.

[0463] In these examples, the software maintenance tool
may be used to send aircraft software parts to an onboard
electronic distribution system executing on an aircraft data
processing system in the aircraft network. In these examples,
the queue may be, for example, a queue in uplink command
queue manager 6617 in FIG. 66. The process then updates an
inventory of aircraft software parts (operation 7326), with the
process terminating thereafter.

[0464] Turning now to FIG. 74, a flowchart of a process for
sending aircraft software parts from a software maintenance
tool to an onboard electronic distribution system is depicted
in accordance with an advantageous embodiment. In this
example, the process may be implemented in a software
maintenance tool, such as software maintenance tool 5400 in
FIG. 54. The process begins by detecting a connection to the
onboard electronic distribution system on the aircraft data
processing system (operation 7400).

[0465] The process determines whether a command is
present in the command queue (operation 7402). If a com-
mand is present, the process determines whether the aircraft is
currently uplinking data (operation 7404). If the aircraft is not
currently uplinking data, the process sends a request to the
onboard electronic distribution system to uplink the crate
containing the aircraft software part (operation 7406). The
process then obtains the status of the uplink (operation 7408).
The status may be displayed on a user interface, such as
window 6000 in FIG. 61. Operation 7408 occurs while
uplinking of the crate continues.

[0466] After uplinking completes, a determination is made
as to whether the uplinking of the crate with the aircraft
software part has been successful (operation 7410). If the

US 2009/0138518 Al

uplinking of the crate was successtul, the command table is
updated (operation 7412). The table, in these examples, is a
commands table, such as commands table 5500 in FIG. 55.
The process then returns to operation 7402 to determine
whether additional commands are present in the queue for
processing.

[0467] With reference again to operation 7410, if the
uplinking of the aircraft software part was not successful, an
error is generated (operation 7416), and the process returns to
operation 7402 as described above. With reference again to
operation 7404, if the aircraft is uplinking data, a null value is
returned (operation 7414), with the process terminating
thereafter.

[0468] With reference now to FIG. 75, a flowchart of a
process for receiving downlink data is depicted in accordance
with an advantageous embodiment. The process illustrated in
FIG. 75 may be implemented in a data software maintenance
tool, such as software maintenance tool 5400 in FIG. 54.

[0469] The process in FIG. 75 begins by receiving a call
from the onboard electronic distribution system to retrieve a
partial downlink file (operation 7500). A determination is
made as to whether the partial downlink file is contained in a
partial downlinks table (operation 7502). This partial down-
link table may be a table such as, for example, partial down-
link table 5600 in FIG. 56. If the partial downlink file is not
found in the table, the process receives a call to obtain a
handle to the downlink file from the onboard electronic dis-
tribution system (operation 7504).

[0470] Next, a determination is made as to whether enough
disk space is present to store the downlink file (operation
7506). If sufficient space is present, the downlink file is cre-
ated in a directory called “downlinks/”, and a file handle is
returned to the onboard electronic distribution system (opera-
tion 7508). The process then stores the downlink data into the
downlink file in the “downlinks/” directory (operation 7510).

[0471] A determination is then made as to whether the
downlink file was successtully stored (operation 7512). If all
of'the downlink data was successfully stored, the process adds
the downlink file to the downlinks database table (operation
7514). This table may be a table such as, for example, down-
links table 5700 in FIG. 57. The process then updates the
downlink files view to show the new file (operation 7516).
This view is a view, such as downlinked files view 6006 as
presented in window 6000 in FIG. 63.

[0472] The process then determines whether the data is
written to a partial downlink file (operation 7518). If the data
is not written to a partial downlink file, the process terminates.
Otherwise, the partial downlink record in the partial down-
links table is deleted (operation 7520), with the process ter-
minating thereafter. In this case, the partial downlink file is
completed with the rest of the downlink data, and the identi-
fication of the partial downlink file is no longer needed.

[0473] With reference again operation 7512, if the storing
of all of the data for the downlink file was not successful, the
process receives a call from the onboard electronic distribu-
tion system to store the partial downlink file (operation 7522).
In this case, the onboard electronic distribution system may
have interrupted the downlinking data for a number of differ-
ent reasons. For example, the amount of bandwidth available
is insufficient to downlink data and uplink other information.
The process then creates a record in the partial downlinks
database table (operation 7524), with the process terminating
thereafter.

May 28, 2009

[0474] With reference again to operation 7506, if insuffi-
cient space is present for the downlink file, a null is returned
to the onboard electronic distribution system to indicate that
insufficient disk space is present for the downlink data (opera-
tion 7526). With reference back to operation 7502, if a partial
downlink file is present in the partial downlinks table, the
process returns partial downlink file information to the
onboard electronic distribution system (operation 7528). This
information includes a starting point or offset to send the rest
of the downlink data for the downlink file. The process then
proceeds to operation 7510 as described above.

[0475] Thus, the software maintenance tool described in
these different advantageous embodiments provides an addi-
tional feature for transferring aircraft software parts from a
library to an aircraft data processing system. In the different
advantageous embodiments, the software maintenance tool
may connect either to the library or to a proxy server appli-
cation on a ground network to receive commands and aircraft
software parts. The software maintenance tool may then be
disconnected from the ground network and physically moved
to a location for connection to an aircraft network. At this
location, the software maintenance tool connects to the air-
craft network and transfers aircraft software parts and com-
mands to the onboard electronic distribution system execut-
ing on a data processing system on the aircraft network in the
aircraft.

[0476] Additionally, the software maintenance tool allows
for an operator to create commands independently from the
library using graphical user interfaces presented by view
components in the software maintenance tool. The software
maintenance tool also includes features that allow this com-
ponent to receive aircraft software parts from other sources
other than a library or proxy server application.

[0477] The different advantageous embodiments also pro-
vide a computer implemented method, apparatus, and com-
puter program product for transferring information with an
aircraft. In one advantageous embodiment, a computer imple-
mented method is used for transferring information with the
aircraft. A connection is established between an onboard elec-
tronic distribution system executing in an aircraft data pro-
cessing system in the aircraft and an on ground component.
[0478] The on ground component may be located in a
ground network in a software application, such as a software
maintenance tool or a proxy server application, in these
examples. In response to a request for a command from the
onboard electronic distribution system made through the con-
nection, the command for execution by the onboard elec-
tronic distribution system is identified. This identified com-
mand is sent to the onboard electronic distribution system
from the on ground component. A transaction identifier is
assigned to the command.

[0479] A status of the transaction associated with the com-
mand is maintained on the onboard electronic distribution
system and on the on ground component using the transaction
identifier. An uplink is initiated by the onboard electronic
distribution system. An aircraft software part is then sent to
the onboard electronic distribution system from the on
ground component to perform the uplink. The status of this
transfer is stored.

[0480] Turning now to FIG. 76, a diagram of components
used to transfer information with an aircraft is depicted in
accordance with an advantageous embodiment. Onboard
electronic distribution system 7600 is an example of an
onboard electronic distribution system, such as onboard elec-

US 2009/0138518 Al

tronic distribution system 310 in aircraft software part man-
agement apparatus 300 in FIG. 3.

[0481] In this illustrative example, onboard electronic dis-
tribution system 7600 and mass storage 7602 are components
located on an aircraft data processing system in an aircraft
network. Onboard electronic distribution system 7600 is an
example of onboard electronic distribution system 146 in
FIG. 1. Mass storage 7602 is an example of storage device
148 in FIG. 1. These components are part of an aircraft data
processing system, such as aircraft data processing system
144 in aircraft network 101.

[0482] On ground component 7604 and on ground compo-
nent interface 7606 are examples of components that may be
found in a proxy server application or a software maintenance
tool, such as proxy server application 3500 in FIG. 35 or
software maintenance tool 5400 in FIG. 54. In these
examples, on ground component 7604 and onboard electronic
distribution system 7600 may exchange information. Com-
mand 7607, aircraft software part 7608, downlink file 7610,
and status 7612 are examples of information that may be
transferred with onboard electronic distribution system 7600.
[0483] Inthese examples, on ground component 7604 may
send command 7607 to onboard electronic distribution sys-
tem 7600. Onboard electronic distribution system 7600 may
execute this command to perform a transaction. This transac-
tion may be, for example, an uplink or a downlink of data. An
uplink includes sending aircraft software part 7608 to
onboard electronic distribution system 7600. A downlink
includes sending downlink file 7610 to on ground component
7604.

[0484] Additionally, the status of the different transactions
is maintained by both on ground component 7604 and
onboard electronic distribution system 7600 in these
examples. Status 7612 is sent by onboard electronic distribu-
tion system 7600 to on ground component 7604 to provide the
status of a particular transaction being performed through the
execution of a command, such as command 7607. This status
is associated with a particular command or transaction
through a command identifier.

[0485] Aircraft software part 7608 may be sent to onboard
electronic distribution system 7600 for storage with aircraft
software parts 7614 in mass storage 7602. Downlink file 7610
may be a downlink file from downlink files 7616 in mass
storage 7602.

[0486] Status information 7618 may be stored in mass stor-
age 7602 and includes status information, such as status 7612.
Status information 7618 may indicate that a particular aircraft
software part has been successfully stored within aircraft
software parts 7614 in mass storage 7602. Status information
7618 allows for the initiation of the loading of an aircraft
software part from mass storage 7602 onto a line replaceable
unit once that aircraft software part has been identified as
being successtully uplinked by onboard electronic distribu-
tion system 7600 and stored within mass storage 7602.
[0487] Additionally, status information 7618 may identify
whether a downlink file, such as downlink file 7610, has been
successfully downlinked. If a partial downlink of downlink
file 7610 occurs, status information 7618 provides the status
of what information within downlink file 7610 has been trans-
mitted. As a result, maintaining a status of how much infor-
mation has been downlinked to on ground component 7604
may be used to downlink the remaining information for
downlink file 7610 at a later point in time without restarting
the entire transmission of downlink file 7610.

May 28, 2009

[0488] On ground component interface 7606 provides an
interface with other components to on ground component
7604. In this manner, on ground component 7604 may be
interchangeable or modified with other versions or configu-
rations of on ground components to provide access to a par-
ticular onboard electronic distribution system that may have a
different protocol for exchanging information or processing
commands. In these examples, on ground component 7604
contains the processes needed to transfer information with
onboard electronic distribution system 7600. If a different
onboard electronic distribution system is employed that is not
compatible with on ground component 7604, on ground com-
ponent 7604 may be substituted with another on ground com-
ponent.

[0489] As a result, other software components in the
ground network do not have to be changed. For example,
other components within a proxy server application and a
software maintenance tool do not require modifications to be
able to communicate with an onboard electronic distribution
system.

[0490] Turning now to FIG. 77, a message flow diagram
illustrating message flow used to poll for a command is
depicted in accordance with an advantageous embodiment. In
this example, the components involved in this message flow
are on ground component (OGC) interface 7700, on ground
component 7702, and onboard electronic distribution system
7704.

[0491] Inthis example, onboard electronic distribution sys-
tem 7704 polls on ground component 7702 for a command
(message T1). In response to being polled, on ground com-
ponent 7702 sends a get command request to on ground
component interface 7700 (message T2). This command is
used by on ground component interface 7700 to identify
commands that may be located in a proxy server application
or a software maintenance tool for onboard electronic distri-
bution system 7704.

[0492] In response, a command or a pointer to a crated
command file is returned to on ground component 7702 (mes-
sage T3). In these examples, a proxy server application
returns a pointer, such as a universal resource locator, to a
crated file containing the command. With a software mainte-
nance tool, the actual command itself is returned in message
T3. If a command is not present, then a null value or some
other indicator is returned in message T3. The returned com-
mand is then sent to onboard electronic distribution system
7704 (message T4). Onboard electronic distribution system
7704 may then process and execute the command received in
message T4.

[0493] Turning now to FIG. 78, a message flow diagram
illustrating the sending of status information is depicted in
accordance with an advantageous embodiment. In this
example, components in the message flow include on ground
component interface 7700, on ground component 7702, and
onboard electronic distribution system 7704. Onboard elec-
tronic distribution system 7704 provides status information
for various operations and processes executed by onboard
electronic distribution system 7704. This status information
may include, for example, the status of an aircraft software
part that has been uplinked, the status of a downlink file,
and/or other suitable information.

[0494] Onboard electronic distribution system 7704 sends
the status to on ground component 7702 (message U1). This
status is relayed by on ground component 7702 to on ground
component interface 7700 (message U2). This status infor-

US 2009/0138518 Al

mation may then be processed by a proxy server application
or a software maintenance tool in these examples.

[0495] Two phases are present for downlinking data. FIG.
79 illustrates a first phase in which a request for downlinking
data is made, and FIG. 80 depicts a second phase in which the
data is downlinked. With reference now to FIG. 79, amessage
flow diagram of a request to downlink data is depicted in
accordance with an advantageous embodiment. The message
flow in FIG. 79 shows the first phase in downlinking data. In
these examples, FIG. 79 shows the request to downlink data.
The second phase is for actually transmitting downlink data
as described with respect to FIG. 80, below.

[0496] In this example, phase one has two cases. In case
7902, a request to downlink information is made with a partial
downlink being available.

[0497] Incase 7900, onboard electronic distribution system
7704 sends a request to downlink a file (message V1). In
message V1, the request may be refused if no space is present
to store the downlink file. In response, on ground component
7702 sends a request to determine whether a partial downlink
record is present to on ground component interface 7700
(message V2). In response, on ground component interface
7700 sends a request to obtain a partial downlink associated
with the request to send to message V1 (message V2). The
request sent in message V2 includes an airplane identifier and
a downlink identifier. This information is used by on ground
component interface 7700 to determine whether a partial
downlink file is present for this particular downlink file.

[0498] On ground component interface 7700 returns a null
value to on ground component 7702 indicating that a partial
downlink file is not present for the requested downlink (mes-
sage V3). In response, on ground component 7702 makes a
request to downlink the downlink file (message V4). The
message in message V4 is a request to downlink the entire file
in these examples. In these examples, the message includes
information about the file size. If space is available, on ground
component interface 7700 returns a location to downlink the
file to on ground component 7702 (message V5). If no space
is available, a null value is returned to message V5.

[0499] In response, on ground component 7702 returns a
response to onboard electronic distribution system 7704
(message V6). This message is either an indication that is an
okay to proceed downlinking or a denial of the request.

[0500] In case 7902 in the first phase, onboard electronic
distribution system 7704 makes a request to downlink part of
afile for a downlink file (message V7). In response, on ground
component 7702 makes a request to determine whether a
partial downlinked file is already present for the requested
downlink (message V8).

[0501] In response to receiving this message, on ground
component interface 7700 returns a document containing a
reference to an existing partially downlinked file to on ground
component 7702 (message V9). In these examples, the docu-
ment is an extensible markup language (XML) document,
and reference may be a pointer or universal resource locator
(URL) depending on the particular implementation.

[0502] When the reference is returned, on ground compo-
nent 7702 sends a response to the request to downlink a partial
downlink file to onboard electronic distribution system 7704
(message V10). The response, in this example, includes an
indication that it is okay to proceed with the downlink and an
offset to use. The offset identifies where in the downlink file

May 28, 2009

the downlinking of data should start. This offset is identified
from the downlink information already received for the
downlink file.

[0503] Turning now to FIG. 80, a message flow diagram for
downlinking data is depicted in accordance with an advanta-
geous embodiment. As with FIG. 79, this downlink process
includes two cases, case 8000 and case 8002. Case 8000
involves downlinking data with no partial downlinks, and
phase 8002 involves downlinking data with partial down-
links. In FIG. 79, case 7900 illustrates the case in which a
partial downlink is not available, while case 7902 illustrates
the case in which a partial downlink file is available on the on
ground component.

[0504] Incase 8000, the message flow begins with onboard
electronic distribution system 7704 downlinking the down-
link file to on ground component 7702 (message W1). On
ground component 7702 makes a request to downlink the file
from onboard electronic distribution system 7704 to on
ground component interface 7700 (message W2). This mes-
sage includes a file size as well as other suitable downlink
information.

[0505] On ground component interface 7700 returns a
response to on ground component 7702 (message W3). A null
is returned if space is unavailable to downlink the downlink
file. If the downlink file can be downlinked, on ground com-
ponent 7702 writes the information into a file and returns a
response to onboard electronic distribution system 7704
(message W4). Thereafter, on ground component 7702 makes
a request to on ground component interface 7700 to store the
file (message W5).

[0506] Next, in case 8002, onboard electronic distribution
system 7704 downlinks a file to on ground component 7702
(message W6). Thereafter, on ground component 7702
requests the partial downlink file from on ground component
interface 7700 (message W7). In this example, the file is
returned to on ground component 7702 by on ground com-
ponent interface 7700 (message W8).

[0507] At this time, on ground component 7702 writes
information into the file to complete the downlink file and
returns a response to onboard electronic distribution system
7704 (message W9). In this example, the number of bits
written in the file is identified in the response. Thereafter, on
ground component 7702 sends a request to on ground com-
ponent interface 7700 to store the downlinked file (message
W10).

[0508] In response to this message, on ground component
interface 7700 may store the file within the file system of the
ground component. The ground component may be a file
stored in a proxy server application or a software maintenance
tool.

[0509] With reference now to FIG. 81, a diagram illustrat-
ing message flow when the file is only partially delivered is
depicted in accordance with an advantageous embodiment. In
this example, onboard electronic distribution system 7704
downlinks a file using a normal downlink sequence in which
the connection fails or stops (message X1). In response to
only receiving part of the file, on ground component 7702
sends a request to on ground component interface 7700 to
store the partial downlink file (message X2). In response to
receiving this request, the partial downlink file is stored in a
file system by on ground component interface 7700. This file
system may be located in a proxy server application or a
software maintenance tool.

US 2009/0138518 Al

[0510] Turning now to FIG. 82, a message flow diagram
illustrating an uplink process is depicted in accordance with
an advantageous embodiment. Uplinking is performed in two
phases in these examples. In phase 8200, information about
the file to be uplinked is requested, and in phase 8202, the file
itself is uplinked. In both phases, on ground component 7702
prompts the ground system for information about the
resource. The ground system may be, for example, other
components in a proxy server application or software main-
tenance tool.

[0511] As depicted, onboard electronic distribution system
7704 sends a message requesting the uplink of an aircraft
software part (message Y1). In response to receiving this
request, on ground component 7702 sends a call to obtain the
particular aircraft software part to on ground component
interface 7700 (message Y2). In response to this call, an
identification of the aircraft software part is returned if the
aircraft software part is present (message Y3).

[0512] If the part is not present, a null value is returned in
these examples. In response to receiving this message, on
ground component 7702 relays the message to onboard elec-
tronic distribution system 7704 (message Y4).

[0513] In phase 8202, onboard electronic distribution sys-
tem 7704 requests the aircraft software part (message Y5). In
response to receiving this request, on ground component
7702 requests the aircraft software part from on ground com-
ponent interface 7700 (message Y6). On ground component
interface 7700 returns the resource if it is available (message
Y7). If the resource is not available, a null value is returned.
On ground component 7702 then sends the aircraft software
part to onboard electronic distribution system 7704 (message
Y8). If the aircraft software part is not available, then an error
is returned.

[0514] Turning now to FIG. 83, a diagram illustrating mes-
sage flow in an uplink process is depicted in accordance with
an advantageous embodiment. In this example, two phases
are present in the message flow, phase 8300 and phase 8302.
In phase 8300, a request is made for a partial uplink of an
aircraft software part, and in phase 8302, the uplink of the
partial aircraft software part is performed. This partial uplink-
ing of an aircraft software part may be performed if a previous
transfer of the aircraft software part was interrupted.

[0515] In phase 8300, onboard electronic distribution sys-
tem 7704 sends an uplink request to on ground component
7702. In this example, the request identifies the aircraft soft-
ware part in an offset or start position from which the part
should be uplinked (message 7Z1). In response to receiving
this request, on ground component 7702 requests the aircraft
software part (message 72).

[0516] On ground component interface 7700 returns the
aircraft software part if the part is present. Otherwise, a null
value is returned (message Z3). In response to receiving the
aircraft software part, on ground component 7702 returns a
response indicating that the aircraft software part is available
at the particular offset or starting point (message 74).

[0517] Next, in phase 8302, onboard electronic distribution
system 7704 requests the aircraft software part at the start or
offset position (message Z5). On ground component 7702
requests the resource in response to receiving this request
(message 7.6).

[0518] Inresponseto receiving the request, on ground com-
ponent interface 7700 returns the aircraft software part, or a
null value if the part is unavailable, to on ground component
7702 (message Z7). Responsive to receiving the response, on

May 28, 2009

ground component 7702 begins uplinking the aircraft soft-
ware part at the start point or offset identified (message Z8). If
the part is unavailable, an error is returned to onboard elec-
tronic distribution system 7704.

[0519] Turning now to FIG. 84, a flowchart of a process for
uplinking data is depicted in accordance with an advanta-
geous embodiment. The process illustrated in FIG. 84 may be
implemented in an onboard electronic distribution system,
such as onboard electronic distribution system 7600 in FIG.
76. In this example, the uplink data is for an aircraft software
part.

[0520] The process begins by receiving an uplink com-
mand to uplink an aircraft software part (operation 8400). A
determination is made as to whether the aircraft software part
has already been partially uplinked (operation 8402). If the
aircraft software part has not been partially uplinked, a
request is made to receive the aircraft software part (operation
8404). The process then receives data for the aircraft software
part (operation 8406).

[0521] A determination is made as to whether the transmis-
sion of the data has stopped (operation 8408). The transmis-
sion may stop for a number of reasons. For example, the
transfer of an aircraft software part may have completed. In
another example, an interruption may have occurred without
completing the transfer of the aircraft software part.

[0522] The interruption may also occur due to various
events. In one event, the communications link between the
onboard electronic distribution system and the on ground
component may have terminated unexpectedly. In another
example, the event may be an operator terminating the trans-
mission of the aircraft software part from a software mainte-
nance tool.

[0523] Ifthe transmission of data has not stopped, the pro-
cess returns to operation 8406. Otherwise, a determination is
made as to whether the aircraft software part is complete
(operation 8410). If the aircraft software part is complete, the
aircraft software part is stored in a storage device in the
aircraft data processing system (operation 8412). In this
example, the storage device may be mass storage 7602 in
FIG. 76.

[0524] The process then returns a status to the on ground
component (operation 8414), with the process terminating
thereafter. In this example, the status indicates that the aircraft
software part has been completely received.

[0525] With reference again to operation 8410, if the air-
craft software part has not been completely received, the
received portion of the aircraft software part is stored in a
storage device (operation 8416). The process then stores the
status (operation 8418), with the process terminating there-
after. In this illustrative example, the status may identify the
aircraft software part and the portion of the aircraft software
part that has actually been received. This information may be
used at a later point to retransmit the remaining portion of the
aircraft software part.

[0526] With reference again to operation 8402, if the air-
craft software part has been partially uplinked, the process
requests the unsent portion of the aircraft software part (op-
eration 8420). The process then proceeds to operation 8406 to
receive data from the aircraft software part. In operation
8420, the request may include an identification of the offset or
start point for the aircraft software part data that has not yet
been received.

[0527] Turning now to FIG. 85, a flowchart of a process for
downlinking data is depicted in accordance with an advanta-

US 2009/0138518 Al

geous embodiment. The process illustrated in FIG. 85 may be
implemented in an onboard electronic distribution system,
such as onboard electronic distribution system 7600 in FIG.
76.

[0528] The process begins by sending a request to send a
downlink file (operation 8500). A determination is made as to
whether an indication is received to send the data for the
downlink file (operation 8502). If an indication is received to
send the data, the process sends the downlink data for the
downlink file (operation 8504).

[0529] Next, a determination is made as to whether the
transmission of the downlink data has stopped (operation
8506). The transmission may stop because all of the data has
been sent. In other instances, for example, the transmission
may stop due to a loss of a communications link or an inter-
ruption by an operator on the aircraft. If the transmission of
the data has not stopped, the process returns to operation 8504
to continue to send downlink data.

[0530] If the transmission has stopped, a determination is
made as to whether all of the downlink data has been sent
from the downlink file (operation 8508). Ifall of the downlink
data has been sent, the process sends a status of the comple-
tion (operation 8510), with the process terminating thereafter.
[0531] With reference again to operation 8508, if all of the
downlink data has not been sent, a status of the transmission
of the downlink data is stored (operation 8512). In these
examples, the status may be stored as status information 7618
in FIG. 76. The status, in this example, may identify the
downlink file and the amount of data that was sent.

[0532] This process also may be used to send a partial
downlink file in which a portion of the downlink file has
already been sent. With this type of downlinking, operation
8500 sends a request to downlink a portion of the downlink
file rather than the entire file. With a partial downlink file,
operation 8502 is a positive indication if the on ground com-
ponent finds the partially downlinked data from a previous
transmission. This indication also includes an offset or start-
ing point to send the rest of the downlink file.

[0533] Aircraft software parts may be received from vari-
ous sources. Aircraft software parts may be received from a
manufacturer of the aircraft or some third party source,
depending on the particular implementation. Further, an air-
line also may create aircraft software parts for use within its
aircraft. These parts are distributed using crates in the difter-
ent advantageous embodiments.

[0534] The different advantageous embodiments provide a
computer implemented method, apparatus, and computer
program product that promotes automation of the receipt and
distribution processing digitalized content, computer pro-
gram(s), or data in digital form that is sensible by a computer.
One advantageous embodiment includes the replacement of
the physical shipping crate and physical media with a com-
puter sensible crate that facilitates automation. Another
advantageous embodiment is the application of one or more
digital signatures to the objects inside the crate and to the
crate itself. Thus, in conjunction with a functioning Private
Key Infrastructure, it provides authentication of the sender,
non-repudiation, and assurance of integrity.

[0535] In another advantageous embodiment, a method is
used for automated processing aircraft software parts. An
incoming crate, which can be an electronic zip file, containing
a signed aircraft software part is received from a source out-
side of an airline’s part management system. A set of signa-
tures is validated for the incoming crate and the aircraft soft-

May 28, 2009

ware part. Responsive to the set of signatures being valid, the
incoming crate is unpacked. The contents of the incoming
crate may be displayed at the user’s discretion. Responsive to
a request to upload the unpacked aircraft software part to a
library in an aircraft software part management system or
apparatus, the unpacked aircraft software part is signed again
with an approval signature to form a signed, approved aircraft
software part. An advantageous embodiment is that this sec-
ond approval digital signature also acts to transfer bailment
from the provider of the part to the recipient of the part and
provides non-repudiation of the consummation of the trans-
action.

[0536] Inan advantageous embodiment, the crate contain-
ing the signed, recipient approved aircraft software part is
signed to form a signed crate wherein signatures for the
signed, approved aircraft software part and the signed crate
are different from the set of signatures on the incoming crate.
The signed crate may be sent to the recipient’s library in the
aircraft software part management system or apparatus.
[0537] In another advantageous embodiment, a computer
implemented method is used for processing additional con-
figuration items. A crate containing a configuration item is
received to form a received crate. A determination is made as
to whether a set of signatures for the crate and the configura-
tion item are valid. Responsive to a determination that the set
of signatures are valid, the configuration item is stored.
[0538] Turning now to FIG. 86, a diagram illustrating a
crate tool is depicted in accordance with an advantageous
embodiment. Crate tool 8600 is used to receive and manage
crates foruse in an environment, such as aircraft software part
management apparatus 300 in FIG. 3.

[0539] Additionally, crate tool 8600 may be implemented
in other components for creating crates within aircraft soft-
ware part management apparatus 300 in FIG. 3. For example,
the functionality of crate tool 8600 may be implemented in a
software maintenance tool, such as software maintenance
tool 5400 in FIG. 54. As another example, these functions
also may be implemented in aircraft network 101 in FIG. 1 to
send information, such as downlink files in crates, back to a
ground network.

[0540] Inthisexample, crate tool 8600 may receive aircraft
software part 8602 stored or wrapped within crate 8604.
Although these examples illustrate aircraft software part
8602 as being the contents of crate 8604, any configuration
item may be placed into crate 8604 for use within aircraft
software part management apparatus 300 in FIG. 3, in these
examples. For example, a configuration item also may take
the form of a document, configuration information, or other
suitable information.

[0541] Crate tool 8600 processes crate 8604 for uploading
to library 8606. Library 8606 may be implemented using
library 1700 in FIG. 17. This processing may include various
functions, such as checking the integrity and a set of signa-
tures within crate 8604. The checking of signatures may
include both the signature for crate 8604 and aircraft software
part 8602. Further, aircraft software part 8602 may be
removed from crate 8604 and inspected. Crate tool 8600 also
may repackage aircraft software part 8602 into another crate
for uploading to library 8606.

[0542] Turning now to FIG. 87, a diagram illustrating a
crate tool is depicted in accordance with an advantageous
embodiment. Crate tool 8700 is a more detailed illustration of
crate tool 8600 in FIG. 86. Crate tool 8700 includes user
interface 8702, signature 8704, unpack and inspect 8706,

US 2009/0138518 Al

crate 8708, and upload 8710. User interface 8702 provides a
user interface for a user to operate crate tool 8700. Crate tool
8700 may be implemented in a data processing system, such
as data processing system 200 in FIG. 2.

[0543] Signature 8704, in these examples, provides a num-
ber of different functions. For example, signature 8704 may
check the integrity of a crate and its configuration items. This
integrity may be performed by checking a digital signature for
the crate and its contents. In these examples, the signatures
are located in extensible markup language documents that are
separate from the contents that are signed. In other embodi-
ments, sighatures may be integral to the signed configuration
item.

[0544] Signature 8704 may sign an existing aircraft soft-
ware part as well as other documents, files, and other suitable
data. Unpack and inspect 8706 allows a user to remove air-
craft software parts and other information from a crate and
inspect or view those components. In unpacking a crate,
unpack and inspect 8706 unzips or removes aircraft software
parts from the crate and places them in a selected file system.
[0545] Additionally, if a packing slip is present in the crate,
this packing slip also may be displayed. The inspect portion
of this function may be used to allow a user to inspect the
contents and signature validity of crates 8714 stored in file
system 8712. Crate 8708 allows a user to create new crates
and manipulate existing crates.

[0546] For example, in manipulating crates, a user may
organize crates, add to, or subtract from its contents. Crates
may be organized in a number of different ways, depending
on the particular implementation. For example, a directory
may store crates containing aircraft software parts for a par-
ticular type of aircraft. Also, crates may be stored based on
their source. Upload 8710 provides a function to send signed
configuration items in crates from crate tool 8700 to a library,
such as library 1700 in FIG. 17, in these examples.

[0547] Turning now to FIG. 88, a message flow diagram
illustrating the processing of a crate is depicted in accordance
with an advantageous embodiment. The message flow in FI1G.
88 illustrates a flow of messages used to process crates for
uploading to a library.

[0548] In this example, the different components involved
in processing a crate involve user 8800, crate tool 8802, and
library 8804. The message flow, in this example, begins when
a user processes or receives incoming crate 8806. In this
example, a user may receive incoming crate 8806 from vari-
ous sources. For example, incoming crate 8806 may be
received through an internet connection or through some
physical media, such as a flash memory or compact disc.
[0549] The user opens the crate using the crate inspection
tool (operation I1). In response to this user input, crate tool
8802 displays crate information to the user (operation 12).
The user then inspects the crate contents and chooses to
unpack the crate (operation 13). In response to receiving this
user input, crate tool 8802 validates the signature information
and unpacks the contents of the crate into the file system
(operation 14). The signatures in incoming crate 8806 are
signatures generated by the source of the aircraft software
part in incoming crate 8806.

[0550] Thereafter, user input is generated by user 8800 to
upload the unpacked aircraft software part to the library using
alibrary upload tool (operation I5). The user enters user input
to add a part to upload from the unpacked crate location
(operation 16). The user then presses an upload to library
button (operation 17).

May 28, 2009

[0551] In response to this user input, crate tool 8802
prompts user 8800 for library login credentials (operation I8).
In response to this prompt, user 8800 enters library creden-
tials (operation 19). Crate tool 8802 then prompts the user for
a signing password to sign the aircraft software part (opera-
tion 110). In response to receiving this prompt, user 8800
enters a password (operation 111). The signing password, in
these examples, is used to create the signature that is to be
applied to the various files for the aircraft software part. In
response to receiving the password from the user, crate tool
8802 applies the signature to the different aircraft software
part files (operation 112).

[0552] As part ofthis signing process, a new crate is created
with the aircraft software part files being placed in that new
crate. With this type of implementation, the digital signatures
on the aircraft software part in the crate, at this stage, is
different from the signatures from incoming crate 8806. The
signatures that are applied now are ones for a particular user,
such as a particular airline or maintenance facility.

[0553] Afterthe signature has been applied, a part upload is
initiated by crate tool 8802 to library 8804 (operation 113).
Library 8804 uploads the aircraft software part in the crate
and verifies the contents (operation 114). Thereafter, an opera-
tion status is returned to crate tool 8802 from library 8804
(operation 115). Crate tool 8802 sends an event log to library
8804 (operation 116). The event log is uploaded by library
8804 (operation 117).

[0554] Next, an operation status on the upload is returned to
crate tool 8802 from library 8804 (operation I18). This opera-
tion status is then presented to user 8800 by crate tool 8802
(operation 119).

[0555] Turning now to FIG. 89, a diagram illustrating one
implementation of a user interface for a crate tool is depicted
in accordance with an advantageous embodiment. In this
example, user interface 8900 illustrates components that may
be used to implement user interface 8702 in crate tool 8700 in
FIG. 87. In this example, user interface 8900 includes work-
ing crate list view 8902 and working crate detail view 8904.

[0556] Working crate list view 8902 displays a list of dif-
ferent crates. From this view, a user may initiate project
operations 8906, working crate operations 8908, or exit appli-
cation 8910. Project operations 8906 may be used to create a
new project, open an existing project, close a current project,
or save a current project. Working crate operations 8908 allow
a user to create crates, delete crates, or duplicate crates in
these examples. Exit application 8910 allows a user to exit the
crate tool.

[0557] Further, from working crate list view 8902, a user
may initiate open or close working crate 8912. If a working
crate is open, working crate detail view 8904 is employed.
Working crate detail view 8904 provides a user interface that
may display different functions, depending on the particular
type of crate being processed.

[0558] In addition, from working crate list view 8902 and
from working crate detail view 8904, a user may access tools
8914. Tools 8914 provide various functions, such as checking
crate integrity, unpacking and inspecting crates, and checking
compatibility and setting preferences. In this example, tools
8914 provide functions 8916, 8918, 8920, 8922, and 8924.
Function 8916 displays information regarding the digital sig-
nature and the signature states of the configuration item.
Examples of signatures states are manufacturing, approval,
and source.

US 2009/0138518 Al

[0559] Function 8918 unpacks a signed part and/or assets in
the crate and places those components into the file system.
Function 8920 provides for an inspection of crate contents,
validates crate and component signatures, and manages crate
files. Function 8922 allows a user to check the compatibility
of an aircraft software part with the airplane’s onboard data
load function (ODLF). Function 8924 allows a user to edit
various properties and preferences. The depicted functions
are provided as illustrative examples of functions that may be
provided in tools 8914. Of course, other functions may be
used in addition to, or in place of, the depicted functions.

[0560] With reference now to FIG. 90, a diagram illustrat-
ing data flow in inspecting and unpacking crates is depicted in
accordance with an advantageous embodiment. The data flow
illustrated in FIG. 90 may be implemented in unpack and
inspect 8706 in crate tool 8700 in FIG. 87.

[0561] In this example, two dialog boxes or views are pre-
sented, inspect and unpack view 9000 and crate inspection
view 9002. Inspect and unpack view 9000 is displayed to a
user and allows a user to perform various actions with respect
to a crate that has been received by the crate tool. For example,
a user may select an operation to manipulate a crate. This
operation may be, for example, delete or move a set of crate
files.

[0562] If the user selects this operation from inspect and
unpack view 9000, the selected crate files are moved or
deleted (operation 9004). Thereafter, the crate list is refreshed
(operation 9006), and the process returns to inspect and
unpack view 9000.

[0563] If a user selects an operation such as removing a
location, the process then modifies the location list (operation
9008). The location preference is then stored (operation
9010), with the process then returning to operation 9006 as
described above. This location preference is a path or direc-
tion selected by the user. In this manner, a user may remove a
location from a set of directories or a set of locations in which
crates may be stored.

[0564] At inspect and unpack view 9000, if the user enters
user input at a new location in this view, the user is prompted
for a new location (operation 9011). Once the user enters the
new location information, the process proceeds to operation
9008 as described above. If the user selects or decides to
inspect a crate, the process moves to crate inspection view
9002. In this user interface, the user may perform various
actions with respect to a crate. For example, a user may select
to update crate information. Thereafter, crate information is
read from the file (operation 9014). The process then updates
dialog box controls with data to display crate information to
the user (operation 9016).

[0565] When crate inspection view 9002 is displayed, a
user may select another action, such as unpacking a crate. The
selecting of this action results in the crate signature being
validated (operation 9018). If the signature is valid, the crate
is unpacked (operation 9020). The process presents the
results of unpacking the crate along with displaying any pack-
ing slip contents in crate inspection view 9002 (operation
9022). Thereafter, the process returns to inspect and unpack
view 9000.

[0566] In operation 9018, if the signature of the crate is
invalid, the process presents the validation results (operation
9024). These results present in crate inspection view 9002
may include an indication that the signature problem is fatal
if the validation is incorrect for a crate signature.

May 28, 2009

[0567] In crate inspection view 9002, if the user selects to
validate a crate, the process validates the crate signature (op-
eration 9026). If the crate signature is valid, then each con-
figuration item signature is then validated (operation 9028).
In both operations 9026 and 9028, the process proceeds to
operation 9024 to display the results of the validation. If a
configuration item signature is not valid, then a warning is
presented in contrast with a fatal problem occurring if the
crate signature is not valid. In crate inspection view 9002, if
the user closes the dialog box, the process returns to inspect
and unpack view 9000.

[0568] Turning now to FIG. 91, a diagram illustrating the
data flow in creating a crate is depicted in accordance with an
advantageous embodiment. The process illustrated in FIG. 91
may be implemented in a crate tool, such as crate tool 8700 in
FIG. 87. More specifically, the different operations illustrated
in FIG. 91 may be implemented in crate 8708 in FIG. 87.
[0569] In this example, the process begins by opening a
new or existing project (operation 9100). Thereafter, the pro-
cess creates a working crate (operation 9102). In creating an
initial signed configuration item, the process begins by
receiving initial crate metadata and a configuration item iden-
tifier (operation 9104). In these examples, a configuration
item is a single item consisting of a set of files that may be
stored within a crate. Each configuration item has a unique
identifier. A configuration item may be, for example, an air-
craft software part, a related document, or some other file.
[0570] The user then navigates to the configuration item’s
data directory on the file system and enters metadata for those
selected files (operation 9106). A directory of data files is
selected because a particular configuration item may be com-
prised of more than one file. For example, an aircraft software
part may include an executable file, a configuration file, and a
dynamic link library.

[0571] Then, the process validates the metadata entries
made by the user (operation 9108). In operation 9108, the
process may determine whether the metadata entries meet a
set of rules. These rules may require certain types of configu-
ration items that contain certain amounts of information and
certain types of information. For example, with aircraft soft-
ware parts, a source or manufacturer of the aircraft software
part, as well as an identification of the type of aircraft, may be
entered as metadata. In addition, the metadata also may iden-
tify a particular aircraft that is to receive the aircraft software
part.

[0572] The process may validate the configuration item
depending upon the type of working crate (operation 9110).
Next, the process receives a user password (operation 9112).
The process then creates a digitally signed extensible markup
language file for the configuration item and stores the digi-
tally signed extensible markup language file with the configu-
ration item in the file system (operation 9114). The process
proceeds to save the project (operation 9116). A user may,
during any of these different operations, choose to halt and
save the project and continue the project at another time.
[0573] The user then navigates to the asset’s data directory
on the file system and enters metadata for those selected files
(operation 9118). Thereafter, the process validates the meta-
data entries made by the user (operation 9120). The process
receives a user password (operation 9122). The process then
creates a digitally signed extensible markup language file for
the asset and stores it on the file system (operation 9124).
[0574] Turning now to FIG. 92, a flowchart of a process for
processing a received crate is depicted in accordance with an

US 2009/0138518 Al

advantageous embodiment. The process illustrated in FIG. 92
may be implemented in a software component, such as crate
tool 8700 in FIG. 87. More specifically, the process may be
implemented in unpack and inspect 8706 in FIG. 87.

[0575] The process begins by receiving a crate (operation
9200). In this example, the crate may be received through
various sources. For example, a physical media may be con-
nected to or placed into the data processing system in which
the process executes. In other embodiments, the crate may be
received through a communications link, such as a network
link.

[0576] The process presents information about the crate
(operation 9202). In this operation, the information may be
presented through a graphical user interface. This informa-
tion may include, for example, the manufacturer source of the
crate, an identification of the contents in the crate, a size of the
crate, and other suitable information. Thereafter, a determi-
nation is made as to whether to unpack the crate (operation
9204). This determination may be made through receiving
user input.

[0577] If the crate is to be unpacked, the process validates
signatures for the crate (operation 9206). In these examples,
the signatures may be signed using a private key. A public key
located in the crate may be used to determine whether the
manifest and file digests are valid. This validation also is used
to determine whether the crate actually has been originated by
the source and remains unmodified or tampered with.

[0578] A determination is made as to whether the signa-
tures for the crate are valid (operation 9208). If the crate
signature is valid, the process unpacks the crate containing
the aircraft software part and stores it on the file system
(operation 9210). The configuration item signatures do not
have to be valid to unpack the crate. It is up to the user whether
or not to continue unpacking the crate if one or more invalid
configuration item signatures are detected. In these examples,
if the crate signature is valid, the aircraft software part is
unpacked and stored within a file system as described in
operation 9210. The process terminates thereafter.

[0579] With reference again to operation 9208, if the crate
signature is not valid, an error is returned (operation 9212),
with the process terminating thereafter. With reference back
to operation 9204, if the user decides not to unpack the crate,
the process also terminates.

[0580] This tool supports the work flow status and dynam-
ics. The implementation of a user interface as discussed in
FIG. 2 above allows the user to create, validate, and complete
a crate. A crate starts with a draft status, and so does each
component of the crate (such as the part and a related docu-
ment). As this process proceeds, the status of the crate, as well
as each component, changes from draft to in-work, and to
complete as the crate is signed. The implementation also
allows the user to add, delete, or modify any components of
the crate. Any addition, deletion, or modification will resultin
a change of the current status of the relevant component and
that of'the crate, and thus requires re-validation and resigning.
The status is graphically indicated in both crate list view and
crate detailed view. While providing flexibility and support-
ing work flow, this functionality further ensures the integrity
of completed crates.

[0581] This tool supports the dynamic release/distribution
work flow status. The implementation of a user interface as
discussed in FIG. 4 above allows the user to create, validate,
and complete a crate. A crate starts with a draft status, and so
does each component of the crate (such as the part and a

May 28, 2009

related document). As this process proceeds, the status of the
crate, as well as each component, changes from draft to in-
work, and to complete as the crate is signed. The implemen-
tation also allows the user to add, delete or modify any com-
ponents of the crate. Any addition, deletion or modification
may result in a change of the current status of the relevant
component and that of the crate, and thus requires re-valida-
tion and resigning. The status is graphically indicated in both
crate list view and crate detailed view. While providing flex-
ibility and supporting work flow, this functionality further
ensures the integrity of completed crates.

[0582] The flowcharts and block diagrams in the different
depicted embodiments may illustrate the architecture, func-
tionality, and operation of one or more possible implementa-
tions of apparatus, methods, and computer program products.
In this regard, each block in the flowchart or block diagrams
may represent a module, segment, or portion of computer
usable or readable program code, which comprises one or
more executable instructions for implementing the specified
function or functions. In some alternative implementations,
the function or functions noted in the block may occur out of
the order noted in the figures. For example, in some cases, two
blocks shown in succession may be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved.
[0583] Further, the different block diagrams of software
components, hardware components, and data structures illus-
trated in this disclosure are provided for purposes of depicting
one manner in which the different advantageous embodi-
ments can be implemented and are not meant to limit the form
that different embodiments may take. For example, some of
the block diagrams illustrate functional blocks that may be
combined or subdivided in software implementations. Also,
the hardware and architecture illustrated in these examples
may be varied in different advantageous embodiments. Also,
the different examples of graphical user interfaces are pre-
sented for purposes of illustrating one manner in which a user
interface may be implemented. These examples also are not
meant to limit the manner in which different advantageous
embodiments may be implemented.

[0584] The different advantageous embodiments can take
the form of an entirely hardware-based embodiment, an
entirely software-based embodiment, or an embodiment con-
taining both hardware and software elements. Some embodi-
ments are implemented in software, which includes, but is not
limited to, forms such as, for example, firmware, resident
software, and microcode.

[0585] Furthermore, the different embodiments can take
the form of a computer program product accessible from a
computer-usable or computer-readable medium providing
program code for use by or in connection with a computer or
any device or system that executes instructions. For the pur-
poses ofthis disclosure, acomputer-usable or computer-read-
able medium can generally be any tangible apparatus that can
contain, store, communicate, propagate, or transport the pro-
gram for use by, or in connection with, the instruction execu-
tion system, apparatus, or device.

[0586] The computer-usable or computer-readable
medium can be, for example, without limitation, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, or a propagation medium. Non-limiting
examples of'a computer-readable medium include a semicon-
ductor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a read-

US 2009/0138518 Al

only memory (ROM), a rigid magnetic disk, a floppy mag-
netic disk, and an optical disk. Optical disks may include
compact disk-read only memory (CD-ROM), compact disk-
read/write (CD-R/W), and DVD.

[0587] Further, a computer-usable or computer-readable
medium may contain or store a computer-readable or usable
program code such that when the computer-readable or
usable program code is executed on a computer, the execution
of'this computer-readable or usable program code causes the
computer to transmit another computer-readable or usable
program code over one or more communications links. Each
communications link may be either wired or wireless.
[0588] A data processing system suitable for storing and/or
executing computer-readable or computer-usable program
code will include one or more processors coupled directly or
indirectly to memory elements through a communications
fabric, such as a system bus. The memory elements may
include local memory employed during actual execution of
the program code, bulk storage, and cache memories which
provide temporary storage of at least some computer-read-
able or computer-usable program code to reduce the number
of times code may be retrieved from bulk storage during
execution of the code.

[0589] Input/output (or I/O) devices can be coupled to the
system either directly or through intervening I/O controllers.
These devices may include, for example, without limitation,
keyboards, touch screen displays, and pointing devices. Dif-
ferent communications adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Non-limiting examples are modems and network
adapters and are just a few of the currently available types of
communications adapters.

[0590] The description of the different advantageous
embodiments has been presented for purposes of illustration
and description, and it is not intended to be exhaustive or
limited to the embodiments in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art. Further, different advantageous
embodiments may provide different advantages as compared
to other advantageous embodiments.

[0591] The embodiment or embodiments selected are cho-
sen and described in order to best explain the principles of the
embodiments, the practical application, and to enable others
of ordinary skill in the art to understand the disclosure for
various embodiments with various modifications as are suited
to the particular use contemplated.

What is claimed is:

1. A computer implemented method for managing aircraft
software parts, the computer implemented method compris-
ing:

retrieving a set of aircraft software parts and metadata

about the set of aircraft software parts from a library in
an aircraft network data processing system to form a set
of retrieved aircraft software parts;

storing the set of aircraft software parts in a file system;

storing the metadata in a database;
sending the set of aircraft software parts and the metadata
to an onboard electronic distribution system, a commu-
nications link between an on ground component inter-
face, and the onboard electronic distribution system; and

maintaining status information about activity on the com-
munications link.

May 28, 2009

2. The computer implemented method of claim 1 further
comprising:

sending the status information to the library.

3. The computer implemented method of claim 2, wherein
the status information comprises an identification of whether
an aircraft software part in the set of aircraft software parts is
ready for installation in a line replaceable unit on an aircraft.

4. The computer implemented method of claim 1, wherein
the set of aircraft software parts is a first set of aircraft soft-
ware parts, the metadata is first metadata, the onboard elec-
tronic distribution system is a first onboard electronic distri-
bution system and the communications link is a first
communications link and further comprising:

sending a second set of aircraft software parts and second
metadata to a second onboard electronic distribution
system through a second communications link between
the on ground component interface and the second
onboard electronic distribution system simultaneously
with sending the set of aircraft software parts and the
metadata to the onboard electronic distribution system.

5. The computer implemented method of claim 1 further
comprising:

receiving a set of commands from the library to form a
received set of commands;

sending the received set of commands to a second onboard
electronic distribution system through a second commu-
nications link between the on ground component inter-
face and the second onboard electronic distribution sys-
tem.

6. The computer implemented method of claim 5, wherein
the set of commands comprises at least one of a delete com-
mand and a downlink command.

7. The computer implemented method of claim 5 further
comprising:

receiving downlink data through the second communica-
tions link between the on ground component interface
and the second onboard electronic distribution system;

storing the downlink data in the file system to form stored
downlink data; and

sending the stored downlink data to the library.

8. An apparatus comprising:

a file system;

a database;

a set of aircraft software parts stored in the file system;

a set of commands stored in the database;

an on ground component capable of exchanging informa-
tion with a plurality of onboard electronic distribution
systems on a plurality of aircraft;

a control process, wherein the control process is capable of
receiving the set of commands and the set of aircraft
software parts from a library and sending the set of
commands and the set of aircraft software parts to the
plurality of aircraft; and

a data processing system, wherein the file system, the data-
base, the set of aircraft software parts, the set of com-
mands, the on ground component, and the control pro-
cess are software components on the data processing
system.

9. The apparatus of claim 8, wherein the control process is
further capable of sending the set of commands and the set of
aircraft software parts to a software management tool on a
portable data processing system.

US 2009/0138518 Al

10. The apparatus of claim 8, wherein the on ground com-
ponent is capable of receiving downlink data and storing the
downlink data in the file system.

11. The apparatus of claim 8, wherein the control process is
capable of transferring the downlink data from the file system
to the library.

12. The apparatus of claim 8, wherein an aircraft software
part in the set of aircraft software parts is received in a crate
from the library.

13. The apparatus of claim 8, wherein the apparatus is
located at an airport or a maintenance facility.

14. A computer program product comprising:

a computer readable media;

program code, stored on the computer readable media, for

retrieving a set of aircraft software parts and metadata
about the set of aircraft software parts from a library in
an aircraft network data processing system to form a set
of retrieved aircraft software parts;

program code, stored on the computer readable media, for

storing the set of aircraft software parts in a file system;
program code, stored on the computer readable media, for
storing the metadata in a database;

program code, stored on the computer readable media, for

sending the set of aircraft software parts and the meta-
datato an onboard electronic distribution system, a com-
munications link between an on ground component
interface, and the onboard electronic distribution sys-
tem; and

program code, stored on the computer readable media, for

maintaining status information about activity on the
communications link.

15. The computer program product of claim 14 further
comprising:

program code, stored on the computer readable media, for

sending the status information to the library.

16. The computer program product of claim 15, wherein
the status information comprises an identification of whether
an aircraft software part in the set of aircraft software parts is
ready for installation in a line replaceable unit on an aircraft.

May 28, 2009

17. The computer program product of claim 14, wherein
the set of aircraft software parts is a first set of aircraft soft-
ware parts, the metadata is first metadata, the onboard elec-
tronic distribution system is a first onboard electronic distri-
bution system and the communications link is a first
communications link and further comprising:

program code, stored on the computer readable media, for

sending a second set of aircraft software parts and sec-
ond metadata to a second onboard electronic distribution
system through a second communications link between
the on ground component interface and the second
onboard electronic distribution system simultaneously
with sending the set of aircraft software parts and the
metadata to the onboard electronic distribution system.

18. The computer program product of claim 14 further
comprising:

program code, stored on the computer readable media, for

receiving a set of commands from the library to form a
received set of commands;
program code, stored on the computer readable media, for
sending the received set of commands to a second
onboard electronic distribution system through a second
communications link between the on ground component
interface and the second onboard electronic distribution
system.
19. The computer program product of claim 18, wherein
the set of commands comprises at least one of a delete com-
mand and a downlink command.
20. The computer program product of claim 18 further
comprising:
program code, stored on the computer readable media, for
receiving downlink data through the second communi-
cations link between the on ground component interface
and the second onboard electronic distribution system;

program code, stored on the computer readable media, for
storing the downlink data in the file system to form
stored downlink data; and

program code, stored on the computer readable media, for

sending the stored downlink data to the library.

sk sk sk sk sk

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Drawings
	Page 17 - Drawings
	Page 18 - Drawings
	Page 19 - Drawings
	Page 20 - Drawings
	Page 21 - Drawings
	Page 22 - Drawings
	Page 23 - Drawings
	Page 24 - Drawings
	Page 25 - Drawings
	Page 26 - Drawings
	Page 27 - Drawings
	Page 28 - Drawings
	Page 29 - Drawings
	Page 30 - Drawings
	Page 31 - Drawings
	Page 32 - Drawings
	Page 33 - Drawings
	Page 34 - Drawings
	Page 35 - Drawings
	Page 36 - Drawings
	Page 37 - Drawings
	Page 38 - Drawings
	Page 39 - Drawings
	Page 40 - Drawings
	Page 41 - Drawings
	Page 42 - Drawings
	Page 43 - Drawings
	Page 44 - Drawings
	Page 45 - Drawings
	Page 46 - Drawings
	Page 47 - Drawings
	Page 48 - Drawings
	Page 49 - Drawings
	Page 50 - Drawings
	Page 51 - Drawings
	Page 52 - Drawings
	Page 53 - Drawings
	Page 54 - Drawings
	Page 55 - Drawings
	Page 56 - Drawings
	Page 57 - Drawings
	Page 58 - Drawings
	Page 59 - Description
	Page 60 - Description
	Page 61 - Description
	Page 62 - Description
	Page 63 - Description
	Page 64 - Description
	Page 65 - Description
	Page 66 - Description
	Page 67 - Description
	Page 68 - Description
	Page 69 - Description
	Page 70 - Description
	Page 71 - Description
	Page 72 - Description
	Page 73 - Description
	Page 74 - Description
	Page 75 - Description
	Page 76 - Description
	Page 77 - Description
	Page 78 - Description
	Page 79 - Description
	Page 80 - Description
	Page 81 - Description
	Page 82 - Description
	Page 83 - Description
	Page 84 - Description
	Page 85 - Description
	Page 86 - Description
	Page 87 - Description
	Page 88 - Description
	Page 89 - Description
	Page 90 - Description
	Page 91 - Description
	Page 92 - Description
	Page 93 - Description
	Page 94 - Description
	Page 95 - Description/Claims
	Page 96 - Claims

