a9y United States
a12) Patent Application Publication o) Pub. No.: US 2019/0332747 Al

Raman et al.

US 20190332747A1

43) Pub. Date: Oct. 31, 2019

(54)

(71)
(72)

(21)

(22)

(51)

(52)

CHALLENGE INTERCEPTOR

Applicant: PAYPAL, INC., San Jose, CA (US)

Inventors: Srinivasan Raman, Hyderabad (IN);
Venkateswara Rao Karri, Chennai

(IN); Sanjeev Koranga, Santa Clara,
CA (US)

Appl. No.: 15/966,297

Filed: Apr. 30, 2018

Publication Classification

Int. CIL.
GO6F 21/31
HO4L 29/06

U.S. CL
CPC GO6F 21/31 (2013.01); HO4L 63/1425
(2013.01); HO4L 63/1458 (2013.01); GO6F

(2006.01)
(2006.01)

Computing Devices
104

Webpage
112 — T ™
-- . ?202} e ™
L I N \
Dynamic Engine g Network
l 14 ' ' - ; * ' '-\.
— L 1224 / 102 A
I ;
___ : e B i S
Interceptor -~ yi
116
i226}

2221/2133 (2013.01); GO6F 2221/2103
(2013.01)

(57) ABSTRACT

Systems and methods for detecting and mitigating attacks
that exploit vulnerabilities of a website are provided, accord-
ing to various embodiments described below and herein. A
computing device 1ssues a request for a web page that 1s
stored on a server. The server receives a request and 1ssues
a response that includes the requested web page and inter-
ceptor code 1njected into the response. The computing
device receives the response, renders the web content and
generates an interceptor from the interceptor code. The
interceptor intercepts requests, responses to dynamically
update the webpage and responses containing a challenge.
When a computing device i1ssues a request to the server to
dynamically update the webpage, the server 1ssues a
response to the computing device that includes a challenge.
Once computing device 1ssues a request that includes an
answer to the challenge, the server validates the answer and
1ssues a response that dynamically updates the webpage.

200
Server
106
v e e
:..1_‘1'._.. ' T “‘:_::l
E Challenge e :
E :
i Selector Challenge
e » 124 g Context
: ' Store
f .
S T T B 126
T F o
}
PO Router e, Anomaly
204 || 120 !ﬁ\206}} Detector
AN S ; ; LN)
W R S S ey 4 Ry
PPR N B R BT e 122
./"ﬁ“ ...\."'\ ! { 220 f} . l‘f.21 O\ "‘/"-n“\‘
(222 4 | R Sl 208
Nl s a “.
E -
: —
! P
: 212
| p—
e e e e e e e e e e e e e e e e
-~ | Application |
2140 110
{216
218} N
........ ‘.-j

US 2019/0332747 Al

Oct. 31, 2019 Sheet 1 of 5

Patent Application Publication

[OId
orr ¢ m
uopedyddy | | L1
e 101d9oI0U]
. ; - ~
e . o) —
M : d e —
m S SN \ N\ | vLL
M oA " o > 0l . ouISug JIWRUA(
m m e P ,“.:,w::.,;...-...-.-.-.-.-...-.-...-.uk.u.w. o M TR,

m 1019919(] R of 0cl *] an;/ HOMEN /ﬂ% ,,,
m | . ISINOY m f,..f L -
m Aewouy i Tra m . prereee” cll
| e A m N oFedgom
: : ; E B
m ;
m I v S |
79T T m 0T uoneorddy
210) _ M —
M > T w w POl
" PO el " s921A3(1 Sunndwon)
m "
-1 oBua[RYD 1019919 m B e
B P aYdielidilg m

R L . vavranewase |
T [T
o et e e e e e s e e res e e ot i et e s e o e e e e et s s e s e e e s e e b

901
IOAIDS
01

US 2019/0332747 Al

Oct. 31, 2019 Sheet 2 of 5

Patent Application Publication

¢ DId

llllllllllllllllllllllllllllllll

" -
o f..\ff

+
$
$
¢
. ¢
J ¢
e '3
J ! o
* H 2 \.\f .—Jf
: : : - “
. a ¥ .-\
e /
;
. : ﬂ
+

llllll

..\.,... . ,f!!..c.w S
474} HE N . oT1
! e Y 101d02191u]

’ " Van

».\\..%p!...f.....rrrr : e m .!ct..r/ M. !J.J_/q,vq 4\« faf/..
i i SN “ / % N :
L 807 -/ ,, " el \ SRT y AP —
! ; 01| TN ; . 0l N vl
A o~ .u.\.. ,ﬂf \.h m hh ONN ,m. - \\ \\ i \\\. N ..Jl,\..\.”.

e _ “ X e’ “ ..w; .W.m 7 “ Z " DIV AR FIRARIR m %
et P -odiu S BN S S S B MEASIAS A S QUISUL] DTWRUA(]
¢l RN w P N w : :

7 A Y | -

109Rq | {902
Arewouy |

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

ok Ak stwm mesk e dakr cmr vmes Shh my s mm AR A3 catr cmem my ki st

v

80T uoneoyddy

101§ |
IXQUOD) e VLI

aBuaqey) | 10J09[0S |
T TUS[RY)) |

vOT
SADIAJ(] SunNNAWo))

el gk st mm e/ xkr caty ey i k)l mwm ms Ak g oty

T TR e A WY vy e e radey e e Al el e ety ey vy sl b A oW e e W vy e s e A ey e, e, v s v e e et ey ey

MRS MMNNNMNY

US 2019/0332747 Al

MM MNAMMMGMNMNNNMAMMMUNNMN

MMAGSMONN

MUAAVMMMLNNNMNAAGMNMUNMNMNMNAAYMSMUNN

MM MNMAMMMNN

Oct. 31, 2019 Sheet 3 of 5

MMUAAMMMLNNNMNAAGMSMUNNNWN

hY

T I I I I T I P P L A L L L P I "
nmmwwwwmnnmmmwwvmnnmmwnwﬂwnnw\

AW &M
% Ry B RA AW AR LBER R AR, B Ny SR REA SRR LR B SR BR, R NG AR SINA URA BB N BB, By BELY AR AR CRR AR BN AR BN By CRA WRA AN

AAGSMN NN
R nd

AN MNMNNMNAAGMSMANNNN

Patent Application Publication

IV W W T YYWIIITN I TITIY Y YR YR I IV IV LTI Y YY A AT e R Y LYY v vr o e

10199197
Arewiouy

ﬁ ’-
+ A
+ N
;)
1 o S »
! - \ "
2 ES '
b 3 i
3 @ 7)
....." f »
<, \\ '
f!#:zl)l .
'

i m

Ol

A Ay Sy oy A e Ay By Sy Ay Sy Sy b e o, Ay oy Sy Ay Sy e ey

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

)
)
r
3
3
)
)
WY ek i MYy AvE LWk e st B e e BT e P v Ry Wl e s AR A s rY e w M e e AN s e e e A vvf‘ bWy THY swe T8y He S e
J
J
]
J
s

MR SN FE N IR NS ETITITZIT R ST NY FTVITITR TN ST TEY WY Ty

""""

"

- PR it PR

9cl
2101S

1X21U0)
A8U

lllll —

Ny
-(cf\

.r..lf:

oIty

.
’1‘!

4 Y
. 90¢ |
% .
f;o K\\
:
H
B e o
" "t
L T ey " -_..

q\ »(..I " ms.\ /..‘...
4 1 " ’ 1
(QI¢H 19l¢:
” f\ ! " f \‘

f”é- \\\\ m 4:0!‘!& \ﬂ

P '
]
% > bl

1019919S
-~ ABUd[IRYD

r
r

AN
{ /,
L ClE
\ /
e J..-....'.

Eau.uaauamuuu

wr el

whowh A A bl b b wh vk b b b bl e ol b b v e e e bl A

B b b Ah A b A b AL M b b O ke wke bl e bl b b vk e e e L

oAbk whe b wke b b bk gk ok A AL AL M e M vk ok kA b e b b b O ek e el e ol b b v ek ke i ok o g wh b ek ke e e e o M Dk ek ke el b o b ok wh ok b A AL A e M wh b ek e e bl AL M b b ke A A AL AL A M o Ak A A AL AL A M M Ak b A A AL A M M Ok A b A AL AL gkl ke e e e e e e dy e e ke e el e sk g b v b e e e

......

¢ DIA

1111111

a——ayy

Py’

W W W R WY mw W w v

mYrmwsnmnrrrsv s T rrsEsT ST s wsw T A A BT srrramw T w Rt m Yt wrr A e W W W W Y EY W e e ey

tt

MMM MNMAMYESMMN LSS ANYAESMN MDA MMMNYESMN -

L B
ﬁﬁﬁﬁﬁﬁﬁ

N AL D M M A

vil

ety

BMAVAENMMWBMLSSV

MVENME -

CIl

SIOIAJ(] Sunndwo))

LA L B A 3 B B L L B 2 2 2 2 |

é
;
3
|
i
|

US 2019/0332747 Al

Oct. 31, 2019 Sheet 4 of 5

Patent Application Publication

v
-
Nen i

OTT

101999 | . 0Z1
Apwouy | . 19IN0Y

\\\\\ R T " | Rl . m R~
B VA e T N v P
{gop: ¢+ O0lF; (ZI

sryg W80V, T N

IXUO)) i Ll w., di &
dSUI[[RY)) | . 10109[3§ |

T T m OWQ@:@QU w

P OId

.....

..... . o 4 .I..c/)/ \..\\ /...,
Lar 201 Jrer;
SR t\.\\
..... wv,_” NIOMISN o SR—. ~

oooooo
L pepe————

1111111

vIl

B o o o o —————]

i

SOT uonesnddy

ll

rOl
$321A3(] Sunndwo))

US 2019/0332747 Al

Oct. 31, 2019 Sheet S of 5

Patent Application Publication

m\.. ,N.,@:w..,-r#:.ifz,. W OMHH

- v

{ r =

.,‘..,,/,.vtoauwzlkv
:*,.; \,,Es

5

>~

7S UONRUITLINIR(]

€oC rIOWER) +0C JOSSA001J

I TAREI S EONEIN] uoneIOT

..

...

e e o e

I

016 2AlQ 51d 8

-

G 95RIOIS §OE AIOWAIN

0CS jonu0) Iosin))

OOO

US 2019/0332747 Al

CHALLENGE INTERCEPTOR

TECHNICAL FIELD

[0001] The disclosure generally relates to electronic secu-
rity and more particularly to verifying that a human and not
an automated bot 1s accessing a website or a web applica-
tion.

BACKGROUND

[0002] Attackers may attempt to exploit web application
vulnerabilities to extract information from a web site. For
example, attackers may launch a denial of service attack
(“DoS”) or a distributed denial of service (“DDoS”) attack
where one or more computing devices (collectively known
as bots, 1n some embodiments) send traflic to a target
website or web application. This may cause the targeted
website or web application to be overwhelmed with fake
traflic, crash, be slow to respond, or become otherwise
unavailable to users. In another example, attackers may
attempt to repeatedly validate user credentials that the
attackers store from other user accounts and 1f that valida-
tion attempt 1s successiul, take over the user accounts.
[0003] To minimize the impact of the attacks, websites and
web applications implement solutions, such as CAPTCHA
and reCAPTCHA. CAPTCHA and reCAPTCHA may be
transmitted to a computing device as part of an initial
response when the computing device imitially requests a
webpage from a server.

[0004] These conventional solutions, however, do not
extend to when a webpage 1s dynamically updated without
being reloaded from the server.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 11s an exemplary system where an interceptor
can be implemented.

[0006] FIG. 2 1s a sequence diagram that loads an inter-
ceptor 1to a browser, according to an embodiment.

[0007] FIG. 3 1s a sequence diagram that 1ssues a chal-
lenge 1n response to a request to dynamically update content,
according to an embodiment.

[0008] FIG. 4 1s a sequence diagram that processes a
response to an 1ssued challenge, according to an embodi-
ment.

[0009] FIG. 5 1s a block diagram of a computer system
suitable for implementing one or more components 1n FIGS.
1-4 according to an embodiment.

[0010] Embodiments of the disclosure and their advan-
tages are best understood by referring to the detailed
description that follows. It should be appreciated that like
reference numerals are used to i1dentily like elements 1llus-
trated 1n one or more of the figures, wherein showings
therein are for purposes of illustrating embodiments of the
disclosure and not for purposes of limiting the same.

DETAILED DESCRIPTION

[0011] The detailed description set forth below, 1n con-
nection with the appended drawings, 1s intended as a
description of various configurations and 1s not intended to
represent the only configurations in which the concepts
described herein may be practiced. The detailed description
includes specific details for the purpose of providing a
thorough understanding of the various concepts. However, 1t
will be apparent to those skilled in the art that these concepts

Oct. 31, 2019

may be practiced without these specific details. In some
instances, well-known structures and components are shown
in block diagram form in order to avoid obscuring such
concepts.

[0012] Webpages may be downloaded from a server for
display on a computing device. To display a webpage on the
computing device, an application that executes on a com-
puting device may issue a request for a webpage to the
server. The server receives the request and may 1ssue a
response. The response may include a challenge, such as
CAPTCHA or reCAPTCHA. A challenge may ask a user to
enter some 1mnformation that may not be easily entered by a
bot. Example information may be an answer to a question,
text that corresponds to an obfuscated 1image, a selection of
one or more 1mages from a grid display that have a specific
attribute, etc. The response may also include a silent chal-
lenge. A silent challenge may include code (such as
JavaScript code) that may be downloaded to a browser or an
application as part of the response. The code may then
execute automatically within the browser or an application
to perform a umt of work and submit the output of that unit
of work to the server that issued the silent challenge.

[0013] An application of a computing device, such as a
web browser or an application, may receive the response. I
the response includes a challenge, the application displays
the challenge or, in case of the silent challenge, executes the
silent challenge. In either case, the application may 1ssue an
answer to the challenge or an output of the silent challenge
back to the server. The server may validate the answer to the
challenge or the output of the silent challenge. If the
challenge 1s validated, the server may transmit the webpage
to the browser or the application which may render and
display the webpage.

[0014] In some embodiments, a webpage displayed on a
computing device may be dynamically updated. A webpage
may be updated when a dynamic web content request 1s
made by an application for web resources stored on the
server. These resources may replace a portion of the display
webpage without reloading the entire webpage. To 1ssue a
dynamic web content request, the application may include a
dynamic engine (e.g. particular executable software 1nstruc-
tions). The dynamic engine may execute within the appli-
cation or outside of the application and may 1ssue a request
to dynamically update the webpage without interrupting the
processing of the application.

[0015] In response to receiving the dynamic web content
request, the server 1ssues a response that includes web
resources that may partially update the webpage 1n various
embodiments. The dynamic engine of the application may
receive the response and dynamically update the webpage
without reloading the webpage from the server.

[0016] Conventional techniques that verify that a webpage
was not requested by a bot, are not designed to handle the
situation when the webpage 1s dynamically updated. This 1s
because the dynamic engine receives and processes the
dynamic web content response and dynamically updates the
webpage, rather than simply attempting to handle a chal-
lenge as part of an 1nitial page load. This allows the dynamic
update to occur asynchronously from the processing of the
application. For example, when a webpage 1s dynamically
updated, a dynamic engine such as an AJAX engine may
1ssue an AJAX (asynchronous java script and XML (exten-
sible markup language)) request to the server and waill
receive the dynamic update resources 1n the dynamic web

US 2019/0332747 Al

content response. More generally, techniques described
herein are not applicable just to the AJAX model for
dynamic web content refreshing, but may apply to any
similar technique 1n which a web page, after initially being
loaded, updates the web page without a full page refresh for
example.

[0017] In an embodiment, an application may employ an
interceptor to prevent a bot from accessing and/or over-
whelming the server when the webpage 1s dynamically
updated. The interceptor, 1n conjunction with the anomaly
detection mechanism of the server, may transparently handle
the rendering of a challenge on the computing device. This
may occur when the anomaly detection mechanism of the
server detects a request to dynamically update the web
content that may potentially be 1ssued by a bot and wishes
to verily the request by 1ssuing a challenge.

[0018] In an embodiment, the interceptor may be 1nstalled
within the application of a computing device or be 1njected
into the application when the application i1ssues a request to
initially load the webpage. The interceptor may intercept a
response that includes a challenge that the server issues in
response to a dynamic web content request and direct the
challenge to the application and not the dynamic engine. For
example, when a dynamic engine 1ssues a request to dynami-
cally update the webpage, an interceptor may intercept a
response from the server that includes a challenge before the
response reaches the dynamic engine. The interceptor then
causes the application to render the challenge and receive an
answer as user mput or to automatically execute the chal-
lenge 11 the challenge 1s an algorithm that may execute a unit
of work and generate an output as the answer to the
challenge.

[0019] Because a server receives an answer to the chal-
lenge before 1ssuing a dynamic web content response that
dynamically updates the webpage, the attack by one or more
bots may be mitigated or prevented when a webpage 1s
dynamically updated.

[0020] FIG. 1 1s an exemplary system 100 where embodi-
ments can be implemented. System 100 includes a network
102. Network 102 may be implemented as a single network
or a combination of multiple networks. For example, 1n
various embodiments, network 102 may include the Internet
or one or more intranets, landline networks, wireless net-
works, and/or other approprate types of networks. Network
102 may be a small scale communication network, such as
a private or local area network, or a larger scale network,
such as a wide area network, accessible by the various
components of system 100.

[0021] Various components that are accessible to network
102 may be computing devices 104 and servers 106. Com-
puting devices 104 may be portable and non-portable elec-
tronic devices under control of a user and configured to
transmit, receive, and manipulate data from servers 106.
Example computing devices 104 include desktop computers,
laptop computers, tablets, smartphones, wearable computing
devices, eyeglasses that incorporate computing devices,
implantable computing devices, etc.

[0022] Servers 106 are also connected to network 102. An
example server 106 may be a computing device that includes
hardware and software for large scale processing. In another
example, server 106 may be a computer program installed
on a computing device. Server 106 may be a web server. In
an embodiment, server 106 may be maintained by a service

Oct. 31, 2019

provider, such as PAYPAL®, a telephonic service provider,
social networking service, and/or other service providers.

[0023] In an embodiment, server 106 may also be con-
nected to other servers and/or computing devices that are not
accessible to network 102 (not shown). These servers and/or
computing devices may communicate with each other using
an internal network, such as an intranet network that 1s not
visible to network 102. In this case, the servers and com-
puting devices connected via an internal network may

communicate with computing devices 104 through server
106.

[0024] In an embodiment, computing device 104 includes
application 108. Applications 108 may be downloaded to the
computing device 104 from service provider server that may
be one of servers 106, be pre-installed on the computing
devices 104, installed on the computing device 104 using
portable memory storage devices, described below. Appli-
cations 108 may execute on computing devices 104 and
rece1ve 1nstructions and data from a user, servers 106, and/or
from other computing devices 104. In some embodiments,
application 108 may be a browser.

[0025] As illustrated 1n FIG. 1, server 106 may include
applications 110. Example applications 110 may be payment
transaction applications, such as those that may be config-
ured to transfer money world-wide, receive payments for
goods and services, manage money spending, etc. Further,
applications 110 may be under an ownership or control of a
payment service provider, such as PAYPAL®, Inc. of San
Jose, Calif., USA, a telephonic service provider, a social
networking service provider, and/or other service providers.
In another example, applications 110 may also be analytics
applications. Analytics applications perform business logic,
provide services, and measure and improve performance of
services and functions of other applications that execute on
computing devices 104 based on current and historical data.
In another embodiment, applications 110 may be security
applications for implementing client-side security features,
programmatic client applications for interfacing with appro-
priate application programming interfaces (APIs) over net-
work 102, communication applications, such as email, tex-
ting, voice, and 1nstant messaging applications that allow a
user to send and receive emails, calls, texts, and other
notifications through network 102. In yet another embodi-
ment, applications 110 may be location detection applica-
tions, such as a mapping, compass, and/or global positioning
system (GPS) applications. Further, applications 110 may be
social networking applications and/or merchant applica-
tions.

[0026] In an embodiment, applications 110 may include
websites. Websites may be a collection of one or more
webpages. Application 108 may download one or more
webpages from server 106 to computing device 104. For
example, application 108 may obtain a webpage, including
content and/or data, collectively referred to as a web
resource from application 110. Once obtained, application
108 may display the web resource on computing device 104.
In some embodiments, the web resource may be displayed
as a webpage 112.

[0027] To obtain the web resource, application 108 may
communicate with application 110 using a using a request
message (“request”). The request to application 110 may
include a request for a particular webpage 112. In response
to the request, application 110 may 1ssue a “response”
message (“response”). The response message may include

US 2019/0332747 Al

content, such as scripts, code, and data that may be used to
render and display the web resource as webpage 112. In
some embodiments, the content of the request and response
may be written in hypertext markup language (“HTML”),
style sheets language, such as (“CSS”), Java script, exten-
sible markup language (“XML”), etc.

[0028] In some embodiments, the request and response
messages may be transmitted using a Hypertext Transier
Protocol (“HTTP”), a file transter protocol (“FTP”), or
another protocol.

[0029] In an embodiment, once application 108 receives a
response from application 110, application 108 may render
the resources 1n the response and render webpage 112 on
computing device 104.

[0030] In an embodiment, webpage 112 may be dynami-
cally updated. Dynamic updates may update a portion of
webpage 112 without reloading the entire webpage.
Dynamic updates may also be referred to as asynchronous
updates of webpage 112. To request dynamic updates, appli-
cation 108 may use a dynamic engine 114. Dynamic engine
114 may 1ssue a dynamic web content request to application
110 without interfering with processing of application 108.
The dynamic web content requests may be AJAX requests 1in
some embodiments. Typically, AJAX may be a combination
of several languages, such as HIML, cascading style sheets
(“CSS”), JavaScript and XMLHttpRequest objects, to give a
few examples.

[0031] In an embodiment, the dynamic web content
request and dynamic web content response may also be
transmitted using a Hypertext Transier Protocol (“HTTP”),
a file transter protocol (“F1TP”’), or another protocol.

[0032] As discussed above, dynamic web content requests
may be 1ssued by dynamic engine 114. This 1s different from
requests to 1mitially load webpage 112 that are issued by
application 108. Dynamic engine 114 may execute within
application 108 or outside of application 108 (not shown). In
an embodiment, dynamic engine 114 may also be included
in a response received by application 108 from application
110 that renders webpage 112. Dynamic engine 114 may
execute within application 108 as long as application 108
renders webpage 112 on computing device 104.

[0033] In an embodiment, dynamic engine 114 may be
aware of webpage 112 that 1s rendered by application 108.
Dynamic engine 114 may also be aware of user input that
computing device 104 may receive in response to applica-
tion 108 rendering webpage 112. Dynamic engine 114 may
also 1ssue dynamic web content requests that may be sent to
application 110 1n response to computing device 104 recerv-
ing the user input. Further, dynamic engine 114 may be
aware of the dynamic web content response that application
110 may send to computing device 104 1n response to the
dynamic web content request when anomaly detector 122
(described below) determines that the dynamic web content
request was not originated from a bot. In an embodiment,
dynamic engine 114 may also process the dynamic web
content response, including the JavaScript within the
dynamic web content response to update webpage 112
without using or interfering with the processing 5 or work-
load on application 108.

[0034] In an embodiment, application 110 may not difler-
entiate between requests 1ssued by application 108 or Inter-
net bots or simply bots. A bot may be a software application
that executes on computing devices, such as computing
device 104 or another server 106. A bot may emulate a

Oct. 31, 2019

request sent by application 108. However, a bot or a com-
bination of bots may send requests that are highly repetitive
and at a higher rate that may be possible by a human who 1s
interfacing with application 108 and webpage 112. Because
bots or similar software may 1ssue requests to application
110 at high, repetitive rates, bots may overwhelm applica-
tion 110 such that applications 110 may be overloaded,
crash, unable to provide users with requested content. In
another example, a bot may be designed to exploit vulner-
abilities or bugs i1n application 110 in order to extract
information, including user information, from application
110. In yet another example, a bot may be designed to use
user credentials acquired by unauthorized third parties dur-
ing a server breach to verity if the same user credentials may
be applied to access application 110.

[0035] Conventional techniques prevent bots from access-
ing application 110 when webpage 112 1s initially loaded or
rendered using application 108. Such techniques, however,
do not extend to istances when webpage 112 1s dynamically
updated. This 1s because dynamic web content requests and
responses are processed by dynamic engine 114 and inde-
pendent of application 108.

[0036] To maitigate the dynamic web content requests to
application 110 that were generated by one or more bots,
application 110 may 1nject interceptor code into the response
sent back to application 108, or 1f a bot 1ssued a request, to
the bot. This may occur when application 108 1ssues an
initial request for webpage 112 to be downloaded and
rendered on computing device 104. When application 110
receives the request, application 110 may i1ssue a response
that includes interceptor code together with a web resource
that may be used to load webpage 112. An example response
may be an HIML response.

[0037] When application 108 receives the response that
includes the interceptor code, application 108 may execute
or interpret the interceptor code and generate interceptor
116. In addition to generating interceptor 116, application
108 may also render webpage 112 included 1n the response.
Alternatively, application 108 may interpret or execute a
script that may invoke interceptor 116.

[0038] In an embodiment, computing device 104 may
receive input when user interacts with webpage 112. The
input may include a request to dynamically update webpage
112 and may cause dynamic engine 114 to 1ssue a dynamic
web content request. When interceptor 116 1s installed as
part of webpage 112, dynamic web content request from
dynamic engine 114 may invoke interceptor 116. When
invoked, interceptor 116 may invoke an actual dynamic web
content request mechanism (such as an XMLHttpRequest)
provided by application 108 to generate a dynamic web
content request to application 110.

[0039] In an embodiment, interceptor 116 may also inter-
cept a response from server 106 that includes a challenge
and direct those to application 108. The challenge pertains to
detecting that a request and/or dynamic web content request
may have been i1ssued by a bot, and not by, for example, a
user selecting content using webpage 112 rendered by
application 108.

[0040] As discussed above, mterceptor 116 may 1ntercept
requests and responses that may dynamically update web-
page 112 and also responses that include a challenge to
identify that a bot, and not a human using application 108,
1s trying to access application 110.

US 2019/0332747 Al

[0041] Forexample, in response to a dynamic web content
request to application 110, server 106 may return a response
that includes a challenge. Interceptor 116 may intercept the
response that includes a challenge and pass the challenge to
application 108 that may render the challenge. In an embodi-
ment, application 108 may render the challenge using a
challenge widget. The rendered challenge may be displayed
on the screen of computing device 104 instead of webpage
112 or within webpage 112. In an embodiment, a challenge
may display a question that may be included 1n an 1mage.
Typically, the question may be answered by a human, but not
a bot.

[0042] In an embodiment, application 108 may receive an
answer to a challenge and 1ssue a challenge validation
request to server 106 that includes the answer to the chal-
lenge. In an embodiment, the challenge validation request
that includes a challenge may be an HT'TP request.

[0043] In an embodiment, interceptor 116 may intercept a
dynamic web content response, such as an AJAX response,
from server 106. Interceptor 116 may receive a dynamic web
content response when server 106 validates that the answer
to a challenge provided 1n the challenge request 1s the correct
answer. Once interceptor 116 intercepts dynamic web con-
tent response, 1mterceptor 116 may pass the dynamic web
content response for processing by dynamic engine 114. As
discussed above, dynamic engine 114 may dynamically
update content and/or data of webpage 112 that was previ-
ously downloaded to computing device 104. For example,
interceptor 116 may intercept an AJAX response that
includes web resources 1n JavaScript for dynamically updat-
ing webpage 112. Interceptor 116 may then pass the AJAX
response to dynamic engine 114 that may execute or inter-
pret the JavaScript included 1n the AJAX response.

[0044] In an embodiment, server 106 may include a threat
detection system 118. Although FIG. 1 illustrates threat
detection system 118 as being included in a single server
106, the implementation 1s not limited to this embodiment as
threat detection system 118 and components of the threat
detection system 118 may be included on multiple servers

106.

[0045] In an embodiment, threat detection system 118
includes a router 120, an anomaly detector 122, a challenge
selector 124, and a challenge content store 126.

[0046] In the illustrated embodiment, router 120 1s
included within server 106. The implementation however 1s
not limited to this embodiment and router 120 may be
outside of server 106, within network 102, etc.

[0047] In an embodiment, router 120 may be a layer 7
router. A layer 7 router may route or load balance requests
received at server 106 at layer 7 of the Open System
Communication model. In particular, a layer 7 router may
read the requests received at server 106 and direct the
requests to application 110, anomaly detector 122 or chal-
lenge selector 124 based on the content of the request. For
example, the content of the request may indicate that the
request 1s a request to retrieve webpage 112 (such as an
HTTP request 1ssued by application 108) or a dynamic web
content request to dynamically update webpage 112 that has
previously been downloaded and/or rendered on computing
device 104 (such as an AJAX request 1ssued by dynamic
engine 114). Additionally, router 120 may forward responses
from server 106 to computing device 104. In another

Oct. 31, 2019

embodiment, router 120 may also pass requests and
responses between application 110, anomaly detector 122,
and challenge selector 124.

[0048] For example, router 120 may receive a request to
load webpage 112 from application 108 and route the
request to application 110. In another example, router 120
may route a request for application 110 to anomaly detector
122. In yet another example, router 120 may route a request
to challenge selector 124.

[0049] In an embodiment, anomaly detector 122 may
receive requests from network 102. The requests may be
requests to load webpage 112 or to dynamically update
webpage 112. Once received, anomaly detector 122 may
determine whether the request 1s a safe request or may be a
potential threat to application 110. A safe request may be
generated by a user manipulating webpage 112. A request
that 1s a potential threat may be a request generated by a bot.
[0050] In an embodiment, where anomaly detector 122
determines that a request to load webpage 112 1s a safe
request, anomaly detector 122 may instruct router 120 to
route the request to application 110. In an embodiment
where anomaly detector 122 determines that a request to
load webpage 112 1s a potential threat, anomaly detector 122
may pass the request to challenge selector 124.

[0051] In an embodiment, application 110 may receive
requests to provide a web resource that application 108 may
render as webpage 112 on computing device 104. In this
case, application 110 may generate a response that includes
web resources that may render webpage 112. In an embodi-
ment, when application 110 generates a response, applica-
tion 110 may also 1inject the interceptor code into the
response. Example interceptor code may be an XmlHttpRe-
quest 1nterceptor JavaScript code. Once application 110
generates the response, application 110 may pass the
response to router 120.

[0052] In an embodiment, when router 120 receives the
response from application 110, router 120 may pass the
response to computing device 104. In an embodiment, router
120 may also 1inject interceptor code into the response. In
this embodiment, router 120 and not application 110 may
inject interceptor code into the response.

[0053] In yet another embodiment, application 110 pro-
cesses a dynamic web content request that may request a
dynamic update of webpage 112. In this case, application
110 may generate a dynamic web content response that may
be processed using dynamic engine 114 to update webpage
112. Once application 110 generates a dynamic web content
response, application 110 may pass the dynamic web content
response to application 108 through router 120.

[0054] As discussed above, anomaly detector 122 may
detect that a request 1s a potential threat to application 110.
In this case, anomaly detector 122 may route the request to
challenge selector 124. The request may be a request to load
webpage 112 or be a dynamic web content request.

[0055] In an embodiment, challenge selector 124 may
generate a challenge. A challenge may determine whether a
request was generated by application 108 in response to user
input or by a bot. Example challenge may be a “reCAPT-
CHA”, “CAPTCHA?”, silent JavaScript challenge or another
challenge. These challenges generate a question to which a
human user using application 108, but not a bot, may
provide an answer. To generate a challenge, challenge selec-
tor 124 may access challenge context store 126. Challenge
context store 126 may be a database or another memory

US 2019/0332747 Al

store that stores challenge context data. Example challenge
context data may be a challenge and the answer to the
challenge. In an embodiment, a challenge may be an 1mage,
content included within the 1image, an audio question, etc. In
another embodiment, a challenge may be a silent challenge.
The silent challenge may include an executable algorithm 1n
a language such as JavaScript that 1s meant to execute on
computing device 104 and generate an output that challenge
selector 124 may interpret as an answer to the challenge. In
an embodiment, challenge context store 126 may be a third
party service, accessed through a service interface provided
by the third party (not shown.) For example, reCAPTCHA
challenge may be accessed by means of the challenge
selector 124 accessing a Google API (not shown) to retrieve
a challenge to be returned computing device 104.

[0056] In an embodiment, challenge selector 124 may
1ssue a response containing a challenge to application 108.
The response containing a challenge may include a chal-
lenge question. In some embodiments, the challenge may be
in a Java Script Object Notation (“JSON”’) format. In an
embodiment, the challenge may be processed by application
108 and not dynamic engine 114.

[0057] In an embodiment, once challenge selector 124
issues a challenge, challenge selector 124 may store the
challenge context and the request or dynamic web content
request for which the challenge was 1ssued. In this way,
challenge selector 124 may receive an answer to the chal-
lenge and use the challenge context to determine whether the
challenge was answered correctly or not. Further, 1f the
challenge 1s answered correctly, challenge selector 124 may
cause router 120 to route the previously saved request or the
dynamic web content request to application 110.

[0058] As discussed above, application 108 may issue
requests to load webpage 112 and use dynamic engine 114
to 1ssue requests to dynamically update webpage 112. FIGS.
2-4 are sequence diagrams that illustrate a sequence that
installs an interceptor on computing device and attempts to
ensure that the dynamic web content requests to dynamically
update webpage 112 are 1ssued by application 108 that
receives 1nput from a user and not by a bot.

[0059] FIG. 2 1s a sequence diagram 200 that loads an
interceptor into an application, according to an embodiment.

Sequence diagram 200 may be implemented using compo-
nents described in FIG. 1.

[0060] At operation 202, application 108 1ssues a request
to retrieve webpage 112. The request may be 1ssued because
application 108 receives input from a user. The request may
be an HTTP request to load webpage 112 for the first time.

[0061] At operation 204, router 120 receives the request.
Router 120 may forward the request to anomaly detector
122.

[0062] At operation 206, anomaly detector 122 receives
the request.

[0063] At operation 208, anomaly detector 122 determines

that a request 1s generated by application 108 and not by a
bot.

[0064] At operation 210, anomaly detector 122 transmits
the anomaly detection response to router 120 directing
router 120 to transmit the request to application 110.

[0065] At operation 212, router 120 may forward the
request to application 110.

[0066] At operation 214, application 110 receives the
request.

Oct. 31, 2019

[0067] At operation 216, application 110 processes the
request and generates a response. In an embodiment, the
response may be an HTML response that when executed or
interpreted by application 108 may render webpage 112 on
computing device 104.

[0068] At operation 218, application 110 passes the
response to router 120.

[0069] At operation 220, router 120 1njects interceptor
code for interceptor 116 into the response. For example,
router 120 may 1nject the XmlHttpRequest interceptor
JavaScript code into the HTML response.

[0070] At operation 222, router 120 may forward the
response with the interceptor code to application 108.

[0071] At operation 224, application 108 receives the
response containing the interceptor code. For example,
application 108 may receive the HI ML response containing
the 1njected XmlHttpRequest interceptor JavaScript code.

[0072] At operation 226, application 108 executes or
interprets the HTML response and renders webpage 112.
Additionally, during the rendering, application 108 executes
the 1injected code. This causes interceptor 116 to be installed
in application 108 or be invoked on computing device 104.
As discussed above, interceptor 116 may intercept dynamic
web content requests, dynamic web content responses and
responses containing a challenge.

[0073] As 1llustrated 1in FIG. 2, at operation 220, router
120 injects the interceptor code for interceptor 116 into the
response. This embodiment, however, 1s not limited to router
120 injecting the interceptor code into the response. In
another embodiment, after application 110 generates the
response, a framework level code in application 110 may
inject the interceptor code into the response before the
response arrives at router 120. In another embodiment, a
service provider that 1s 1n the path of the request between
application 108 and server 106 may also inject the intercep-
tor code (not shown) into the response.

[0074] FIG. 3 1s a sequence diagram 300 that issues a
challenge 1n response to a request to dynamically update
content, according to an embodiment. Sequence diagram

300 may be implemented using components described in
FIG. 1.

[0075] At operation 302, application 108 1ssues a request
to dynamically update webpage 112. For example, applica-
tion 108 may receive input from a user. Example mput may
be through a keyboard, mouse, touchscreen, voice, etc.,
input to webpage 112 displayed on computing device 104. In
response to the mput, dynamic engine 114 may generate a
request to dynamically update webpage 112. Example
request may be a dynamic web content request or an AJAX
request.

[0076] At operation 304, router 120 receives the request.
Once received, router 120 may forward the request to
anomaly detector 122.

[0077] At operation 306, anomaly detector 122 receives
the request.
[0078] Atoperation 308, anomaly detector 122 determines

whether the request may be generated by a bot, and 1s a
potential threat to application 110. When anomaly detector
122 determines that the request 1s a potential threat, the
sequence proceeds to operation 310. Otherwise, anomaly
detector 122 may pass the request through router 120 to
application 110 which 1ssues a response that may be inter-
preted to dynamically update webpage 112.

US 2019/0332747 Al

[0079] At operation 310, anomaly detector 122 transmits
an anomaly detection response to router 120 directing the
router 120 to transmit the request to challenge selector 124.

[0080] At operation 312, router 120 transmits the request
to challenge selector 124.

[0081] At operation 314, challenge selector 124 receives
the request.
[0082] At operation 316, challenge selector 124 generates

a challenge. To generate a challenge, the challenge selector
124 may retrieve a challenge context from challenge context
store 126. As discussed above, challenge selector 124 may
generate a challenge, such as “reCAPTCHA”, “CAPT-
CHA,” silent JavaScript, etc. In an embodiment, the chal-
lenge may be generated in the form of a JSON document.
Challenge selector 124 may include the challenge 1n the
response.

[0083] At operation 318, challenge selector 124 stores
challenge context in challenge context store 120. This is
because challenge selector 124 may use the persisted context
to validate the response to the challenge provided from
computing device 104. For example, when challenge selec-
tor 124 receives a challenge validation request to a chal-
lenge, the challenge selector 124 may match some or all of
the answer provided 1n the challenge validation request to
the answer 1n the challenge context. In an embodiment, in
addition to challenge context, challenge selector 124 may
also store the request for which the challenge selector 124
generated a challenge.

[0084] At operation 320, challenge selector 124 passes the
response containing the challenge to router 120.

[0085] At operation 322, router 120 transmits the response
contaiming the challenge to application 108.

[0086] At operation 324, application 108 receives the
response containing the challenge.

[0087] At operation 326, interceptor 116 intercepts the
response and determines that the response includes a chal-
lenge. In an embodiment, interceptor 116 may cause appli-
cation 108 to render the challenge, using, for example a
challenge widget included 1n application 108. The rendered
challenge may be displayed on the screen of computing
device 104. The rendered challenge may be “reCAPTCHA”
or “CAPTCHA”, or a silent JavaScript challenge 1n some
embodiments.

[0088] FIG. 4 1s a sequence diagram 400 that processes a
response to an 1ssued challenge, according to an embodi-
ment. Sequence diagram 400 may be implemented using
components described 1n FIG. 1.

[0089] At operation 402, application 108 1ssues a request
that includes an answer to the challenge. For example,
application 108 may receive an iput that includes an answer
to a challenge. For example, application 108 may receive a
response from a user using a keyboard, mouse, touch screen,
voice, etc. Once recerved, application 108 may generate a
request that includes an answer to the challenge. The chal-
lenge validation request may be an HTTP request.

[0090] At operation 404, router 120 receives the request
that includes the answer to the challenge and forwards the
request to challenge selector 124.

[0091] At operation 406, challenge selector 124 receives
the request that includes the answer to the challenge.

[0092] At operation 408, challenge selector 124 may
retrieve challenge context from its memory or from chal-
lenge context store 126.

Oct. 31, 2019

[0093] At operation 410, challenge selector 124 validates
the answer to the challenge 1n the request by comparing the
answer 1n the request to the challenge received in operation
406 to the answer 1n the challenge context. If the validation
succeeds, the sequence proceeds to operation 412. Other-
wise, the sequence in FIG. 3 may be repeated or a challenge
failed error be transmitted to application 108.

[0094] At operation 412, challenge selector 124 directs
router 120 to route the request 1ssued 1n operation 302 of
FIG. 3, retrieved from challenge context store 126, to
application 110.

[0095] At operation 414, router 120 routes the request of
operation 302 of FIG. 3 to application 110.

[0096] At operation 416, application 110 receives the
request.
[0097] At operation 418, application 110 processes the

request. For example, application 110 generates a response
that includes data or content that may dynamically update

webpage 112.

[0098] At operation 420, application 110 transmits the
response to router 120.

[0099] At operation 422, router 120 passes the response to
application 108 over network 102.

[0100] At operation 424, application 108 receives the
response from server 106.

[0101] At operation 426, interceptor 116 intercepts the
response. Interceptor 116 may determine that the response 1s
a dynamic web content response and passes the response to
dynamic engine 114 to process and update webpage 112
accordingly.

[0102] Referring now to FIG. § an embodiment of a

computer system 500 suitable for implementing, the systems
and methods described 1n FIGS. 1-4 1s illustrated.

[0103] In accordance with various embodiments of the
disclosure, computer system 500, such as a computer and/or
a server, includes a bus 502 or other communication mecha-
nism for communicating information, which interconnects
subsystems and components, such as a processing compo-
nent 504 (e.g., processor, micro-controller, digital signal
processor (DSP), graphics processing unit (GPU), etc.), a
system memory component 506 (e.g., RAM), a static storage
component 508 (e.g., ROM), a disk drive component 510
(e.g., magnetic or optical), a network interface component
512 (e.g., modem or FEthernet card), a display component
514 (e.g., CRT or LCD), an mput component 518 (e.g.,
keyboard, keypad, or virtual keyboard), a cursor control
component 520 (e.g., mouse, pointer, or trackball), a loca-
tion determination component 522 (e.g., a Global Position-
ing System (GPS) device as illustrated, a cell tower trian-
gulation device, and/or a variety of other location
determination devices known 1n the art), and/or a camera
component 523. In one implementation, the disk drive
component 510 may comprise a database having one or
more disk drive components.

[0104] In accordance with embodiments of the disclosure,
the computer system 500 performs specific operations by the
processor 504 executing one or more sequences ol nstruc-
tions contained in the memory component 506, such as
described herein with respect to the mobile communications
devices, mobile devices, and/or servers. Such instructions
may be read into the system memory component 506 from
another computer readable medium, such as the static stor-
age component 508 or the disk drive component 510. In

US 2019/0332747 Al

other embodiments, hard-wired circuitry may be used 1n
place of or in combination with software instructions to
implement the disclosure.

[0105] Logic may be encoded in a computer readable
medium, which may refer to any medium that participates in
providing 1instructions to the processor 504 for execution.
Such a medium may take many forms, including but not
limited to, non-volatile media, volatile media, and transmis-
sion media. In one embodiment, the computer readable
medium 1s non-transitory. In various implementations, non-
volatile media includes optical or magnetic disks, such as the
disk drive component 510, volatile media includes dynamic
memory, such as the system memory component 506, and
transmission media includes coaxial cables, copper wire,
and fiber optics, including wires that comprise the bus 502.
In one example, transmission media may take the form of
acoustic or light waves, such as those generated during radio
wave and infrared data communications.

[0106] Some common forms of computer readable media
includes, for example, floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EPROM, FLASH-EPROM, any other memory chip or car-
tridge, carrier wave, or any other medium from which a
computer 1s adapted to read. In one embodiment, the com-
puter readable media 1s non-transitory.

[0107] In various embodiments of the disclosure, execu-
tion of 1nstruction sequences to practice the disclosure may
be performed by the computer system 500. In various other
embodiments of the disclosure, a plurality of the computer
systems 500 coupled by a communication link 524 to the
network 102 (e.g., such as a LAN, WLAN, PTSN, and/or
various other wired or wireless networks, including tele-
communications, mobile, and cellular phone networks) may
perform 1nstruction sequences to practice the disclosure in
coordination with one another.

[0108] The computer system 500 may transmit and receive
messages, data, information and instructions, including one
or more programs (1.€., application code) through the com-
munication link 524 and the network interface component
512. The network interface component 512 may include an
antenna, either separate or integrated, to enable transmission
and reception via the communication link 524. Received
program code may be executed by processor 504 as recerved
and/or stored in disk drive component 510 or some other
non-volatile storage component for execution.

[0109] In an embodiment, computer system 500 may also
be deployed 1n a public or a private cloud. When deployed
in a public cloud, computer system 500 may execute one or
more virtual machines which may host one or more appli-
cations or websites (such as application 110) that may be
accessible over network 102. When deployed 1n a private
cloud, computing system 500 may be included and operated
by a private organization, such as PAYPAL®. For example,
computing system 500 may execute challenge selector 124,
challenge context store 126, application 110, and anomaly
detector 122 using interfaces, software, and hardware that
are proprietary to the private organization.

[0110] Where applicable, various embodiments provided
by the disclosure may be implemented using hardware,
software, or combinations of hardware and software. Also,
where applicable, the various hardware components and/or
software components set forth herein may be combined 1nto

Oct. 31, 2019

composite components comprising soitware, hardware, and/
or both without departing from the scope of the disclosure.
Where applicable, the various hardware components and/or
software components set forth herein may be separated 1nto
sub-components comprising soiftware, hardware, or both
without departing from the scope of the disclosure. In
addition, where applicable, 1t 1s contemplated that software
components may be implemented as hardware components
and vice-versa.

[0111] Software, 1n accordance with the disclosure, such
as program code and/or data, may be stored on one or more
computer readable mediums. It 1s also contemplated that
software 1dentified herein may be implemented using one or
more general purpose or specific purpose computers and/or
computer systems, networked and/or otherwise. Where
applicable, the ordering of various steps described herein
may be changed, combined into composite steps, and/or
separated 1nto sub-steps to provide features described
herein.

[0112] The foregoing disclosure 1s not intended to limit the
disclosure to the precise forms or particular fields of use
disclosed. As such, 1t 1s contemplated that various alternate
embodiments and/or modifications to the disclosure,
whether explicitly described or implied herein, are possible
in light of the disclosure. Having thus described embodi-
ments of the disclosure, persons of ordinary skill 1in the art
will recognize that changes may be made 1n form and detail
without departing from the scope of the disclosure. Thus, the
disclosure 1s limited only by the claims.

What 1s claimed 1s:

1. A system, comprising:

a non-transitory memory storing instructions; and

one or more hardware processors coupled to the non-
transitory memory and configured to read the instruc-
tions from the non-transitory memory to cause the
system to perform operations comprising:
1ssuing, using an application, a request to a server,

wherein the request comprises a download request
for a webpage to a computing device;

receiving, in response to the request, the webpage and
an interceptor code;

generating an interceptor from the interceptor code;

1ssuing, using a dynamic engine, a dynamic web con-
tent request to the server, wherein a response to the
dynamic web content request will update a portion of
the webpage;

1in response to 1ssuing the dynamic web content request,
receiving a challenge;

intercepting, using the interceptor, the challenge,
wherein the intercepted challenge 1s passed to the
application;

rendering, using the application, the challenge;

receiving an answer to the challenge; and

receiving a dynamic web content response that updates
the portion of the webpage after validating the
answer to the challenge.

2. The system of claim 1, wherein the dynamic web

content request 1s an asynchronous JavaScript and extensible
(AJAX) request.

3. The system of claim 1, wherein the operations further
comprise:
intercepting, using the interceptor, the dynamic web con-
tent response;

US 2019/0332747 Al

passing the dynamic web content response to the dynamic
engine; and
updating, using the dynamic engine, the portion of the
webpage with content 1n the dynamic web content
response.
4. The system of claim 1, wherein an application 1s a
browser.
5. The system of claim 1, wherein the interceptor code 1s
in a JavaScript language.
6. The system of claim 1, wherein the interceptor executes
within the application.
7. A method, comprising:
generating, using a dynamic engine executing on a com-
puting device, a dynamic web content request to a
server, wherein the dynamic web content request
requests an update to a webpage previously down-
loaded to the computing device;
receiving, 1n response to the dynamic web content
request, a challenge;
using an interceptor, intercepting the challenge and pass-
ing the challenge to a browser;
receiving a challenge answer;
transmitting the challenge answer for validation to the
Server;
receiving a dynamic web content response that includes
an update for the webpage when the server validates the
challenge answer; and
updating the webpage using the dynamic web content
response.
8. The method of claim 7, turther comprising;:
downloading the webpage to the computing device,
wherein the webpage includes an interceptor code for
an interceptor; and
generating the interceptor from the interceptor code
included 1n the downloaded webpage.
9. The method of claim 8, wherein the dynamic engine 1s
included 1n the downloaded webpage.
10. The method of claim 8, wherein the interceptor code
1s 1n a JavaScript language.

11. The method of claim 7, further comprising:

using the interceptor, intercepting the dynamic web con-
tent response; and

passing the dynamic web content response to the dynamic
engine, wherein the dynamic engine updates the web-
page using the dynamic web content response.

12. The method of claim 7, wherein the dynamic web
content request 1s an asynchronous JavaScript and extensible

(AJAX) request.

Oct. 31, 2019

13. A system, comprising:

a non-transitory memory storing instructions; and

one or more hardware processors coupled to the non-

transitory memory and configured to read the instruc-
tions from the non-transitory memory to cause the
system to perform operations comprising:

receiving a request to render a webpage from an appli-

cation;

generating a response to the request;

injecting an interceptor code into the response, wherein

the 1interceptor code generates an interceptor that inter-
cepts a dynamic web content response and a response
containing a challenge; and

transmitting the response with the injected interceptor

code to the application, whereby the application ren-
ders the webpage and generates the interceptor from the
interceptor code, and whereby the interceptor intercepts
the dynamic web content response and the response
containing a challenge received by the application.

14. The system of claim 13, wherein the interceptor code
1s 1n a JavaScript language.

15. The system of claim 13, wherein a router injects the
interceptor code into the response.

16. The system of claim 13, wherein a second application
that generates the response injects the interceptor code into
the response.

17. The system of claim 13, wherein the operations turther
comprise:

receiving a dynamic web content request from a dynamic

engine wherein the dynamic web content request 1s a
request to update a portion of the webpage;

in response to the receiving, 1ssuing a challenge;

validating an answer to the challenge; and

generating a dynamic web content response that includes

an update that dynamically updates the webpage.

18. The system of claim 17, wherein the operations further
comprise:

transmitting the dynamic web content response to a

computing device, whereby the interceptor intercepts
the dynamic web content response and passes the
dynamic web content response to the dynamic engine.

19. The system of claim 17, wherein the dynamic web
content request 1s an asynchronous JavaScript and extensible
(AJAX) request.

20. The system of claim 17, wherein the operations further
comprise:

1dentifying that the dynamic web content request 1s 1ssued

by a bot.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description/Claims
	Page 14 - Claims

