
(12) United States Patent 
Shaath et a1. 

US007536524B2 

US 7,536,524 B2 
May 19, 2009 

(10) Patent N0.: 
(45) Date of Patent: 

(54) 

(75) 

(73) 

(*) 

(21) 

(22) 

(65) 

(60) 

(30) 
Jul. 31, 1998 

(51) 

(52) 
(58) 

METHOD AND SYSTEM FOR PROVIDING 
RESTRICTED ACCESS TO A STORAGE 
MEDIUM 

Inventors: Kamel Shaath, Kanata (CA); Jonathan 
Gossage, Nepean (CA); Tony Walker, 
Stittsville (CA); Yasser Lulu, Ottawa 
(CA); Fu Yaqun, Nepean (CA) 

Assignee: KOM Networks Inc., Ontario (CA) 

Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 23 days. 

App1.No.: 11/4s2,115 

Filed: Jul. 7, 2006 

Prior Publication Data 

US 2007/0094471 A1 Apr. 26, 2007 

Related US. Application Data 

Continuation-in-part of application No. 10/600,540, 
?led on Jun. 23, 2003, noW Pat. No. 7,076,624, Which 
is a continuation of application No. 10/032,467, ?led 
on Jan. 2, 2002, noW Pat. No. 6,654,864, Which is a 
division of application No. 09/267,787, ?led on Mar. 
15, 1999, noW Pat. No. 6,336,175. 

Foreign Application Priority Data 

(CA) .................................. .. 2224626 

Int. Cl. 

G06F 12/00 (2006.01) 
US. Cl. .................................................... .. 711/163 

Field of Classi?cation Search ................ .. 711/163 

See application ?le for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,399,504 A 8/1983 Obermarck et a1. 
4,757,533 A 7/1988 Allen et :11. 
4,890,223 A 12/1989 Cruess et a1. 
4,947,318 A 8/1990 Mineo et :11. 
4,958,314 A 9/1990 Imai et :11. 
4,975,898 A 12/1990 Yoshida et :11. 
5,163,147 A 11/1992 Orita et :11. 
5,214,627 A 5/1993 Nakashima et :11. 
5,434,562 A 7/1995 Reardon 
5,495,533 A 2/1996 Linehan et :11. 
5,537,636 A 7/1996 Uchida et :11. 
5,572,675 A 11/1996 Bergler et a1. 
5,596,755 A 1/1997 Pletcher et :11. 
5,708,650 A 1/1998 Nakashima et :11. 
5,717,683 A 2/1998 Yoshimoto et a1. 
5,778,365 A 7/1998 Nishiyama et :11. 
5,825,728 A 10/1998 Yoshimoto et a1. 
5,850,566 A 12/1998 Solan et :11. 
5,949,601 A 9/ 1999 Braithwaite et a1. 

(Continued) 
Primary ExamineriHiep T Nguyen 
(74) Attorney, Agent, or FirmiVenable LLP; Ralph P. 
Albrecht 

(57) ABSTRACT 

A method of restricting ?le access is disclosed Wherein a set 
of ?le Write access commands are determined from data 
stored Within a storage medium. The set of ?le Write access 
commands are for the entire storage medium. Any matching 
?le Write access command provided to the ?le system for that 
storage medium results in an error message. Other ?le Write 
access commands are, hoWever, passed onto a device driver 
for the storage medium and are implemented. In this Way 
commands such as ?le delete and ?le overwrite can be dis 
abled for an entire storage medium. 

32 Claims, 7 Drawing Sheets 

PROVIDE REQUEST 
FOR DATA STORAGE 

INTERCEPT REQUEST 

DOES 
STORAGE 
MEDIUM 
SUPPORT 
REQUEST 

SEND ERROR TO APPLICATION 

PROVIDE REQUEST 
TO FILE SYSTEM 

LAYER 
OR TO DEVICE 

DRIVER 

MODIFY REQUEST 



US 7,536,524 B2 
Page 2 

US. PATENT DOCUMENTS 2004/0049294 A1 3/2004 Keene et a1. 
2004/0154040 A1 8/2004 Ellis 

5,978,914 A 11/1999 Carley et a1~ 2005/0223242 A1 10/2005 Nath 
6,044,373 A 3/2000 Gladney et a1~ 2005/0223414 A1 10/2005 Kenrich @161. 

253%; $1 lgggg? a1‘ 2005/0240572 A1 10/2005 Sung 6161. 
6336187 Bl 1/2002 Kern etal‘ 2006/0095514 A1 5/2006 Wang 6161. 
6’58l’020 B1 6/2003 Buote etal‘ 2006/0149735 A1 7/2006 DeBie etal. 
636813198 B2 1/2004 Buote etal‘ 2006/0179061 A1 8/2006 D’Souzaet a1. 

7,092,839 B2 8/2006 Buote et a1‘ 2007/0079126 A1 4/2007 Hsu et a1. 
7,292,993 B2 11/2007 U220 61 a1, 2007/0233709 A1 10/2007 Abnous et a1. 

2003/0135576 A1 7/2003 Bodin 2008/0043274 A1 2/2008 Wang 6161. 



US 7,536,524 B2 

v .wE 

wean“ magnum 
“32m 0: E?fnmaam 3 5...; a": 533 main o: :2; Qv 

_ .cozfuno .i?nEou . 

$2.; @ufgn 

\\ c0322: umumwnwf . use 5;“... . 

US. Patent May 19, 2009 Sheet 1 of7 

82?: 2C itauwm 

a": at; EwZIv ?ntaogaaaznumv 
x034 Q2 Q5 

m2 
cozuuov ...@w 

xun: 0.: M . 

T. 
um. \\ 

annual: 

am. 

111...’! 

humans: Gino wEmsvu?na a: x02. 

521m 0: \ 

- . . Lmozuf ‘ 1 2:20 2.: 

_! 

unoE ham: 





US. Patent May 19, 2009 Sheet 3 of7 US 7,536,524 B2 

m .o_.“_ 
$53... ...... 5:: “E5. 55% 

5; 

Y. 

5:; 2.55 

2059392 

$3 5&8 5%. 









US. Patent May 19, 2009 Sheet 7 of7 US 7,536,524 B2 

N .wE 

2920282 92 203528 
58% T.,|v $5: 56551 

> 

v :52 $5: 5&8 

< < :5; 

$3 Zea/65% 



US 7,536,524 B2 
1 

METHOD AND SYSTEM FOR PROVIDING 
RESTRICTED ACCESS TO A STORAGE 

MEDIUM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a Continuation-in-part of US. patent 
application Ser. No. 10/ 600,540 ?led on Jun. 23, 2003, due to 
issue as US. Pat. No. 7,076,624 on Jul. 11, 2006; Which Was 
a Continuation application of US. patent application Ser. No. 
10/032,467, now US. Pat. No. 6,654,864 issued Nov. 25, 
2003; Which Was a Divisional application of US. patent 
application Ser. No. 09/267,787, now US. Pat. No. 6,336,175 
issued Jan. 1, 2002; Which claimed priority to Canadian 
Application 2,244,626 ?led Jul. 31, 1998 and issued Jan. 31, 
2000. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to data storage and more 

particularly to a method of providing restricted Write access 
on a data storage medium. 

2. Related Art 
In the past, operating systems restricted ?le access based 

on three criteria. The ?rst criterion relates to the physical 
limitations of the storage device. For example, a CD-ROM 
drive only provides read access and therefore is restricted to 
read-only operation. The second relates to limitations of the 
storage medium. For example, a CD is a read-only medium, a 
CDR is a read/Write medium but When a CD is full, the Writer 
becomes a read-only medium, and so forth. The third relates 
to ?le access privileges. For example, in the UNIX operating 
system a ?le is stored With a set of access privileges including 
read and Write privileges. Some ?les are read only and others 
are read/Write and so forth. 

Unfortunately, these access privileges fail to adequately 
provide protection for archival storage devices such as mag 
netic tape or removable optical media. 
An example of a popular operating system is WindoWs 

NT® . . . Using WindoWs NT®, device drivers are hidden 

from applications by a protected subsystem implementing a 
programming and user interface. Devices are visible to user 
mode programs, Which include protected subsystems, only as 
named ?le objects controlled by the operating system input/ 
output (IO) manager. This architecture limits an amount of 
knoWledge necessary to implement device drivers and appli 
cations. In order to provide reasonable performance, the tWo 
separated systems, device drivers and applications, operate 
independently. 

For example, When a Write operation is requested by an 
application, the request is made via a ?le object handle. The 
application does not actually communicate With the storage 
device nor does the device driver for that storage device 
communicate With the application. Each communicates With 
the operating system independently. Thus, When the Write 
command is issued for Writing data to a device, the data is 
stored in buffer memory While the destination device is being 
accessed. A successful completion status is provided to the 
application. When the destination storage device is available, 
the stored data is Written to the destination storage device. 
When the storage device is unavailable or fails to support 
Write operations, the data is not successfully Written. An error 
message may result, but Will not be directed toWard the appli 
cation since it is not knoWn to the device driver or is inacces 
sible. For example, the application may have terminated 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
before the error occurs. Alternatively, no error message 
results and When the buffer is ?ushed or When the system is 
rebooted, the data is lost. Neither of these results is acceptable 
in normal computer use. 

Fortunately, most devices are easily veri?ed as to their 
capabilities. Read only devices are knoWn as Well as are 
read/Write devices. Because a CD-ROM drive never becomes 
a read/Write device, it is easily managed. When a device 
supports both read/Write media and read only media the prob 
lem becomes evident. 

In order better to highlight the problem, an example is 
presented. When a hard disk is full, accessing a ?le results in 
updating of ?le information relating to a last access date and 
so forth, journaling. File access information is updated each 
time a ?le is retrieved. The information requires no extra 
memory Within the hard disk and therefore, the status of the 
hard disk, full or available disk space, is unimportant since the 
neW ?le access information overWrites previous ?le access 
information. Thus, the ?le system Writes to storage media 
even When full, so long as the capability of doing so exists. 
When an archive data store is used With a data store device, 

it is often desirable that it not be Written to. Therefore, access 
ing a ?le requires that the ?le access information is not 
updatedijoumaling is not performed. Unfortunately, When 
the data store device is accessed via a read/Write ?le object 
handle, updating of the ?le access information is performed 
by the ?le system. As such, the data store is altered even When 
this is not desired. Further, since a single data store device 
accepts any number of different data stores during a period of 
time When the ?le system is in continuous operation, it is 
impractical if not impossible to remount the data store device 
With a neW data store device driver and a neW ?le object 
handle Whenever the read/Write privileges change. Currently, 
there is no adequate solution to overcome this problem. 

In an attempt to overcome these and other limitations of the 
prior art, it is an object of the present invention to provide a 
method of limiting access privileges for a storage medium 
that supports increased ?exibility over those of the prior art. 

BRIEF SUMMARY OF THE INVENTION 

In accordance With the invention there is provided a 
method of providing restricted access to a storage medium in 
communication With a computer comprising the step of: 
executing a ?le system layer on the computer, the ?le system 
layer supporting a plurality of ?le system commands; execut 
ing a trap layer on the computer, the trap layer logically 
disposed above the ?le system layer; providing to the trap 
layer at least a disabled ?le system command relating to the 
storage medium and supported by the ?le system for the 
storage medium; intercepting data provided to the ?le system 
layer including an intercepted ?le system command; compar 
ing the intercepted ?le system command to each of the at least 
a disabled ?le system command to produce at least a com 
parison result; and, When each of the at least a comparison 
result is indicative of other than a match, providing the inter 
cepted ?le system command to the ?le system layer. 

In some embodiments an application layer is in execution 
logically above the trap layer such that the trap layer is logi 
cally disposed betWeen the application layer and the ?le sys 
tem layer; and When a comparison result from the at least a 
comparison result is indicative of a match, providing an error 
indication to the application layer. Preferably, the error indi 
cation is provided from the trap layer. 

In accordance With the invention there is further provided a 
method of restricting access to a storage medium in commu 
nication With a computer, the method comprising the step of: 



US 7,536,524 B2 
3 

executing a ?le system layer on the computer, the ?le system 
layer supporting a plurality of ?le system commands; provid 
ing to the ?le system layer at least a disabled ?le system 
command for the storage medium, the disabled ?le system 
command supported by the ?le system for the storage 
medium, the at least a disabled ?le system command being 
other than all write commands, other than all read commands, 
and other than all write commands and all read commands; 
comparing ?le system commands provided to the ?le system 
layer to each of the at least a disabled ?le system command to 
produce at least a comparison result; and, when each of the at 
least a comparison result is indicative of other than a match, 
executing the ?le system command. 

In an embodiment the method also comprises the following 
steps: providing an indication of a data write access privilege 
for the entire logical storage medium, the data write access 
privilege indicative of a restriction to alteration of a same 
portion of each ?le stored on the logical storage medium; and 
restricting ?le access to the logical storage medium in accor 
dance with the indication while allowing access to free space 
portions of the same logical storage medium. 

In accordance with the invention there is also provided a 
method of restricting access by a computer to a storage 
medium other than a write once medium in communication 
with the computer, the method comprising the steps of: pro 
viding an indication of a data write access privilege for the 
entire logical storage medium indicating a disabled operation 
relating to alteration of a portion of each ?le stored within the 
logical storage medium, the indication other than a read only 
indication; and, restricting ?le access to each ?le within the 
logical storage medium in accordance with the same indica 
tion while allowing access to free space portions of the same 
logical storage medium. In an embodiment the indication 
comprises at least one of the following: write access without 
delete, write access without rename; write access without 
overwrite, and write access without changing ?le access 
privileges. 

In accordance with the invention there is also provided a 
method of restricting access by a computer to a storage 
medium other than a write once medium in communication 
with the computer, the method comprising the steps of: pro 
viding an indication of a data write access privilege for the 
entire logical storage medium indicating a disabled operation 
relating to alteration of data within the logical storage 
medium, the indication other than a read only indication, the 
disabled operations supported by the storage medium; and 
restricting write access to data within the logical storage 
medium in accordance with the same indication while allow 
ing access to free space portions of the same logical storage 
medium. A logical storage medium consists of a single physi 
cal storage medium or a single partition within a storage 
medium. Typically a disabled operation relates to destruction 
of data stored within a storage medium. Operations of this 
type include delete ?le, overwrite ?le, and rename ?le. 

The present invention is preferably applied to removable 
storage media and more preferably to optical storage media 
such as removable optical rewritable disks. 

According to an exemplary aspect of the present invention, 
restricted write access privileges for data stored within a data 
storage medium are supported. Advantageously, access privi 
leges of this type allow write access to storage media or data 
?les but limit that access in certain respects. These restrictions 
permit some level of control over a storage medium while 
providing some write privileges. An exemplary embodiment 
of the present invention may include, in an exemplary 
embodiment, a method for applying an operation access 
privilege to a storage medium, comprising: associating an 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
access privilege with at least a portion of the storage medium; 
intercepting an attempted operation on said at least a portion 
of the storage medium, wherein said intercepting occurs 
regardless of an identity of a user attempting the attempted 
operation; comparing the attempted operation to the access 
privilege; and allowing, or denying the attempted operation 
based on comparing the attempted operation to the access 
privilege. 

According to an exemplary aspect of the present invention, 
the method may include allowing or denying occurs transpar 
ently to the user and transparently to a computer application 
invoking the attempted operation. 

According to an exemplary aspect of the present invention, 
the method may include wherein the storage medium is a 
logical storage medium. 

According to an exemplary aspect of the present invention, 
the method may include, wherein the logical storage medium 
comprises one or more logical portions. 

According to an exemplary aspect of the present invention, 
the method wherein the associating an access privilege with at 
least a portion of the storage medium comprises associating at 
least one of an enabled operation or a restricted operation. 

According to an exemplary aspect of the present invention, 
the method may include where the allowing or denying the 
attempted operation further comprises allowing the 
attempted operation when the attempted operation matches 
one of the enabled operations. 

According to an exemplary aspect of the present invention, 
the method may include: passing the attempted operation to a 
?le system containing the storage medium. 

According to an exemplary aspect of the present invention, 
the method may include where wherein the allowing or deny 
ing the attempted operation further comprises: denying the 
attempted operation when the attempted operation matches 
one of the restricted operations. 

According to an exemplary aspect of the present invention, 
the method may further include modifying the attempted 
operation when the attempted operation matches one of the 
restricted operations, if the attempted operation can be modi 
?ed from a restricted operation to an enabled operation. 

According to an exemplary aspect of the present invention, 
the method may include where the operation access privilege 
is read-only for the logical storage medium. 

According to an exemplary aspect of the present invention, 
the method may include where the logical storage medium 
may include logical portions and the operation access privi 
lege comprises multiple operation access privileges wherein 
any number of the operation access privileges can be associ 
ated with each logical portion. 

According to an exemplary aspect of the present invention, 
the method may include where the operation access privileges 
comprise at least one of the following: read, write, execute, 
move, rename, append, change permissions, change 
attributes, overwrite and/or overwrite Zero length. 

According to an exemplary aspect of the present invention, 
the method may include where the intercepting may further 
include intercepting ?le input/output attempted operations. 

According to an exemplary aspect of the present invention, 
the method may include where attempted operations may 
include at least one of adding, deleting, converting and/or 
modifying. 

According to an exemplary aspect of the present invention, 
the method may include where, the intercepting further com 
prises intercepting one or more logical device input/output 
attempted operations. 
A method for applying an operation access privilege 

between a computer and a storage medium, may include 



US 7,536,524 B2 
5 

associating an access privilege With at least a portion of said 
storage medium; intercepting an attempted operation on said 
at least a portion; comparing the attempted operation to the 
access privilege; and alloWing or denying the attempted 
operation, Wherein said alloWing or denying occurs regard 
less of an identity of a user attempting said attempted opera 
tion. 

According to an exemplary aspect of the present invention, 
the method may include applying an operation access privi 
lege to a logical storage medium, comprising: associating an 
access privilege With at least a logical portion of the logical 
storage medium; intercepting an attempted operation on said 
at least a logical portion of the logical storage medium, 
Wherein said intercepting occurs regardless of an identity of a 
user attempting said attempted operation; comparing the 
attempted operation to the access privilege; and alloWing, or 
denying the attempted operation. 

According to an exemplary aspect of the present invention, 
a method for applying an operation access privilege betWeen 
a computer and a logical storage medium, may include, asso 
ciating an access privilege With at least a logical portion of 
said logical storage medium; intercepting an attempted 
operation on said at least a logical portion; comparing the 
attempted operation to the access privilege; and alloWing 
denying the attempted operation, Wherein said alloWing or 
denying occurs regardless of an identity of a user attempting 
said attempted operation. 
A method of applying an operation access privilege to a 

logical storage medium in a ?le system, comprising: provid 
ing an operation access privilege indicative of at least one of 
an enabled operation and/or a restricted operation to be per 
formed on at least one portion of the logical storage medium; 
associating said operation access privilege With said at least 
one portion of said logical storage medium; intercepting in a 
trap layer an attempted operation on said at least one portion; 
and passing said attempted operation to said ?le system if said 
attempted operation matches said enabled operation. 

According to an exemplary aspect of the present invention, 
the method may include Where the method may include modi 
fying said attempted operation if said attempted operation 
does not match said enabled operation or said attempted 
operation matches said restricted operation; and passing said 
modi?ed attempted operate to said ?le system. 

According to an exemplary aspect of the present invention, 
the method may include Where the method may include, 
further comprising denying said attempted operation at said 
trap layer if said attempted operation matches said restricted 
operation. 

According to an exemplary aspect of the present invention, 
the method may further include Where denying said 
attempted operation at said trap layer if said attempted opera 
tion does not match said enabled operation. 

According to an exemplary aspect of the present invention, 
the method may include Where A method for applying an 
operation access privilege to a storage medium, comprising: 
associating an access privilege With at least a portion of the 
storage medium; intercepting an attempted operation on said 
at least a portion of the storage medium; determining Whether 
the attempted operation is an enabled operation or a restricted 
operation; and alloWing or denying the attempted operation 
based on the determining Whether the operation is an enabled 
operation or a restricted operation. 
A method for applying operation access privilege to a 

logical storage medium based on ?le type, comprising: de?n 
ing a rule for a logical portion of the logical storage medium 
that comprises a data identi?er and an access privilege; inter 
cepting an attempted operation on the logical portion of the 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
logical storage medium, Wherein said intercepting occurs 
regardless of an identity of a user attempting the attempted 
operation; comparing a data identi?er associated With the 
attempted operation to the data identi?er of the rule, and if 
matching, comparing the attempted operation to the access 
privilege; and alloWing, or denying the attempted operation 
based on the comparing the attempted operation to the access 
privilege. 

In an exemplary embodiment, data identi?er includes a ?le 
type. The method according to claim 24, Wherein the data 
identi?er comprises at least one of the folloWing: a data path, 
a data mask, and/ or a unique ?le identi?er. 

A method for applying an operation access privilege to a 
storage medium, comprising: associating an access privilege 
With at least a portion of the storage medium; intercepting an 
attempted operation on said at least a portion of the storage 
medium based on a data identi?er associated With the 
attempted operation, Wherein said intercepting occurs regard 
less of an identity of a user attempting the attempted opera 
tion; comparing the attempted operation to the access privi 
lege; and alloWing, or denying the attempted operation based 
on the comparing the attempted operation to the access privi 
lege. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Exemplary embodiments of the invention Will noW be 
described in conjunction With the draWings in Which: 

FIG. 1 is a simpli?ed block diagram of an NT® operating 
system architecture during a process of opening a ?le is 
shoWn; 

FIG. 2 is a simpli?ed block diagram of an NT® operating 
system architecture during a process of IRP processing is 
shoWn; 

FIG. 3 is a simpli?ed block diagram of an operating system 
according to the invention; 

FIG. 4 is a simpli?ed block diagram of a system for open 
ing a ?le such as that shoWn in FIG. 1 modi?ed according to 
the invention; 

FIG. 5 is a simpli?ed ?oW diagram of a method of storing 
data in a storage medium forming part of a system such as that 
of FIG. 1; 

FIG. 6 is a simpli?ed ?oW diagram of a method of provid 
ing software settable access privileges Within WindoWs NT®; 
and, 

FIG. 7 is a simpli?ed block diagram of the invention 
Wherein the ?le system layer includes means for performing 
the functions of the trap layer. 

DETAILED DESCRIPTION OF THE INVENTION 

Referring to FIG. 1, a simpli?ed block diagram of a Win 
doWs NT® (NT) operating system architecture during a pro 
cess of opening a ?le is shoWn. NT drivers are hidden from 
end users by an NT protected subsystem that implements an 
already familiar NT programming interface. Devices are vis 
ible only as named ?le objects controlled by the NT Input/ 
Output (IO) Manager to user-mode programs including pro 
tected subsystems. 
An NT protected subsystem, such as the Win32® sub 

system, passes IO requests to the appropriate kernel-mode 
driver through the IO system services. A protected subsystem 
insulates its end users and applications from having to knoW 
anything about kernel -mode components, including NT driv 
ers. In turn, the NT IO Manager insulates protected sub 



US 7,536,524 B2 
7 

systems from having to know anything about machine spe 
ci?c device con?gurations or about NT driver 
implementations. 

The NT IO Manager’s layered approach also insulates 
most NT drivers from having to knoW anything about the 
folloWing: Whether an IO request originated in any particular 
protected subsystem, such as Win32 or POSIX; Whether a 
given protected subsystem has particular kinds of user-mode 
drivers; and, the form of any protected subsystem’ s IO model 
and interface to drivers. 

The IO Manager supplies NT drivers With a single IO 
model, a set of kernel-mode support routines. These drivers 
carry out IO operations, and a consistent interface betWeen 
the originator of an IO request and the NT drivers that respond 
to it results. File system requests are a form of IO request. 
A subsystem and its native applications access an NT driv 

er’s device or a ?le on a mass-storage device through ?le 
object handles supplied by the NT IO Manager. A sub 
system’s request to open such a ?le object and to obtain a 
handle for IO to a device or a data ?le is made by calling the 
NT IO system services to open a named ?le, Which has, for 
example, a subsystem-speci?c alias (symbolic link) to the 
kernel-mode name for the ?le object. 

The NT IO Manager, Which exports these system services, 
is then responsible for locating or creating the ?le object that 
represents the device or data ?le and for locating the appro 
priate NT driver(s). 

The system folloWs a process described beloW in accor 
dance With FIG. 1 for performing a ?le open operation. The 
subsystem calls an NT IO system service to open a named ?le. 
The NT IO Manager calls the Object Manager to look up the 
named ?le and to help it resolve any symbolic links for the ?le 
object. It also calls the Security Reference Monitor to check 
that the subsystem has the correct access rights to open that 
?le object. 

If the volume is not yet mounted, the IO Manager suspends 
the open request, calling one or more NT ?le systems until 
one of them recognises the ?le object as some thing it has 
stored on one of the mass storage devices the ?le system uses. 
When the ?le system has mounted the volume, the IO Man 
ager resumes the request. 

The IO Manager allocates memory (a RAM Cache) for and 
initialises an IRP (IO request packet) for the open request. To 
NT drivers, an open is equivalent to a “create” request. The IO 
Manager calls the ?le system driver, passing it the IRP. The 
?le system driver accesses its IO stack location in the IRP to 
determine What operation to carry out, checks parameters, 
determines if the requested ?le is in cache memory, and, if not 
sets up the next loWer driver’s IO stack location in the IRP. 

Both drivers process the IRP and complete the requested 
IO operation, calling kernel-mode support routines supplied 
by the IO Manager and by other NT components. The drivers 
return the IRP to the IO Manager With the IO status block set 
in the IRP to indicate Whether the requested operation suc 
ceeded and/or Why it failed. The IO Manager gets the IO 
status from the IRP, so it can return status information through 
the protected subsystem to the original caller. The IO Man 
ager frees the completed IRP. 

The IO Manager returns a handle for the ?le object to the 
subsystem if the open operation Was successful. If there Was 
an error, it returns appropriate status information to the sub 
system. 

After a subsystem successfully opens a ?le object that 
represents a data ?le, a device, or a volume, the subsystem 
uses the returned ?le object handle to request that device for 
IO operations typically in the form of read, Write, or device IO 
control requests. These operations are carried out by calling 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
the IO System services. The IO Manager routes these requests 
as IRPs sent to appropriate NT drivers. 

Referring to FIG. 2, a simpli?ed block diagram of an NT® 
operating system architecture during a process of IRP pro 
cessing is shoWn. The IO Manager calls the ?le system driver 
(FSD) With the IRP it has allocated for the subsystem’s read/ 
Write request. The FSD accesses its IO stack location in the 
IRP to determine What operation it should carry out. 
The FSD sometimes breaks the originating request into 

smaller requests by calling an IO support routine one or more 
times to allocate IRPs, Which are returned to the FSD With 
Zero-?lled IO stack location(s) for loWer-level driver(s).At its 
discretion, the FSD can reuse the original IRP, rather than 
allocating additional IRPs as shoWn in FIG. 2, by setting up 
the next-loWer driver’s IO allocation in the original IRP and 
passing it on to loWer drivers. 

For each driver-allocated IRP, the FSD calls an IO support 
routine to register an FSD-supplied completion routine so the 
driver is able to determine Whether a loWer driver satis?ed the 
request and free each driver allocated IRP When loWer drivers 
have completed it. The IO Manager calls the FSD-supplied 
completion routine Whether each driver-allocated IRP is com 
pleted successfully, With an error status, or cancelled. A 
higher-level NT driver is responsible for freeing any IRP it 
allocates and sets up on its oWn behalf for loWer-level drivers. 
The IO Manager frees the IRPs that it allocates after all NT 
drivers have completed them. Next, the FSD calls an IO 
support routine to access the next loWer-level driver’s IO 
stack location in its FSD-allocated IRP in order to set up the 
request for the next-loWer driver, Which happens to be the 
loWest-level driver in FIG. 2. The FSD then calls an IO sup 
port routine to pass that IRP on to the next driver. 
When it is called With the IRP, the physical device driver 

checks its IO stack location to determine What operation 
(indicated by the IRP MJ XXX function code) it should carry 
out on the target device, Which is represented by the device 
object in its IO stack location and passed With the IRP to the 
driver. This driver can assume that the IO Manager has routed 
the IRP to an entry point that the driver de?ned for the IRP-M] 
XXX operation (here IRP MJ READ or IRP MJ WRITE) and 
that the higher-level driver has checked the validity of other 
parameters for the request. 

If there Were no higher-level driver, such a device driver 
Would check Whether the input parameters for an IRP MJ 
XXX operation are valid. If they are, a device driver usually 
calls IO support routines to tell the IO Manager that a device 
operation is pending on the IRP and to either queue orpass the 
IRP on to another driver-supplied routine that accesses the 
target device in the form of a physical or logical device such 
as a disk or a partition on a disk. 

The IO Manager determines Whether the device driver is 
already busy processing another IRP for the target device, 
queues the IRP if it is, and returns. OtherWise, the IO Manager 
routes the IRP to a driver-supplied routine that starts the IO 
operation on its device. 
When the device interrupts, the driver’s interrupt service 

routine (ISR) does only as much Work BS as is necessary to 
stop the device from interrupting and to save necessary con 
text about the operation. The ISR then calls an IO support 
routine With the IRP to queue a driver-supplied DPC routine 
to complete the requested operation at a loWer hardWare pri 
ority than the ISR. 
When the driver’s DPC gets control, it uses the context as 

passed in the ISRs call to IoRequestDpc to complete the IO 
operation. The DPC calls a support routine to dequeue the 
next IRP When present and to pass that IRP on to the driver 
supplied routine that starts IO operations on the device. The 



US 7,536,524 B2 

DPC then sets status about the just completed operation in the 
IRPs IO status block and returns it to the IO Manager With 
IoCompleteRequest. 

The IO Manager Zeroes the loWest-level driver’s IO stack 
location in the IRP and calls the ?le system’s registered 
completion routine With the FSD-allocated IRP. This comple 
tion routine checks the IO status block to determine Whether 
to retry the request or to update any internal state maintained 
about the original request and to free its driver-allocated IRP. 
The ?le system often collects status Information for all driver 
allocated IRPs it sends to loWer-level drivers in order to set IO 
status and complete the original IRP. When it has completed 
the original IRP, the IO Manager returns NT status, the sub 
system’s native function, to the original requestor of the IO 
operation. 

FIG. 2 also shoWs tWo IO stack locations in the original IRP 
because it shoWs tWo NT drivers, a ?le system driver and a 
mass-storage device driver. The IO Manager gives each driver 
in a chain of layered NT drivers an IO stack location of its oWn 
in every IRP that it sets up. The driver-allocated IRPs do not 
necessarily have a stack location for the FSD that created 
them. Any higher-level driver that allocates IRPs for loWer 
level drivers also determines hoW many IO stack locations the 
neW IRPs should have, according to the StackSiZe value of the 
next-loWer driver’s device object. 
AnNT ?le system driver accesses the ?le object through its 

IO stack location in IRPs. Other NT drivers usually ignore the 
?le object. 

The set of IRP major and minor function codes that a 
particular NT driver handles are sometimes device-type-spe 
ci?c. HoWever, NT device and intermediate drivers usually 
handle the following set of basic requests: IRP M] CRE 
ATE4open the target device object, indicating that it is 
present and available for IO operations; IRP MJ READi 
transfer data from the device; IRP MJ WRITEitransfer data 
to the device; IRP MJ DEVICE CONTROLiset up or reset 
the device according to a system-de?ned, device, speci?c IO 
control code; and IRP MJ CLOSE.about.close the target 
device object. 

In general, the IO Manager sends IRPs With at least tWo IO 
stack locations to device drivers of mass-storage devices 
because an NT ?le system is layered over NT drivers for 
mass-storage devices. The IO Manager sends IRPs With a 
single stack location to any physical device driver that has no 
driver layered above it. 

Referring to FIG. 3, a block diagram of an operating system 
is shoWn. The block diagram presents a simpli?ed vieW of 
operating system functionality according to the invention. An 
application layer for supporting application execution com 
municates With an input/output layer of the computer. The 
input/output layer includes a display and a ?le system layer. 
The application layer communicates With the ?le system 
layer for performing read operations and Write operations 
With storage media. Disposed betWeen the application layer 
and the ?le system layer is a trap layer also referred to as a 
?lter layer. Each ?le system access request that is transmitted 
from the application layer to the ?le system layer is inter 
cepted by the trap layer. In the trap layer restrictions relating 
to access privileges are implemented. For example, some 
requests are blocked and error messages are returned to the 
application layer. Other requests are modi?ed and the modi 
?ed request passed onto the ?le system. When a data store is 
read only, a request to open a ?le for read Write access is 
modi?ed to an open ?le for read-only access; a request to 
delete a ?le is blocked and an error message is returned. The 
use of a trap layer is applicable When the present invention is 
implemented Within an existing operating system such as 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
WindoWs NT®. Alternatively, an operating system support 
ing restricted Write access is designed and restrictions relating 
to access privileges are implemented Within the ?le system 
layer. 

Referring to FIG. 4, a simpli?ed block diagram of opening 
a ?le Within WindoWs NT® according to the invention is 
shoWn. The diagram is based on the diagram of FIG. 1. The 
thick black line represents the trap layer or ?lter layer for 
preventing some ?le system operations from passing from the 
application layer to the ?le system layer. Accordingly, a data 
store device operates as a read/Write device With a single 
device driver. The trap layer prevents Write operations or, 
alternatively, other predetermined operations from being per 
formed on a speci?c data store. The trap layer achieves this by 
blocking some requests and by modifying other requests. In 
this Way, some operations are prevented Without requiring 
modi?cations to existing applications. Thus, one data store 
may be read only While another is read/Write. Unlike prior art 
implementations, an application requesting a Write operation 
to a data store that is read-only, receives an accurate and 
appropriate error message. There is no data lost by the device 
driver and, in fact, the device driver is freed of the trouble of 
dealing With ?le system commands Which cannot be com 
pleted. 

Also, the use of the trap layer alloWs for implementation of 
more complicated ?le access privileges based on data stored 
Within each individual storage medium. For example, a stor 
age medium may indicate read-Write access but may not 
support delete operations. Device drivers perform loW level 
commands such as read and Write. Delete, is a Write opera 
tion, the device driver performing Write operations to obfus 
cate of overWrite a ?le. As is evident, the device driver sup 
ports delete operations as does any read/Write data store. 
HoWever, by indicating to the trap layer that delete operations 
are not supported, all delete requests passed from the appli 
cation layer for the speci?c data store are intercepted by the 
trap layer and an error message is returned to the application 
layer. No delete operation for a ?le is passed to the ?le system 
layer and therefore, the device driver does not perform the 
Write operations for obfuscating or overWriting the ?le 
because none is received. It is evident that preventing ?le 
deletion is advantageous for protecting archived data and data 
histories. 

Another operation Which is advantageously restricted is 
overWriting of ?les. When a request is made to overWrite a 
?le, typically the data Within the ?le is overWritten. OverWrit 
ing of ?le data is a simple Work around to perform a ?le delete 
When that operation is blocked. Alternatively in some 
devices, the data to overWrite is Written to an unused portion 
of a storage medium and an address of the ?le data Within a 
?le allocation table is changed. The storage locations of the 
old ?le data are then considered free. Preventing data over 
Write is performed according to the invention by modifying 
requests or blocking requests as necessary. Further, by trap 
ping requests to overWrite ?le data according to the invention, 
a user friendly error message becomes possible. When an 
application provides a request to overWrite a ?le, an error 
message indicating that overWrite is not permitted and that a 
?le name is needed to save the data is provided. The trap layer, 
upon receiving the ?le name from the error message, modi?es 
the request in accordance thereWith and in accordance With 
permitted operations and passes the modi?ed request to the 
?le system layer. Accordingly, data integrity is preserved With 
minimal inconvenience to users of the system. 

It is also useful to restrict access to ?le access permissions. 
Often, permissions are global across a storage medium and 
altering of the permissions is not desirable. Still, many oper 



US 7,536,524 B2 
11 

ating systems provide for ?le and storage medium related 
access privileges. These are modi?able at any time. Since 
privileges are generally static, there are advantages to setting 
up privileges for a storage medium such that during normal 
operation and With normal ?le system operations, the privi 
leges are static. Preferably, there is at least a Way to modify the 
global privileges in case it is desirable to do so. Preventing 
alteration of privileges prevents individuals having access to 
?les from modifying access privileges in any Way. 

Another operation that is usefully restricted is overWriting 
of Zero length ?les. Some operations Within some applica 
tions create a Zero length ?le and then overWrite it. Thus 
preventing overWriting of Zero length ?les directly affects 
those applications. An example of such an application and 
operation is the “save as” command in Microsoft Word®. 
Thus, preventing overWriting of Zero length ?les effectively 
prevents “save as” from functioning on the associated 
medium. 

Similarly, renaming a ?le is useful for obfuscating data. 
Preventing renaming of ?les prevents hiding existing ?les or 
making them more di?icult to locate. For example, changing 
a client’s information ?le name from “Client 101 Informa 
tion” to “To Do Feb. 18” Would make the ?le hard to locate. 
Thus, rename is an operation that it is desirable to restrict. 
Reasons for restricting the other listed operations are evident. 
Further, restricting other operations may also be advanta 
geous and the present application is not limited to these opera 
tions. 
Above mentioned operations Which are advantageously 

restricted include overWriting ?les, changing ?le access per 
missions and medium access privileges, renaming ?les, for 
matting a medium and so forth. For example, a medium that 
does not alloW any of the above mentioned operations pro 
vides a complete archival history of the medium’ s content and 
prevents alteration or deletion of the data. Such a medium is 
very useful for backing up of?ce ?les or electronic mail. 

Referring to FIG. 5, a How diagram of a method of storing 
data in a storage medium forming part of a system such as that 
of FIG. 3 is shoWn. An application in execution on the system 
seeks to store a data ?le on a storage medium Within the ?le 
system layer of the system. A request and data for storage 
Within the ?le is transmitted from the application layer to the 
?le system layer. The request includes an operation and data 
relating to a destination storage medium on Which to store the 
data. The trap layer intercepts the request and the data and 
determines Whether the storage medium selected supports the 
operation. When the storage medium supports the operation, 
the request and the data is passed on to the ?le system layer. 
When necessary, the request is modi?ed prior to provision to 
the ?le system layer. In the ?le system layer the operation is 
conducted according to normal ?le system layer procedures. 
When the storage medium does not support the operation in 
its original or a modi?ed form, the trap layer returns an 
indication of this to the application layer. The operation and 
the data are not passed onto the ?le system layer. This pro 
vides additional access privilege functionality. 

Referring to FIG. 6, a simpli?ed ?oW diagram of a method 
of providing softWare settable access privileges Within Win 
doWs NT® is shoWn. A storage medium is mounted Within a 
computer system. The storage medium has stored thereon 
data relating to access privileges for the storage medium. 
Upon mounting the storage medium, data relating to physical 
limitations of the read/Write device are loaded into the device 
driver for that device Within the ?le system layer. The limita 
tions are recognised by the system softWare. Also upon 
mounting the storage medium, the data relating to access 
privileges for the storage medium are loaded into the trap 

20 

25 

30 

35 

40 

50 

55 

65 

12 
layer. The trap layer limits operations performed on the stor 
age medium to those supported by the read/Write device by 
limiting the requests passed onto the ?le system layer or, 
When the trap layer forms part of the ?le system layer, by 
?ltering and/or modifying the requests. The data relating to 
access privileges for the storage medium are used to limit 
those requests provided to the ?le system layer. 
When the storage medium is a data store for archiving 

purposes, there are evident advantages to treating the storage 
medium as a read-only storage medium. For example, once 
the data store is full, setting it to read-only alloWs its use 
Without risking tampering or accidental modi?cation. There 
fore, media speci?c access privileges are advantageous. 

Referring to FIG. 7, a simpli?ed block diagram of the 
invention Wherein the ?le system layer includes means for 
performing the functions of the trap layer is shoWn. Such an 
embodiment, operates in a similar fashion to those described 
above. The ?le system receives all ?le access requests and 
compares them to those that are not permitted. When an 
access command is not permitted on an indicated storage 
medium, an error message is returned to the application layer. 
When an access command is permitted, it is performed on the 
appropriate storage medium. The access command may be 
that requested or, alternatively, a modi?ed form of the 
requested command resulting in a supported operation. 
The term logical storage medium is used herein and in the 

claim that folloW to designate either a physical storage 
medium or a portion of physical storage medium that is 
treated by the operating system as a separate storage medium. 
Thus, a partitioned hard disk With tWo partitions consists of 
one physical storage medium and tWo logical storage media. 

According to an exemplary embodiment, a trap layer may 
be provided, Which may intercept requests, and then may do 
something With the request. For example, in an exemplary 
embodiment, if the request is deemed permissible, it may be 
alloWed. On the other hand, if the request is deemed not 
alloWed, then the request may be denied. According to 
another exemplary embodiment, in the event that the request 
is not alloWed, if possible, it may be modi?ed and then per 
haps alloWed in an exemplary embodiment, as modi?ed. In an 
exemplary embodiment, the trap layer may be set to intercept 
requests based on a prede?ned policy or setting. 

According to an exemplary embodiment, the trap layer 
may be a transparent trap layer. In an exemplary embodiment, 
the trap layer may intercept requests transparently to the user. 
In another exemplary embodiment, the trap layer may inter 
cept requests transparently to a computer application invok 
ing the requests. According to another exemplary embodi 
ment, the trap layer may intercept requests based on a 
prede?ned policy and/or setting. 

According to another exemplary embodiment, the comput 
ing environment may be any of various Well knoWn comput 
ing environments. For example, the computing environment 
may include a WINDOWS® environment, in an exemplary 
embodiment. In another exemplary embodiment, the comput 
ing environment may include, e.g., but not limited to, any 
computer operating environment including, e.g., but not lim 
ited to, a real ?le system environment, an advanced ?le sys 
tem, an HPFS ?le system, an NTFS ?le system, a UNIX ?le 
system, a Solaris ?le system, anApple ?le system, anAlX ?le 
system, an extended ?le system on Unix, etc. 
A ?le lifecycle may include an entire existence of a ?le 

from the moment of creation through transitions such as 
moves, renames, retention, preservation or archiving, etc., up 
until destruction. File operations may include, e. g., but not be 
limited to, creating; storing; moving; protecting; preserving; 
archiving; retaining logically or physically, in for example 



US 7,536,524 B2 
13 

write-once-read-many (WORM) form; deleting; overwriting; 
replicating; preventing the creation of a particular type of ?le 
(for example, an MP3 ?le) in, for example, a directory; etc. 

It is important to note that the whole concept of data pro 
tection and data preservation is being extended into the logi 
cal space rather than the traditional physical space. The real 
ity is that information that we need will have to remain 
accessible throughout its existence. The traditional concepts 
of archiving and preserving information where based on the 
use of physical WORM Write-Once-Read-Many devices and 
media, though realistically this is unreasonable. Technology 
continues to change and given the continuous evolution, it is 
impractical to assume that we will be able to connect the same 
old hardware 50 years in the future to the newer operating 
systems and newer servers and expect that the data will 
remain accessible. In reality, hardware will become obsolete 
and that in no way minimiZes the need to preserve valuable 
information. In real life, each day we move valuable infor 
mation and property such as our wallets, keys, cell phones and 
PDAs and we take them with us. The fact remains that we will 
continue to carry them as long as we need the information or 
the tools. Once they are no longer needed, we will no longer 
carry them. The fact that we carry our wallet with us does not 
dictate that we will continue to use the same wallet forever or 
that we will maintain the same contents. What is always true 
is that as long as the speci?c contents are categorized as 
important we will continue to maintain them and transfer 
them to newer wallets. A concept of data preservation and 
protection embodied in examples of the invention revolves 
around providing the protection independent of the physical 
storage enabling the infrastructure to evolve while preserving 
and securing the data. We are creating a logical WORM that 
will allow the user to utiliZe the storage resources of choice, 
for example spinning disk, to achieve and meet compliance 
and legislated data preservation and retention obligations on 
any storage technology that meets the business needs and 
requirements. 
We have several variations of policies that apply: 

EXAMPLE 1 

We would allow the creation of a new ?le. The ?le would be 
created in an unrestricted mode allowing any and all aspects 
of the ?le to be modi?ed such as siZe, name, data attributes 
and times. Once the ?le is closed we would automatically 
enforce the restrictions. In other words Create is allowed. In 
this case we would use that privilege to allow the ?le to be 
created. At this point the ?le is opened in a read/write mode 
allowing all other operations to be allowed. Once we close the 
?le then the next operation would be to open an existing ?le 
and not a creation operation. At this point we would evaluate 
against the other access privileges such as overwrite, append, 
change attributes, change permissions, overwrite Zero length. 
If the operation is not allowed we would simply deny it. 

EXAMPLE 2 

We would allow the creation of a new ?le. The ?le would be 
created in an unrestricted mode allowing any and all aspects 
of the ?le to be modi?ed such as siZe, name, data attributes 
and times. Once the ?le is closed we would automatically 
enforce the restrictions unconditionally. Rendering the ?le 
effectively archived upon close operation. 

EXAMPLE 3 

We would allow the creation of a new ?le. The ?le would be 
created in an unrestricted mode allowing any and all aspects 

20 

25 

30 

35 

40 

45 

50 

55 

65 

14 
of the ?le to be modi?ed such as siZe, name, data attributes 
and times. The ?le will remain in an unrestricted mode until 
an prede?ned event occurs then we would change the restric 
tions for allow everything to deny any modi?cations and only 
allow read operations. The way this works underneath is that 
the ?le is opened and then a change such as changing the ?le 
attribute to read-only would trigger the change in the access 
privilege. The actual evaluation of the access privilege is 
evaluated on the ?le open operation. Usually the intentions of 
the user and/or application have to be declared at the time of 
the open operation. 
The open ?le intentions include whether the ?le is opened 

for read-only or for read-write or opened to change 
attributes or opened for changing permissions, or 
opened for append or opened for changing ?le times 
(creation, last modi?cation or last access times) or 
opened for rename or opened for move operations. 

The open operation is a critical part of the access privilege 
evaluation process. 

The policies for access privilege also enforce retention 
enforcing restrictions that prohibit modi?cations on 
retained ?les. These restrictions may encompass prohib 
iting all modi?cations or in some cases allowing some 
operations that do not affect the integrity of the user data. 
In other words it is conceivable with our logic to allow 
?le security permissions to be modi?ed since they only 
affect who can access the ?le and do not change the 
contents of the ?le. 

Retained ?les typically have certain restrictions that cannot 
be changed such as rename, move, overwrite, overwrite 
Zero length and delete that will always be denied on a 
retained ?le. 

Retained ?les can be assigned an expiry time that may be 
derived or from adding a time period to the last modi? 
cation date and time of the ?le. 

A ?le may be retained for ever and have no expiry time 
assigned. The expiry time for a ?le may be extended. 

A ?le may be retained for an inde?nite time period allow 
ing an expiry time to be assigned in the future. 

Once a ?le is retained its contents “user data will never be 
modi?able. An expired ?le may be either deleted or have 
the expiry time extended. 

Retention expiry time may be assigned directly by the user 
using private IOCTLs or an application. 

Retention expiry may be derived by setting the last access 
time and then triggering the ?le to be in a retained state. 

The retention trigger may be an event such as changing the 
state of the read-only attribute, but is not limited to only 
changing this speci?c attribute. 
(a) The user can de?ne a number of triggers including 

the permissions or who the owner of the ?le is. 

(b) The retention policy can include exclusion rules that 
would exclude ?les that meet that criteria from being 
retained. These rules include such parameters as data 
identi?ers like path, name, mask, extension, siZe, 
attribute, permissions, ?le creation time and ?le 
modi?cation time. 

(c) The retention policy can include inclusion rules that 
would include ?les that meet that criteria to be 
retained. These rules include such parameters as data 
identi?ers like path, name, mask, extension, siZe, 
attribute, permissions, ?le creation time and ?le 
modi?cation time. 



US 7,536,524 B2 
15 

In the event of using the last access time to set the ?le 
retention expiry; 
(a) if the last access time is Zero then the ?le is retained 

for ever and it Will never expire. The user/application 
Will not be able to change the last access time. 

(b) if the last access time is equal to the last ?le modi? 
cation time then the ?le is retained inde?nitely until it 
is set to have an expiry time. To set the expiry time on 
a ?le that is retained inde?nitely the last access time is 
modi?ed to a date and time that is greater than the last 
modi?cation time. Once the expiry time is reached 
then the ?le Will be expired and may be deleted. 

(c) If the last access time is set to a value greater than the 
last modi?cation date then that Would be used as the 
expiry time of the retention. 

In the event of using an independent ?le expiry time to set 
the ?le retention expiry; 
(a) if the expiry time is set to OXFFFFFFFFFFFFF then 

the ?le is retained for ever and it Will never expire. The 
user/application Will not be able to change the expiry 
time. 

(b) if the expiry time is equal to 00:00:00 Thurs. Jan. 1, 
1970 then the ?le is retained inde?nitely. A ?le that is 
retained inde?nitely may be assigned an expiry time. 
Assigning an expiry time is the only Way to expire an 
inde?nitely retained ?le, until an expiry time it is set 
to have an expiry time. 

(i) To set the expiry time on a ?le that is retained 
inde?nitely the expiry is modi?ed to a date and time 
that is greater than Zero or it’s equivalent Which 
may be 00:00:00 Thurs. Jan. 1, 1970. Once the 
expiry time is reached then the ?le Will be expired 
and may be deleted or the expiry time may be 
extended. 

(ii) For simpli?cation purposes We have introduced a 
variation that alloWs the expiry time to be set to noW 
meaning that the ?le Will be rendered expired as of 
the current time, literally rendering the ?le expired. 

(c) If the retention expiry time is set to a value greater 
than Zero or it’s equivalent 00:00:00 Thurs. Jan. 1, 
1970 then that Would be used as the expiry time of the 
retention. 

The retention policy expiry can be suspended inde?nitely 
in the event of litigation to prevent valuable ?les direc 
tories and documents from being accidentally destroyed 
While the litigation is still on going 

The access privilege policy have been extended to control 
the type of ?le that may be created using a data identi?er 
and other quali?ers to prohibit the creation of certain 
types of ?les or alloW them. The quali?ers include ?le 
mask, ?le name, ?le extension, oWner and path. This 
ability is referred to as ?le screening Where the admin 
istrator can de?ne policies that Would prohibit personal 
?les such as mp3 and mpg ?les from being stored on 
corporate storage resources. 

Lastly but not least it is conceivable With the availability of 
access to the sources of open operating systems and ?le 
systems to add the trap layer directly into the ?le system 
layer to enforce the protection and retention of ?les. 

The trap layer Will store the ?le protection policies With the 
actual ?le: 

(a) The policy may be stored as an alternate data stream. 

(b) The policy may be stored as an extended attribute. 

(c) The policy may be stored as private reparse data. 

20 

25 

30 

35 

40 

45 

50 

55 

60 

16 
The trap layer Will have policies to manage directory 

operations such as: 
(a) create sub-directory, rename sub-directory, move 

sub-directory out, move sub-directory in, delete sub 
directory 

(b) create ?le, rename ?le, move ?le in, move ?le out, 
rename ?le, delete ?le, change ?le attributes, change 
?le permissions, read ?le, 

(c) broWse directoryithe feature prohibits applications 
and users that do not knoW the actual names of the 
?les and sub-directories from being able to broWse the 
contents of the managed logical storage medium. This 
is an important feature that enables the customers to 
enforce privacy requirements by limiting the access to 
the contents to processes that knoW exactly the name 
and path of the ?les they are trying to access. Any 
attempt to broWse the contents in applications like 
WindoWs explorer Would fail regardless of the user 
and or application. The added bene?t is that third 
party applications can provide more realistic logs that 
Would re?ect the fact that all access to secure content 
is restricted to their oWn applications and context. 
This is important for such legistlation like HIPAA 
(US) and PIPEDA (Canada). 

The trap layer may create hash keys that Will be used to 
validate the authenticity of the retained ?les. 
(a) The trap layer may be con?gured to validate the hash 
key on every open operation and failing the operation 
if the hash key does not match. 

(b) The trap layer may be invoked to validate any ?le on 
demand by an external operation triggered by the user 
and/ or application. 

The trap layer may create hash keys for all ?les that are 
created in managed logical and/or physical storage 
mediums 

The trap layer may automatically encrypt ?les that are 
created in managed logical and/or physical storage 
mediums. The encryption and decryption Will happen 
independent of the user and or application. This enforces 
security requirements that Would prohibit protected ?les 
from being accessed outside the context and control of 
the trap layer. 

The trap layer can force secure erasure of ?les that are 
being deleted. Secure erasure is a required by such com 
pliance requirements such as DOD 5015.2 Which 
require that ?le contents that are being deleted to be 
overWritten With random patterns that Would ensure that 
they could never be restored. 

The trap layer may obfuscate the user data by storing it in 
alternate data streams or alternate locations rendering 
the ?les unreadable and even as far as inaccessible out 
side the context of the trap layer. 

The term out side the context of the trap layer means that if 
the trap layer Was some hoW disabled or if the trap layer 
Was de-installed or the storage device Was moved and 
connected to another server that did not have the trap 
layer installed. 

The trap layer has a private interface that Would also protect 
and prohibit the trap layer from being de-installed or 
deleted if the case that there are retained ?les under it’s 
control. This alloWs the trap layer to be upgraded but not 
disabled. 

To enforce the retention expiry times, the trap layer utiliZes 
a secure clock that is used to maintain the system clock 
current. 

The algorithm utiliZed to secure the system time is based on 
the fact that the secure clock is synchronized With GMT. 



US 7,536,524 B2 
17 

Regardless of the time Zone the server time is always 
represented as a variation of GMT. That means that if the 
server time Zone is EST Which is equal to GMT-5, then 
the server time Will have to alWays maintain the same 
time difference. To achieve this goal there is a process 
that Will monitor the server time and compare it to the 
secure clock and reset the server time to alWays maintain 
the same time difference. 

The trap layer Would render the managed storage volumes 
read-only in the vent that the secure clock is removed, 
prohibiting ?les from expiring or being deleted. And 
even from being created until such time as the clock is 
restored. 

The secure time mechanism authenticates the clock to 
ensure that it is a sanctioned or authorized clock so that 
the system cannot be spoofed. 

The secure clock must be able to sustain itself independent 
of the server poWer to eliminate any time lapses. That means 
that even if the server is shutdoWn for a long duration or even 
if the motherboard is replaced or reset, When the server is 
booted up again the time Will be reset in accordance With the 
difference from the secure clock time, Which in this particular 
example is GMT-5. 
Numerous other embodiments of the invention may be 

envisaged Without departing from the spirit and scope of the 
invention. 

What is claimed is: 
1. A method for applying an operation access privilege to a 

storage medium, comprising: 
associating an access privilege With at least a portion of the 

storage medium; 
intercepting an attempted operation on said at least a por 

tion of the storage medium, Wherein said intercepting 
occurs regardless of an identity of a user attempting the 
attempted operation; 

comparing the attempted operation to the access privilege; 
and 

alloWing, or denying the attempted operation based on 
comparing the attempted operation to the access privi 
lege. 

2. The method according to claim 1, further comprising 
enforcing at least one policy. 

3. The method according to claim 2, further comprising 
managing an operation in regards to said at least one policy. 

4. The method according to claim 3, Wherein said operation 
comprises at least one of: creating a sub-directory, renaming 
a sub-directory, moving a sub-directory out, moving a sub 
directory in, deleting-a subdirectory, creating a ?le, moving a 
?le in, moving a ?le out, renaming a ?le, deleting a ?le, 
changing ?le attributes, changing ?le permissions, reading a 
?le, Writing a ?le, executing a ?le, appending a ?le, changing 
?le permissions, overWriting a ?le, or broWsing a directory. 

5. The method according to claim 2, Wherein said at least 
one policy regards a neW logical ?le, said policy comprising 
at least one of: 

creating the neW logical ?le With at least one associated 
access privilege for an operation enabled; or 

disabling at least one enabled associated access privilege 
upon at least one of a close operation on said neW logical 
?le or an occurrence of an event. 

6. The method according to claim 2, Wherein said enforcing 
comprises storing said at least one policy With at least one of: 
an alternate data stream, an extended attribute, or a private 
data. 

7. The method according to claim 2, Wherein said enforcing 
comprises at least one of: including or excluding application 

5 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

18 
of said at least one policy to said at least a portion of the 
storage medium based on an attribute of data. 

8. The method according to claim 7, Wherein said attribute 
of data comprises at least one of: 

a type comprising at least one of a MP3 ?le, an audio ?le, 
a multi-media ?le, a video ?le, a text ?le, or an image 

?le; 
a data path; 
a data mask; 
a unique ?le identi?er; or 
a logical data path. 
9. The method according to claim 2, Wherein the policy 

comprises a retention policy comprising: 
applying a restricted state to the portion of the storage 
medium; 

preventing modi?cation of the restricted state portion of 
the storage medium; and 

associating a time of expiration With the restricted state 
portion of the storage medium. 

10. The method according to claim 9, Wherein said apply 
ing a restricted state comprises at least one of: 

triggering initiation of said applying; triggering initiation 
of said applying upon a occurrence of an event or a state 

of a data attribute; 
triggering initiation of said applying on a user command; 
triggering initiation of said applying on a ?le When it is ?rst 

created; 
triggering initiation of said applying on a ?le When it is ?rst 

opened and closed; 
triggering initiation of said applying on a ?le When a read 

only attribute is set; 
setting a restricted state ?ag associated With a ?le; or 
setting a read-only attribute associated With a ?le. 
11. The method according to claim 9, Wherein preventing 

modi?cation of the restricted state portion of the storage 
medium comprises at least one of: preventing renaming, pre 
venting moving, preventing overWriting, preventing over 
Writing Zero length, preventing deleting, preventing at least 
one form of modi?cation, preventing at least one form of 
modi?cation of user data, preventing all forms of modi?ca 
tion, preventing all forms of modi?cation of user data, or 
alloWing modi?cation of non-user data, of the restricted state 
portion of the storage medium in the restricted state. 

12. The method according to claim 9, Wherein the retention 
policy comprises: 

determining the restricted state portion of the storage 
medium is in an unexpired restricted state When the 
associated time of expiration is associated With at least 
one of: a ?xed point in time in the future, an inde?nite 
time of expiration, or an in?nite time of expiration; and 

preventing modi?cation of the unexpired restricted state 
portion of the storage medium. 

13. The method according to claim 9, Wherein the retention 
policy comprises: determining the restricted state portion of 
the storage medium is in an expired restricted state When the 
associated time of expiration is associated With a ?xed time of 
expiration in the past; 

preventing modi?cation of the expired restricted state por 
tion of the storage medium; and 

alloWing deletion of the expired restricted state portion of 
the storage medium. 

14. The method according to claim 9, Wherein said associ 
ating a time of expiration comprises at least one of: 

assigning said time of expiration by at least one of a user or 
an external application; 

assigning a ?xed point in time for said time of expiration; 



US 7,536,524 B2 
19 

assigning a ?xed point in time for said time of expiration, 
Wherein the ?xed point in time is offset by a period of 
time; 

assigning a ?xed point in time in the past for said time of 
expiration: 

assigning a ?xed point in time in the future for said time of 
expiration; 

assigning an inde?nite time of expiration; 
assigning an in?nite time of expiration; 
preventing assigning a ?xed point in time associated With a 

point in time before an existing associated ?xed point in 
time; and 

preventing assigning a ?xed point in time if the time of 
expiration is associated With an in?nite time of expira 
tion. 

15. The method according to claim 9 Wherein said retention 
policy comprises at least one of: 

deriving said time of expiration from a last access date and 
time of the portion of the storage medium Wherein the 
retention policy comprises at least one of: 
associating an in?nite time of expiration With said last 

access date and time equaling Zero; 
associating an inde?nite time of expiration With said last 

access date and time equaling said last modi?cation 
time; 

associating said time of expiration With said last access 
date and time; or 

associating said time of expiration With an offset of said 
last access date and time; or 

providing said time of expiration from an independent time 
of the portion of the storage medium Wherein the reten 
tion policy comprises at least one of: 
associating an in?nite time of expiration With said inde 

pendent time equaling OXFFFFFFFFFFFFF or a 
maximum supported value; 

associating an inde?nite time of expiration With said 
independent time equaling 00:00:00 Thursday. Jan, 1, 
1970 or 0x0000000000000; 

associating said time of expiration With said indepen 
dent time; or 

associating said time of expiration With an offset of said 
independent time. 

16. The method according to claim 9, Wherein said reten 
tion policy further comprises providing for holding a 
restricted state, Wherein said holding comprises at least one 
of: 

suspending expiration of the restricted state portion of the 
storage medium; 

suspending an unexpired restricted state portion of the 
storage medium from entering an expired restricted 
state; 

suspending the clearing of a read only attribute of the 
restricted state portion of the storage medium by setting 
a temporary attribute of the restricted state portion of the 
storage medium; or 

suspending deletion of an expired restricted state portion of 
the storage medium. 

17. The method according to claim 9, Wherein the retention 
policy further comprises a secure time routine, the routine 
comprising at least one of: 

using a secure clock; 
maintaining a system clock comprising using a secure 

clock; 
verifying operation of a secure clock or authenticating a 

secure clock; 

20 

25 

30 

35 

40 

45 

50 

60 

65 

20 
denying at least one attempted operations if a secure clock 

can not be at least one of: veri?ed or authenticated; or 

running a secure clock independent of a server. 

18. The method according to claim 1, Wherein the alloWing 
or denying said attempted operation further comprises iden 
tifying an attribute of data associated With said attempted 
operation. 

19. The method according to claim 1, further comprising 
creating at least one hash key to validate authenticity of said 
portion of the storage medium. 

20. The method according to claim 19, Wherein said creat 
ing comprises creating said at least one hash key for all 
portions of the storage medium. 

21. The method according to claim 19, further comprising 
validating said at least one hash key in regards to said 
attempted operation. 

22. The method according to claim 1, further comprising at 
least one of: encrypting or decrypting user data. 

23. The method according to claim 22, Wherein said 
encrypting or decrypting is independent of a user or an appli 
cation. 

24. The method according to claim 1, further comprising 
forcing a secure erasure for a delete operation on said at least 

a portion of the storage medium, Wherein secure erasure 
comprises overWriting the contents of said at least a portion of 
the storage medium. 

25. The method according to claim 1, further comprising 
obfuscating user data by storing said user data in at least one 
of: an alternate data stream or an alternate location. 

26. The method according to claim 1, further comprising 
preventing at least one of deinstallation or deletion of at least 
one of said intercepting, said comparing, or said alloWing. 

27. The method according to claim 1, Wherein said inter 
cepting occurs at a ?le system layer. 

28. The method according to claim 1, further comprising 
prior to said step of intercepting an attempted operation, 
associating an application With said at least a portion of the 
storage medium and determining the application is permitted 
to attempt operations on said at least a portion of the storage 
medium. 

29. A computer program product for applying an operation 
access privilege to a storage medium, the computer program 
product including program logic, Which When executed on a 
computer performs a method, the method comprising: 

associating an access privilege With at least a portion of the 
storage medium; 

intercepting an attempted operation on said at least a por 
tion of the storage medium, Wherein said intercepting 
occurs regardless of an identity of a user attempting the 
attempted operation; 

comparing the attempted operation to the access privilege; 
alloWing, or denying the attempted operation based on 

comparing the attempted operation to the access privi 
lege; and 

enforcing at least one retention policy comprising: 
applying a restricted state to said at least a portion of the 

storage medium; 
preventing modi?cation of the restricted state portion of 

the storage medium; and 
associating a time of expiration With the restricted state 

portion of the storage medium. 



US 7,536,524 B2 
21 

30. The computer program product of claim 29, wherein 
the retention policy comprises: 

determining the restricted state portion of the storage 
medium is in an unexpired restricted state When the 
associated time of expiration is associated With at least 
one of: a ?xed point in time in the future, an inde?nite 
time of expiration, or an in?nite time of expiration; and 

preventing modi?cation of the unexpired restricted state 
portion of the storage medium. 

31. The computer program product of claim 29, Wherein 
the retention policy comprises: 

determining the restricted state portion of the storage 
medium is in an expired restricted state When the asso 
ciated time of expiration is associated With a ?xed time 
of expiration in the past; 

preventing modi?cation of the expired restricted state por 
tion of the storage medium; and 

alloWing deletion of the expired restricted state portion of 
the storage medium. 

15 

22 
32. A system for applying an operation access privilege to 

a storage medium, comprising: 
means for associating an access privilege With at least a 

portion of the storage medium; 
means for intercepting an attempted operation on said at 

least a portion of the storage medium, Wherein said 
intercepting occurs regardless of an identity of a user 
attempting the attempted operation; 

means for comparing the attempted operation to the access 
privilege; 

means for alloWing, or denying the attempted operation 
based on comparing the attempted operation to the 
access privilege; and 

means for enforcing at least one retention policy compris 
ing applying a restricted state to said at least a portion of 
the storage medium and preventing modi?cation of the 
restricted state portion of the storage medium. 

* * * * * 


