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PHYSICAL AND LOGICAL ATTACK
RESILIENT POLYMORPHIC HARDWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-

sional Application No. 62/753,492 filed on Oct. 31, 2018,
the contents of which are hereby incorporated by reference.

TECHNICAL FIELD

[0002] The present disclosure relates generally to cyber-
security and more specifically to the field of polymorphic
hardware devices and chip design configured and/or trained
for enhanced security, authentication, and identification of
connected devices, hardware, and co-hardware/software
functionality.

BACKGROUND

[0003] Today’s hardware devices are used for security-
critical tasks, either as stand-alone devices or as hardware
functions inside a more general-purpose device. Uses for
these security-critical devices fall along a broad range,
including access control management, security for sensors,
wearables and other IoT devices, automotive applications,
infrastructure systems, servers, data centers, and the like.
These devices and secure functions executed thereon are
used to access, generate, and process security and privacy
data information.

[0004] As an example, some of today’s evolving security
flows 1incorporate the use of physical unclonable functions
(PUF). A PUF 1s a “digital fingerprint” that serves as a
unique 1dentity for a semiconductor device such as a micro-
processor. They are based on slight physical variations that
naturally occur during a semiconductor’s manufacturing,
and which can be used to differentiate between otherwise
identical semiconductors. A PUF can therefore be relied on
to create a unique 1dentification (ID) of a hardware device or
to generate a device-specific secure key. These unique I1Ds
and secure keys are often used in cryptography and similar
high security applications.

[0005] Current PUF designs have limitations, however, as
they are discrete, deterministic, and passive primitive build-
ing blocks that receive homogenous control triggers and
challenges and return responses that are passively related to
s1licon coordinates where the PUF 1s physically located. The
responses of current PUF designs are not related to the
device (or chip) functions, architecture, and operation
modes, neither at run time 1n an operational mode nor at rest,
but rather to the unique hardware itself which cannot be
changed. Thus, the same challenge presented to a particular
device will always return the same response regardless of
the device functionality or its operation mode.

[0006] Using such deterministic and passive hardware has
been proven to be insecure. Weakness studies have been
performed by using machine learning techniques to predict
the behavior of such hardware after a certain number of prior
challenges and responses have been observed. Research has
further shown that delay-based deterministic implementa-
tions are vulnerable to side channel attacks.

[0007] In addition to non-invasive approaches, such as
modeling and side channel attacks, there are other hardware
related attacks that passive and deterministic hardware or
co-hardware/software can be vulnerable to. These include
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differential power analysis (DPA) attacks, probing, memory
corruption attacks, and the like, which make the current
deterministic hardware design vulnerable and prone to
exploits of various kinds. While deterministic hardware 1s
based on a passive logic, it often requires an additional logic
to operate or mange the hardware 1n the form of software or
additional hardware, which both may be wvulnerable to
logical memory corruption attacks related to software logic,
DPA or other types of side channel attacks, or fault injections
attacks 1n case of a passive and deterministic hardware or
software logic.

[0008] Because most current security hardware 1s passive
and deterministic, specifically at run time, information about
how such a system 1s running 1s constantly being exposed to
varying degrees. Even 1f such hardware 1s configured to
execute polymorphic software on a discrete CPU, the
instruction set for the discrete hardware CPU will remain the
same, and thus such a setup only provides protection from
memory corruption of the application 1t protects but not
from vulnerabilities that exist within the polymorphic soft-
ware engine 1tself, nor from vulnerabilities that exist within
the related co-software/hardware architecture and flows,
such as side channel attacks with cache or on chip memory
attacks. Further, such hardware 1s vulnerable to differential
power analysis attacks, which 1s a product of the determin-
1sm and discrete characteristics of the co-software/hardware
architecture and flows. If a bad actor gains access to infor-
mation about a system running such hardware, the function-
ality can be copied, modified, emulated, manipulated, or
tampered with to execute malicious code. The malicious
code may affect the co-software/hardware functionality or
authenticity, and may leak relevant co-software/hardware
data, which can affect the operation and the privacy which
the system 1s target to protect. Providing a different archi-
tecture and functionality of the co-software/hardware 1s
essential for having a system which can prevent such
vulnerabilities.

[0009] These and other wvulnerabilities also exist on
generic field programmable gate array (FPGA) types of
embedded logic or devices, as the technology is built for
generic usage and not for security. For example, FPGA are
often configured as cells that are slaves to an external
programmer or FPGA development flow tools, which can be
used by attackers to overcome the security mechanisms that
have been previously programmed.

[0010] FPGA technology 1s built using generic slaves
cells, which are reflected as generic libraries to the external
FPGA design tools and mampulated by external designers
which can create the designs of the FPGA 1n generic high
level Register Transfer Level (RTL) languages, such as C,
System-C, Verilog, System-Verilog, VHDL and the like.
These are generic languages and technology which attackers
can exploit to overcome security designed mechanisms by
using the known FPGA technology to their advantage.

[0011] Polymorphing techniques that rely on FPGA tech-
nology by reprogramming the FPGA with newly selected
designs have been proven insecure because of the above
description, are therefore vulnerable to attacks.

[0012] Mounting an effective defense from such attacks 1s
especially critical when there 1s a need to protect security-
critical systems, such as enterprise, industrial, automotive,
governmental, and similar critical infrastructure systems.
However, creating a non-deterministic security driven hard-
ware model 1s challenging to both create and implement.
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[0013] It would therefore be advantageous to provide a
solution that would overcome the deficiencies noted above.

SUMMARY

[0014] A summary of several example embodiments of the
disclosure follows. This summary 1s provided for the con-
venience of the reader to provide a basic understanding of
such embodiments and does not wholly define the breadth of
the disclosure. This summary 1s not an extensive overview
of all contemplated embodiments and 1s intended to neither
identify key or critical elements of all embodiments nor to
delineate the scope of any or all aspects. Its sole purpose 1s
to present some concepts of one or more embodiments 1n a
simplified form as a prelude to the more detailed description
that 1s presented later. For convenience, the term “certain
embodiments” may be used herein to refer to a single
embodiment or multiple embodiments of the disclosure.

[0015] Certain embodiments disclosed herein include an
attack resilient distributed proactive polymorphic hardware,
including: at least one polymorphic core including at least
one polymorphic logic, the at least one polymorphic logic
adapted to adjust an implementation of a proactive poly-
morphic model without changing the contextual functional-
ity of the proactive polymorphic model; a framework list
defining at least one policy to be executed by the proactive
polymorphic model; and a graph designating a historical
description of each of the at least one policy executed by the
proactive polymorphic model.

[0016] Certain embodiments disclosed herein also include
a polymorphic core, including: at least one hardware logic
configured to execute specific functions of a proactive
polymorphic model; and a polymorphic logic, wherein the
polymorphic logic includes a decision mechamism and at
least one neuron.

[0017] Certain embodiments disclosed herein also include
a method of establishing a topology of a proactive polymor-
phic model, including: activating an application topology for
a proactive polymorphic model, wherein the application
topology 1s based on an infrastructure topology of the
application topology; activating a security topology of a
proactive polymorphic model, wherein the security topology
1s based on an infrastructure topology.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The subject matter disclosed herein 1s particularly
pointed out and distinctly claimed in the claims at the
conclusion of the specification. The foregoing and other
objects, features, and advantages of the disclosed embodi-
ments will be apparent from the following detailed descrip-
tion taken 1n conjunction with the accompanying drawings.

[0019] FIG. 1 1s a schematic diagram of a proactive
polymorphic hardware configured to be resilient to both
physical and logical attacks according to an embodiment.

[0020] FIGS. 2A and 2B are block diagrams of a proactive
polymorphic model implementing proactive polymorphic
hardware according to an embodiment.

[0021] FIG. 3 1s a block diagram of a polymorphic core of

a proactive polymorphic model according to an embodi-
ment.

[0022] FIGS. 4A and 4B are a block diagrams of a
distributed polymorphic hardware system according to an
embodiment.
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[0023] FIG. 5 1s an example flowchart illustrating a
method of establishing a topology of a proactive polymor-
phic model.

DETAILED DESCRIPTION

[0024] It 1s important to note that the embodiments dis-
closed herein are only examples of the many advantageous
uses of the mnovative teachings herein. In general, state-
ments made 1n the specification of the present application do
not necessarily limit any of the various claimed embodi-
ments. Moreover, some statements may apply to some
inventive features but not to others. In general, unless
otherwise indicated, singular elements may be in plural and
vice versa with no loss of generality. In the drawings, like
numerals refer to like parts through several views.

[0025] The various disclosed embodiments include proac-
tive polymorphic hardware that provides a shifting and
adjustable architectural structure for an integrated circuit.
The proactive polymorphic hardware 1s configured and/or
trained to randomly alter the implementation and location of
operations while conserving an application’s original opera-
tional and functional characteristics, thus protecting the
hardware from malicious attacks, such as differential power
analysis, memory corruption attacks, side channel attacks,
physical and or logical attacks and the like. The proactive
polymorphic hardware not only allows for morphing of the
physical hardware, but 1solating the hardware or software,
managing the hardware or software, selecting only parts of
the hardware or software to execute various commands,
authenticating the hardware, securing the hardware (e.g., via
cryptographic tunneling within the hardware), sanitizing the
hardware and/or software, and partitioning the hardware
and/or software.

[0026] FIG. 1 shows a schematic diagram of a proactive
polymorphic hardware 100 configured and/or trained to be
resilient to both physical and logical attacks according to an
embodiment. The proactive polymorphic hardware 100 1s
composed of multiple hardware elements, including CPUs,
fabrics, memories, interfaces, and cores. The proactive poly-
morphic hardware 100 may include both a discrete and
deterministic CPU 110 as well as one or more polymorphic
CPUs 120. A polymorphic CPU 120 1s a processing circuitry
configured and/or trained to have its 1mplementation
adjusted while delivering, and without changing, the con-
textual functionality and output. Contextual here refers to
two or more outputs sharing the same value or values similar
enough that fall within an acceptable range. While currently
adjustable circuitries include field programming gate arrays
(FPGASs) which are not designed for security use per se, as
described above, those circuitries will change their output
when their configurations are adjusted by FPGA develop-
ment tools, unlike the polymorphic CPU 120.

[0027] The proactive polymorphic hardware 100 further
includes a polymorphic chain 130 of previously executed
policies which may also include the distributed system
infrastructure for the chip level, a polymorphic fabric 115
configured and/or trained to provide an interface between
internal elements of the proactive polymorphic hardware
100, and discrete 150 and polymorphic 160 cores configured
and/or trained to execute policies of the proactive polymor-
phic hardware 100. Additionally, the proactive polymorphic
hardware 100 1ncludes discrete 170 and a polymorphic 180
interfaces configured and/or trained to connect the proactive
polymorphic hardware 100 with an external device or sys-
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tem, such as a distributed network, e.g., a distributed ledger
such as a blockchain (not shown).

[0028] In an embodiment, the proactive polymorphic
hardware 100 further includes a polymorphic hardware logic
140 and a hardware logic of polymorphic software 145,
which are engines configured and/or trained to receive
software binaries, access and create graphs, and create
polymorphism 1n software to be executed either on a poly-
morphic CPU 120 or on a discrete deterministic CPU 110.
Software shall be construed broadly to mean any type of
instructions, whether referred to as software, firmware,
middleware, microcode, hardware description language, or
otherwise. Instructions may include code, e.g., 1n source
code format, binary code format, executable code format, or
any other suitable format of code.

[0029] FIG. 2A shows a block diagram of a polymorphic
model 200 implementing proactive polymorphic hardware.
In order to establish a polymorphic model 200, a framework
list 210 1s generated during the device’s development phase.
This framework list 210 contains the information of the
policies or functionalities to be implemented by the proac-
tive polymorphic cores 220 of the device 200 in order to
execute all or part of the device. The framework list 210 may
include, for example, one or more counters (CN'T), dividers,
direct memory access (DMA) engines, a framework for
generation of a non-deterministic finite-state machines
(FSM), arbiters, memory address pointers, first-in-first-out
(FIFO) memory policies, and the like. The framework list
210 may be stored locally, semi hardened by pre-silicon
design, e.g., on a die, or remotely accessed over a network
(not shown), such that the proactive polymorphic model 200
can access the framework list 210, either 1n an encrypted or
a plain text format.

[0030] An FSM 1s a structural sequential computational
model with a finite number of states, where the FSM can
only be 1 a single state at a time, analogous to a CPU
control flow when the CPU runs a single instruction at a
time. The outputs of the FSM will be dependent on the
inputs given, as well as the current and next state. The FSM
included in the framework can be run on a standalone
standard logic with programmable and/or trained gates, e.g.,
an FPGA, ASIC device, SoC device, Al device chip, net-
work device and or any other VLSI based device, or can be
a logic configured, trained, or combined with multiple
neurons, as described below, to create new models of a
polymorphic logic. This FSM 1s not dependent on VLSI or
FPGA tools used after the chip 1s fabricated, or on an FPGA
single programmed and internally polymorphic device.
[0031] Upon a wake-up of the proactive polymorphic
model 200, each of the one or more polymorphic cores 220,
e.g., Polymorphic Core A, B, or C, 1s configured and/or
trained to select a policy to execute, meaning that the core
may decide or affect the functionality that the proactive
polymorphic model 200 1s going to implement, consume, or
operate. The policy 1s part of the overall functionality of the
proactive polymorphic model 200 and 1s chosen from the
framework list 210. One or more policies may be selected
depending on the desired application.

[0032] Once a policy 1s selected and configured and/or
trained, a process of authentication and approval 1s per-
formed by the proactive polymorphic model 200. The
authentication and approval may be performed by the inter-
nal polymorphic cores 220. In an embodiment, this process
1s based on a predetermined majority vote threshold of
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authentication from all the cores. For example, 1f the pre-
determined threshold 1s 51% for authentication, as long as
51% or more of the polymorphic cores 220 successtully
authenticate the policy, it 1s determined to be approved.
Once the policy 1s approved, the core stores a reference of
the policy, e.g., aliases, signatures, or tags in a local or
remote location, such as a distributed mechanism, with help
of e.g., a blockchain, distributed ledger. Certificates can also
be created according the majority vote and stored locally or
distributed. This information 1s used to construct the graph
230 that tracks all policy configurations of the polymorphic
cores 220 during the lifetime of the device 200. The graph
230 1s updated with each change of a policy by each of the
polymorphic cores 200, and thus keeps a historical descrip-
tion, or log, of all of the executed policies.

[0033] Inan embodiment, subsequent policy selections are
based on previously selected policies, which may be stitched
together and used to determine future states of the device
200 and policies to be selected and executed. This provides
a significant runtime and/or hot swap security feature, as any
external bad actor attempting to mimic the device 200 or
insert harmtul code or logic therein will be unable to do so
without access to all previously selected policies, which can
also be configured and/or trained to be unique for each
device. The first core 220 to decide a policy can be chosen
randomly, periodically, or by a predetermined analysis each
time a new setup flow begins, e.g., either periodically at
runtime, or upon any start-up or reset of the proactive
polymorphic model 200 or upon analysis.

[0034] The device 1s configured and/or trained to use the
graph 230 and the framework list 210 to polymorph the
implementation of the polymorphic cores 220, e.g., along
with an FSM configured and/or trained as a decision mecha-
nism. The neurons may be based on different types of
trainable logics, such as, but not limited to, a perceptron, a
weilghted trainable logic or a logical configuration and/or a
trainable mechanism which 1s based on an FSM. The deci-
sion mechanism 1s a function which communicates and
integrates with other cores to determine a decision. In an
embodiment, the decision mechanism 1s assigned as a higher
priority function, particularly at a device restart.

[0035] The implementation, namely the configuration and/
or training, and various connections within the proactive
polymorphic model 200 can then be adjusted while keeping
the intended context application functionality of the device
200, and the like, intact. That 1s, while the neurons and
FSMs are shifting the exact or similar implementation of the
proactive polymorphic model 200 over time, the function-
ality of the device 200 does not change. As a simplified
example, the following logic and iputs of 1+3 and 6-2 both
deliver the same resulting output while using different
implementations. Similarly, the functionality of the proac-
tive polymorphic model 200 remains the same and/or similar
while the implementation to achieve that functionality can
be ever shifting. Such a configuration and/or training pro-
vides additional security to the device 200, as authentication
can be configured and/or trained to require specific imple-
mentations while excluding others. The disclosed proactive
polymorphic model 200 1s configured and/or trained to
execute policies connected to security features. Such a
device 200 may authenticate systems, allow or deny network
traflic, permit or prevent access to data, and the like, where
cach functionality can produce the same and/or similar
contextual output (e.g., the same bad actor will always be
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denied access to secure data), while using morphed and
adjusted implementations of the device 200.

[0036] The graph 230 includes a history of previous
polymorphic cores 220 executed, and 1n an embodiment the
proactive polymorphic model 200 1s configured and/or
trained to i1mplement a decision tree mechanism, e.g.,
executed by an FSM, to train or adapt the cores 220 of the
proactive polymorphic model 200 based on a previously
used elements. These elements can include elements of the
framework list 210, and when stitched together, create a
unique graph 230.

[0037] FIG. 2B shows a more detailed block diagram of a
proactive polymorphic model 200 implementing proactive
polymorphic hardware according to an embodiment. In an
embodiment, the proactive polymorphic model 200 further
includes at least one seli-trusted distributed polymorphic
tabric 250. The fabric 250 provides an interface between
multiple components of the proactive polymorphic model
200, including between the polymorphic cores 220 and the
framework list 210, between the polymorphic cores 220 and
the graph logic, and between the framework list 210 and an
external distributed system 280. In an embodiment, the
tabric 250 1s created by a polymorphic FSM (not shown) and
provides a secure connection between two or more secure
elements or cores. In an embodiment, the fabric 250 1s
distributed, such that the secure tunnel of communication
passing through the fabric 250 also requires authentication,
e.g., via a majority vote, to allow the passage of information
between the device elements. The fabric 250 1s seli-trusted
in that there 1s no need for an external or user input to
authenticate the fabric 250, as 1ts security 1s ensured by 1ts
distributed configuration and/or training.

[0038] As shown in FIG. 2B, the framework list 210 may

include additional elements, including traps within the pro-
active polymorphic model 200, which may include honey-
pots (e.g., sending suspicious activity to a sandbox), canary
logics (e.g., allowing the policies to be executed, but sending
alerts and/or signaling of suspicious activities), hooking
logics (e.g., altering the executed policies when suspicious
activity 1s detected), and the like. The framework list 210
may further include a majority vote mechanism determining
how a majority vote 1s executed and what thresholds are
necessary for a decision to be accepted.

[0039] An activation module and/or a policy within the
framework list 210 ensures that the selected functionality of
a policy 1s legitimately chosen, e.g., via an FSM configured
and/or trained to activate the policy only when a specific
authentication sequence 1s executed. Otherwise, activation 1s
denied.

[0040] FIG. 3 1s a block diagram of a polymorphic core
220 of a proactive polymorphic model according to an
embodiment. The polymorphic core 220 includes multiple
hardware logics configured and/or trained to execute specific
functions of the proactive polymorphic model, such as a
polymorphic logic 220-10 and additional logics configured
and/or trained for specific tasks, including a framework list
read logic 220-20, a graph update logic 220-30, a majority
vote logic 220-40, and a policy choice logic 220-50. In an
embodiment, each logic has a polymorphic structure, such
that their individual implementations shift and morph, e.g.,
via the polymorphic logic 220-10, while still producing the
same or similar desired outputs.

[0041] The polymorphic logic 220-10 1s configured and/or
trained to include an FSM 220-12, and neuron 220-14, and
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a hardware logic 220-16. In an embodiment, the neuron
220-14 1s configured and/or trained to create additional
nested neurons, where each neuron configured and/or
trained to execute a different policy. In an embodiment, a
decision mechanism 1s a function which communicates and
integrates with other cores to determine a specific decision,
where the decision mechanism 1s based on the FSM 220-12.

[0042] The polymorphic core 220 1s configured and/or
trained to execute instructions in a secured manner. In an
embodiment, the polymorphic core 220 1s configured and/or
trained to receive software binaries, access and create
graphs, and create polymorphic software to be executed
either on a polymorphic logic or on a discrete deterministic
logic. The polymorphic core 220 receives a command, e.g.,
instructions, analyzes the binary of the command, and adapts
the binary to the current architecture of the proactive poly-
morphic model. Thus, for example, if the polymorphic core
220 had previously morphed the address map of a proactive
polymorphic model, the command 1s adapted to be executed
and produce the expected outputs while using the updated
address map of the device. In this manner, the output is
agnostic to the current architecture of the proactive poly-
morphic model and will consistently produce the expected
results.

[0043] In an embodiment, the polymorphic cores 220 of
the proactive polymorphic model 200 are configured and/or
trained to accomplish various hardware-related tasks relat-
ing to the hardware of the proactive polymorphic model
itself, or hardware connected thereto, including morphing
the hardware to a specific state, 1solating the hardware from
particular system elements, select which parts of the hard-
ware are to be activated and which are to be deactivated,
managing and partitioning the hardware as desired, and
authenticating the hardware for use 1n secure applications.

[0044] FIG. 4A shows a block diagram of a distributed
polymorphic hardware system 400 according to an embodi-
ment. In an embodiment, the system 400 includes a larger
distributed chain/shell system 405 that comprises multiple
local distributed systems 410 connected together, where the
larger distributed system chain/shell 405 include N local
distributed system 410, where N 1s an integer equal to or
greater than 1. The local distributed systems 410 comprise
one or more polymorphic cores that include an FSM and a
neuron, or a gate, configured and/or trained for specific
tasks. These include FSM and neurons for managing policies
432, FSM and neurons for executing gadgets, hooks and
injections 434 for security purposes, FSM and neurons for
authentication via majority voting 436, and FSM and neu-
rons configured and/or trained to track and reference previ-
ous policies storing and/or tagged within graphs 438.

[0045] The FSM and neuron policies may have generated
aliases, signatures, or tags that may be stored within a
database 440, either stored locally or remotely, e.g., over a
cloud network. In an embodiment, the neurons and FSMs
are not executed on generic logics, but rather are execute on
logics that are polymorphic and adjustable by design for
security orientation.

[0046] The local distributed database 410 may be formed
into a chain, which further includes gadgets and hooks, and
a predetermined majority vote mechamism configured and/or
trained to decide how the policies or the cores work, e.g., the
minimum amount of cores that must agree or correspond to
cach other when authenticating a policy. These can all be
implemented within the hardware of a proactive polymor-
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phic model, e.g., the device 200 of FIG. 2. The structure of
the basic neurons of the system cannot be changed, but the
configuration and/or training of the neurons or of the FSM
can be. Additionally, different types of nested neurons can be
created within the basic neuron, providing additional poly-
morphic functionality.

[0047] FIG. 4B 1s a block diagram of a distributed poly-

morphic hardware system 400 according to an embodiment.
The local distributed system 410 1s configured and/or trained
to determine the current state of the system. Included 1n the
larger distributed chain/shell system 405 are various collec-
tors used to determine aspects of one or more local systems,
including policy collectors 452 to determine current and
previously executed policies of a system; gadget, hooks, and
injector collectors 454 to determine the current state of each
security device within a system (e.g., 11 a hook been previ-
ously triggered); majority vote collectors 456 to determine
the requirements and history of authentication; graph or
control flow reconstruction collectors 458; and functional
challengers 460 to establish the authorization status of a
system based on challenge responses, and garbage collectors
460 and to sanitize resources no longer used. Each of these
collectors contribute to determining the current state of a
proactive polymorphic model. The aliases, signatures, or
tags of the FSM and neurons of each of the systems can be
stored 1n a distributed manner. In an embodiment, the
signatures of the implemented FSM and neurons are dis-
tributed over a blockchain ledger 450, either locally or
remotely, such as over a cloud computing system.

[0048] FIG. 5 1s an example tlowchart 500 1illustrating a
method of establishing a topology of a proactive polymor-
phic model. The topology 1s a model that describes how the
various policies, cores, logics, and elements of the proactive
polymorphic model connect, interact, and operate with each
other.

[0049] At S505, 1t 1s determined 1f a current or a previous
topology of the proactive polymorphic model exists. A
current or a previous topology may be stored, e.g., within a
storage or memory of a system, and will describe the current
states of such a system. If such a topology does not exist, the

process continued at S510; otherwise the process continues
as S335.

[0050] At S510, a first majority vote 1s executed to deter-
mine what the infrastructure should be. For example, in a
proactive polymorphic model, such as the device 200 dis-
cussed above i FIGS. 2A and 2B, the topology relates to
resource usage, including which policies are executed from
a framework list, what polymorphic cores are used, which
polymorphic logics are implemented, which resources are
selected and how they are mapped, what threshold 1s
required for a majority vote, and the like.

[0051] At S51S5, based on a consensus from a majority
vote, a topology for the infrastructure of the device 1is
structured.

[0052] At S520, a second majority vote 1s executed to
determine an application to be executed using the chosen
infrastructure. At S525, it 1s determined if the second
majority vote returns an atlirmative answer. If so, execution
continues at S535. Otherwise, a distributed logic alert 1s
generated at S530 and the process continues from S505. In
an embodiment, the alert or the signaling 1s an automated
alert sent within a system and recorded in or correlated with
the graph of the system for future reference.
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[0053] At S535, the structured topology 1s applied to the
device.
[0054] At S540, third majority vote 1s executed to deter-

mine a new security topology for the chosen infrastructure.
A security topology 1s an application dedicated to security
uses. At S545, 1t 1s determined 1f the third majority vote
returns an athrmative answer. If so, execution continues at
S550. Otherwise, a distributed logic alert 1s generated at
S530 and the process continues from S505. In an embodi-
ment, the alert or the signaling 1s an automated alert sent
within a system and recorded in or correlated with the graph
of the system for future reference.

[0055] At S550 the proactive polymorphic model 1s poly-
morphed to form a new security topology and execution
continues at S390.

[0056] At S555, if a current or a previous topology of the
proactive polymorphic model 1s determined to exist, the
previous topology 1s authenticated. In an embodiment,
authentication includes determining the signature of the
previous topology and matching the signature to a signature
stored 1n a distributed network. Authentication may be user
specific. Namely, a proactive polymorphic model may
include a unique ID, where authentication can only be
completed by a preapproved entity. For example, if the
proactive polymorphic model with a specific topology 1s
configured and/or trained for client A, client B will not be
able to successtully authenticate the topology. In an embodi-
ment, a previous topology includes an infrastructure topol-
ogy and an application topology previously determined, e.g.,
by a majority vote, to be executed on the proactive poly-
morphic model.

[0057] At S560, a majority vote 1s executed to determine
i a new security topology 1s to be created. At S570, 1t 1s
determined 1f the majority vote returns an aflirmative
answer. If so, execution continues at S580. Otherwise, a
distributed logic alert 1s generated at S57S5 and the process
continues from S505. In an embodiment, the alert 1s an
automated alert sent within a system and may be recorded 1n
or correlated with the graph of the system for future refer-
ence.

[0058] At S580, the proactive polymorphic model 1s poly-
morphed to form a new security topology. In an embodi-
ment, the security topology 1s molded within an application
topology, such that the resulting topology in an integration
of an application topology and a security topology.

[0059] At S590, the application topology and the security
topology are activated and operated. In an embodiment,
activation can only be successiully completed by a preap-
proved entity, as discussed above.

[0060] At S595, the application topology and the security
topology are momitored and analyzed as they are executed
by the proactive polymorphic model to ensure successiul
and secure execution and to ensure no attacks, modifica-
tions, infiltrations, and the like are present. In an embodi-
ment, execution cycles and returns to S505.

[0061] The various embodiments disclosed herein can be
implemented as hardware, firmware, software, or any com-
bination thereot. Moreover, the software 1s preferably imple-
mented as an application and or system program tangibly
embodied on a program storage unit or computer readable
medium consisting of parts, or of certain devices and/or a
combination of devices. The application and or system
program may be uploaded to, and executed by, a machine
comprising any suitable architecture. Preferably, the
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machine 1s implemented on a computer platform having
hardware such as one or more central processing units
(“CPUs”™), a memory, and input/output interfaces. The com-
puter platform may also include an operating system and
microinstruction code. The various processes and functions
described herein may be either part of the microinstruction
code or part of the application and or system program, or any
combination thereof, which may be executed by a CPU,
whether or not such a computer or processor 1s explicitly
shown. In addition, various other peripheral units may be
connected to the computer platform such as an additional
data storage unit and a printing unit. Furthermore, a non-
transitory computer readable medium 1s any computer read-
able medium except for a transitory propagating signal.

[0062] As used herein, the phrase “at least one of” fol-
lowed by a listing of 1items means that any of the listed items
can be utilized individually, or any combination of two or
more of the listed items can be utilized. For example, 1f a
system 1s described as including “at least one of A, B, and
C,” the system can include A alone; B alone; C alone; A and
B 1n combination; B and C in combination; A and C 1in
combination; or A, B, and C in combination.

[0063] All examples and conditional language recited
herein are intended for pedagogical purposes to aid the
reader in understanding the principles of the disclosed
embodiment and the concepts contributed by the inventor to
furthering the art, and are to be construed as being without
limitation to such specifically recited examples and condi-
tions. Moreover, all statements herein reciting principles,
aspects, and embodiments of the disclosed embodiments, as
well as specific examples thereol, are intended to encompass
both structural and functional equivalents thereof. Addition-
ally, 1t 1s 1intended that such equivalents include both cur-
rently known equivalents as well as equivalents developed
in the future, 1.e., any elements developed that perform the
same function, regardless of structure.

What 1s claimed 1s:

1. An attack resilient distributed proactive polymorphic
hardware, comprising:
at least one polymorphic core including at least one
polymorphic logic, the at least one polymorphic logic
adapted to adjust an 1mplementation of a proactive
polymorphic model without changing the contextual
functionality of the proactive polymorphic model;

a framework list defining at least one policy to be
executed by the proactive polymorphic model; and

a graph designating a historical description of each of the
at least one policy executed by the proactive polymor-
phic model.

2. The proactive polymorphic hardware of claim 1,
wherein the at least one polymorphic core adjusts an 1mple-
mentation of the proactive polymorphic model by at least
one of: configuring the proactive polymorphic model and
training the proactive polymorphic model.

3. The proactive polymorphic hardware of claim 1,
wherein the implementation of the proactive polymorphic
model 1ncludes executing the at least one policy of the
proactive polymorphic hardware based on a decision mecha-
nism and at least one of: a neuron and a gate.

4. The proactive polymorphic hardware of claim 3,
wherein the decision mechanism 1s based on a finite state
machine (FSM), and wherein a neuron 1s included within a
polymorphic core.

Apr. 30, 2020

5. The proactive polymorphic hardware of claim 4,
wherein the neuron 1s based on trainable logics, including as
least one of: a perceptron, a weighted trainable logic, a
logical configuration, and an FSM based trainable mecha-
nism.

6. The proactive polymorphic hardware of claim 1,
wherein any subsequent policy selection by the proactive
polymorphic hardware 1s based on previously selected poli-
cies which are described and stored in the graph.

7. The proactive polymorphic hardware of claim 1,
wherein the framework list includes at least one of: a
framework for generation of a finite state machine (FSM), a
majority vote mechanism, an authenticator, one or more
traps, an activation module, and a unique 1dentification.

8. The proactive polymorphic hardware of claim 7,
wherein the traps include at least one of: a honeypot, a
canary logic, and a hooking logic.

9. The proactive polymorphic hardware of claim 8,
wherein the majority vote policy 1s a policy determining a
predetermined majority vote threshold of the at least one
polymorphic core, wherein the predetermined majority vote
threshold 1s required for execution of a policy by the
proactive polymorphic hardware.

10. The proactive polymorphic hardware of claim 1,
wherein the proactive polymorphic hardware further com-
prises:

a seli-trusted distributed polymorphic fabric, wherein the
trusted distributed polymorphic fabric 1s configured to
provide a secure interface between the at least one
polymorphic core, the framework list, and the graph.

11. The proactive polymorphic hardware of claim 1,
wherein the proactive polymorphic hardware 1s further con-
nected to a distributed network, wherein the distributed
network includes additional proactive polymorphic hard-
ware.

12. The proactive polymorphic hardware of claim 1,
wherein the distributed network 1s a distributed ledger.

13. The proactive polymorphic hardware of claim 1,
further comprising;:

adapting a binary of a selected policy, software, or both,
to a current archutecture of the proactive polymorphic
model to produce an output, wherein the output 1s
agnostic to the current architecture of the proactive
polymorphic model.

14. A polymorphic core, comprising:

at least one hardware logic configured to execute specific
functions of a proactive polymorphic model; and

a polymorphic logic, wherein the polymorphic logic
includes a decision mechanism and at least one neuron.

15. The proactive polymorphic hardware of claim 14,
wherein the decision mechanism 1s based on a finite state
machine (FSM), and wherein the neuron 1s based on train-
able logics, including as least one of: a perceptron, a
weighted trainable logic, a logical configuration, and an
FSM based trainable mechanism.

16. The proactive polymorphic hardware of claim 185,
wherein the at least one hardware logic includes at least one
of: a framework list read logic, a graph update logic, a
majority vote logic, and a policy choice logic.

17. The proactive polymorphic hardware of claim 185,
wherein the at least one hardware logic has a polymorphic
structure.

18. The proactive polymorphic hardware of claim 14,
wherein the polymorphic logic 1s configured to create poly-



US 2020/0134235 Al

morphic software to be executed either on a polymorphic
logic or on a discrete deterministic logic.
19. A method of establishing a topology of a proactive
polymorphic model, comprising:
activating an application topology for a proactive poly-
morphic model, wherein the application topology 1s
based on an infrastructure topology of the application
topology;
activating a security topology of a proactive polymorphic
model, wherein the security topology 1s based on an
infrastructure topology.
20. The method of claim 19, further comprising;
determining 1f a previous topology for the proactive
polymorphic model exists;
authentication the previous topology; and
polymorphing the proactive polymorphic model with a
new security topology.
21. The method of claim 19, wherein each of the infra-
structure topology, application topology, and security topol-
ogy are determined based on a majority vote.

e % e e %
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