a9y United States

US 20200136899A1

12y Patent Application Publication o) Pub. No.: US 2020/0136899 A1

Romano et al. 43) Pub. Date: Apr. 30, 2020
(54) CONSERVING COMPUTING RESOURCES (52) U.S. CL
DURING NETWORK PARALLEL CPC HO4L 4170803 (2013.01); HO4L 67/10
PROCESSING (2013.01)
57 ABSTRACT

(71) Applicant: Bank of America Corporation, (57) , L ,
Charlotte, NC (US) A p:aral}el processing device includes a parallel processing
’ engine implemented by a processor. The parallel processing
(72) Inventors: Brad E. Romano, Furlong, PA (US): engine 1s configured to execute a shell script for each

Shashi Thanikella, North Brunswick,

NJ (US)

(21) Appl. No.: 16/174,614

particular processing job 1 a queue of processing jobs to
run. The shell script 1s configured to dynamically generate a
configuration file for each particular processing job. The
configuration file 1nstructs a network of computing systems
to run the particular processing job using a particular num-
ber of parallel partitions corresponding to a parallel parti-

(22) Filed: Oct. 30, 2018 tions parameter associated with the particular job. The
configuration file includes randomized scratch directories
o : : for computing nodes within the network of computing
Publication Classification systems and a calculated container size for the particular
(51) Imt. CL processing job. Each processing job 1s run on the network of
HO4L 12/24 (2006.01) computing systems according to the dynamically-generated
HO04L 29/08 (2006.01) configuration file of the particular processing job.
[IS ENGINE TIER IIS CLIENT [1S SERVICES [IS METADATA
100 TIER TIER TIER
| 114
HADOOP 112~ CONDUCTOR O e
EDGE NODE o 140 .
110 ‘{ OSH INTERCEPT l
| _ | I
SECTION LEADER SECTION LEADER IIS APPLICATION
| 124 ' 1241 ¢t =
122 122 196
i PLAYER PLAYER PLAYER PLAYER
| 1 3 1 3
| : HADOOP
PLAYER | 124 PLAYER | 124 DATA NODE
| 124 2 124
i HADOOP DATA NODE HADOOP DATA NODE
| 130
| 120 120 /) 120
L VARN CONT. rg |
_ _ YARNCONTAINERS _

Apr. 30,2020 Sheet 1 of 4 US 2020/0136899 Al

Patent Application Publication

I DIHA
C oo
L N. iiiiii _
0cl 0cl 0cl
0tl
J0ON V.1va 4OOavH ” 300N V1Va dOOavH
4 A ¢ Vel
300N V1VQ 2l | H3IAVId | vZL | y3AvId
e | 1 g F
ozl BRENE HIAV1d YAV HIAVd
| ¢el ¢Cl
vel | Vel
NETRN) .
NOLLYDI1ddV SII | ¥3av3TNOLLO3S ¥3av31NOILO3S
I ”
LdIOHIINIHSO g4 Obl
N3 300N 3903
HOLONANOD AN dOOavH

pLL NAVA SII

NET] 001
IN3ITO SII y3LL INIONI SIT

dadll ddll

S30INY4S SII

Vivav.idiN SII

=
=\
% 962
e,
S
&
= GG
7
—
yGZ
<
S
gl
2 667
v
&
&
S
z 2S¢
S
S
= Kets
'
=5
S
Z 052
—_
-p
-«
= A
= 002
~N

NOILLd 1dANOD NOdI
SNLVLS AN4S

S4AON d41VOOTIV
NO SANVAINOO NNy

AN NO¥4d NOILVOOTIV
30dN0S3d H04 1IVM

NOILLVOOTIV
dANIVINOD HOA4
NY 1S3NOFY

S34WVYN 200N
139 ‘NOILYOO TV
J04N0SId 404 NV'1d
NOLLNO3X3 AN3S

d41SVIA NOLLVOL IddV
FHINOJV

3Z1S HANIVLINOO ANV
4114 NOLLVANDIANOD

ONISN 80r J4091dl

¢ DId

4STIWH041V'id NO 8Of NNy OL
3714 NOLLVENOIANOD DILVLS 38N

8¢

LLC

dOOAdVH NO 80r NNY HLIM J'114
NOILVENDIANOD JILVLS 4S8N

19¢

1dId0OS AId9 OINVYNAQ ONITIVO
A8 4STNH041V'1d NO 80 NN

AN3N0 NO d38ve 3ZIS
HANIVINOD 3LVINDTVO 'FAON
HOV3 ¥04 HO1VdOS WOONVY
HLIM 114 NOILVANDIANOD
OINVNAQ JLVHINID

Ob7 GlLe

37114 NOLLVHNDIANOD TVNOILHO
'3Z1IS N3N0 "HILINVHVd SNOILIIYHVd
T3TIVEVd "F1GVIMVA FHNDIANOD

SdA

SdA

SdA

SdA

ON 082

P = A1dVIdVA
NOILVHNOIANOD

ON 0.2

¢ = 19VIdVA
NOILVANOIANOD

ON

¢ = 4'18VIaVA
NOILVHNDIANOD

N 09¢

| = F1HVIHVA
NOILVHNOIANOD

0€¢
1dIHOS HSO "4991dL

034499141 90r
1HVIS

0¢c

0l¢

Patent Application Publication Apr. 30, 2020 Sheet 3 of 4 US 2020/0136899 Al

300

\‘

310 ACCESS QUEUE OF
PROCESSING JOBS TO RUN

EXECUTE A SHELL SCRIPT FOR
320 EACH PARTICULAR PROCESSING
JOB IN THE QUEUE OF
PROCESSING JOBS TO RUN

33 ACCESS QUEUE SIZE PARAMETER,
PARALLEL PARTITIONS PARAMETER,
CONFIGURATION VARIABLE

340

CONFIGURATION
VARIABLE = PREDETERMINED

VALUE?

NO

YES
350 CALCULATE CONTAINER SIZE
DYNAMICALLY GENERATE A
360 CONFIGURATION FILE

TRIGGER THE PARTICULAR
PROCESSING JOB TO RUN ON
THE NETWORK OF COMPUTING
370 SYSTEMS ACCORDING TO THE

DYNAMICALLY-GENERATED
CONFIGURATION FILE

FI1G. 3

Patent Application Publication Apr. 30, 2020 Sheet 4 of 4 US 2020/0136899 Al

400
NETWORK DEVICE
PROCESSOR
PROCESSING ENGINE
404

MEMORY

412 PARALLEL PROCESSING
INSTRUCTIONS

414 OSH SHELL SCRIPT NETWORK

INTERFACE

418 PARAMETERS

CONFIGURATION FILE

FIG. 4

US 2020/0136899 Al

CONSERVING COMPUTING RESOURCES
DURING NETWORK PARALLEL
PROCESSING

TECHNICAL FIELD

[0001] The present disclosure relates generally to net-
works, and more specifically to conserving computing
resources during network parallel processing.

BACKGROUND

[0002] One of the technical challenges associated with
networking computing 1s load balancing during parallel
processing. Existing systems for load balancing typically
have a one-size-fit-all approach to assigning resources dur-
ing parallel processing. For example, existing approaches
typically have static configuration files that assign resources
for all parallel computing jobs 1rrespective of the actual sizes
of the jobs. This approach 1s overly restrictive and 1s not
ideal for businesses that have many smaller parallel jobs to
run on the computing network. This poses a technical
challenge {for computer systems because computing
resources may get tied up and therefore not be available for
use when needed by other jobs.

SUMMARY

[0003] In some embodiments, a parallel processing device
includes one or more memory devices and a parallel pro-
cessing engine. The one or more memory devices are
operable to store a queue of processing jobs to run. The
parallel processing engine 1s implemented by a processor
communicatively coupled to the one or more memory
devices. The parallel processing engine 1s configured to
access the queue of processing jobs and execute a shell script
for each particular processing job 1n the queue of processing
jobs to run. The shell script 1s configured to access a queue
s1ze parameter associated with the particular processing job,
calculate a container size for the particular processing job
based on the queue size parameter, access a parallel parti-
tions parameter associated with the particular processing
job, and access a configuration variable associated with the
particular processing job. The shell script 1s further config-
ured to determine whether the configuration variable asso-
ciated with the particular processing job matches a prede-
termined value. In response to determining that the
configuration variable associated with the particular pro-
cessing job matches the predetermined value, the shell script
dynamically generates a configuration file for the particular
processing job. The configuration file 1s configured to
istruct a network of computing systems to run the particular
processing job using a particular number of parallel parti-
tions corresponding to the parallel partitions parameter. The
configuration file includes randomized scratch directories
for each computing node and the calculated container size
for the particular processing job. The parallel processing
engine 1s configured to trigger the particular processing job
to run on the network of computing systems according to the
dynamically-generated configuration file of the particular
processing job.

[0004] The systems and methods disclosed herein provide
several technical advantages. As one example, certain
embodiments provide a parallel processing engine (e.g., an
extract, transform, load (E'TL) tool such as a Biglntegrate
plattorm by IBM) which includes the ability to customize

Apr. 30, 2020

the levels of parallelism (e.g., the number of parallel execu-
tions for the job) and the container size for each particular
j0b 1n a queue of jobs. This permits the available computing
resources (e.g., computer processing power and computer
memory) to be more efliciently used. Existing systems
typically provide a static level of parallelism and container
s1ze for all jobs. This, 1n turn, causes computing resources to
get tied up and go unused, especially for job queues that
include many smaller jobs. In contrast, the disclosed system
1s configured to dynamically generate a configuration file for
each job 1n a queue of jobs. The configuration file, which 1s
used to run the job on a network of computing systems,
includes the level of parallelism (e.g., the number of parallel
partitions) and the container size for each particular job.
Furthermore, the dynamically-generated configuration file
may also include randomized scratch directories for each
computing node. This may provide additional technical
advantages by balancing out the input/output (10) between
those directories.

[0005] Certain embodiments of the present disclosure may
include some, all, or none of these advantages. These
advantages and other features will be more clearly under-
stood from the following detailed description taken 1n con-
junction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] For a more complete understanding of this disclo-
sure, reference 1s now made to the following brief descrip-
tion, taken in connection with the accompanying drawings
and detailed description, wherein like reference numerals
represent like parts.

[0007] FIG. 1 1s a schematic diagram of an embodiment of
a parallel processing system using a Hadoop cluster;

[0008] FIG. 2 1s a flowchart of an embodiment of a parallel
processing method that may be implemented by the system

of FIG. 1;

[0009] FIG. 3 1s a flowchart of an embodiment of another
parallel processing method that may be implemented by the
system of FIG. 1; and

[0010] FIG. 4 1s a schematic diagram of an embodiment of
a network device configured to implement a parallel pro-
cessing engine according to the present disclosure.

DETAILED DESCRIPTION

[0011] The systems and methods disclosed herein provide
several technical advantages. As one example, certain
embodiments provide a parallel processing engine (e.g., an
extract, transform, load (E'TL) tool such as a Biglntegrate
platform by IBM) that includes the ability to customize the
levels of parallelism (e.g., the number of parallel partitions)
and the container size for each particular job 1n a queue of
jobs. This permits the available computing resources (e.g.,
computer processing power and computer memory) to be
more efliciently used. Existing systems typically provide a
static level of parallelism and container size for all jobs.
This, 1n turn, causes computing resources to get tied up and
go unused, especially for job queues that include many
smaller jobs. In contrast, the disclosed system 1s configured
to dynamically generate a configuration file for each job 1n
the queue of jobs based on 1nputs for each particular job
(e.g., variable level of parallelism and container size). The
configuration file, which 1s used to run the job on a network
of computing systems, includes the level of parallelism (e.g.,

US 2020/0136899 Al

the number of parallel partitions) and the container size for
particular job. Furthermore, the dynamically-generated con-
figuration file may also include randomized scratch direc-
tories for each computing node. This may provide additional
technical advantages by balancing out the mput/output (10)
between those directories.

[0012] FIG. 1 1s a schematic diagram of an embodiment of
a parallel processing system 100 that conserves computing
resources during network parallel processing. Parallel pro-
cessing system 100 includes multiple network devices (e.g.
Hadoop edge node 110 and Hadoop data nodes 120) that are
in signal communication with each other in a network. Each
network device 1s configured to exchange data with other
network devices 1n parallel processing system 100.

[0013] Examples of network devices 110 and 120 include,
but are not limited to, computers, Internet-of-things (IoT)
devices, mobile devices (e.g. smart phones or tablets), web
clients, web servers, routers, modems, bridges, printers, or
any other suitable type of network device. The network
utilized by parallel processing system 100 1s any suitable
type of wireless and/or wired network including, but not
limited to, all or a portion of the Internet, an Intranet, a
private network, a public network, a peer-to-peer network,
the public switched telephone network, a cellular network, a
local area network (LAN), a metropolitan area network
(MAN), a wide area network (WAN), and a satellite net-
work. The network may be configured to support any
suitable type of communication protocol as would be appre-
ciated by one of ordinary skill in the art upon viewing this
disclosure.

[0014] In general, parallel processing system 100 may
include any appropriate E'TL process or tool (e.g., Biglnte-
grate platform by IBM) in combination with a Hadoop
cluster. In the illustrated embodiment of FIG. 1, parallel
processing system 100 includes a conductor 112 running on
Hadoop edge node 110 and multiple section leaders 122 on
Hadoop data nodes 120. In general, conductor 112 allows
processing jobs to be run 1n both partition parallel (i.e., how
many parallel partitions on one or more Hadoop data nodes
120 on which to run the job) and pipeline parallel (1.e., how
many operations to run the job). Conductor 112 essentially
breaks up an input data file into discrete (e.g., ten) physical
pieces and then runs each one of those pieces against a copy
of the job’s program logic. Each one of those pieces are
managed by a single section leader 122. Underneath each
section leader 122 are multiple players 124. Each player 124
corresponds to an operator in the job. For example, one
player 124 may handle read operations, one player 124 may
handle transformation operations, one player 124 may
handle sorting operations, one player 124 may handle aggre-
gation operations, and one player 124 may handle write
operations. Players 124 may all begin at the same time for
efliciency (1.e., pipeline parallel processing).

[0015] Parallel processing system 100 may include one or
more YARN (‘yet another resource manager’) clients 114
and YARN containers 130. YARN client 114 is a client that
submits an application to run on a YARN cluster. YARN
containers 130 are logical sets of resources (e.g., computer
processing cores and memory) to run jobs within a cluster.

[0016] Typically, systems such as parallel processing sys-
tem 100 use a static configuration file for every job that 1s
run. This fixes the degree of parallel processing to be the
same for all jobs. For example, typical systems may run all
jobs ten ways parallel (e.g., each job 1s run on ten parallel

Apr. 30, 2020

partitions). Furthermore, typical systems also have a fixed
container size (e.g., fixed amount of resources for YARN
containers 130) for all jobs regardless of the size of the job.
Since each YARN container 130 1s essentially the amount of
computer resources set aside for each process, fixing the
amount of YARN containers 130 regardless of job size may
result 1n under-utilized resources, especially on smaller jobs.

[0017] 'To address these and other problems with existing
systems that use static configurations for parallel job pro-
cessing, parallel processing system 100 utilizes an OSH
intercept script 140 to dynamically generate a configuration
file for each job 1n the queue of jobs. The configuration file,
which 1s used to run the job on a network of computing
systems such as a Hadoop cluster, includes the level of
parallelism (e.g., the number of parallel partitions running
on one or more Hadoop data nodes 120) and the container
size (e.g., the amount of processing cores and memory
assigned to each YARN container 130) for each particular
job. By including the ability to customize the levels of
parallelism (e.g., the number of parallel partitions) and the
container size for each particular job 1n a queue of jobs,
parallel processing system 100 permits the available com-
puting resources (e.g., computer processing power and com-
puter memory) to be more efliciently utilized. Furthermore,
the dynamically-generated configuration file may also
include randomized scratch directories for each computing
node. This may provide additional technical advantages by
balancing out the input/output (10) between those directo-
ries. An example of using OSH intercept script 140 1s
discussed further below 1n reference to FIG. 2.

[0018] FIG. 2 1s a lowchart of an embodiment of a parallel
processing method 200 that may be implemented by parallel
processing system 100. At step 210, a processing job 1s
triggered. In some embodiments, the processing job that 1s
triggered 1s from a queue of processing jobs. In some
embodiments, the processing job is triggered by conductor
112 of parallel processing system 100.

[0019] At step 215, various parameters are provided for
the triggered processing job of step 210. In some embodi-
ments, the parameters are stored in computer memory and
are accessed by parallel processing system 100. In some
embodiments, the parameters include a queue size parameter
associated with the particular processing job, a parallel
partitions parameter associated with the particular process-
ing job, and a configuration variable associated with the
particular processing job. The parallel partitions parameter
may indicate the number of parallel partitions (e.g., 12 as
indicated 1n the example below) that should be used to run
the job (1.e., partition parallel). The configuration variable 1s
a variable that triggers parallel processing system 100 to
dynamically generate a configuration file for the processing
10b.

[0020] The queue size parameter of step 215 may, 1n some
embodiments, be a particular size category chosen from a
plurality of size categories. For example, the size categories
may be “small,” “medium,” and “large.” Each processing
job may then be labeled via its queue size parameter to be
either “small,” “medium,” or *“large.” Parallel processing
system 100 may, 1n some embodiments, use the queue size
parameter to calculate the container size (1.e., amount of
computer cores and memory assigned to YARN containers
130) for the particular processing job. For example, some
embodiments may have a preassigned container size for
each particular size category. As a specific example, “small”

US 2020/0136899 Al

may correspond to a first amount of computer cores and
memory assigned to YARN containers 130, “medium™ may
correspond to second amount of computer cores and
memory assigned to YARN containers 130 that 1s greater
than “small,”, and “large” may correspond to a third amount
of computer cores and memory assigned to YARN contain-
ers 130 that 1s greater than “medium.” While specific size
categories have been listed for illustrative purposes, any
appropriate number and type of size categories may be used.

[0021] At step 220, parallel processing method 200 trig-
gers a shell script for the particular processing job of step

210. In some embodiments, the shell script 1s an Orchestrate
Shell (OSH) script.

[0022] At step 230, parallel processing method 200 deter-
mines whether the configuration variable associated with the
particular processing job (i.e., step 215) matches a prede-
termined value. If the configuration variable matches a
certain value (e.g., “1”7), parallel processing method 200
proceeds to step 240. Otherwise, parallel processing method
200 proceeds to step 260.

[0023] At step 240, parallel processing method 200
dynamically generates a configuration file for the particular
processing job of step 210. The dynamically-generated
configuration file instructs parallel processing system 100
how to run the particular processing job of 210 and includes
how many parallel partitions on one or more Hadoop data
nodes 120 should be used for the job based on the parallel
partitions parameter of step 215. The configuration file also
includes a calculated container size (e.g., amount of
resources assigned to YARN containers 130) that 1s based on
the queue size parameter of step 215. In general, this step
(along with steps 215 and 220) provide many advantages
over existing systems. Typically, existing systems utilize a
static configuration file across all processing jobs. This, 1n
turn, only permits a static level of parallelism and container
size for all jobs. This causes computing resources to get tied
up and go unused, especially for job queues that include
many smaller jobs. In contrast, parallel processing method
200 dynamically generates a configuration file for each job
in the queue of jobs based on the inputs of step 215 for each
particular job (e.g., variable level of parallelism and con-
tainer size). The dynamically-generated configuration file,
which 1s used to run the job on a network of computing
systems, includes the level of parallelism (e.g., the number
of parallel partitions) and the container size for particular
job. Furthermore, the dynamically-generated configuration
file may also include randomized scratch directories for each
computing node. This may provide additional technical
advantages by balancing out the input/output (10) between
those directories.

[0024] At step 250, parallel processing method 200 trig-
gers the processing job using the dynamically-generated
configuration file of step 240. After step 240, parallel

processing method 200 may execute steps 251-256 as 1llus-
trated 1n FIG. 2.

[0025] At steps 260, 270, and 280, parallel processing
method 200 performs steps that typical systems may execute
(1.e., steps that do not include dynamically generating a
configuration file for the processing job). If the configuration
variable associated with the particular processing job (1.e.,
step 215) matches a certain predetermined value at step 260
(1.e., “27), parallel processing method 200 proceeds to step
261 where the job 1s run by calling a dynamic grid script. If
the configuration variable associated with the particular

Apr. 30, 2020

processing job (1.e., step 215) matches a certain predeter-
mined value at step 270 (1.e., “3”), parallel processing
method 200 proceeds to step 271 where a static configura-
tion file 1s used to run the job on the Hadoop cluster. If the
configuration variable associated with the particular pro-
cessing job (1.e., step 215) matches a certain predetermined
value at step 280 (1.e., “4”), parallel processing method 200
proceeds to step 281 where a static configuration file 1s used
to run the job on a platform load-sharing facility. If the
configuration variable associated with the particular pro-
cessing job (1.e., step 215) does not match any predeter-
mined values, parallel processing method 200 ends.

[0026] FIG. 3 1s a flowchart of an embodiment of another
parallel processing method 300 that may be implemented by
parallel processing system 100. Parallel processing method
300 1s similar to parallel processing method 200, but pro-
vides additional details not discussed above. At step 310,
parallel processing method 300 accesses a queue of process-
ing jobs to run. In some embodiments, the queue of pro-
cessing jobs to run 1s stored 1n one more memory devices.

[0027] At step 320, parallel processing method 300
executes a shell script for each particular processing job 1n
the queue of processing jobs to run. In some embodiments,
the shell script of step 320 1s an OSH script. At step 330,
parallel processing method 300 accesses a queue size param-
eter associated with the particular processing job, a parallel
partitions parameter associated with the particular process-
ing job, and a configuration variable associated with the
particular processing job. Each of these parameters are
discussed 1n more detail above 1n reference to FIG. 2.

[0028] At step 340, parallel processing method 300 deter-
mines whether the configuration variable associated with
ecach particular processing job matches a predetermined
value. If the configuration variable matches the predeter-
mined value, parallel processing method 300 proceeds to
step 350. Otherwise, parallel processing method 300 may
end or proceed to alternate processing steps.

[0029] At step 350, parallel processing method 300 cal-
culates a container size for the particular processing job
based on the queue size parameter. As discussed above, each
processing job may be labeled via its queue size parameter
to be eirther “small,” “medium,” or “large” (or any other
appropriate label). At step 350, parallel processing method
300 may use the queue size parameter to calculate the
container size (i1.e., the amount of computer cores and
memory assigned to YARN containers 130) for the particular
processing job. For example, parallel processing method 300
may determine a preassigned container size for the particular
s1ze category, as discussed above.

[0030] At step 360, parallel processing method 300
dynamically generates a configuration file for the particular
processing job. In general, the configuration file 1s config-
ured to instruct a network of computing systems (e.g., a
Hadoop cluster) to run the particular processing job using a
particular number of parallel partitions corresponding to the
parallel partitions parameter of step 330. In some embodi-
ments the configuration file includes randomized scratch
directories for each computing node and the calculated
container size for the particular processing job of step 350.
An example of randomized scratch directories 1s provided
below.

[0031] At step 370, parallel processing method 300 trig-
gers each particular processing job to run on the network of
computing systems according to 1ts associated dynamically-

US 2020/0136899 Al

generated configuration file of step 360. In general, the
number of parallel partitions for each processing job in the
queue ol processing jobs processed by parallel processing
method 300 may be different such that the number of parallel
partitions 1s customizable across the queue of processing
jobs. Furthermore, the container size for each processing job
in the queue of processing jobs may be different such that the
container size 1s customizable across the queue of process-
ing jobs. This provides the ability to customize the levels of
parallelism (e.g., the number of parallel partitions) and the
container size for each particular job 1n a queue of jobs. As
a result, available computing resources (e.g., computer pro-
cessing cores and computer memory within YARN contain-
ers 130) may be more efliciently used.

[0032] FIG. 4 1s a schematic diagram of an embodiment of
a network device 400 configured to implement parallel
processing according to the present disclosure. The network
device 400 comprises a processor 402, one or more memory
devices 404, and a network interface 406. The network
interface 400 may be configured as shown or in any other
suitable configuration.

[0033] In some embodiments, the processor 402 com-
prises one or more processors operably coupled to one or
more memory devices 404. The processor 402 1s any elec-
tronic circuitry including, but not limited to, state machines,
one or more central processing unit (CPU) chips, logic units,
cores (e.g. a multi-core processor), field-programmable gate
array (FPGAs), application specific integrated -circuits
(ASICs), or digital signal processors (DSPs). The processor
402 may be a programmable logic device, a microcontroller,
a microprocessor, or any suitable combination of the pre-
ceding. The processor 402 1s communicatively coupled to
and 1n signal communication with the one or more memory
devices 404. The one or more processors 402 are configured
to process data and may be implemented in hardware or
software. For example, the processor 402 may be 8-bit,
16-bit, 32-bit, 64-bit or of any other suitable architecture.
The processor 402 may include an arithmetic logic unit
(ALU) for performing arithmetic and logic operations, pro-
cessor registers that supply operands to the ALU and store
the results of ALU operations, and a control unit that fetches
mstructions from memory and executes them by directing
the coordinated operations of the ALU, registers and other
components.

[0034] The one or more processors 402 are configured to
implement various instructions. For example, the one or
more processors are configured to execute instructions to
implement a parallel processing engine 410. In this way,
processor 402 may be a special purpose computer designed
to implement function disclosed herein. In an embodiment,
parallel processing engine 410 1s implemented using logic
units, FPGAs, ASICs, DSPs, or any other suitable hardware.
The parallel processing engine 410 1s configured similar to
the parallel processing engine described above. An example
of the parallel processing engine 410 in operation 1is

described 1n FIGS. 2 and 3.

[0035] The one or more memory devices 404 may include
one or more disks, tape drives, or solid-state drives, and may
be used as an over-flow data storage device, to store pro-
grams when such programs are selected for execution, and
to store instructions and data that are read during program
execution. The one or more memory devices 404 may be
volatile or non-volatile and may comprise read-only
memory (ROM), random-access memory (RAM), ternary

Apr. 30, 2020

content-addressable memory (TCAM), dynamic random-
access memory (DRAM), and static random-access memory
(SRAM). The one or more memory devices 404 are operable
to store parallel processing instructions 412, OSH shell
script 414, queue of jobs 416, parameters 418, configuration
file 420, and/or any other data or instructions. The parallel
processing instructions 412 may comprise any suitable set of
instructions, logic, rules, or code operable to execute the
parallel processing engine 410 and/or methods 200 and 300
discussed above.

[0036] OSH shell script 414 1n general 1s any suitable set
of instructions, logic, rules, or code operable to execute
when triggered by parallel processing engine 410 to dynami-
cally generate configuration file 420 as discussed above.
Queue of jobs 416 1s any appropriate computer file or stored
data that lists processing jobs that are to be run. Parameters
418 are individual parameters for each processing job within
queue of jobs 416. Parameters 418 may include a queue size
parameter associated with each particular processing job, a
parallel partitions parameter associated with each particular
processing job, and a configuration variable associated with
cach particular processing job. Configuration file 420 1s a
dynamically-generated configure file that 1s used to instruct
a network of computing systems (e.g., a Hadoop cluster) to
run the particular processing job. In some embodiments,
configuration file 420 includes a particular number of par-
allel partitions corresponding to the parallel partitions
parameter, randomized scratch directories for each comput-
ing node, and a calculated container size for the particular
processing job.

[0037] The network interface 406 1s configured to enable
wired and/or wireless communications. The network inter-
face 406 1s configured to communicate data between net-
work devices 1n parallel processing system 100 and/or any
other system or domain. For example, the network interface
406 may comprise a WIFI interface, a local area network
(LAN) interface, a wide area network (WAN) interface, a
modem, a switch, or a router. The processor 402 1s config-
ured to send and receive data using the network interface
406. The network interface 406 may be configured to use
any suitable type of communication protocol as would be
appreciated by one of ordinary skill in the art.

[0038] Below are examples of configuration files to better
illustrate the disclosed embodiments. First, a typical static
configuration file 1s shown below:

{

node “nodel”

1

fastname “name.company.com”
pools “conductor”

resource disk ““/iis__sit_ dataset4” {pools “*}
resource disk ““/iis__sit_ dataset5” {pools “*}
resource disk “/iis_ sit_ dataset6” {pools “’}
resource disk ““/iis__sit_ dataset7” {pools “”*}
resource disk “/iis_ sit_ dataset®” {pools “”’}
resource disk ““/iis__sit_ datasetl” {pools “*}
resource disk “/iis_ sit_ dataset2” {pools “”’}
resource disk “/iis__sit_ dataset3” {pools “*}
resource scratchdisk “/iis__scratch01” {pools “’}
resource scratchdisk ““/iis__scratch02” {pools “”’}
resource scratchdisk ““/iis__scratch03” {pools “”’}
resource scratchdisk ““/iis__scratch04” {pools “”’}

h

node “node2”

h

US 2020/0136899 Al

-continued

fastname “$host”

pools “”
resource
resource

cr.”}
cr.”}
cs”}
“”}
cs”}
“”}
“”}

1%

{pool

disk “/us__sit_ dataset4”
disk ““/iis__sit__dataset5” {pool
resource disk “/iis__sit_ dataset6” {pool
resource disk ““/iis__sit_ dataset7” {pool
resource disk “/iis__sit_ dataset8” {pool
resource disk ““/iis__sit_ dataset1” {pool
C
C

resource disk ““/iis__sit_ dataset2” {pool

v v v v v v W

resource disk ““/iis_ sit_dataset3” {pools “’}
resource scratchdisk ““/iis__scratch01” {pools
s
s
s

e

1

resource scratchdisk ““/iis__scratch02” {poo.

resource scratchdisk ““/iis__scratch03” {poo.

resource scratchdisk “/iis__scratch04” {poo!
instances 12

1 E

1

e i

[0039] In this example, all processing jobs will use the
same number of parallel partitions (1.e., 12) and the same
number of resources. Typical systems utilize static configu-
ration files such as these to provide a static level of paral-
lelism and container size for all jobs. This, 1n turn, causes
computing resources to get tied up and go unused, especially
for job queues that include many smaller jobs. Embodiments
of the disclosure, however, dynamically generate a configu-
ration file for each job 1n a queue of jobs. An example of a
dynamically-generated configuration file 1s provided below:

$APT_GRID_COMPUTENODES = 12,2 (i.e., parallel partitions
parameter)
$APT_GRID_PARTITIONS =
$APT_GRID_ENABLE = YES
$APT_GRID_QUEUE=SIT__medium (i.e., queue size parameter)
<osh> INFO: APT__ YARN_CONTAINER__SIZE : 512 (1.e., container
size parameter)

{

node “conductor”

{

1 (1.e., configuration variable)

fastname “name.company.com”
pools “conductor”
resource disk ““/iis__sit_ datasetl/” {pool
resource disk “/iis_ sit_dataset2/” {pool
resource disk “/iis_ sit_dataset3/” {pool
resource disk “/iis_ sit_dataset4/” {pool
resource disk “/iis__sit__dataset5/” {pool

C

C

C

1
1
«e?d
1
«e?d

1

resource disk ““/iis__sit_dataset6/” {pool
resource disk “/iis_ sit_dataset7/” {pool
resource disk ““/iis__sit_ dataset8/” {pools
resource scratchdisk ““/iis__scratch01/” {pool
resource scratchdisk “/iis__scratch02/” {pool
resource scratchdisk ““/iis__scratch03/” {pool
resource scratchdisk “/iis__scratch04/” {pool

»vn v »u» v v v W

1 E

1

1 E

1

ee??

1

N N N N e e e e e e e) e

;

node “nodel”

1

fastname “$host™

pools
resource disk “/iis_ sit_datasetl/” {pool
resource disk ““/iis__sit_dataset2/” {pool
resource disk “/iis__sit__dataset3/” {pool
resource disk ““/iis__sit_ dataset4/” {pool
resource disk “/iis_ sit_dataset5/” {pool
resource disk ““/iis__sit_ dataset6/” {pool
resource disk “/iis__sit__dataset7/” {pool
resource disk ““/iis__sit_ dataset8/” {pools
resource scratchdisk ““/iis__scratch04/” {pool
resource scratchdisk “/iis__scratch03/” {pool
resource scratchdisk ““/iis__scratch01/” {pool
resource scratchdisk ““/iis__scratch02/” {pool

1 E

1

1 E

1

ee??

1

D v v v v v W

ee??

e

1

e

1

1 E

h

node “node2”

1

fastname “$host”

pools
resource disk “‘/1is
resource disk */iis
resource disk “*/1is
resource disk */iis
resource disk “*/1is
resource disk “*/iis
resource disk “*/1is
resource disk “*/iis
resource scratc.
resource scratc.
resource scratc.
resource scratc.

h

“e?d

node “node3”

1

fastname “$host”

pools
resource disk “*/1is
resource disk “*/iis
resource disk “*/1is
resource disk ““/1is
resource disk “*/1is
resource disk ““/1is
resource disk “*/iis
resource disk “*/1is
resource scratc.
resource scratc.
resource scratc.
resource scratc.

;

“e?d

node “node4”

1

fastname “$host™

pools
resource disk “*/1is
resource disk “‘/1is
resource disk */iis
resource disk “*/1is
/118
resource disk “*/1is
resource disk “*/iis
resource disk “*/1is
resource scratc!
resource scratc.
resource scratc.
resource scratc.

;

«e?2

resource disk

node “nodes”

1

fastname “$host™

pools
resource disk “*/iis
resource disk “*/1is
resource disk “*/iis
resource disk “*/1is
resource disk ““/1is
resource disk “*/1is
resource disk ““/1is
resource disk “*/iis
resource scratc.
resource scratc.
resource scratc.

resource scratcl

;

«e?2

node “node6”

1

fastname “$host™

pools
resource disk “*/1is
resource disk “*/1is
resource disk “*/1is
resource disk “*/1is
resource disk ““/1is

“e?d

sit

sit

sit

sit

sit

sit

sit

sit

sit

hdisk “/1is scratc.

hdisk “/iis__scratch03/” {pool

hdisk ““/iis__scratch01/” {pool

hdisk “/iis__scratch02/” {pool

sit

sit

-continued

datasetl/” {pool
dataset2/” {pool
dataset3/” {pool
dataset4/” {pool
dataset5/” {pool
dataset6/” {pool
dataset7/” {pool

dataset8/” {pool
h04/” {pool

sit

sit

sit

sit

sit

dataset8/” {poo!

sit

hdisk ““/11s scratc.
hdisk “/11s scratc.

sit

datasetl/” {pool
dataset2/” {pool

sit

dataset3/” {pool

sit

dataset4/” {pool

sit

sit

sit

sit

dataset8/” {poo!

sit

hdisk ““/11s__scratc!
hdisk ““/11s__scratc!
disk “/11s_ scratc!
hdisk ““/11s__scratc!

sit

sit

sit

sit

sit

sit

sit

sit

hdisk ““/11s__scratc!
hdisk ““/11s__scratc!
hdisk ““/11s__scratc!
hdisk ““/11s__scratc!

sit

sit

sit

sit

datasetl/” {pool
dataset2/” {pool
dataset3/” {pool
dataset4/” {pool
dataset5/” {pool
dataset6/” {pool
dataset7/” {pool

dataset5/” {pool
dataset6/” {pool
dataset7/” {pool

dataset1/” {pool
dataset2/” {pool
dataset3/” {pool
dataset4/” {pool
dataset5/” {pool
dataset6/” {pool
dataset7/” {pool
dataset8/” {pools

'}
03/ {pools
S
S
S

datasetl/” {pool
dataset2/” {pool
dataset3/” {pool
dataset4/” {pool
dataset5/” {pool

D »n »n v v v W\

S

D »n v v v v W\

S

104/ {poo
03/ {poo.
hdisk “/iis__scratch01/” {poo!

disk “/iis__scratch02/” {poo!

v v v v v v W\

S

03/ {poo.
04/ {poo.
02/ {poo.
01/ {poo!

D v v v v v W\

04/ {poo.
02/ {poo.
01/ {poo.

»vn v v v W\

«e?2

“e?d

«e?2

“e?d

«e?2

«e?d

«e?2

«e?d

N N N N e et e e e e e

)
)
)
)
)
)
)
h
S
S
S
S

«e?2

)
)
)
)
)
)
)
h
S
S
S
S

«e?2

ca”}
“”}
ca”}
“”}
csn}
csn}
csn}

1

“e?d

«e?2

«e?2

«e?2

«e?2

Apr. 30, 2020

«e?2
«e?2
“e?d

«e?2

“e?d

«e?2

“e?d

e M o o e)

«e?2

«e?d

«e?2

«e?2

“e?d

e M o e e)

“e?d

«e?2

«e?2

«e?2

US 2020/0136899 Al

IesSource
IeSource C

1sk /118 sit d
1sk “/11s. sit d

IesSource

-continued

ataset6/” {poo
ataset7/” {poo

1sk /118 sit d

ataset8/” {poo

S
S
S

1

h
)
)

IeSoOurce
IeSource
IeSource
IeSource

scratcl
scratcl
scratcl

10
10
10

scratcl

isk ““/11s scratcl
1sk ““/11s scratcl
1sk /118 scratcl

01/ {poo.
102/ {pool
03/ {poo.

10

1sk ““/11s scratcl

104/ {pool

S
S
S
S

;

node “node7”

1

fastname “$host”

1

pools
resource
resource

IeSource

1sk ““/11s_ sit d
1sk ““/11s__sit_ ¢
1sk ““/11s_ sit d
1sk ““/u11s_ sit ¢

C
C
IeSource C
C
C

IeSource

resource disk ““/11s sit d
resource disk ““/11s sit d
resource disk “/iis sit d

1sk /118 sit d

atasetl/” {pool
ataset2/” {pool
ataset3/” {pool
ataset4/” {pool
ataset5/” {pool
ataset6/” {pool
ataset7/” {pool

v v v v v v W\

ataset®/” {pool

S

1 E

1

1 E

1

ee??

1

ee??

1

IeSource
IesSource
IeSource
IeSoOurce

scratcl
scratcl
scratcl

10
10
10

scratcl

sk /118 scratcl
1sk ““/11s scratcl
sk /118 scratcl

10

1sk ““/11s_ scratc]

101/ {pool
102/ {pool
103/ {pool

N N N N e e e e e e e e

104/ {pool

h

node “nodel”

1

fastname “$host”

1

pools

resource disk ““/11s sit d
resource disk “/iis sit d

IesSource C
IesSource
IeSource

IeSource

1sk ““/u1s__sit_ ¢
1sk ““/11s__sit_ ¢
1sk ““/u1s__sit_ ¢
1sk ““/11s__sit ¢
1sk ““/11s__sit_ ¢

atasetl/” {pool
ataset2/” {pool
ataset3/” {pool
ataset4/” {pool
ataset5/” {pool
ataset6/” {pool
ataset7/” {pool

D v v v v v W

C
C
IresSource C
C
C

IeSoOurce

1sk “/11s. sit d

ataset8/” {pool

S

ee??

1

1

e

1

e

1

1 E

resource scratcl
resource scratcl
resource scratcl

10
10
10

resource scratcl

1sk /118 scratcl
isk ““/11s scratcl
1sk ““/11s scratcl

10

1sk /118 scratcl

02/ {pool
101/ {pool
04/ {pool

N N N N e e e e e) e e

103/ {pool

h

node “node9”

1

fastname “$host”

e

pools
resource
resource
resource

1sk ““/11s sit d
1sk “/11s. sit d
1sk /118 sit d

T b TN b TN &b

IeSoOurce

resource disk ““/u1s_ sit_ ¢
resource disk ““/u1s_ sit. ¢
resource disk ““/u1s_ sit_ ¢
resource disk ““/i1s_ sit ¢

1sk ““/11s sit ¢

atasetl/” {pool
ataset2/” {pool
ataset3/” {pool
ataset4/” {pool
ataset5/” {pool
ataset6/” {pool
ataset7/” {pool

D »n v v v v W

ataset8/” {pool

S

1

1 E

1

1 E

1

ee??

1

ee??

resource scratcl
resource scratcl
resource scratcl

10
10
10

resource scratcl

1sk ““/11s scratcl
sk /118 scratcl
1sk ““/11s scratcl

10

1sk /118 scratcl

104/ {pool
103/ {pool
101/ {pool

D N N N e e e e e e e e Y

102/ {pool

;

node “nodel0”

1

fastname “$host”

1

pools
resource
resource
resource
resource
resource

1sk ““/u1s__sit_ ¢
1sk ““/11s_ sit ¢
1sk ““/u1s__sit_ ¢
1sk ““/11s_ sit d
1sk ““/11s__sit ¢

C
C
C
C
C
C

IesSource

resource disk ““/11s sit d
resource disk “/iis sit d

1sk /118 sit d

atasetl/” {pool
ataset2/” {pool
ataset3/” {pool
ataset4/” {pool
ataset5/” {pool
ataset6/” {pool
ataset7/” {pool

»vn v v v v v W

ataset®/” {pool

S

1

ee??

ee??

1 E

e

e

1

1

resource scratcl
resource scratcl
resource scratcl

10
10
10

resource scratcl

1sk /118 scratcl
sk /118 scratcl
isk /118 scratcl

10

1sk /118 scratcl

02/ {pool
101/ {pool
104/ {pool

103/ {pool

1 E

1

1

h
h
“”}
h

1
«e?d
1

1 E

1

1 E

1

ee??

e

1

e

1

e M M) e

Apr. 30, 2020

-continued

node “nodell”

1

fastname “$host™

pools
resource disk */iis
resource disk “*/1is
resource disk */iis

sit

sit

sit

datasetl/” {pool
dataset2/” {pool
dataset3/” {pool

«e?>

«e?2

«e?>

«e?2

resource disk “/iis__sit__dataset4/” {pool
resource disk “/iis_ sit_dataset5/” {pool
resource disk “/iis_ sit_dataset6/” {pool
resource disk “/iis__sit_dataset7/” {pool
resource disk “/iis__sit_ dataset8/” {pools
resource scratchdisk ““/iis__scratch02/” {pool
resource scratchdisk “/iis__scratch01/” {pool
resource scratchdisk ““/iis__scratch04/” {pool
resource scratchdisk “/iis__scratch03/” {pool

«e??

«e?2

«e??

v v v v v v W

«e?2

«e?2

«e?>

«e?2

«e?>

N N N N e ot e) e e e

;

node “nodel2”

1

fastname “$host™

pOOlS «e?2

«e?2

resource scratchdisk ““/iis__scratch04/” {pool
resource scratchdisk “/iis__scratch03/” {pool
resource scratchdisk ““/iis__scratch01/” {pool
resource scratchdisk ““/iis__scratch02/” {pool

«e?>

«e?2

«e??

resource disk “/iis__sit_datasetl/” {pools “’}
resource disk ““/iis__sit_ dataset2/” {pools “”*}
resource disk ““/iis__sit_ dataset3/” {pools “”*}
resource disk “/iis__sit_dataset4/” {pools “’}
resource disk ““/iis__sit_ dataset5/” {pools “”*}
resource disk “/iis_ sit_dataset6/” {pools “’}
resource disk ““/iis__sit_ dataset7/” {pools “”*}
resource disk ““/iis_ sit_ dataset8/” {pools “”*}
S
S
S
S

e o M) e

ot N, e/

[0040] The dynamically-generated configuration ({ile,
which 1s then used to run the job on a network of computing
systems such as a Hadoop cluster, includes the level of
parallelism (e.g., the number of parallel partitions which in
this example 1s 12) and the container size for each particular
j0b (which 1s this case 1s 512 and 1s calculated using the
queue size parameter of “SIT medium”). Furthermore, the
dynamically-generated configuration file also include ran-
domized scratch directories for each computing node as
illustrated above. This may provide additional technical
advantages by balancing out the input/output (10) between
those directories.

[0041] While several embodiments have been provided 1n
the present disclosure, 1t should be understood that the
disclosed systems and methods might be embodied 1n many
other specific forms without departing from the spirit or
scope of the present disclosure. The present examples are to
be considered as illustrative and not restrictive, and the
intention 1s not to be limited to the details given herein. For
example, the various elements or components may be com-
bined or integrated 1n another system or certain features may
be omitted, or not implemented.

[0042] In addition, techniques, systems, subsystems, and
methods described and 1llustrated in the various embodi-
ments as discrete or separate may be combined or integrated
with other systems, modules, techniques, or methods with-
out departing from the scope of the present disclosure. Other
items shown or discussed as coupled or directly coupled or
communicating with each other may be indirectly coupled or
communicating through some interface, device, or interme-
diate component whether electrically, mechanically, or oth-
erwise. Other examples of changes, substitutions, and altera-

US 2020/0136899 Al

tions are ascertainable by one skilled in the art and could be
made without departing from the spirit and scope disclosed
herein.

[0043] To aid the Patent Office, and any readers of any
patent 1ssued on this application 1n 1nterpreting the claims

appended hereto, applicants note that they do not intend any
of the appended claims to mvoke 35 U.S.C. § 112(1) as 1t

exists on the date of filing hereotf unless the words “means
for” or “step for” are explicitly used 1n the particular claim.

1. A parallel processing device, comprising:

one or more memory devices operable to store a queue of
processing jobs to run; and
a parallel processing engine implemented by a processor
communicatively coupled to the one or more memory
devices, the parallel processing engine configured to:
access the queue of processing jobs to run; and
execute a shell script for each particular processing job
in the queue of processing jobs to run, the shell script
configured to:
access a queue size parameter associated with the
particular processing job;
calculate a container size for the particular process-
ing job based on the queue size parameter;
access a parallel partitions parameter associated with
the particular processing job;
access a configuration variable associated with the
particular processing job;
determine whether the configuration variable asso-
ciated with the particular processing job matches
a predetermined value;
in response to determining that the configuration
variable associated with the particular processing
10b matches the predetermined value, dynamically
generate a configuration file for the particular
processing job, the configuration file configured to
instruct a network of computing systems to run the
particular processing job using a particular num-
ber of parallel partitions corresponding to the
parallel partitions parameter, the configuration file
comprising:
randomized scratch directories for computing
nodes within the network of computing sys-
tems; and

the calculated container size for the particular
processing job; and

trigger the particular processing job to run on the
network of computing systems according to the
dynamically-generated configuration file of the
particular processing job.

2. The parallel processing device of claim 1, wherein the
network of computing systems comprises a Hadoop cluster
of computers.

3. The parallel processing device of claim 1, wherein the
shell script comprises a Orchestrate Shell (OSH) script.

4. The parallel processing device of claim 1, wherein the
parallel processing engine comprises an extract, transform,

load (E'TL) process.

5. The parallel processing device of claim 1, wherein the
parallel processing engine comprises a Biglntegrate plat-

form by IBM.
6. The parallel processing device of claim 1, wherein:

the number of parallel partitions for each processing job
in the queue of processing jobs may be different such

Apr. 30, 2020

that the number of parallel partitions 1s customizable
across the queue of processing jobs; and

the container size for each processing job in the queue of

processing jobs may be different such that the container
s1ize 1s customizable across the queue of processing
10bs.
7. The parallel processing device of claim 1, wherein:
the queue size parameter comprises a particular size
category chosen from a plurality of size categories; and

calculating the container size for the particular processing
j0b based on the queue size parameter comprises deter-
mining a preassigned container size for the particular
s1Ze category.

8. A parallel processing method, comprising;:

accessing, by a parallel processing engine, a queue of

processing jobs to run;

executing, by the parallel processing engine, a shell script

for each particular processing job 1n the queue of
processing jobs to run;
accessing, by the shell script, a queue size parameter
associated with the particular processing job;

calculating, by the shell script, a container size for the
particular processing job based on the queue size
parameter;

accessing, by the shell script, a parallel partitions param-

eter associated with the particular processing job;
accessing, by the shell script, a configuration variable
associated with the particular processing job;
determining, by the shell script, whether a configuration
variable associated with each particular processing job
matches a predetermined value;
in response to determining that the configuration variable
associated with each particular processing job matches
the predetermined value, dynamically generating a
configuration file by the shell script for the particular
processing job, the configuration file configured to
instruct a network of computing systems to run the
particular processing job using a particular number of
parallel partitions corresponding to the parallel parti-
tions parameter, the configuration file comprising:
randomized scratch directories for computing nodes
within the network of computing systems; and
the calculated container size for the particular process-
ing job; and
triggering, by the shell script, each particular processing
j0b to run on the network of computing systems accord-
ing to 1ts associated dynamically-generated configura-
tion file.

9. The parallel processing method of claim 8, wherein the
network of computing systems comprises a Hadoop cluster
of computers.

10. The parallel processing method of claim 8, wherein
the shell script comprises a Orchestrate Shell (OSH) script.

11. The parallel processing method of claim 8, wherein
the parallel processing engine comprises an extract, trans-
form, load (ETL) process.

12. The parallel processing method of claim 8, wherein
the parallel processing engine comprises a Biglntegrate
platform by IBM.

13. The parallel processing method of claim 8, wherein:

the number of parallel partitions for each processing job

in the queue of processing jobs may be different such
that the number of parallel partitions 1s customizable
across the queue of processing jobs; and

US 2020/0136899 Al

the container size for each processing job 1n the queue of
processing jobs may be different such that the container
s1ize 1s customizable across the queue of processing
10bs.
14. The parallel processing method of claim 8, wherein:
the queue size parameter comprises a particular size
category chosen from a plurality of size categories; and

calculating the container size for the particular processing
j0b based on the queue size parameter comprises deter-
mining a preassigned container size for the particular
s1Ze category.

15. A computer program product comprising executable
istructions stored i a non-transitory computer readable
medium such that when executed by a processor causes the
processor to implement a parallel processing engine config-
ured to:

access a queue ol processing jobs to run; and

execute a shell script for each particular processing job in

the queue of processing jobs to run, the shell script

configured to:

access a queue size parameter associated with the
particular processing job;

calculate a container size for the particular processing
j0b based on the queue size parameter;

access a parallel partitions parameter associated with
the particular processing job;

access a configuration variable associated with the
particular processing job;

determine whether the configuration variable associ-
ated with the particular processing job matches a
predetermined value;

in response to determining that the configuration vari-
able associated with the particular processing job
matches the predetermined value, dynamically gen-
erate a configuration file for the particular processing
j0b, the configuration file configured to instruct a
network of computing systems to run the particular

Apr. 30, 2020

processing job using a particular number of parallel
partitions corresponding to the parallel partitions
parameter, the configuration file comprising;:
randomized scratch directories for computing nodes
within the network of computing systems; and
the calculated container size for the particular pro-
cessing job; and
trigger the particular processing job to run on the
network of computing systems according to the
dynamically-generated configuration file of the par-
ticular processing job.

16. The computer program product of claim 15, wherein
the network of computing systems comprises a Hadoop
cluster of computers.

17. The computer program product of claim 15, wherein
the shell script comprises a Orchestrate Shell (OSH) script.

18. The computer program product of claim 15, wherein
the parallel processing engine comprises an extract, trans-
form, load (ETL) process.

19. The computer program product of claim 15, wherein:

the number of parallel partitions for each processing job

in the queue of processing jobs may be different such
that the number of parallel partitions 1s customizable
across the queue of processing jobs; and

the container size for each processing job i1n the queue of

processing jobs may be different such that the container
size 1s customizable across the queue of processing
10bs.

20. The computer program product of claim 15, wherein:

the queue size parameter comprises a particular size
category chosen from a plurality of size categories; and
calculating the container size for the particular processing
j0b based on the queue size parameter comprises deter-

mining a preassigned container size for the particular
s1Ze category.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Description
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description/Claims
	Page 13 - Claims

