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FIG. 2
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FIG. 5
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MACHINE LEARNING APPROACH TO
REAL-TIME PATIENT MOTION
MONITORING

TECHNICAL FIELD

[0001] Embodiments of the present disclosure pertain gen-
erally to medical image and artificial intelligence processing
techniques. In particular, the present disclosure pertains to
use of machine learning for real-time patient state estima-
tion.

BACKGROUND

[0002] Inradiotherapy or radiosurgery, treatment planning
1s typically performed based on medical images of a patient
and requires the delineation of target volumes and normal
critical organs in the medical images. One challenge occurs
with accurately tracking the various objects, such as a tumor,
healthy tissue, or other aspects of patient anatomy when the
patient 1s moving (e.g., breathing).

[0003] Current techniques are unable to directly measure
a changing patient state in real-time. For example, some
techniques use 2D 1maging, such as 2D kV projections or 2D
MRI slices, which are not able to completely track the
various objects.

[0004] Other techniques may rely on detecting surface
information, either directly or by tracking markers on a vest
or a box athixed to the patient. These techniques assume that
the surface information 1s correlated to internal patient state,
which 1s often not accurate.

[0005] Yet other techniques may rely on implanting mark-
ers, such as magnetically tracked markers, or using x-ray
detection of radio-opaque markers. These techniques are
invasive and correspond only to limited points within the
patient.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Inthe drawings, which are not necessarily drawn to
scale, like numerals describe substantially similar compo-
nents throughout the several views. Like numerals having
different letter suflixes represent different instances of sub-
stantially similar components. The drawings 1llustrate gen-
erally, by way of example but not by way of limitation,
various embodiments discussed 1n the present document.
[0007] FIG. 1 illustrates an exemplary radiotherapy sys-
tem adapted for performing 1mage patient state estimation
processing.

[0008] FIG. 2 illustrates an exemplary image-guided
radiotherapy device.

[0009] FIG. 3 illustrates a partially cut-away view of an
exemplary system including a combined radiation therapy
system and an 1maging system, such as a nuclear magnetic
resonance (MR) imaging system.

[0010] FIG. 4 illustrates an exemplary tlow diagram for
estimating a patient state using partial measurements and a
preliminary patient model.

[0011] FIG. 5 illustrates an exemplary tlowchart showing
a patient state dictionary generation technique.

[0012] FIG. 6 illustrates an exemplary regression model
machine learning engine for use 1n estimating a patient state.
[0013] FIG. 7 illustrates a flowchart of exemplary opera-
tions for estimating a patient state.

[0014] FIG. 8 illustrates a tlowchart of exemplary opera-
tions for performing radiation therapy techmiques.
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DETAILED DESCRIPTION

[0015] In the following detailed description, reference is
made to the accompanying drawings which form a part
hereof, and which 1s shown by way of illustration-specific
embodiments in which the present invention may be prac-
ticed. These embodiments, which are also referred to herein
as “examples,” are described 1n suflicient detail to enable
those skilled 1n the art to practice the invention, and 1t 1s to
be understood that the embodiments may be combined, or
that other embodiments may be utilized and that structural,
logical and electrical changes may be made without depart-
ing from the scope of the present invention. The following
detailed description 1s, therefore, not be taken in a limiting
sense, and the scope of the present invention 1s defined by
the appended claims and their equivalents.

[0016] Image guided radiation therapy (IGRT) 1s a tech-
nique that makes use of 1imaging of a patient, in treatment
position, immediately prior to irradiation. This allows more
accurate targeting of anatomy, such as an organs, tumors or
organs-at-risk. If the patient 1s expected to move during
treatment, for example motion caused by breathing which
creates a quasi-periodic motion of a lung tumor, or bladder
filling causing the prostate position to drift, additional mar-
gins may be placed around the target to encompass the
expected patient motion. These larger margins come at the
expense of high dose to surrounding normal tissue, which
may lead to increased side-effects.

[0017] IGRT may use computed tomography (CT) imag-
ing, cone beam CT (CBCT), magnetic resonance (MR)
imaging, positron-emission tomography (PET) imaging, or
the like to obtain a 3D or 4D image of a patient prior to
irradiation. For example, a CBCT-enabled linac (linear
accelerator) may consist of a kV source/detector aflixed to
the gantry at a 90 degree angle to a radiation beam, or a
MR-Linac device may consist of a linac integrated directly
with an MR scanner.

[0018] Localizing motion during the actual irradiation
treatment delivery (intrafraction motion) may allow reduc-
tion of additional treatment margins that would otherwise be
used to encompass motion, thus either allowing higher doses
to be delivered, reduction of side-eflects, or both. Many
IGRT 1maging technologies are generally not sufliciently
fast for imaging intrafractional motion. For example, CBCT
requires multiple KV 1mages from various angles to recon-
struct a full 3D patient 1image, and a 3D MR requires
multiple 2D slices, or filling of the full 3D k-space, each
which may take minutes to generate a full 3D 1mage.
[0019] In some cases, the real-time or quasi-real-time data
that would usually be completely acquired prior to genera-
tion of a 3D IGRT image, can be used as it 1s gathered to
estimate the imnstantaneous 3D 1mage at a much faster refresh
rate from the incomplete, yet fast, stream of incoming
information. For example, 2D kV projections or 2D MR
slices may be used to estimate a full 3D CBCT-like or 3D
MR-like 1image that evolves with the actual patient motion
during treatment. Although fast, on their own these 2D
images provide only a particular perspective of the patient,
not the full 3D picture.

[0020] A patient state generator may receive partial mea-
surements (e.g., a 2D 1mage) as an input and generate (e.g.,
estimate) a patient state (e.g., a 3D 1mage) as an output. To
generate a patient state, the generator may use a single
current partial measurement, a future (predicted) or past
partial measurement, or a number of partial measurements
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(e.g., the last 10 measurements). These partial measurements
may be from a single modality, such as an x-ray projection
or MRI slice, or from multiple modalities, such as positions
of reflective surface markers on the patient’s surface syn-
chronized with x-ray projections. A patient state may be a
3D mmage, or of ‘multi-modality,” for example the patient
state may 1nclude two or more 3D 1mages that offer different
information on the patient state, such as a ‘MR-like’ for
enhanced tissue contrast, a ‘CT-like’ for high geometric
accuracy and voxels related to density that are useful for
dose calculations, or a ‘functional MR-like’ to provide
function information about the patient. Patient state may
also 1nclude non-imaging information. A patient state
include one or more points of interest (such as a target
position), contours, surfaces, deformation vector fields, or

any information that 1s relevant to optimizing patient treat-
ments.

[0021] Partial measurements described above may be
received 1n a real-time stream of 1mages (e.g., 2D 1mages)
taken from a kV imager or a MR imager, for example. The
kV 1mager may produce stereoscopic 2D images for the
real-time stream (e.g., two x-ray 1images that are orthogonal
and acquired substantially simultaneously). The kV 1mager
may be fixed 1n a room or coupled to a treatment device
(e.g., attached to a gantry). The MR 1mager may produce 2D
MR slices, which may be orthogonal or parallel. A patient
state may be generated from an image or pair of 1mages
received. For example, at any given moment in time, the
patient state for the last recetved 1mage from the real-time
stream may be generated.

[0022] In an example, a patient model may be based on
data currently collected 1n a given fraction, 1n a pre-treat-
ment phase (after the patient 1s set up and before the beam
1s turned on), from another fraction or during simulation/
planning, using other patients, using generalized patient
anatomy, using mechanical models, or any other information
that may assist in defining a patient state from partial
measurements. In an example, the patient model 1s a 4D
dataset, acquired pre-treatment, which represents changes 1n
patient state over a limited period of time (e.g. one repre-
sentative respiratory cycle). The patient model may be
trained, (e.g., using a machine learning technique), to relate
an 1mmput patient measurement (e.g., an i1mage or pair of
images from a real-time stream) to an output patient state,
for example using a dictionary defining constructed patient
measurements to corresponding patient states. The patient
model may be warped by a deformation vector field (DVF)
as a function of one or more parameters to generate a patient
state.

[0023] The patient model 1n a 4D dataset may include the
patient state that varies with a single parameter, such as
phase 1n a respiratory cycle. The patient model may be used
to build a time-varying patient state over a representative
breathing cycle, which may treat each breath as more or less
the same. This simplifies the modeling by allowing chunks
of partial imaging data to be taken from different breathing
cycles and assigned to a single representative breathing

cycle. A 3D 1image may then be reconstructed for each phase
‘bin’.

[0024] Inan example, the patient state may be represented,
for example, as a 3D image, or a 3D DVF plus a 3D
reference 1mage. These may be equivalent, since the ele-
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ments of the 3D DVF and the 3D reference image may be
used to obtain (e.g., deform the 3D reference image with the
3D DVF) the 3D i1mage.

[0025] FIG. 1 illustrates an exemplary radiotherapy sys-
tem adapted for performing patient state estimation process-
ing. This patient state estimation processing 1s performed to
enable the radiotherapy system to provide radiation therapy
to a patient based on specific aspects of captured medical
imaging data. The radiotherapy system includes an image
processing computing system 110 which hosts patient state
processing logic 120. The image processing computing
system 110 may be connected to a network (not shown), and
such network may be connected to the Internet. For instance,
a network can connect the image processing computing
system 110 with one or more medical information sources
(e.g., a radiology information system (RIS), a medical
record system (e.g., an electronic medical record (EMR)/
clectronic health record (EHR) system), an oncology infor-
mation system (OIS)), one or more 1image data sources 150,
an 1mage acquisition device 170, and a treatment device 180
(e.g., a radiation therapy device). As an example, the 1mage
processing computing system 110 can be configured to
perform 1mage patient state operations by executing nstruc-
tions or data from the patient state processing logic 120, as
part of operations to generate and customize radiation
therapy treatment plans to be used by the treatment device

180.

[0026] The image processing computing system 110 may
include processing circuitry 112, memory 114, a storage
device 116, and other hardware and software-operable fea-
tures such as a user interface 140, communication interface,
and the like. The storage device 116 may store computer-
executable instructions, such as an operating system, radia-
tion therapy treatment plans (e.g., original treatment plans,
adapted treatment plans, or the like), software programs
(e.g., radiotherapy treatment plan software, artificial intelli-
gence 1mplementations such as deep learning models,
machine learning models, and neural networks, etc.), and
any other computer-executable instructions to be executed
by the processing circuitry 112.

[0027] In an example, the processing circuitry 112 may
include a processing device, such as one or more general-
purpose processing devices such as a microprocessor, a
central processing unit (CPU), a graphics processing unit
(GPU), an accelerated processing unit (APU), or the like.
More particularly, the processing circuitry 112 may be a
complex instruction set computing (CISC) microprocessor,
a reduced 1nstruction set computing (RISC) microprocessor,
a very long istruction Word (VLIW) microprocessor, a
processor implementing other instruction sets, or processors
implementing a combination of instruction sets. The pro-
cessing circuitry 112 may also be implemented by one or
more special-purpose processing devices such as an appli-
cation specific mtegrated circuit (ASIC), a field program-
mable gate array (FPGA), a digital signal processor (DSP),
a System on a Chip (SoC), or the like. As would be
appreciated by those skilled 1n the art, 1n some examples, the
processing circuitry 112 may be a special-purpose processor,
rather than a general-purpose processor. The processing
circuitry 112 may include one or more known processing
devices, such as a microprocessor from the Pentium™,
Core™, Xeon™, or Itantum® family manufactured by
Intel™, the Turion™, Athlon™, Sempron™, Opteron™,
FX™ Phenom™ family manufactured by AMD™, or any
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of various processors manufactured by Sun Microsystems.
The processing circuitry 112 may also include graphical
processing units such as a GPU from the GeForce®,
Quadro®, Tesla® family manufactured by Nvidia™, GMA,
Ir1s™ family manufactured by Intel™, or the Radeon™
family manufactured by AMD™., The processing circuitry
112 may also include accelerated processing units such as
the Xeon Phi™ family manufactured by Intel™. The dis-
closed embodiments are not limited to any type of processor
(s) otherwise configured to meet the computing demands of
identifying, analyzing, maintaining, generating, and/or pro-
viding large amounts of data or manipulating such data to
perform the methods disclosed herein. In addition, the term
“processor’ may include more than one processor, for
example, a multi-core design or a plurality of processors
each having a multi-core design. The processing circuitry
112 can execute sequences of computer program instruc-
tions, stored 1n memory 114, and accessed from the storage
device 116, to perform various operations, processes, meth-
ods that will be explained 1n greater detail below.

[0028] The memory 114 may comprise read-only memory
(ROM), a phase-change random access memory (PRAM), a
static random access memory (SRAM), a flash memory, a
random access memory (RAM), a dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM),
an electrically erasable programmable read-only memory
(EEPROM), a static memory (e.g., flash memory, flash disk,
static random access memory) as well as other types of
random access memories, a cache, a register, a compact disc
read-only memory (CD-ROM), a digital versatile disc
(DVD) or other optical storage, a cassette tape, other mag-
netic storage device, or any other non-transitory medium
that may be used to store information including 1image, data,
or computer executable instructions (e.g., stored in any
format) capable of being accessed by the processing cir-
cuitry 112, or any other type of computer device. For
instance, the computer program instructions can be accessed
by the processing circuitry 112, read from the ROM, or any
other suitable memory location, and loaded into the RAM
for execution by the processing circuitry 112.

[0029] The storage device 116 may constitute a drive unit
that includes a machine-readable medium on which 1s stored
one or more sets of instructions and data structures (e.g.,
software) embodying or utilized by any one or more of the
methodologies or functions described herein (including, in
various examples, the patient state processing logic 120 and
the user interface 140). The instructions may also reside,
completely or at least partially, within the memory 114
and/or within the processing circuitry 112 during execution
thereof by the image processing computing system 110, with
the memory 114 and the processing circuitry 112 also
constituting machine-readable media.

[0030] The memory device 114 or the storage device 116
may constitute a non-transitory computer-readable medium.
For example, the memory device 114 or the storage device
116 may store or load instructions for one or more software
applications on the computer-readable medium. Software
applications stored or loaded with the memory device 114 or
the storage device 116 may include, for example, an oper-
ating system for common computer systems as well as for
software-controlled devices. The image processing comput-
ing system 110 may also operate a variety of software
programs comprising software code for implementing the
patient state processing logic 120 and the user interface 140.
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Further, the memory device 114 and the storage device 116
may store or load an entire software application, part of a
software application, or code or data that 1s associated with
a software application, which 1s executable by the process-
ing circuitry 112. In a further example, the memory device
114 or the storage device 116 may store, load, or manipulate
one or more radiation therapy treatment plans, imaging data,
patient state data, dictionary entries, artificial intelligence
model data, labels and mapping data, etc. It 1s contemplated
that software programs may be stored not only on the storage
device 116 and the memory 114 but also on a removable
computer medium, such as a hard drive, a computer disk, a
CD-ROM, a DVD, a HD, a Blu-Ray DVD, USB flash drive,
a SD card, a memory stick, or any other suitable medium;
such software programs may also be communicated or
received over a network.

[0031] Although not depicted, the image processing com-
puting system 110 may include a communication interface,
network interface card, and communications circuitry. An
example communication interface may include, {for
example, a network adaptor, a cable connector, a serial
connector, a USB connector, a parallel connector, a high-
speed data transmission adaptor (e.g., such as fiber, USB 3.0,
thunderbolt, and the like), a wireless network adaptor (e.g.,
such as a IEEE 802.11/Wi-F1 adapter), a telecommunication
adapter (e.g., to communicate with 3G, 4G/LTE, and 5G,
networks and the like), and the like. Such a communication
interface may include one or more digital and/or analog
communication devices that permit a machine to commu-
nicate with other machines and devices, such as remotely
located components, via a network. The network may pro-
vide the functionality of a local area network (LAN), a
wireless network, a cloud computing environment (e.g.,
software as a service, platform as a service, infrastructure as
a service, efc.), a client-server, a wide area network (WAN),
and the like. For example, network may be a LAN or a WAN
that may include other systems (including additional 1image
processing computing systems or image-based components
associated with medical 1maging or radiotherapy opera-
tions).

[0032] In an example, the 1image processing computing
system 110 may obtain image data 160 from the image data
source 150, for hosting on the storage device 116 and the
memory 114. In an example, the software programs oper-
ating on the 1mage processing computing system 110 may
convert medical images of one format (e.g., MRI) to another
format (e.g., CT), such as by producing synthetic images,
such as a pseudo-CT 1mage. In another example, the soft-
ware programs may register or associate a patient medical
image (e.g., a C'1 image or an MR 1mage) with that patient’s
dose distribution of radiotherapy treatment (e.g., also rep-
resented as an 1mage) so that corresponding 1mage voxels
and dose voxels are appropriately associated. In yet another
example, the software programs may substitute functions of
the patient images such as signed distance functions or
processed versions of the images that emphasize some
aspect of the i1mage information. Such functions might
emphasize edges or differences 1n voxel textures, or other
structural aspects. In another example, the software pro-
grams may visualize, hide, emphasize, or de-emphasize
some aspect of anatomical features, patient measurements,
patient state information, or dose or treatment information,
within medical 1images. The storage device 116 and memory
114 may store and host data to perform these purposes,
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including the image data 160, patient data, and other data
required to create and implement a radiation therapy treat-
ment plan and associated patient state estimation operations.

[0033] The processing circuitry 112 may be communica-
tively coupled to the memory 114 and the storage device
116, and the processing circuitry 112 may be configured to
execute computer executable instructions stored thereon
from either the memory 114 or the storage device 116. The
processing circuitry 112 may execute instructions to cause
medical images from the 1image data 160 to be received or
obtained 1in memory 114, and processed using the patient
state processing logic 120. For example, the image process-
ing computing system 110 may receive image data 160 from
the 1image acquisition device 170 or image data sources 150
via a communication interface and network to be stored or
cached 1n the storage device 116. The processing circuitry
112 may also send or update medical 1mages stored in
memory 114 or the storage device 116 via a communication
interface to another database or data store (e.g., a medical
facility database). In some examples, one or more of the
systems may form a distributed computing/simulation envi-
ronment that uses a network to collaboratively perform the
embodiments described herein. In addition, such network
may be connected to internet to communicate with servers
and clients that reside remotely on the internet.

[0034] In further examples, the processing circuitry 112
may utilize software programs (e.g., a treatment planning
software) along with the image data 160 and other patient
data to create a radiation therapy treatment plan. In an
example, the image data 160 may include 2D or 3D images,
such as from a CT or MR. In addition, the processing
circuitry 112 may utilize software programs to generate an
estimated patient state from a dictionary of measurements
and corresponding patient states, such as using a correspon-
dence motion model and a machine learning algorithm (e.g.,
a regression algorithm).

[0035] Further, such software programs may utilize
patient state processing logic 120 to implement a patient
state estimation workflow 130, using the techniques further
discussed herein. The processing circuitry 112 may subse-
quently then transmit the executable radiation therapy treat-
ment plan via a communication interface and the network to
the treatment device 180, where the radiation therapy plan
will be used to treat a patient with radiation via the treatment
device, consistent with results of the patient state estimation
workflow 130. Other outputs and uses of the software
programs and the patient state estimation workilow 130 may
occur with use of the 1image processing computing system

110.

[0036] As discussed herein (e.g., with reference to the
patient state estimation discussed herein, the processing
circuitry 112 may execute software programs that invokes
the patient state processing logic 120 to implement functions
including generation of a preliminary motion model, cre-
ation of a dictionary, training a patient state generator using
machine learning, patient state estimation, and other aspects
of automatic processing and artificial intelligence. For
istance, the processing circuitry 112 may execute software
programs that estimate a patient state using a machine
learning trained system.

[0037] Inan example, the image data 160 may include one
or more MRI images (e.g., 2D MRI, 3D MRI, 2D streaming
MRI, 4D MRI, 4D volumetric MRI, 4D cine MRI, etc.),
functional MRI 1mages (e.g., IMRI, DCE-MRI, diffusion
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MM), Computed Tomography (CT) images (e.g., 2D CT,
Cone beam CT, 3D CT, 4D CT), ultrasound images (e.g., 2D
ultrasound, 3D ultrasound, 4D ultrasound), Positron Emis-
sion Tomography (PET) images, X-ray images, tluoroscopic
images, radiotherapy portal images, Single-Photo Emission
Computed Tomography (SPECT) 1mages, computer gener-
ated synthetic images (e.g., pseudo-CT 1mages) and the like.
Further, the image data 160 may also include or be associ-
ated with medical 1mage processing data, for instance,
training 1images, and ground truth 1mages, contoured 1mages,
and dose 1mages. In an example, the 1mage data 160 may be
received from the image acquisition device 170 and stored
in one or more of the 1mage data sources 150 (e.g., a Picture
Archiving and Communication System (PACS), a Vendor
Neutral Archive (VNA), a medical record or information
system, a data warehouse, etc.). Accordingly, the image
acquisition device 170 may comprise a MRI 1imaging device,
a CT imaging device, a PE'T imaging device, an ultrasound
imaging device, a fluoroscopic device, a SPECT 1imaging
device, an integrated Linear Accelerator and MRI 1imaging
device, or other medical imaging devices for obtaining the
medical 1images of the patient. The image data 160 may be
rece1ved and stored 1n any type of data or any type of format
(e.g., 1n a Digital Imaging and Communications 1n Medicine
(DICOM) format) that the 1mage acquisition device 170 and
the 1mage processing computing system 110 may use to
perform operations consistent with the disclosed embodi-
ments.

[0038] In an example, the 1image acquisition device 170
may be integrated with the treatment device 180 as a single
apparatus (e.g., a MRI device combined with a linear
accelerator, also referred to as an “MR-linac”, as shown and
described 1n FIG. 3 below). Such an MR-linac can be used,
for example, to precisely determine a location of a target
organ or a target tumor in the patient, so as to direct radiation
therapy accurately according to the radiation therapy treat-
ment plan to a predetermined target. For instance, a radiation
therapy treatment plan may provide information about a
particular radiation dose to be applied to each patient. The
radiation therapy treatment plan may also include other
radiotherapy information, such as beam angles, dose-histo-
gram-volume information, the number of radiation beams to
be used during therapy, the dose per beam, and the like.

[0039] The image processing computing system 110 may
communicate with an external database through a network to
send/receive a plurality of various types of data related to
image processing and radiotherapy operations. For example,
an external database may include machine data that is
information associated with the treatment device 180, the
image acquisition device 170, or other machines relevant to
radiotherapy or medical procedures. Machine data informa-
tion may include radiation beam size, arc placement, beam
on and off time duration, machine parameters, segments,
multi-leal’ collimator (MLC) configuration, gantry speed,
MRI pulse sequence, and the like. The external database
may be a storage device and may be equipped with appro-
priate database administration software programs. Further,
such databases or data sources may include a plurality of
devices or systems located either 1n a central or a distributed
manner.

[0040] The 1mage processing computing system 110 can
collect and obtain data, and communicate with other sys-
tems, via a network using one or more communication

interfaces, which are communicatively coupled to the pro-
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cessing circuitry 112 and the memory 114. For instance, a
communication interface may provide communication con-
nections between the 1mage processing computing system
110 and radiotherapy system components (e.g., permitting
the exchange of data with external devices). For instance,
the communication interface may in some examples have
appropriate interfacing circuitry from an output device 142
or an input device 144 to connect to the user interface 140,
which may be a hardware keyboard, a keypad, or a touch
screen through which a user may input information into the
radiotherapy system.

[0041] As an example, the output device 142 may include
a display device which outputs a representation of the user
interface 140 and one or more aspects, visualizations, or
representations of the medical images. The output device
142 may include one or more display screens that display
medical 1images, interface information, treatment planning
parameters (e.g., contours, dosages, beam angles, labels,
maps, etc.) treatment plans, a target, localizing a target or
tracking a target, patient state estimations (e.g., a 3D 1mage),
or any related information to the user. The mput device 144
connected to the user interface 140 may be a keyboard, a
keypad, a touch screen or any type of device that a user may
input information to the radiotherapy system. Alternatively,
the output device 142, the input device 144, and features of
the user interface 140 may be integrated into a single device
such as a smartphone or tablet computer, e.g., Apple 1Pad®,
Lenovo Thinkpad®, Samsung Galaxy®, etc.

[0042] Furthermore, any and all components of the radio-
therapy system may be implemented as a virtual machine
(e.g., via VMWare, Hyper-V, and the like virtualization
platforms). For instance, a virtual machine can be software
that functions as hardware. Therefore, a virtual machine can
include at least one or more virtual processors, one or more
virtual memories, and one or more virtual communication
interfaces that together function as hardware. For example,
the 1mage processing computing system 110, the 1mage data
sources 150, or like components, may be implemented as a
virtual machine or within a cloud-based virtualization envi-
ronment.

[0043] The patient state processing logic 120 or other
software programs may cause the computing system to
communicate with the image data sources 150 to read
images into memory 114 and the storage device 116, or store
images or associated data from the memory 114 or the
storage device 116 to and from the 1image data sources 150.
For example, the 1mage data source 150 may be configured
to store and provide a plurality of images (e.g., 3D MRI, 4D
MRI, 2D MRI slice images, CT i1mages, 2D Fluoroscopy
images, X-ray 1images, raw data from MR scans or C'T scans,
Digital Imaging and Communications in Medicine (DI-
COM) metadata, etc.) that the image data source 150 hosts,
from i1mage sets in 1mage data 160 obtained from one or
more patients via the image acquisition device 170. The
image data source 150 or other databases may also store data
to be used by the patient state processing logic 120 when
executing a software program that performs patient state
estimation operations, or when creating radiation therapy
treatment plans. Further, various databases may store the
data produced by the preliminary motion model (such as the
dictionary), the correspondence motion model, or machine
learning models, including the network parameters consti-
tuting the model learned by the network and the resulting
predicted data. The image processing computing system 110
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thus may obtain and/or receive the image data 160 (e.g., 2D
MRI slice 1images, CT 1mages, 2D Fluoroscopy images,
X-ray 1images, 3D MRI images, 4D MRI images, etc.) from
the image data source 150, the 1image acquisition device 170,
the treatment device 180 (e.g., a MRI-Linac), or other
information systems, in connection with performing image
patient state estimation as part of treatment or diagnostic
operations.

[0044] The 1mage acquisition device 170 can be config-
ured to acquire one or more 1images of the patient’s anatomy
for a region of interest (e.g., a target organ, a target tumor or
both). Each image, typically a 2D image or slice, can include
one or more parameters (e.g., a 2D slice thickness, an
orientation, and a location, etc.). In an example, the 1mage
acquisition device 170 can acquire a 2D slice 1n any orien-
tation. For example, an orientation of the 2D slice can
include a sagittal orientation, a coronal orientation, or an
axial orientation. The processing circuitry 112 can adjust one
or more parameters, such as the thickness and/or orientation
of the 2D slice, to include the target organ and/or target
tumor. In an example, 2D slices can be determined from
information such as a 3D MRI volume. Such 2D slices can
be acquired by the image acquisition device 170 in “real-
time” while a patient 1s undergoing radiation therapy treat-
ment, for example, when using the treatment device 180
(with “real-time” meaning acquiring the data in 10 mailli-
seconds or less). In another example for some applications,
real-time may include a timeframe within (e.g., up to) 200
or 300 milliseconds. In an example, real-time may include a
time period fast enough for a clinical problem being solved
by techniques described herein. In this example, real-time
may vary depending on target speed, radiotherapy margins,
lag, response time of a treatment device, etc.

[0045] The patient state processing logic 120 in the image
processing computing system 110 1s depicted as implement-
ing a patient state estimation workflow 130 with various
aspects of model generation and estimation processing
operations. In an example, the patient state estimation work-
flow 130 operated by the patient state processing logic 120
generates and uses a preliminary motion model 132 gener-
ated from patient data (e.g., from a patient being treated,
from multiple previous patients, or the like). The prelimi-
nary motion model 132 may include a model of a patient
under motion (e.g., breathing) generated based on patient
measurements and corresponding patient states. The patient
state estimation workflow 130 includes creation of a dic-
tionary 134 by using the preliminary motion model to
generate sample (potential) patient measurements and cor-
responding patient states. The patient state estimation work-
flow 130 includes training a correspondence motion model
using machine learming 136 (e.g., using a regression-based
machine learning technique) based on the dictionary 134.
The patient state estimation workilow 130 includes estimat-
ing a patient state 138 using the correspondence motion
model and a current patient measurement (e.g., 2D 1mage).

[0046] The patient state processing logic 120 and the
patient state estimation workiflow 130 may be used when
generating the radiation therapy treatment plan, within use
ol software programs such as treatment planning software,
such as Monaco®, manufactured by Flekta AB of Stock-
holm, Sweden. In order to generate the radiation therapy
treatment plans, the 1mage processing computing system 110
may communicate with the image acqusition device 170
(e.g., a CT device, a MRI device, a PET device, an X-ray
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device, an ultrasound device, etc.) to capture and access
images ol the patient and to delineate a target, such as a
tumor. In some examples, the delineation of one or more
organs at risk (OARs), such as healthy tissue surrounding
the tumor or in close proximity to the tumor may be
required.

[0047] Inorderto delineate a target organ or a target tumor
from the OAR, medical images, such as MRI 1mages, CT
images, PET images, IMRI 1mages, X-ray images, ultra-
sound 1mages, radiotherapy portal 1images, SPECT 1mages
and the like, of the patient undergoing radiotherapy may be
obtained non-invasively by the image acquisition device 170
to reveal the internal structure of a body part. Based on the
information from the medical images, a 3D structure of the
relevant anatomical portion may be obtained. In addition,
during a treatment planning process, many parameters may
be taken into consideration to achieve a balance between
eflicient treatment of the target tumor (e.g., such that the
target tumor receives enough radiation dose for an effective
therapy) and low 1rradiation of the OAR(s) (e.g., the OAR(s)
receives as low a radiation dose as possible), for example by
using an estimated patient state to determine where OAR(s)
may be at a given time when the patient 1s moving (e.g.,
breathing). Other parameters that may be considered include
the location of the target organ and the target tumor, the
location of the OAR, and the movement of the target in
relation to the OAR. For example, the 3D structure may be
obtained by contouring the target or contouring the OAR
within each 2D layer or slice of an MRI or CT 1mage and
combining the contour of each 2D layer or slice. The contour
may be generated manually (e.g., by a physician, dosim-
etrist, or health care worker using a program such as
Monaco® manufactured by Elekta AB of Stockholm, Swe-
den) or automatically (e.g., using a program such as the

Atlas-based auto-segmentation software, ABAS®, manufac-
tured by Elekta AB of Stockholm, Sweden).

[0048] After the target tumor and the OAR(s) have been
located and delineated, a dosimetrist, physician or healthcare
worker may determine a dose of radiation to be applied to
the target tumor, as well as any maximum amounts of dose
that may be received by the OAR proximate to the tumor
(e.g., left and right parotid, optic nerves, eyes, lens, inner
ears, spinal cord, brain stem, and the like). After the radia-
tion dose 1s determined for each anatomical structure (e.g.,
target tumor, OAR), a process known as inverse planning
may be performed to determine one or more treatment plan
parameters that would achieve the desired radiation dose
distribution. Examples of treatment plan parameters include
volume delineation parameters (e.g., which define target
volumes, contour sensitive structures, etc.), margins around
the target tumor and OARs, beam angle selection, collimator
settings, and beam-on times. During the inverse-planning
process, the physician may define dose constraint param-
eters that set bounds on how much radiation an OAR may
receive (e.g., defining full dose to the tumor target and zero
dose to any OAR; defining 95% of dose to the target tumor;
defining that the spinal cord, brain stem, and optic structures
receive =45Gy, =55Gy and <34Gy, respectively). The result
of inverse planning may constitute a radiation therapy
treatment plan that may be stored. Some of these treatment
parameters may be correlated. For example, tuning one
parameter (e.g., weights for different objectives, such as
increasing the dose to the target tumor) i an attempt to
change the treatment plan may affect at least one other
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parameter, which 1n turn may result 1n the development of a
different treatment plan. Thus, the 1mage processing com-
puting system 110 can generate a tailored radiation therapy
treatment plan having these parameters in order for the
treatment device 180 to provide suitable radiotherapy treat-
ment to the patient.

[0049] FIG. 2 illustrates an exemplary image-guided
radiotherapy device 202, that includes include a radiation
source, such as an X-ray source or a linear accelerator, a
couch 216, an 1maging detector 214, and a radiation therapy
output 204. The radiation therapy device 202 may be con-
figured to emit a radiation beam 208 to provide therapy to a
patient. The radiation therapy output 204 can include one or
more attenuators or collimators, such as a multi-leat colli-

mator (MLC).

[0050] As an example, a patient can be positioned 1n a
region 212, supported by the treatment couch 216 to receive
a radiation therapy dose according to a radiation therapy
treatment plan (e.g., a treatment plan generated by the
radiotherapy system of FIG. 1). The radiation therapy output
204 can be mounted or attached to a gantry 206 or other
mechanical support. One or more chassis motors (not
shown) may rotate the gantry 206 and the radiation therapy
output 204 around couch 216 when the couch 216 1s inserted
into the treatment area. In an example, gantry 206 may be
continuously rotatable around couch 216 when the couch
216 1s mserted into the treatment area. In another example,
gantry 206 may rotate to a predetermined position when the
couch 216 1s inserted into the treatment area. For example,
the gantry 206 can be configured to rotate the therapy output
204 around an axis (“A”). Both the couch 216 and the
radiation therapy output 204 can be independently moveable
to other positions around the patient, such as moveable 1n
transverse direction (“I”’), moveable 1n a lateral direction
(L"), or as rotation about one or more other axes, such as
rotation about a transverse axis (indicated as “R”). A con-
troller communicatively connected to one or more actuators
(not shown) may control the couch 216 movements or
rotations 1n order to properly position the patient 1n or out of
the radiation beam 208 according to a radiation therapy
treatment plan. As both the couch 216 and the gantry 206 are
independently moveable from one another in multiple
degrees of freedom, which allows the patient to be posi-
tioned such that the radiation beam 208 precisely can target
the tumor.

[0051] The coordinate system (including axes A, T, and L)
shown 1n FIG. 2 can have an origin located at an 1socenter
210. The 1socenter can be defined as a location where the
central axis of the radiation therapy beam 208 intersects the
origin of a coordinate axis, such as to deliver a prescribed
radiation dose to a location on or within a patient. Alterna-
tively, the 1socenter 210 can be defined as a location where
the central axis of the radiation therapy beam 208 intersects
the patient for various rotational positions of the radiation
therapy output 204 as positioned by the gantry 206 around
the axis A.

[0052] Gantry 206 may also have an attached imaging
detector 214. The 1imaging detector 214 1s preferably located
opposite to the radiation source (output 204), and in an
example, the 1maging detector 214 can be located within a

field of the therapy beam 208.

[0053] The imaging detector 214 can be mounted on the
gantry 206 preterably opposite the radiation therapy output
204, such as to maintain alignment with the therapy beam



US 2020/0129780 Al

208. The imaging detector 214 rotating about the rotational
axis as the gantry 206 rotates. In an example, the 1maging
detector 214 can be a flat panel detector (e.g., a direct
detector or a scintillator detector). In this manner, the
imaging detector 214 can be used to monitor the therapy
beam 208 or the imaging detector 214 can be used for
imaging the patient’s anatomy, such as portal imaging. The
control circuitry of radiation therapy device 202 may be
integrated within the radiotherapy system or remote from 1it.

[0054] In anillustrative example, one or more of the couch
216, the therapy output 204, or the gantry 206 can be
automatically positioned, and the therapy output 204 can
establish the therapy beam 208 according to a specified dose
for a particular therapy delivery instance. A sequence of
therapy deliveries can be specified according to a radiation
therapy treatment plan, such as using one or more diflerent
orientations or locations of the gantry 206, couch 216, or
therapy output 204. The therapy deliveries can occur
sequentially, but can 1ntersect i a desired therapy locus on
or within the patient, such as at the 1socenter 210. A
prescribed cumulative dose of radiation therapy can thereby
be delivered to the therapy locus while damage to tissue
nearby the therapy locus can be reduced or avoided.

[0055] Thus, FIG. 2 specifically illustrates an example of
a radiation therapy device 202 operable to provide radio-
therapy treatment to a patient, with a configuration where a
radiation therapy output can be rotated around a central axis
(e.g., an axis “A”). Other radiation therapy output configu-
rations can be used. For example, a radiation therapy output
can be mounted to a robotic arm or manipulator having
multiple degrees of freedom. In yet another example, the
therapy output can be fixed, such as located 1n a region
laterally separated from the patient, and a platform support-
ing the patient can be used to align a radiation therapy
1socenter with a specified target locus within the patient. In
another example, a radiation therapy device can be a com-
bination of a linear accelerator and an 1mage acquisition
device. In some examples, the 1mage acquisition device may
be an MRI, an X-ray, a CT, a CBCT, a spiral CT, a PET, a
SPECT, an optical tomography, a fluorescence imaging,
ultrasound 1maging, an MR-linac, or radiotherapy portal
imaging device, etc., as would be recognized by one of
ordinary skill in the art.

[0056] FIG. 3 depicts an exemplary radiation therapy
system 300 (e.g., known 1n the art as a MR-Linac) that can
include combining a radiation therapy device 202 and an
imaging system, such as a nuclear magnetic resonance (MR)
imaging system consistent with the disclosed embodiments.
As shown, system 300 may include a couch 310, an 1image
acquisition device 320, and a radiation delivery device 330.
System 300 delivers radiation therapy to a patient 1n accor-
dance with a radiotherapy treatment plan. In some embodi-
ments, 1mage acquisition device 320 may correspond to
image acquisition device 170 in FIG. 1 that may acquire
1mages.

[0057] Couch 310 may support a patient (not shown)
during a treatment session. In some implementations, couch
310 may move along a horizontal, translation axis (labelled
“I””), such that couch 310 may move the patient resting on
couch 310 1nto or out of system 300. Couch 310 may also
rotate around a central vertical axis of rotation, transverse to
the translation axis. To allow such movement or rotation,
couch 310 may have motors (not shown) enabling the couch
to move 1n various directions and to rotate along various

Apr. 30, 2020

axes. A controller (not shown) may control these movements
or rotations 1n order to properly position the patient accord-
ing to a treatment plan.

[0058] In some embodiments, 1mage acquisition device
320 may include an MRI machine used to acquire 2D or 3D
MRI 1mages of the patient before, during, or after a treat-
ment session. Image acquisition device 320 may include a
magnet 321 for generating a primary magnetic field for
magnetic resonance 1maging. The magnetic field lines gen-
erated by operation of magnet 321 may run substantially
parallel to the central translation axis I. Magnet 321 may
include one or more coils with an axis that runs parallel to
the translation axis I. In some embodiments, the one or more
coils 1n magnet 321 may be spaced such that a central
window 323 of magnet 321 1s free of coils. In other
embodiments, the coils 1n magnet 321 may be thin enough
or of a reduced density such that they are substantially
transparent to radiation of the wavelength generated by
radiotherapy device 330. Image acquisition device 320 may
also include one or more shielding coils, which may gen-
erate a magnetic field outside magnet 321 of approximately
equal magnitude and opposite polarity 1n order to cancel or
reduce any magnetic field outside of magnet 321. As
described below, radiation source 331 of radiotherapy
device 330 may be positioned in the region where the
magnetic field 1s cancelled, at least to a first order, or
reduced.

[0059] Image acquisition device 320 may also include two
gradient coils 325 and 326, which may generate a gradient
magnetic field that 1s superposed on the primary magnetic
field. Coils 325 and 326 may generate a gradient in the
resultant magnetic field that allows spatial encoding of the
protons so that their position can be determined. Gradient
coils 325 and 326 may be positioned around a common
central axis with the magnet 321, and may be displaced
along that central axis. The displacement may create a gap,
or window, between coils 325 and 326. In the embodiments
where magnet 321 also includes a central window 323
between coils, the two windows may be aligned with each
other.

[0060] Image acquisition 1s used to track tumor move-
ment. At times, internal or external surrogates may be used.
However, implanted seeds may move from their initial
positions or become dislodged during radiation therapy
treatment. Also, using surrogates assumes there 1s a corre-
lation between tumor motion and the displacement of the
external surrogate. However, there may be phase shiits
between external surrogates and tumor motion, and their
positions may frequently lose correlation over time. It 1s
known that there may be mismatches between tumor and
surrogates upward of 9 mm. Further, any deformation of the
shape of a tumor 1s unknown during tracking.

[0061] An advantage of magnetic resonance imaging
(MRI) 1s 1n the superior soft tissue contrast that 1s provided
to visualize the tumor in more detail. Using a plurality of
intrafractional MR 1mages allows the determination of both
shape and position (e.g., centroid) of a tumor. In addition,
MM 1mages improve any manual contouring performed by,
for example, a radiation oncologist, even when auto-con-
touring software (e.g., ABAS®) 1s utilized. This 1s because
of the high contrast between the tumor target and the
background region provided by MR images.

[0062] Another advantage of using an MR-Linac system 1s
that a treatment beam can be continuously on and thereby
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executing intrairactional tracking of the target tumor. For
instance, optical tracking devices or stereoscopic x-ray fluo-
roscopy systems can detect tumor position at 30 Hz by using
tumor surrogates. With MRI, the imaging acquisition rates
are faster (e.g., 3-6 ips). Therefore, the centroid position of
the target may be determined, artificial intelligence (e.g.,
neural network) software can predict a future target position.
An added advantage of intrafractional tracking by using an
MR-Linac 1s that the by being able to predict a future target
location, the leaves of the multi-leat collimator (MLC) will
be able to conform to the target contour a its predicted future
position. Thus, predicting future tumor position using MRI
occurs at the same rate as 1imaging frequency during track-
ing. By being able to track the movement of a target tumor
clearly using detailed MRI imaging allows for the delivery
of a highly conformal radiation dose to the moving target.

[0063] In some embodiments, 1image acquisition device
320 may be an imaging device other than an MRI, such as
an X-ray, a CT, a CBCT, a spiral CT, a PET, a SPECT, an
optical tomography, a fluorescence i1maging, ultrasound
imaging, or radiotherapy portal imaging device, etc. As
would be recognized by one of ordinary skill 1n the art, the
above description of 1image acquisition device 320 concerns
certain embodiments and 1s not intended to be limiting.

[0064] Radiotherapy device 330 may include the source of
radiation 331, such as an X-ray source or a linear accelerator,
and a multi-leaf collimator (MLC) 333. Radiotherapy device
330 may be mounted on a chassis 335. One or more chassis
motors (not shown) may rotate chassis 335 around couch
310 when couch 310 1s inserted into the treatment area. In
an embodiment, chassis 335 may be continuously rotatable
around couch 310, when couch 310 i1s inserted into the
treatment area. Chassis 335 may also have an attached
radiation detector (not shown), preferably located opposite
to radiation source 331 and with the rotational axis of chassis
335 positioned between radiation source 331 and the detec-
tor. Further, device 330 may include control circuitry (not
shown) used to control, for example, one or more of couch
310, image acquisition device 320, and radiotherapy device
330. The control circuitry of radiotherapy device 330 may be
integrated within system 300 or remote from 1t.

[0065] During a radiotherapy treatment session, a patient
may be positioned on couch 310. System 300 may then
move couch 310 into the treatment area defined by magnetic
coils 321, 325, 326, and chassis 335. Control circuitry may
then control radiation source 331, MLC 333, and the chassis
motor(s) to deliver radiation to the patient through the
window between coils 325 and 326 according to a radio-
therapy treatment plan.

[0066] FIG. 4 illustrates an exemplary flow diagram for
estimating a patient state. FIG. 4 includes a patient state
generator 408 for estimating a patient state using a corre-
spondence motion model. The patient state generator 408
uses an instantaneous partial measurement 402 and a pre-
liminary motion model of a patient 406 to estimate a patient
state, output at block 410. The preliminary motion model
406 1s generated using previous measurements 404, includ-
ing previous patient states corresponding to the previous
measurements 404.

[0067] In practical radiotherapy applications, partial mea-
surements (e.g., a 2D 1mage or image slice) provide incom-
plete information about the patient state (e.g., a 3D 1mage).
For example, a 2D MRI slice 1s a single cut through a 3D
representation of the patient, and an x-ray projection 1s an
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integration through voxels along ray-lines of a 3D repre-
sentation. Using either image results 1n impartial informa-
tion (e.g., a 2D 1mage rather than a 3D representation of
patient anatomy). The patient state generator 408 may use
the partial information and the patient model 406 generated
from past measurements and/or offline (pre-treatment)
acquisitions to estimate the patient state 410.

[0068] The patient model generator 408 may include cre-
ation of a low dimensional patient state representation. In an
example, prior measurements are first reconstructed into a
4D 1mage. Examples may include a 4D CT acquired during
a planning phase, which 1s used to generate a treatment plan;
a 4D CBCT acquired immediately prior to each treatment
session, with the patient in treatment position, generated for
example by rotating a KV 1mager around the patient on a
conventional linac; a 4D MR acquired prior to each treat-
ment session on an MR-linac, or the like.

[0069] 4D images may include a series of 3D 1mages of a
representative respiratory cycle. For example, for a 4D
CBCT, a number of x-ray projections are acquired and
sorted 1nto a number of bins. Sorting may be done, for
example, by detecting a diaphragm position 1n each projec-
tion directly in the 1mages, or using a separate respiratory
signal acquired simultaneously with the kV projections, and
binning the projection according to the phase or amplitude
of the signal. Each bin 1s then reconstructed separately with
the kV projections assigned to that bin to form a 3D 1mage
per bin. Similar techniques may be used to generate a 4D
MR image. A model may then be constructed using the 4D
image as an interim step.

[0070] In an example, a reference phase of the 4D 1mage
1s selected (for example, the one used for treatment plan-
ning), and a deformable 1mage registration (DIR) 1s per-
formed between the 3D 1image of each phase and that of the
reference phase. The reference phase may include high-level
treatment 1information (e.g. GTV, organs at risk, etc.). The
output of the DIR process may include a displacement
vector field (DVF) linking each phase to the reference phase.

[0071] Such a DVF-based motion model provides a
mechamism for deforming the reference patient state (e.g.,
treatment information as defined on the 3D reference image)
to the specific anatomy exhibited 1n each of the other phases
of the representative respiratory cycle represented 1n the 4D
dataset.

[0072] To interpolate and even extrapolate the preliminary
motion model 406 to generate new DVFs, an unsupervised
dimensionality reduction technique such as principal com-
ponent analysis (PCA), independent component analysis
(ICA), canonical correlation analysis (CCA), or the like may
be used to 1dentity one or more major degrees of freedom of
the respiratory motion. In an example, 2 or 3 degrees of
freedom may be suflicient to accurately estimate the patient
state. In this example, additional degrees of freedom may be
ignored or discarded (e.g., when they provide little usetul
information and are mostly noise). For example, a PCA of
the DVF motion model may vyield a low-dimensionality
patient motion model that corresponds to a mean DVF and
2 or 3 DVF eigenmodes’ (e.g., weighted inputs representing
a degree of freedom). A DVF at any point 1n time in the
motion cycle can be expressed as a weighted sum of the
mean and the eigenmodes. For example, the mean DVF may
be represented by DVF, and the eigenmodes may be DVF,
and DVF,, which are two full 3D vector fields, and then the

DVF at any time during the cycle can be written as



US 2020/0129780 Al

DVF=DVF,+a,*DVF,+a,*DVF, where a, and a, are scalar
numbers and represent time variation. In this example, the
motion model 1s reduced to i1dentitying a, and a, instead of
the entire DVF at a particular time. Once calculated, the
DVF can then be used to warp the reference 3D 1mage to
obtain the current 3D 1mage representing the patient state
310 (and can be extended to multiple patient 1mages).

[0073] In some cases the mterim step of reconstructing a
4D 1mage may not be necessary, and the low dimensional
state representation may be created directly from the mea-
surements.

[0074] In an example, an advantage of using a pre-treat-
ment 4D 1mage 1s that the data 1s likely to be an excellent
representation of the patient’s respiratory degrees of free-
dom since i1t was acquired immediately prior to treatment. In
some cases there may be advantages to using 4D images
from a previous day, for instance, higher quality images may
be possible (e.g., using an MRI if an MRI 1s not available
during a treatment session, or a CT when only a CBCT 1s
available prior to treatment), and more time can be spent
generating and validating a patient model. In still another
example, data from multiple patients may be used to gen-
erate a more robust model, such as to avoid over constrain-
ing the model.

[0075] FIG. § illustrates an exemplary flowchart showing
a patient state dictionary generation technique. Generation
of a dictionary for use with a machine learming algorithm to
output a patient state estimation may use coupled potential
patient states and measurements.

[0076] The technmique for generating the dictionary
includes an operation 502 to receive a measurement or set of
measurements, with a corresponding patient state or corre-
sponding set of patient states. For example, a measurement
may 1nclude a 2D image or other partial patient state
information or data. The patient state may include a 3D or
4D representation of a patient, corresponding to the mea-
surement. The dictionary thus may include labeled data for
training or testing the machine learning algorithm. In an
example, the received measurements may include digitally
reconstructed radiograph (DRR) images for a CT-based
patient model or 2D MRI slices for an MRI-based patient
model.

[0077] In an example, generating the dictionary may
include not using 2D 1images directly as measurements, but
calculating a 2D DVF on the 2D images. For example, a
PCA analysis of the 2D DVFs which results in a few
parameters. In this example, the mput 1s the 2D PCA of 2D
DVF parameters. In another example, real-time 2D images
are registered to a reference 2D 1mage acquired during the
same session (e.g., with same contrast). This allows for the
use of a fast, highly-parallelizable, deformable 1mage reg-
istration technique to generate 2D DVFs, such as the demon
algorithm. The demon algorithm may be suitable for parallel
implementation 1n GPU with real-time performance. In yet
another example, a convolutional neural network (CNN)
may be used to estimate the 2D optical flow between two
images 1n real-time to generate 2D DVFs.

[0078] The techmque includes an operation 504 to gener-
ate a set of expanded potential measurements and corre-
sponding potential patient states. The potential measure-
ments and potential patient states may be generated by
taking an initial actual measurement (e.g., one received in
operation 502) and a corresponding actual patient state and
adding noise, perturbing, or otherwise extrapolating addi-
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tional measurement-patient state pairs that potentially may
occur for a given patient or patients. The operation 504
allows for generation of a set of labeled data from even a
single actual measurement and patient state patr.

[0079] The technique includes an operation 506 to save
the set of expanded potential measurements and correspond-
ing potential patient states 1n a dictionary for use with a
machine learning technique. In an example, the received
measurement or set of measurements and the received
corresponding patient state or set of patient states may also
be saved 1n the dictionary for use with the machine learning
technique. In an example, a measurement (actual or poten-
tial) may be used as input data to the machine learning
technique, with the corresponding patient state (actual or
potential) being the output from the machine learning tech-
nique, and the correspondence acting as the label for the
data.

[0080] The expanded potential measurements may be gen-
erated 1n operation 504 using a low dimensional patient state
representation (e.g., using PCA, ICA, CCA or the like). The
low dimensional patient state representation may be used to
generate possible patient states that could potentially occur
during treatment. For example, a reasonable range of coet-
ficients (e.g., a, and a, as described above in the DVF
equation of the description of FIG. 3) may be subdivided
into steps, such as equal steps, and the resulting patient state
may calculated for each step. The results may form the
dictionary of potential states corresponding to the potential
measurement determined for each step. In an example, the
coellicients are sampled randomly such that they are repre-
sentative of most likely motions that occur 1n actual patients.
For example, a Gaussian distribution, centered along the
curve representing the average respiratory cycle, may be
used to sample the coetlicients. From the DVFs, the patient
states (e.g. 3D patient 1mages) are calculated by warping a
reference 1mage. In an example, the dictionary may be used
to mfer a 3D i1mage from a 2D iput, such as using
regression analysis 1n a supervised machine learning algo-

rithm

[0081] In an example, to generate the set of expanded
potential measurements and corresponding potential patient
states, small rigid transformations may be applied to a 3D
image for data augmentation to for potential patient trans-
lations. In an example, the dictionary of potential patient
states may be generated from multiple patients rather than
the particular patient under treatment, using acquired 3D
images, biomechanical models, or the like. In another
example, using the particular patient may be used {for
practical considerations to limit the data needed and ensure
that the data 1s relevant to the patient being treated.

[0082] Using the PCA approach to generating the
expanded potential measurements and potential patient
states may include generating PCA coetlicients. To generate
realistic training patient states, coeflicients may be randomly
drawn according to a normal distribution, for example
centered along an average trajectory (e.g., within the 4D
dataset of a received patient state) with a standard distribu-
tion equivalent to a percentage of a dynamic range of each
coellicient (e.g., 10%). Next, a PCA-to-DVF reconstruction
1s performed. A full DVF may be reconstructed using the
randomly generated PCA coeflicients (e.g., 2-3 coellicients
representing degrees of freedom of the moving patient). The
DVF 1s converted to a raw patient state volume by warping
the reference volume using the full DVFE. A partial measure-
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ment 1s created from the raw patient state volume. For a
C'T-based motion model, a 2D digitally reconstructed radio-
graph 1s computed from the raw patient state volume using,
for example, a Siddon-Jacobs algorithm. For a MRI-based
motion model, the 3D volume 1s resampled to extract a 2D
MRI slice. Small rigid transformations are applied to the 3D
volume for data augmentation to account for small differ-
ences 1n the patient position inter-fraction.

[0083] Together, the raw patient state volume output and
the partial measurement are used together as a training
sample to be saved to the dictionary (e.g., the mput 1s the
measurement and the output 1s the patient state). This
workilow may repeated for a number of training samples,
such as 1,000s of samples, or an optimized number of
training samples.

[0084] For each generated potential patient state, one or
more potential patient measurements are simulated. These
are measurements that may potentially have resulted in the
corresponding state. For example, for a state represented by
a 3D MRI image, a 2D slice from a particular orientation and
position (e.g., sagittal) that 1s expected to be used during
treatment can be extracted. For a 3D CBCT image, a kV
X-ray projection can be simulated by ray-tracing through the
3D image and integrating voxels along the ray lines, such as
by using the Siddon-Jacobs algorithm, for a particular gantry
angle. More complex algorithms can be considered, such as
using a Monte Carlo algorithm to simulate what a realistic
2D kV x-ray image potentially produces, including efiects
such as scattering and beam hardening. Imaging properties
such as slice or gantry angle may be randomly sampled, or
sampled uniformly, or fixed at known values. In some
examples, a separate Al algorithm (e.g., Generative Adver-
sarial Networks (GAN)) may be used to estimate measure-
ments from patient states, particularly when the patient
measurement cannot be easily calculated from the state (e.g.,
2D MR slice measurements from 3D density patient state
information). In some examples, the dimensionality of the
dictionary may be further reduced by performing unsuper-
vised dimensionality reduction (e.g., PCA, ICA, or CCA) on
either the potential measurements or patient states. In other
examples, a demon algorithm (with 1mage registration to a
reference 1mage) or a CNN may be used to generate DVFs
for the potential measurements.

[0085] FIG. 6 1illustrates an exemplary regression model
machine learning engine 600 for use in estimating a patient
state. Machine learning engine 600 utilizes a training engine
602 and a estimation engine 604. Training engine 602 inputs
historical transaction information 606 (e.g., patient measure-
ments and corresponding patient states) into feature deter-
mination engine 608. The historical action information 606
may be labeled to indicate the correspondence between a
measurement and a patient state.

[0086] Feature determination engine 608 determines one
or more features 610 from this historical information 606.
Stated generally, features 610 are a set of the information
input and include information determined to be predictive of
a particular outcome. The features 610 may be determined
by hidden layers, in an example. The machine learning
algorithm 612 produces a correspondence motion model 620
based upon the features 610 and the labels.

[0087] In the estimation engine 604, current action infor-
mation 614 (e.g., a current patient measurement) may be
input to the feature determination engine 616. Feature deter-
mination engine 616 may determine features of the current
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information 614 to estimate a corresponding patient state. In
some examples, feature determination engine 616 and 608
are the same engine. Feature determination engine 616
produces feature vector 618, which 1s input 1into the model
620 to generate one or more criteria weightings 622. The
training engine 602 may operate 1n an offline manner to train
the model 620. The estimation engine 604, however, may be
designed to operate 1n an online manner. It should be noted
that the model 620 may be periodically updated via addi-
tional training or user feedback (e.g., additional, changed, or
removed measurements or patient states).

[0088] The machine learning algorithm 612 may be
selected from among many different potential supervised or
unsupervised machine learning algorithms. Examples of
supervised learming algorithms 1nclude artificial neural net-
works, Bayesian networks, instance-based learning, support
vector machines, decision trees (e.g., Iterative Dichotomiser
3, C4.5, Classification and Regression Tree (CART), Chi-
squared Automatic Interaction Detector (CHAID), and the
like), random forests, linear classifiers, quadratic classifiers,
k-nearest neighbor, linear regression, logistic regression,
and hidden Markov models. Examples of unsupervised
learning algorithms include expectation-maximization algo-
rithms, vector quantization, and information bottleneck
method. Unsupervised models may not have a training
engine 602.

[0089] In an example, a regression model 1s used and the
model 620 1s a vector of coetflicients corresponding to a
learned 1importance for each of the features in the vector of
features 610, 618. The regression model 1s illustrated 1n
block 624, showing an example linear regression. The
machine learning algorithm 612 1s trained using a dictionary
generated as described herein. The machine learning algo-
rithm 612 trains on how patient measurements correspond to
patient states. In an example, the machine learming algorithm
612 implements a regression problem (e.g., linear, polyno-
mial, regression trees, kernel density estimation, support
vector regression, random forests implementations, or the
like). The resulting training parameters define the patient
state generator as a correspondence motion model for the
chosen machine learning algorithm.

[0090] In the conventional linac case, this training may be
performed separately for every possible gantry angle (e.g.,
with a one degree increment), since X-ray acquisition ori-
entation may be constrained to an orthogonal angle with
respect to the treatment beam. In the MR-linac case, control
may be given to a clinician on the 2D acquisition plane for
position or orientation. Repeating cross-validation on train-
ing data with different choice of 2D planes can reveal which
2D planes yield best surrogate information for a given
patient/tumor site.

[0091] In some cases a patient measurement may be used
to update the model 620. In some cases a calculation may be
performed to determine whether the patient measurement 1s
consistent with the model 620, and pause the treatment 11 1t
1s not (e.g., using a threshold on the variance for a KDE
algorithm, or determining whether there 1s suflicient data 1n
the dictionary in the neighborhood of the measurement).
When the treatment 1s paused, a new model 620 may be
generated, or the old model 620 may be reused 1f the
measurement (e.g., motion) was an aberration.

[0092] In some applications the entire real-time patient
image may not be necessary, and only features of 1t may be
useful. For example the target centroid may be useful to
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make geometric corrections to multileal collimators
(MLCs), or to gate a beam on or ofl. In such cases, the single
DVF vector connecting the center of the target in the
reference 1image to the current target may be used rather than
computing the entire 3D DVF and deforming the entire
reference 1mage at each time, which results 1n rendering the
real-time process more eflicient.

[0093] Adfter the patient state generator has been success-
fully trained and the patient model 620 1s aligned to the
patient, the treatment beam 1s turned on and instantaneous
partial measurements are acquired at a given frequency. For
cach received measurement, the process may include nor-
malizing a 2D 1mage of the received measurement to match
the contrast of training 1mages. The patient state generator
may use the normalized measurement to infer model coet-
ficients, and a DVF may be reconstructed using the model.
The reconstructed DVF 1s used to warp the reference volume
and treatment information to the current patient state, which
may be output or saved.

[0094] In some cases, the model may not be well-aligned
to the patient during treatment. This may occur if the patient
moves between the 4D 1image and treatment, 1f a model from
a previous day 1s used, or 1f data from other patients 1s used.
The patient model (computed pre-treatment) may then be
aligned to the actual patient position by rigid registration to
new patient measurements with the patient in treatment
position. During this time, a CBCT or MRI 1s acquired for
coarse model-to-patient alignment. Fine alignment of patient
model with multiple sample 1images (e.g., x-ray or 2D MRI
slices) to account for couch shifts can be applied after CBCT
or MRI acquisition.

[0095] Diflerences of contrast in synthetically generated
training measurements versus actual 2D 1maging acquisi-
tions can hinder the generator’s ability to infer 3D patient
states. Some 1ntensity normalization procedure may be used
to correct for this 1ssue. For example, local or global linear
normalization methods may be used. Other examples may
include the use of a Generative Adversarial Network (GAN)
for mapping the intensities of real versus synthetic 1images.

[0096] FIG. 7 illustrates a flowchart 700 of exemplary
operations for estimating a patient state. The flowchart 700
includes an optional operation 702 to receive, for example
using a processor, patient data including a set of patient
measurements and corresponding patient states. The corre-

sponding patient states may include a 3D or a 4D patient
image, such as a 3D CT, a 3D CBCT, a 3D MRI, a 3D PET,

a 3D ultrasound, a4D CT, a 4D CBCT, a4D MRI, a 4D PET,
or a 4D ultrasound 1mage. The patient measurements may
include a 2D MRI slice, MRI k-space data, a 1D MRI
navigator, a 2D MRI projection, x-ray 2D projection data,
PET data, a 2D ultrasound slice, or the like. In some cases,
detectors may be arranged to obtain patient measurements
from multiple views simultaneously, for example with ste-
reoscopic kV 1maging, or from multiple concurrent modali-
ties, such as kV imaging combined with a surface camera. In
one example, the patient data may be generated from a
single patient. In another example, the patient data may be
include data from a plurality of patients.

[0097] The flowchart 700 includes an operation 704 to
identify a preliminary motion model of a patient under
motion, for example based on the set of patient measure-
ments and corresponding patient states. In an example, the
preliminary motion model may be generated based on a 4D
dataset acquired before a radiotherapy treatment. The pre-
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liminary motion model may be generated from a 4D MR or
4D CBCT acquired during treatment. A DVF may be cal-
culated between each of the phases of this 4D 1mage and a
reference phase. A PCA analysis may be performed on these
DVFs. The preliminary motion model may be a 3D DVF that
1s parameterized by 2-3 scalars, plus a reference 3D 1mage.
Potential 3D i1mages may be generated that might occur
during a treatment from the 2-3 scalars, by which a DVF
may be calculated. This DVF may be used to deform the
reference 3D 1mage to calculate a new 3D 1mage.

[0098] The tlowchart 700 includes an operation 706 to
generate a dictionary of expanded potential patient measure-
ments and corresponding potential patient states using the
motion model. The expanded potential patient measure-
ments may include deformations of a 3D or a 4D patient
image. In an example, the deformations include deformation
vector fields (DVFs) calculated using a deformable regis-
tration algorithm. In an example, the expanded potential
patient measurements include a 2D projection image. The
expanded potential patient measurements may be generated
using one or more of extracting a 2D slice from a 3D 1mage,
ray-tracing through a 3D 1mage to generate a 2D projection
image, simulating x-ray interactions with a 3D 1mage using
a Monte Carlo technique, using a collapsed cone convolu-
tion technique, using a superposition and convolution tech-
nique, using a generative adversarial network, using a con-
volutional neural network, using a recurrent neural network
or the like. The dictionary may include possible 3D 1images
that may occur during treatment by randomly sampling 2-3
scalars, generating to 3D DVFs from the scalars, and
deforming the reference image, resulting in the correspond-
ing potential patient states.

[0099] The expanded potential patient measurements may
be generated by calculating a 2D DVF on a 2D 1nput image.
In an example, the 2D DVF may be calculated by perform-
ing a PCA analysis of the 2D input image. In another
example, the 2D DVF may be calculated by registering the
2D mput 1image to a reference 2D 1mage (e.g., taken at the
start or just before the start of radiation treatment), and using,
a deformable 1mage registration technique. The 2D 1nput
image and the reference 2D image may have the same
contrast to allow for registration. The deformable image
registration technique may be a fast, highly-parallelizable
technique, such as a demon algorithm (e.g., implemented in
parallel on a GPU with real-time performance). In yet
another example, the 2D DVF may be generated using a
CNN to estimate a 2D optical flow between the 2D nput
image and a 2D reference image. The CNN may be run 1n
real-time.

[0100] The corresponding potential patient states may be
associated with a patient measurement that would have
yielded respective patient states. For example, extracting a
2D slice through a 3D 1mage, or a 2D projection through an
image, at a particular location or angle. The raw 2D 1mage
may not be used 1n an example, as the measurement. Instead,
a 2D DVF between the 2D 1mage and a corresponding image
form the reference 3D image may be used with a PCA
analysis on the resulting 2D DVF. For example, the mea-
surements may be processed versions ol measurements,
rather than directly measured patient data. The measure-
ments may be PCA components of 2D DVFs, which may
include the expanded potential patient measurements. The
coupled expanded potential patient measurements (PCAs of
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2D DVFs) and corresponding patient states (PCAs of 3D
DVFs) may form the dictionary.

[0101] The tflowchart 700 includes an operation 708 to
train, using a machine learning technique, a correspondence
motion model relating an 1nput patient measurement to an
output patient state using the dictionary. The correspondence
motion model may include a deformation vector field (DVF)
as a function of one or more parameters. In an example, the
one or more parameters may be determined by reducing
dimensionality of a preliminary DVF calculated between
two or more phases of a 4D 1image and a reference phase. For
example, reducing the dimensionality may include using a
principal component analysis (PCA), an independent com-
ponent analysis (ICA) or a canonical correlation analysis
(CCA). In an example, the correspondence motion model
may be generated using a random forest regression, a linear
regression, a polynomial regression, a regression tree, a
kernel density estimation, a support vector regression algo-
rithm, a CNN, a RNN, or the like. The machine learning
algorithm may be used to relate the coupled entries in the
dictionary. The algorithm may be used with a measurement
input to provide a patient state. The measurement input may
include a PCA component of a 2D DVF of a 2D image with
a reference 1mage, and the patient state may include a 3D

DVE.

[0102] In an example, the preceding operations occur
pre-treatment, while the following operations occur during
treatment. The flowchart 700 includes an operation 710 to
estimate the patient state corresponding to a patient mea-
surement of the patient using the correspondence motion
model. The patient state may be saved or output. For
example, the patient state may be output for display on a user
interface of a display device. In an example, estimating the
patient state may include receiving the patient measurement
as an input to the correspondence motion model, the mput
including a real-time stream of 2D 1mages. The real-time
stream of 2D 1images may include stereoscopic KV 1mages
(e.g., from a kV imager rotating around a patient with a
conventional linac) or pairs of 2D MR slice images (e.g.,
from an MR-Linac). In an example, the stereoscopic kV
images may include two x-ray images that are orthogonal or
substantially orthogonal (e.g., within 10 degrees) which are
acquired simultaneously or substantially simultaneously
(e.g., within a few or a few hundred milliseconds). The kV
imager may be fixed in a room or may be fixed to a gantry
(e.g., including a linac). A pair of 2D MR slice images may
be orthogonal to each other or parallel to each other. In
another example, two kV 1imagers may be used, such as with
cach at 45 degrees to the treatment beam (and 90 degrees to
each other). Both kV 1imagers in this example may be used
simultaneously or they may be used 1n an alternating fash-
10n

[0103] In an example, images may be acquired from a kV
imager or two kV imagers with simultaneously acquired
internal ultrasound data. The ultrasound data may be used to
reduce the kV dose by having, for example, less dose or
pulse or to have a lower kV imaging frame rate. This
secondary data may be included directly into the measure-
ments to calculate patient state, or a separate correspondence
model may be generated between the kV and secondary data
streams and this separate model may be used to relate
secondary data to patient state. For example, a correlation
model may be built and continuously updated that relates kKV
PCA components to a parameter extracted from the second-
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ary measurements stream, and as the secondary stream data
1s acquired, this correlation model may be used to determine
the KV PCA components.

[0104] During treatment, a 2D 1image may be received. A
2D DVF may be calculated between the input 2D 1mage and
a reference 2D 1mage. A PCA analysis may be performed on
the DVF. The result 1s a real-time ‘measurement’ as used
herein. The trained machine learning algorithm may take the
measurement as an mput and calculate PCA components of
the 3D DVF from the imput measurements. The PCA com-
ponents are used to generate a 3D DVE, which 1s used to
deform the 3D reference image with to 3D DVF to form the
current real-time 3D patient image that represents the patient
at a current time. The patient state may be the 3D image
itself, the reference 1image plus the 3D DVE, or the like (in
an example, one may be calculated from the other).

[0105] Inanexample, an operation may include outputting
the patient state, such as outputting two or more MR-like 3D
images showing tissue contrast, outputting non-imaging
information, outputting CT-like 3D 1mages, or the like.

[0106] FIG. 8 illustrates a flowchart of exemplary opera-
tions for performing radiation therapy technmiques.

[0107] The tlowchart 800 includes an operation 802 to
generate a dictionary of expanded potential patient measure-
ments and corresponding potential patient states using a
motion model (e.g., as described above with respect to
operation 706). The expanded potential patient measure-
ments may be generated by calculating a 2D DVF on a 2D
input 1mage. In an example, the 2D DVF may be calculated
by performing a PCA analysis of the 2D input image. In
another example, the 2D DVF may be calculated by regis-
tering the 2D input image to a reference 2D i1mage (e.g.,
taken at the start or just before the start of radiation treat-
ment), and using a deformable 1mage registration technique.
The 2D mput image and the reference 2D 1mage may have
the same contrast to allow for registration. The deformable
image registration technique may be a fast, highly-paral-
lelizable technique, such as a demon algorithm (e.g., imple-
mented 1n parallel on a GPU with real-time performance). In
yet another example, the 2D DVF may be generated using
a CNN to estimate a 2D optical tlow between the 2D 1nput
image and a 2D reference image. The CNN may be run 1n
real-time.

[0108] In an example, the expanded potential patient mea-
surements may be generated from a 4D 1mage, the 4D 1image
including a 4D CT, a 4D CBCT, a 4D MM, a 4D PFET, a 4D
ultrasound 1mage, or the like. In an example, the expanded
potential patient measurements include a 2D projection
image and are generated by using at least one of: extracting
a 2D slice from a 3D 1mage, ray-tracing through a 3D 1mage
to generate a 2D projection 1image, simulating x-ray inter-
actions with a 3D 1mage using a Monte Carlo techmque,
using a collapsed cone convolution technique, using a super-
position and convolution technique, using a generative
adversarial network, a convolutional neural network, a
recurrent neural network, or the like.

[0109] The tlowchart 800 includes an operation 804 to
train, using a machine learning technique, a correspondence
motion model relating an 1nput patient measurement to an
output patient state using the dictionary (e.g., as described
above with respect to operation 708). The correspondence
motion model may include a deformation vector field (DVF)
as a function of one or more parameters, the one or more
parameters determined by reducing dimensionality of a
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preliminary DVF calculated between two or more phases of
a 4D i1mage and a reference phase. The correspondence
motion model may be generated using a random forest
regression, a linear regression, a polynomial regression, a
regression tree, a kernel density estimation, a support vector
regression algorithm, a convolutional neural network, a
recurrent neural network, or the like.

[0110] The flowchart 800 includes an operation 806 to
receive a real-time stream of 2D images from an image
acquisition device (e.g., a kV x-ray, a MR device, a CT
device, or other 1image acquisition device). The real-time
stream of 2D 1images may include stereoscopic KV 1mages
(e.g., from a kV imager rotating around a patient with a
conventional linac) or pairs of 2D MR slice images (e.g.,
from an MR-Linac). In another example, the real-time
stream of 2D images may include k-space data, low reso-
lution 3D MR 1mages, 1D navigators, or other MR 1nfor-
mation.

[0111] In an example, the stereoscopic KV images may
include two x-ray 1mages that are orthogonal or substantially
orthogonal (e.g., within 10 degrees) which are acquired
simultaneously or substantially simultaneously (e.g., within
a few or a few hundred milliseconds). The kV 1mager may
be fixed 1n a room or may be fixed to a gantry (e.g., including
a linac). A pair of 2D MR slice images may be orthogonal
to each other or parallel to each other.

[0112] The flowchart 800 includes an operation 808 to
estimate the patient state corresponding to an 1mage of the
real-time stream of 2D images using the correspondence
motion model. The patient state may be output, for example
as an 1mage (e.g., a 3D MR or CT), as non-image informa-
tion, or both. The patient state may 1include information (e.g.,
an 1mage or text) describing patient anatomy, such as a
tumor or organ of interest, or may be used to establish a
target, such as a radiation therapy target (e.g., on a portion
of a tumor).

[0113] The flowchart 800 includes an operation 810 to
locate a radiation therapy target within a patient using the
patient state.

[0114] The flowchart 800 includes an operation 812 to
track a radiation therapy target of a patient in real-time using
the patient state. For example, successive images from the
real-time stream of 2D images may be used to output
corresponding patient states, with a target tracked from one
patient state to the next.

[0115] The flowchart 800 includes an operation 814 to
direct radiation therapy, using a treatment device (e.g., a
standalone treatment device, a device coupled to an 1image
acquisition device (e.g., an MR-linac), or the like), to a target
according to the patient state. For example, the target may be
located 1n operation 810 or tracked in operation 812, and
radiation therapy may be applied according to the location or
tracking. In an example, location or tracking information
may be displayed on a display device, such as with a user
interface presented on the display device.

Additional Notes

[0116] The above detailed description includes references
to the accompanying drawings, which form a part of the
detailed description. The drawings show, by way of 1llus-
tration but not by way of limitation, specific embodiments in
which the mvention can be practiced. These embodiments
are also referred to herein as “examples.” Such examples can
include elements in addition to those shown or described.
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However, the present inventors also contemplate examples
in which only those elements shown or described are pro-
vided. Moreover, the present inventors also contemplate
examples using any combination or permutation of those
clements shown or described (or one or more aspects
thereot), either with respect to a particular example (or one
or more aspects thereot), or with respect to other examples
(or one or more aspects thereof) shown or described herein.

[0117] All publications, patents, and patent documents
referred to in this document are incorporated by reference
herein 1n their entirety, as though individually incorporated
by reference. In the event of inconsistent usages between
this document and those documents so incorporated by
reference, the usage 1n the incorporated reference(s) should
be considered supplementary to that of this document; for
irreconcilable 1nconsistencies, the usage in this document
controls.

[0118] In thus document, the terms “a,” *“‘an,” “the,” and
“said” are used when introducing elements of aspects of the
invention or in the embodiments thereof, as 1s common 1n
patent documents, to include one or more than one or more
of the elements, independent of any other instances or
usages of “at least one” or “one or more.” In this document,
the term “or” 1s used to refer to a nonexclusive or, such that
“A or B” includes “A but not B,” “B but not A,” and “A and

B,” unless otherwise indicated.

[0119] In the appended claims, the terms “including™ and
“in which” are used as the plain-English equivalents of the
respective terms “comprising” and “wherein.” Also, 1n the
following claims, the terms “comprising,” “including,” and
“having” are intended to be open-ended to mean that there
may be additional elements other than the listed elements,
such that after such a term (e.g., comprising, including,
having) 1n a claim are still deemed to fall within the scope
of that claim. Moreover, 1n the following claims, the terms
“first,” “second,” and ““third,” etc., are used merely as labels,
and are not intended to 1impose numerical requirements on

their objects.

[0120] The present invention also relates to a computing
system adapted, configured, or operated for performing the
operations herein. This system may be specially constructed
for the required purposes, or it may comprise a general
purpose computer selectively activated or reconfigured by a
computer program (e.g., instructions, code, etc.) stored in
the computer. The order of execution or performance of the
operations 1n embodiments of the invention 1illustrated and
described herein 1s not essential, unless otherwise specified.
That 1s, the operations may be performed 1n any order, unless
otherwise specified, and embodiments of the invention may
include additional or fewer operations than those disclosed
herein. For example, 1t 1s contemplated that executing or
performing a particular operation before, contemporane-
ously with, or after another operation 1s within the scope of
aspects of the invention.

[0121] In view of the above, 1t will be seen that the several
objects of the invention are achieved and other advantageous
results attained. Having described aspects of the invention in
detail, it will be apparent that modifications and variations
are possible without departing from the scope of aspects of
the invention as defined 1n the appended claims. As various
changes could be made 1n the above constructions, products,
and methods without departing from the scope of aspects of
the 1nvention, 1t 1s intended that all matter contained 1n the
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above description and shown 1n the accompanying drawings
shall be interpreted as 1llustrative and not 1n a limiting sense.

[0122] The above description 1s intended to be illustrative,
and not restrictive. For example, the above-described
examples (or one or more aspects thereol) may be used 1n
combination with each other. In addition, many modifica-
tions may be made to adapt a particular situation or material
to the teachings of the invention without departing from its
scope. While the dimensions, types of materials and
example parameters, functions, and 1mplementations
described herein are intended to define the parameters of the
invention, they are by no means limiting and are exemplary
embodiments. Many other embodiments will be apparent to
those of skill in the art upon reviewing the above descrip-
tion. The scope of the mnvention should, therefore, be deter-
mined with reference to the appended claims, along with the
full scope of equivalents to which such claims are entitled.

[0123] Also, 1n the above Detailed Description, various
features may be grouped together to streamline the disclo-
sure. This should not be interpreted as intending that an
unclaimed disclosed feature 1s essential to any claim. Rather,
inventive subject matter may lie in less than all features of
a particular disclosed embodiment. Thus, the following
claims are hereby incorporated into the Detailed Descrip-
tion, with each claim standing on 1ts own as a separate
embodiment. The scope of the invention should be deter-
mined with reference to the appended claims, along with the
tull scope of equivalents to which such claims are entitled.

[0124] FEach of these non-limiting examples may stand on
its own, or may be combined in various permutations or
combinations with one or more of the other examples.

[0125] Example 1 1s a method for estimating a real-time
patient state during a radiotherapy treatment, the method
comprising: receiving, using a processor, patient data
including a set of constructed patient measurements; 1den-
tifying a preliminary motion model of a patient under
motion based on the set of constructed patient measure-
ments; generating a dictionary of expanded potential patient
measurements and corresponding potential patient states
using the preliminary motion model; training, using a
machine learning technique, a correspondence motion
model relating an input patient measurement to an output
patient state using the dictionary; and estimating, using the
processor, the patient state corresponding to a patient mea-
surement of the patient using the correspondence motion
model.

[0126] In Example 2, the subject matter of Example 1
includes, wherein the corresponding patient states include a
3D patient 1image.

[0127] In Example 3, the subject matter of Example 2
includes, wherein the corresponding potential patient states
include deformations of the 3D patient image.

[0128] In Example 4, the subject matter of Example 3
includes, wherein the deformations include deformation
vector fields (DVFs) calculated using a deformable regis-
tration algorithm.

[0129] In Example 5, the subject matter of Examples 1-4

includes, wherein the patient measurements include a 2D
MRI slice, MRI k-space data, a 1D MRI navigator, a 2D

MRI projection, x-ray 2D projection data, PET data, or a 2D
ultrasound slice.

[0130] In Example 6, the subject matter of Examples 1-5
includes, wherein the patient data includes a 4D 1mage.
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[0131] In Example 7, the subject matter of Example 6
includes, wherein the 4D 1mage 1s a 4D CT, a 4D CBCT, a

4D MRI, a 4D PET, or a 4D ultrasound image.

[0132] In Example 8, the subject matter of Examples 1-7
includes, wherein the correspondence motion model
includes a deformation vector field (DVF) as a function of
one or more parameters, the one or more parameters deter-
mined by reducing dimensionality of a preliminary DVF
calculated between two or more phases of a 4D 1mage and
a reference phase.

[0133] In Example 9, the subject matter of Examples 1-8
includes, wherein the expanded potential patient measure-
ments include a 2D projection image and are generated by
using at least one of: extracting a 2D slice from a 3D image,
ray-tracing through a 3D 1mage to generate a 2D projection
image, simulating x-ray interactions with a 3D 1image using
a Monte Carlo technique, using a collapsed cone convolu-
tion technique, using a superposition and convolution tech-
nique, using a generative adversarial network, a convolu-
tional neural network, or a recurrent neural network.

[0134] In Example 10, the subject matter of Examples 1-9
includes, wherein the correspondence motion model 1s gen-
erated using a random forest regression, a linear regression,
a polynomial regression, a regression tree, a kernel density
estimation, a support vector regression algorithm, a convo-
lutional neural network, or a recurrent neural network.

[0135] In Example 11, the subject matter of Examples
1-10 includes, wherein estimating the patient state corre-
sponding to the patient measurement includes receiving the
patient measurement as an input to the correspondence
motion model, the mput including a real-time stream of 2D

1mages.
[0136] In Example 12, the subject matter of Example 11
includes, wherein the real-time stream of 2D 1mages
includes stereoscopic kV 1mages or pairs of 2D MR slice
1mages.
[0137] In Example 13, the subject matter of Examples

1-12 includes, outputting the patient state as two or more
MR-like 3D images showing tissue contrast.

[0138] In Example 14, the subject matter of Examples
1-13 1ncludes, wherein the patient state includes non-1mag-
ing information.

[0139] In Example 15, the subject matter of Examples
1-14 1includes, generating the preliminary motion model
based on a 4D dataset acquired before the radiotherapy
treatment.

[0140] In Example 16, the subject matter of Examples
1-15 includes, generating the constructed patient measure-
ments by calculating a 2D deformation vector field (DVF)
on a 2D iput image.

[0141] In Example 17, the subject matter of Examples
1-16 includes, wherein generating the constructed patient
measurements includes performing a principal component
analysis (PCA) analysis of the 2D 2D input image.

[0142] In Example 18, the subject matter of Examples
1-17 includes, wherein generating the constructed patient
measurements includes registering the 2D mput 1image to a
reference 2D 1mage, and using a deformable 1mage regis-
tration technique to calculate the 2D DVF.

[0143] In Example 19, the subject matter of Examples
1-18 1includes, wherein generating the constructed patient
measurements includes using a convolutional neural net-
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work (CNN) to estimate a 2D optical flow between the 2D
input image and a 2D reference 1mage to calculate the 2D

DVF.

[0144] Example 20 1s a system for estimating a patient
state during a radiotherapy treatment, the system compris-
ing: a processor coupled to memory, the memory including
instructions, which when executed by the processor, cause
the processor to perform operations to: receive patient data
including a set of constructed patient measurements; identify
a preliminary motion model of a patient under motion based
on the set of constructed patient measurements; generate a
dictionary of expanded potential patient measurements and
corresponding potential patient states using the preliminary
motion model; train, using a machine learning techmque, a
correspondence motion model relating an input patient mea-
surement to an output patient state using the dictionary; and
estimate the patient state corresponding to a patient mea-
surement of the patient using the correspondence motion
model.

[0145] Example 21 1s a method for estimating a real-time
patient state during a radiotherapy treatment using a mag-
netic resonance linear accelerator (MR-Linac), the method
comprising: generating a dictionary of expanded potential
patient measurements and corresponding potential patient
states using a preliminary motion model; training, using a
machine learning technique, a correspondence motion
model relating an mput patient measurement to an output
patient state using the dictionary; receiving a real-time
stream of 2D MR images from an 1image acquisition device;
estimating, using the processor, the patient state correspond-
ing to an 1mage of the real-time stream of 2D MR i1mages
using the correspondence motion model; and directing radia-
tion therapy, using a treatment device coupled to the image
acquisition device, to a target according to the patient state.

[0146] In Example 22, the subject matter of Example 21
includes, wherein the expanded potential patient measure-
ments include deformations of a 3D patient 1mage, and
wherein the deformations include deformation vector fields

(DVFs) calculated using a deformable registration algo-
rithm.

[0147] In Example 23, the subject matter of Examples
21-22 1includes, wheremn the expanded potential patient
measurements are generated from a 4D 1mage, the 4D 1image

including a 4D CT, a 4D CBCT, a 4D MRI, a 4D PET, or a
4D ultrasound 1mage.

[0148] In Example 24, the subject matter of Examples
21-23 includes, wherein the correspondence motion model
includes a deformation vector field (DVF) as a function of
one or more parameters, the one or more parameters deter-
mined by reducing dimensionality of a preliminary DVF
calculated between two or more phases of a 4D 1mage and
a reference phase.

[0149] In Example 25, the subject matter of Examples
21-24 1ncludes, wherein the expanded potential patient
measurements include a 2D projection image and are gen-
erated by using at least one of: extracting a 2D slice from a
3D 1mage, ray-tracing through a 3D 1mage to generate a 2D
projection i1mage, simulating x-ray interactions with a 3D
image using a Monte Carlo technique, using a collapsed
cone convolution technique, using a superposition and con-
volution techmique, using a generative adversarial network,
a convolutional neural network, or a recurrent neural net-
work.
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[0150] In Example 26, the subject matter of Examples
21-25 includes, wherein the correspondence motion model
1s generated using a random {forest regression, a linear
regression, a polynomial regression, a regression tree, a
kernel density estimation, a support vector regression algo-
rithm, a convolutional neural network, or a recurrent neural
network.

[0151] In Example 27, the subject matter of Examples
21-26 1ncludes, outputting the patient state as two or more
MR-like 3D 1mages showing tissue contrast.

[0152] In Example 28, the subject matter of Examples
21-27 includes, generating the expanded potential patient
measurements by calculating a 2D deformation vector field
(DVF) on a 2D input image.

[0153] In Example 29, the subject matter of Examples
21-28 includes, wherein generating the expanded potential
patient measurements includes performing a principal com-
ponent analysis (PCA) analysis of the 2D input image.

[0154] In Example 30, the subject matter of Examples
21-29 1includes, wherein generating the expanded potential
patient measurements includes registering the 2D input
image to a reference 2D 1mage, and using a deformable
image registration technique to calculate the 2D DVF.

[0155] In Example 31, the subject matter of Examples
21-30 includes, wherein generating the expanded potential
patient measurements includes using a convolutional neural
network (CNN) to estimate a 2D optical flow between the
2D mput image and a 2D reference image to calculate the 2D

DVE.

[0156] Example 32 1s a method for generating real-time
target localization data, the method comprising: generating
a dictionary of expanded potential patient measurements and
corresponding potential patient states using a preliminary
motion model; training, using a machine learning technique,
a correspondence motion model relating an input patient
measurement to an output patient state using the dictionary;
receiving a real-time stream of 2D images from an image
acquisition device; estimating, using the processor, the
patient state corresponding to an image of the real-time
stream of 2D images using the correspondence motion
model; locating a radiation therapy target within a patient
using the patient state; and outputting the location of the
radiation therapy target on a display device.

[0157] In Example 33, the subject matter of Example 32
includes, wherein the real-time stream of 2D i1mages
includes stereoscopic KV 1images or pairs of 2D MR slice
1mages.

[0158] In Example 34, the subject matter of Examples
32-33 1ncludes, wherein the expanded potential patient
measurements include deformations of a 3D patient image,
and wherein the deformations include deformation vector
fields (DVFs) calculated using a deformable registration
algorithm.

[0159] In Example 35, the subject matter of Examples
32-34 1includes, wherein the expanded potential patient
measurements are generated from a 4D 1mage, the 4D 1image
including a 4D CT, a 4D CBCT, a 4D MRI, a 4D PET, or a

4D ultrasound 1mage.

[0160] In Example 36, the subject matter of Examples
32-35 includes, wherein the correspondence motion model
includes a deformation vector field (DVF) as a function of
one or more parameters, the one or more parameters deter-



US 2020/0129780 Al

mined by reducing dimensionality of a preliminary DVF
calculated between two or more phases of a 4D 1mage and
a reference phase.

[0161] In Example 37, the subject matter of Examples
32-36 1ncludes, wherein the expanded potential patient
measurements include a 2D projection 1image and are gen-
erated by using at least one of: extracting a 2D slice from a
3D 1mage, ray-tracing through a 3D image to generate a 2D
projection i1mage, simulating x-ray interactions with a 3D
image using a Monte Carlo technique, using a collapsed
cone convolution technique, using a superposition and con-
volution technique, using a generative adversarial network,
a convolutional neural network, or a recurrent neural net-
work.

[0162] In Example 38, the subject matter of Examples
32-37 imcludes, wherein the correspondence motion model
1s generated using a random forest regression, a linear
regression, a polynomial regression, a regression tree, a
kernel density estimation, a support vector regression algo-
rithm, a convolutional neural network, or a recurrent neural
network.

[0163] In Example 39, the subject matter of Examples
32-38 includes, outputting the patient state as two or more
MR-like 3D 1mages showing tissue contrast.

[0164] In Example 40, the subject matter of Examples
32-39 1includes, generating the expanded potential patient
measurements by calculating a 2D deformation vector field
(DVF) on a 2D input image.

[0165] In Example 41, the subject matter of Examples
32-40 1ncludes, wherein generating the expanded potential
patient measurements includes performing a principal com-
ponent analysis (PCA) analysis of the 2D input image.
[0166] In Example 42, the subject matter of Examples
32-41 includes, wherein generating the expanded potential
patient measurements includes registering the 2D input
image to a reference 2D i1mage, and using a deformable
image registration technique to calculate the 2D DVFE.
[0167] In Example 43, the subject matter of Examples
32-42 includes, wherein generating the expanded potential
patient measurements includes using a convolutional neural
network (CNN) to estimate a 2D optical flow between the
2D 1input image and a 2D reference image to calculate the 2D
DVF.

[0168] Example 44 1s a method for real-time tracking of a
target, the method comprising: generating a dictionary of
expanded potential patient measurements and corresponding
potential patient states using a preliminary motion model;
training, using a machine learning technique, a correspon-
dence motion model relating an input patient measurement
to an output patient state using the dictionary; receiving a
real-time stream of 2D images from an image acquisition
device; estimating, using the processor, patient states corre-
sponding to images in the real-time stream of 2D i1mages
using the correspondence motion model; tracking a radiation
therapy target of a patient in real-time using the patient
states; and outputting tracking information for the radiation
therapy target for display on a display device.

[0169] In Example 45, the subject matter of Example 44
includes, wherein the real-time stream of 2D images
includes stereoscopic kV 1mages or pairs of 2D MR slice
1mages.

[0170] In Example 46, the subject matter of Examples
44-45 1ncludes, wherein the expanded potential patient
measurements include deformations of a 3D patient 1image,
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and wherein the deformations include deformation vector
fields (DVFs) calculated using a deformable registration
algorithm.

[0171] In Example 47, the subject matter of Examples
44-46 1ncludes, wherein the expanded potential patient
measurements are generated from a 4D 1mage, the 4D 1mage
including a 4D CT, a 4D CBCT, a 4D MRI, a 4D PET, or a

4D ultrasound 1mage.

[0172] In Example 48, the subject matter of Examples
44-47 includes, wherein the correspondence motion model
includes a deformation vector field (DVF) as a function of
one or more parameters, the one or more parameters deter-
mined by reducing dimensionality of a preliminary DVF
calculated between two or more phases of a 4D 1mage and
a reference phase.

[0173] In Example 49, the subject matter of Examples
44-48 1ncludes, wherein the expanded potential patient
measurements include a 2D projection 1mage and are gen-
erated by using at least one of: extracting a 2D slice from a
3D 1mage, ray-tracing through a 3D 1mage to generate a 2D
projection i1mage, simulating x-ray interactions with a 3D
image using a Monte Carlo technique, using a collapsed
cone convolution technique, using a superposition and con-
volution technique, using a generative adversarial network,
a convolutional neural network, or a recurrent neural net-
work.

[0174] In Example 50, the subject matter of Examples
44-49 includes, wherein the correspondence motion model
1s generated using a random {forest regression, a linear
regression, a polynomial regression, a regression tree, a
kernel density estimation, a support vector regression algo-
rithm, a convolutional neural network, or a recurrent neural
network.

[0175] In Example 51, the subject matter of Examples
44-50 1ncludes, outputting the patient state as two or more
MR-like 3D 1mages showing tissue contrast.

[0176] In Example 52, the subject matter of Examples
44-51 includes, generating the expanded potential patient
measurements by calculating a 2D deformation vector field
(DVF) on a 2D put image.

[0177] In Example 53, the subject matter of Examples
44-352 includes, wherein generating the expanded potential
patient measurements includes performing a principal com-
ponent analysis (PCA) analysis of the 2D input image.

[0178] In Example 54, the subject matter of Examples
44-33 1ncludes, wherein generating the expanded potential
patient measurements includes registering the 2D input
image to a reference 2D 1mage, and using a deformable
image registration technique to calculate the 2D DVF.

[0179] In Example 355, the subject matter of Examples
44-54 includes, wherein generating the expanded potential
patient measurements includes using a convolutional neural
network (CNN) to estimate a 2D optical flow between the

2D 1input image and a 2D reference image to calculate the 2D
DVF.

[0180] Example 56 1s at least one machine-readable
medium including instructions that, when executed by pro-
cessing circuitry, cause the processing circuitry to perform
operations to implement of any of Examples 1-53.

[0181] Example 57 1s an apparatus comprising means to
implement of any of Examples 1-53.

[0182] Example 58 i1s a system to implement of any of
Examples 1-355.
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[0183] Example 59 1s a method to implement of any of
Examples 1-355.
[0184] Method examples described herein may be

machine or computer-implemented at least in part. Some
examples may include a computer-readable medium or
machine-readable medium encoded with instructions oper-
able to configure an electronic device to perform methods as
described 1n the above examples. An implementation of such
methods may include code, such as microcode, assembly
language code, a higher-level language code, or the like.
Such code may include computer readable instructions for
performing various methods. The code may form portions of
computer program products. Further, in an example, the
code may be tangibly stored on one or more volatile,
non-transitory, or non-volatile tangible computer-readable
media, such as during execution or at other times. Examples
of these tangible computer-readable media may include, but
are not limited to, hard disks, removable magnetic disks,
removable optical disks (e.g., compact disks and digital
video disks), magnetic cassettes, memory cards or sticks,
random access memories (RAMs), read only memories

(ROMs), and the like.

What 1s claimed 1s:
1. A method for estimating a real-time patient state during
a radiotherapy treatment, the method comprising:

identifying, using a processor, a preliminary motion
model of a patient under motion;

generating a dictionary of expanded potential patient
measurements and corresponding potential patient
states using the preliminary motion model;

training, using a machine learning technique, a correspon-
dence motion model relating an 1input patient measure-
ment to an output patient state using the dictionary; and

estimating, using the processor, the patient state corre-
sponding to a patient measurement of the patient using
the correspondence motion model.

2. The method of claim 1, wherein the corresponding
patient states include a 3D patient 1mage.

3. The method of claim 2, wherein the corresponding
potential patient states include deformations of the 3D
patient 1image.

4. The method of claim 3, wherein the deformations
include deformation vector fields (DVFs) calculated using a
deformable registration algorithm.

5. The method of claim 4, wherein the DVFs are 3D DVFs
applied to the correspondence motion model to generate the
patient state using deformation.

6. The method of claim 3, wherein the deformations
include parameterizations of 3D DVFs and the preliminary
motion model includes a reference 1image.

7. The method of claim 1, wherein the patient measure-
ments include a 2D MRI slice, MRI k-space data, a 1D MRI
navigator, a 2D MRI projection, x-ray 2D projection data,
PET data, or a 2D ultrasound slice.

8. The method of claim 1, wherein the patient data
includes a 4D 1mage.

9. The method of claim 8, wherein the 4D 1mage 1s a 4D
CT, a 4D CBCT, a 4D MRI, a 4D PET, or a 4D ultrasound
1mage.

10. The method of claim 1, wherein the correspondence
motion model includes a deformation vector field (DVF) as
a function of one or more parameters, the one or more
parameters determined by reducing dimensionality of a
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preliminary DVF calculated between two or more phases of
a 4D 1mage and a reference phase.

11. The method of claim 1, wherein the expanded poten-
tial patient measurements include a 2D projection image and
are generated by using at least one of: extracting a 2D slice
from a 3D 1mage, ray-tracing through a 3D image to
generate a 2D projection 1mage, simulating x-ray interac-
tions with a 3D 1mage using a Monte Carlo technique, using
a collapsed cone convolution technique, using a superposi-
tion and convolution technique, using a generative adver-
sarial network, a convolutional neural network, or a recur-
rent neural network.

12. The method of claim 1, wherein the correspondence
motion model 1s generated using a random forest regression,
a linear regression, a polynomial regression, a regression
tree, a kernel density estimation, a support vector regression
algorithm, a convolutional neural network, or a recurrent
neural network.

13. The method of claim 1, wherein estimating the patient
state corresponding to the patient measurement includes
receiving the patient measurement as an input to the corre-
spondence motion model, the mput including a real-time
stream of 2D 1images.

14. The method of claim 13, wherein the real-time stream
of 2D 1mages includes stereoscopic kV images or pairs of

2D MR slice images.

15. The method of claim 1, further comprising outputting
the patient state as two or more MR-like 3D 1mages showing
tissue contrast.

16. The method of claim 1, wherein the patient state
includes non-imaging information.

17. The method of claim 1, further comprising generating
the preliminary motion model based on a 4D dataset
acquired before the radiotherapy treatment.

18. The method of claim 1, further comprising generating
the expanded potential patient measurements by calculating
a 2D deformation vector field (DVF) on a 2D imput image.

19. The method of claim 1, wherein generating the
expanded potential patient measurements includes performs-
ing a principal component analysis (PCA) analysis of the 2D
input 1mage.

20. The method of claim 1, wherein generating the
expanded potential patient measurements includes register-
ing the 2D 1nput image to a reference 2D 1mage, and using
a deformable 1mage registration technique to calculate the

2D DVFE.

21. The method of claim 1, wherein generating the
expanded potential patient measurements 1ncludes using a
convolutional neural network (CNN) to estimate a 2D
optical flow between the 2D input 1mage and a 2D reference
image to calculate the 2D DVF.

22. A method for generating real-time target localization
data, the method comprising;

generating a dictionary of expanded potential patient

measurements and corresponding potential patient
states using a preliminary motion model;
training, using a machine learning technique, a correspon-
dence motion model relating an input patient measure-
ment to an output patient state using the dictionary;

receiving a real-time stream of 2D 1mages from an image
acquisition device;

estimating, using the processor, the patient state corre-

sponding to an 1mage of the real-time stream of 2D
images using the correspondence motion model;
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locating a radiation therapy target within a patient using
the patient state; and

outputting the location of the radiation therapy target on
a display device.
23. The method of claim 22, wherein the real-time stream

of 2D 1mages includes stereoscopic kV 1mages or pairs of
2D MR slice images.

24. The method of claim 22, wherein the expanded
potential patient measurements include deformations of a
3D patient 1mage, and wherein the deformations include
deformation vector fields (DVFs) calculated using a deform-
able registration algorithm.

25. The method of claim 22, wherein the expanded
potential patient measurements are generated from a 4D
image, the 4D 1mage including a 4D CT, a 4D CBCT, a 4D
MRI, a 4D PET, or a 4D ultrasound image.

26. The method of claim 22, wherein the correspondence
motion model includes a deformation vector field (DVF) as
a function of one or more parameters, the one or more
parameters determined by reducing dimensionality of a
preliminary DVF calculated between two or more phases of
a 4D 1mage and a reference phase.

27. The method of claim 22, wherein the expanded
potential patient measurements include a 2D projection
image and are generated by using at least one of: extracting
a 2D slice from a 3D 1mage, ray-tracing through a 3D 1mage
to generate a 2D projection 1image, simulating x-ray inter-
actions with a 3D 1mage using a Monte Carlo technique,
using a collapsed cone convolution technique, using a super-
position and convolution technique, using a generative
adversarial network, a convolutional neural network, or a
recurrent neural network.

28. The method of claim 22, wherein the correspondence
motion model 1s generated using a random forest regression,
a linear regression, a polynomial regression, a regression
tree, a kernel density estimation, a support vector regression
algorithm, a convolutional neural network, or a recurrent
neural network.

29. The method of claim 22, further comprising output-
ting the patient state as two or more MR-like 3D 1mages
showing tissue contrast.

30. The method of claim 22, wherein generating the
expanded potential patient measurements includes perform-
ing a principal component analysis (PCA) analysis of the 2D
iput 1mage.

31. The method of claim 22, wherein generating the
expanded potential patient measurements includes register-
ing the 2D input 1mage to a reference 2D 1mage, and using

a deformable 1mage registration technique to calculate the
2D DVF.

32. The method of claim 22, wherein generating the
expanded potential patient measurements includes using a
convolutional neural network (CNN) to estimate a 2D

optical flow between the 2D input 1mage and a 2D reference
image to calculate the 2D DVF.

33. A method for real-time tracking of a target, the method
comprising;
generating a dictionary of expanded potential patient

measurements and corresponding potential patient
states using a preliminary motion model;

training, using a machine learning technique, a correspon-
dence motion model relating an 1input patient measure-
ment to an output patient state using the dictionary;
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recerving a real-time stream of 2D 1mages from an image

acquisition device;

estimating, using the processor, patient states correspond-

ing to images in the real-time stream of 2D images
using the correspondence motion model;

tracking a radiation therapy target of a patient in real-time

using the patient states; and

outputting tracking information for the radiation therapy

target for display on a display device.

34. The method of claim 33, wherein the real-time stream
of 2D 1mages includes stereoscopic kV 1mages or pairs of
2D MR slice images.

35. The method of claim 33, further comprising generat-
ing the expanded potential patient measurements by calcu-
lating a 2D deformation vector field (DVF) on a 2D 1nput
image.

36. The method of claam 33, wherein generating the
expanded potential patient measurements includes performs-
ing a principal component analysis (PCA) analysis of the 2D
input 1mage.

37. The method of claam 33, wherein generating the
expanded potential patient measurements includes register-
ing the 2D mnput 1mage to a reference 2D 1mage, and using
a deformable 1mage registration technique to calculate the

2D DVFE.

38. The method of claam 33, wherein generating the
expanded potential patient measurements includes using a
convolutional neural network (CNN) to estimate a 2D
optical flow between the 2D input 1mage and a 2D reference
image to calculate the 2D DVF.

39. A method for generating real-time target localization
data, the method comprising;

generating, using a processor, a 3D deformation vector

field (DVF) parameterized by two or more scalars from

a 4D 1mage by:

calculating DVFs between each phase of the 4D 1mage
and a reference 1mage; and

performing a principal component analysis (PCA)
analysis on the DVFs;

generating potential 3D 1mages by:

randomly sampling the two or more scalars;

generating new 3D DVFs from the randomly sampled
two or more scalars; and

deforming the reference image to generate correspond-
ing patient states;

associating the corresponding patient states with respec-
tive potential patient measurements corresponding to
the randomly sampled two or more scalars;

calculating corresponding 2D DVFs between the respec-
tive potential patient measurements and a portion of the
reference 1mage;

performing a PCA on the corresponding 2D DVFs result-
ing i expanded potential patient measurements;

training, using a machine learning technique, a correspon-
dence motion model relating the expanded potential
patient measurements to the corresponding patient
states using a dictionary;

recerving a 2D i1mage of a patient during radiotherapy
treatment;

in real-time, calculating a measurement by:

calculating a 2D DVF between the 2D image and a
portion of the reference 1image; and

performing a PCA on the 2D DVF;
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inputting the measurement to the correspondence motion
model to generate PCA components of a reconstructed
3D DVF;

generating the reconstructed 3D DVF from the PCA

components; and

deforming the reference image with the reconstructed 3D

DVF to generate a current real-time 3D patient image.

40. The method of claim 39, further comprising output-
ting a current real-time patient state comprising the current
real-time 3D patient state or the reference image and the
reconstructed 3D DVF.

41. The method of claim 39, wherein the respective
potential patient measurements 1include a 2D 1mage
extracted from a 3D 1mage or a 2D projection through a 3D
1mage.

42. The method of claim 39, wherein the 4D 1mage 1s a 4D
MR 1mage or a 4D CBCT image.

e e e e e
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