a9y United States
a2y Patent Application Publication o) Pub. No.: US 2020/0133701 Al

Agrawal et al.

US 20200133701A1

43) Pub. Date: Apr. 30, 2020

(54)

(71)
(72)

(73)

(21)
(22)

(51)

142 ;
Local Memory | Hypervisor {10

Inierface

160

SOFTWARE SERVICE INTERVENTION IN A
COMPUTING SYSTEM

Applicant: Nutanix Inc., San Jose, CA (US)

Inventors: Akash Agrawal, Odisha (IN); Anupam
Chakraborty, Bangalore (IN)

Assignee: Nutanix, Inc., San Jose, CA (US)
Appl. No.: 16/173,260

Filed: Oct. 29, 2018

Publication Classification

Int. CL
GO6F 9/455 (2006.01)
GOGF 9/48 (2006.01)

Liser

Nefwork

ohlr Usfe AR R AUEE AR WP PR FURE PSR WS B WA TRIRI ATRI A W BUEY VI WSS OB WP RN YR s sy [T T = 3

(52) U.S. CL
CPC oo GOG6F 9/45558 (2013.01); GO6F
2009/45583 (2013.01); GO6F 9/485 (2013.01)

(57) ABSTRACT

A system may include multiple computing nodes, each
including a hypervisor, a controller virtual machine and
multiple virtual machines. The hypervisor may include a
host agent configured to start a service and determine
whether a performance of the service has met a criteria. I
the performance of the service has met the criteria, the
hypervisor may further determine whether the service has
any pending critical operations, and 1f no critical operations
are pending, stop the service. In some examples, each
service may create a process configured to monitor the
performance of the service. Examples of the performance of
the service may include memory utilization and the service
response time.

User VM
{14

e wheks I URW B IPUY EURS UEEE VUL R RS S AP AR s Al DEKE S VRS Sy MU R Jmr wws umer o mar el Al vl

LES AKX L£EI MK LIS MK

Cloud
~torage

136

il |44
Hypervisor [Z0 Local Memory
k Jeg
140
{30
Local Storage
Networked T
Siorage
[38

L Ui

I I I R R R I R R R R R R
* + + 4 $ + + 4+ &
* + $ + 4+ &

L xS R R R R

308101

US 2020/0133701 Al

DY IOMIBN

+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+* +*
+ +*

LR E R EEEEEEEEEN

+* +
+
+* +
+*
*

*

+*
+
MR R R RN EEEEEEEEEEIEI

MR R R R R EEEEEEEEIEIEEIEIIIN

+*

* e

+

LR NN AN AN AR E A RN E R
+*

MIOMIEN

el

+* +

* e

ot AJOLUSIA 12007
vl

- * H
+* + +
- H LB EEEEEEEEEEEEERE RN
+ +*
+* +
. . ’
MR R RN EEEEEEEE BB
wwu 0

MR EEEEEEE RS RN

MR R R EEEEEEEEEEEEIEEIEEIEEIEEIEIEIERIN]

07 J0SIMedAl

Apr. 30,2020 Sheet 1 of 5

+*
RN EEE AR R
+*

*
+*

211 wsbyisoH

LA BN NN

WS M A + Aff A AN A + A A A RS MM ARE AR AR

+*
+*
*
+
+*
+*
+*
+*
*

*
+*
+*
+
*
AR NN E AR R RN
+*
*
+*
+
*
AR R R R R R EEEEEEEEEEEIE BB BB I
+*

STT WA Jsjonuon

I R I R R I I R O I R R R R R I R I R R I O I I R R R R

AR NN R R RN

e e 09 |
S0BLSIU)
LR

LR R R R EEEEEEEEEEEEIEIEIN] MR R R R EEEEEEEEEEEIEIEN LR EEEEEEEEEEEEEEEEEIEIEIN] MR R R R EEEEEEEEEEEIEEIEIN

-+ +
+* +

AR E NN NN NN EEE NN

+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+* MR R R EEEEEEEEEEEEEIEIEIIN
+*
+*
+*
+*
+*
+*
+*

1

MR R R R R EEEEEEEEEEEEEEEEEIEEEEEEIEEEEEEEEIEEEEEEIEEIEEEEB BRI

Patent Application Publication

Patent Application Publication Apr. 30, 2020 Sheet 2 of § US 2020/0133701 Al

Receive a requesi to
start an operation

LR B I A I I O I I D I I O I I I I A I R I O N I U U I U U U U D O D U N R D N N U U U U I U R U N R U I U U N U I D D U N U B N
LR I I I U I I I I O O I O I U U I I I U U U O I I I O O D I D I U O I I U U I I I U U N O U D U O U U I U D U D U N U O U U O U U U O U U D U U D U D D U O U O O O

LR I I I
LR U B U U U N U U N U U I O

S th@
opefr:atson
critical”

LR RN R RN RN E RN

MR R R R R EEEEEEEEEEEEEEEEIEEIEEIEEIEEBIEIEEEIEEEEIEEIEEIEIEEIEEIEEIEEEEEBIEEEIEIEEIEEEEEIEEIEEEIEEEIEIEEIN

Update host agent {abie

LR I I I I I
L U L U U U U D N U N U U U B

+
LRI IR R I R I I NI I I I NI I I I I I I L N

Start the operation

LR I R I I I I I I A I I I I I I I I I I I I O I I I I I I I I D I I O I I I I I O I I O N I U U D I U U U D U N U N D D N N U I U U U U U U O U U N U U N I O D D D O U O N
MR R R R R EEEEEEEEEBIEEIEIEIEIEIEIEIEIEB BB

LR I I I I
AR N I D N U U I U U B O

Patent Application Publication Apr. 30, 2020 Sheet 3 of § US 2020/0133701 Al

Heceive arequest to
stop an operation

LR B I A I I O I I D I I O I I I I A I R I O N I U U I U U U U D O D U N R D N N U U U U I U R U N R U I U U N U I D D U N U B N
LR I I I U I I I I O O I O I U U I I I U U U O I I I O O D I D I U O I I U U I I I U U N O U D U O U U I U D U D U N U O U U O U U U O U U D U U D U D D U O U O O O

LR I I I
LR U B U U U N U U N U U I O

S
operation
critical”

LR RN R RN RN E RN

MR R R R R EEEEEEEEEEEEEEEEIEEIEEIEEIEEBIEIEEEIEEEEIEEIEEIEIEEIEEIEEIEEEEEBIEEEIEIEEIEEEEEIEEIEEEIEEEIEIEEIN

Lpdate host agent tabie

LR I I I I I
L U L U U U U D N U N U U U B

+
LRI IR R I R I I NI I I I NI I I I I I I L N

Stop the operation

LR I I I I
AR N I D N U U I U U B O

LR I R I I I I I I A I I I I I I I I I I I I O I I I I I I I I D I I O I I I I I O I I O N I U U D I U U U D U N U N D D N N U I U U U U U U O U U N U U N I O D D D O U O N
MR R R R R EEEEEEEEEBIEEIEIEIEIEIEIEIEIEB BB

Patent Application Publication Apr. 30, 2020 Sheet 4 of § US 2020/0133701 Al

+
+
+
+
. +
+
+
2 : 2 +
+
+
+
+
+
+
+
+
‘e
N ' +
+
+
+
+
+
+
. +
+
+
+
+
+
W
IR IR IR I I I I I I I I I I R I IR R R IR s
R R T
4+
‘. + .
+
+
+
+
+
+
+
+
£ +
+
B +
+
+
+
+
+
+
+ +
B e b W
1 ’ u g
+
+
+
+
+
+
+
. J +
+
+
+
+
W
OO OOOOOOO SOOI OSSOSO OOOO OSSOSO OSSOSO OSSOSO OOSS SO OSYYs
D N N A A A A A A N N N N N N A A A N N N N N N N A N N N N N N N N A N N N N N N A N A N N N N N N N A N N N N N N N N A N N N N N A A A A N N N N NN

LR RN RN EEEEEEEE BB

MR EE R R EEEEEN

Uldization exceeded 3
threshold?

crilical operalion being
performed?

*
+ + +
+* +
+*
+ 4
+
+ *
+*
+*
+*
+*
*
+*
+*
+*
+*
+*
*
+*
+*
. . *
+*
+*
*
+*
+*
+*
+*
+*
*
+*
+*
+*
+*
+*
*
+*
+*
+*
+*
+*
L I I B I I I A I I I I I I I I I I I I I O I I A I I I I I O I I A R I N I I U R I O I D U D U U U U N D R I R I R U N N U U U U U U R N U D U N U U U I U I U O I U O B B
LR B I I U U I I U U N U I U I U D U U O U I I U U D U D U D U I D I O U U B U U I U D U U O I U I D U U U U U U I I D I O O U U U D I O U D U U U D U O N J

MR R EEEEEEEEEEEEBIEEIEEEEIEEIEEEEEIEEIEEEEEEEEIEEIEEEEEIEEEEEEEEIEEEEEE BB

SIop service

+
LR R IR R I R IR R R R R R I R R R R 2
AR BN NN EEEEEEE RN

LR I N I I I I I I A I I I I I I I I I I I I I I I A I I I I I D I I O I I I I A O R I I N I U U N U U U U D D N U N D D N N R T U U U U U U O U U N U U I I O D U D N U O N

FIG, 3

Patent Application Publication Apr. 30, 2020 Sheet 5 of § US 2020/0133701 Al

+
+
+
+
Q +
+
+
H S] +
+
+
+
+
+
+
+
+
‘e
N ' +
+
+
+
+
+
+
q +
+
+
+
+
+
o
IR IR I I I I I I I I I I I I I I I I I R IR IR IR R I IR
I
+ +
+ + .
+
+
+
+
o
N 4 +
+
+
+
+
+
+
+
+
+
+
+ +
RO +
+* a +*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
o
O
N N AR AN

Has the

SEIVICE time excesded a
threshold?

LR RN RN EEEEEEEE BB

MR EE R R EEEEEN

crilical operabion being
performed?

*
+ + +
+* +
+*
+ 4
+
+ *
+*
+*
+*
+*
*
+*
+*
+*
+*
+*
*
+*
+*
. . *
+*
+*
*
+*
+*
+*
+*
+*
*
+*
+*
+*
+*
+*
*
+*
+*
+*
+*
+*
L I I B I I I A I I I I I I I I I I I I I O I I A I I I I I O I I A R I N I I U R I O I D U D U U U U N D R I R I R U N N U U U U U U R N U D U N U U U I U I U O I U O B B
LR B I I U U I I U U N U I U I U D U U O U I I U U D U D U D U I D I O U U B U U I U D U U O I U I D U U U U U U I I D I O O U U U D I O U D U U U D U O N J

MR R EEEEEEEEEEEEBIEEIEEEEIEEIEEEEEIEEIEEEEEEEEIEEIEEEEEIEEEEEEEEIEEEEEE BB

SIop service

+
LR R IR R I R IR R R R R R I R R R R 2
AR BN NN EEEEEEE RN

LR I N I I I I I I A I I I I I I I I I I I I I I I A I I I I I D I I O I I I I A O R I I N I U U N U U U U D D N U N D D N N R T U U U U U U O U U N U U I I O D U D N U O N

FIG. 4

US 2020/0133701 Al

SOFTWARE SERVICE INTERVENTION IN A
COMPUTING SYSTEM

TECHNICAL FIELD

[0001] Thais disclosure 1s related to software service inter-
vention. Examples of stopping software services while per-

forming non-critical operations 1n a computing system are
described.

BACKGROUND

[0002] In a computing system, a soltware service may
have bugs that cause unnecessary resource consumption of
the system. For example, software written 1n languages such
as Java, Python, C #, etc., does not free the objects itself.
Rather, 1t relies on garbage collection. When the garbage
collection fails to free up the memory, a memory leak
occurs. I a software service 1s running for an extended
period of time, such as two weeks, the memory leak may
accumulate to become significant 1n that it causes the
response time for delivering services to increase, which
aflects the performance of the system. When these problems
occur, the software service often needs to be intervened
upon, such as stopped and restarted to clear memory leaks
or regain other wasted computing resources. This software
service intervention, however, 1s sometimes diflicult to man-
age. For example, interrupting a software service prema-
turely may cause a loss to the system, especially when the
software service 1s performing critical operations that are
requested by other services. In that case, stopping and
restarting a software service may, on the other hand, impair
the system performance by interrupting critical operations. It
may also be diflicult for a system to determine, external to
a software service, when the software service 1s due to
restart or when the software service 1s performing critical
operations that should not be interrupted. This 1s particularly
so when the cause of the memory leak 1s from a library that
1s utilized by the software service. In such case, the library
code was already 1n a compiled format and cannot be readily
adapted to allow proper software service intervention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 1s a block diagram of a distributing com-

puting system implementing the software service interven-
tion i FIG. 1.

[0004] FIGS. 2A and 2B are diagrams of example pro-
cesses associated with managing a software service 1n
accordance with examples described herein.

[0005] FIGS. 3-4 are diagrams of example processes of
stopping a service in accordance with examples described
herein.

DETAILED DESCRIPTIONS

[0006] Certain details are set forth herein to provide an
understanding of described embodiments of technology.
However, other examples may be practiced without some of
these particular details. In some instances, well-known cir-
cuits, control signals, timing protocols, computer system
components, and/or solftware operations have not been
shown 1n detail 1n order to avoid unnecessarily obscuring the
described embodiments. Other embodiments may be uti-
lized, and other changes may be made, without departing
from the spirit or scope of the subject matter presented here.

Apr. 30, 2020

[0007] Software services described herein may include
one or more software programs that may be executed 1n a
computing system, whether on a desktop computer, an
electronic device or a cloud. The software program may be
an executable program that can be launched by a user, a
daemon that may be executed in an operation system, or an
application that may be executed on a mobile electronic
device. The software service may also be a hardware-based
application that executes 1n hardware, such as an application
specific integrated circuit (ASIC) or a field-programmable
gate array (FPGA). In a cloud system, the software service
may execute 1n a virtual machine (VM) or a hypervisor.

[0008] A software service intervention system described
herein may be implemented in a computing system. For
example, a host agent for managing software service inter-
vention may be implemented in a virtual machine over a
distributed computing system. In FIG. 3, a distributed com-
puting system generally includes multiple computing nodes
102, 112, and storage 140 connected to a network 122. The
network 122 may be any type of network capable of routing
data transmissions from one network device (e.g., comput-
ing node 102, computing node 112, and storage 140) to
another. For example, the network 122 may be a local area
network (LAN), wide area network (WAN), intranet, Inter-
net, or a combination thereof. The network 122 may be a
wired network, a wireless network, or a combination thereof.

[0009] The storage 140 may include local storage 124,
local storage 130, cloud storage 136, and networked storage
138. The local storage 124 may include, for example, one or
more solid state drives (SSD 126) and one or more hard disk
drives (HDD 128). Similarly, local storage 130 may include
SSD 132 and HDD 134. Local storage 124 and local storage
130 may be directly coupled to, included in, and/or acces-
sible by a respective computing node 102 and/or computing
node 112 without communicating via the network 122.
Other nodes, however, may access the local storage 124
and/or the local storage 130 using the network 122. Cloud
storage 136 may include one or more storage servers that
may be stored remotely to the computing node 102 and/or
computing node 112 and accessed via the network 122. The
cloud storage 136 may generally include any suitable type of
storage device, such as HDDs, SSDs, or optical drives.
Networked storage 138 may include one or more storage
devices coupled to and accessed via the network 122. The
networked storage 138 may generally include any suitable
type of storage device, such as HDDs, SSDs, and/or NVM
Express (NVMe). In various embodiments, the networked
storage 138 may be a storage area network (SAN). The
computing node 102 1s a computing device for hosting VMs
in the computing system of FIG. 1. The computing node 102
may be, for example, a server computer that executes a
software service.

[0010] The computing node 102 may be configured to
execute a hypervisor 110, a controller VM 108, and one or
more user VMs, such as user VMs 104 or 106. The user VMs
including user VM 104 and user VM 106 are virtual machine
instances executing on the computing node 102. The user
VMs including user VM 104 and user VM 106 may share a
virtualized pool of physical computing resources such as
physical processors and storage (e.g., storage 140). The user
VMs including user VM 104 and user VM 106 may each
have their own operating system, such as Windows or Linux.
While a certain number of user VMs are shown, generally
any suitable number may be implemented. User VMs may

US 2020/0133701 Al

generally be provided to execute any number of applications
which may be desired by a user.

[0011] The hypervisor 110 may be any type of hypervisor.
For example, the hypervisor 110 may be ESX, ESX(1),
Hyper-V, KVM, or any other type of hypervisor. The hyper-
visor 110 manages the allocation of physical resources (such
as storage 140 and physical processors) to VMs (e.g., user
VM 104, user VM 106, and controller VM 108) and per-
forms various VM related operations, such as creating new
VMs and cloning existing VMs. Each type of hypervisor
may have a hypervisor-specific API through which com-
mands to perform various operations may be communicated
to the particular type of hypervisor. The commands may be
formatted 1n a manner specified by the hypervisor-specific
API for that type of hypervisor. For example, commands
may utilize a syntax and/or attributes specified by the
hypervisor-specific API.

[0012] Controller VMs (CVMs) described herein, such as
the controller VM 108 and/or controller VM 118, may
provide services for the user VMs 1n the computing node. As
an example of functionality that a controller VM may
provide, the controller VM 108 may provide virtualization
of the storage 140. Accordingly, storage 140 may be referred
to as a storage pool. Controller VMs may provide manage-
ment of the distributed computing system shown in FIG. 1.
Examples of controller VMs may execute a variety of
software and/or may serve the I/O operations for the hyper-
visor and VMs running on that node. In some examples, an
SCSI controller, which may manage SSD and/or HDD
devices described herein, may be directly passed to the
CVM, e.g., leveraging PCI Pass-through in some examples.
In this manner, controller VMs described herein may man-
age mput/output (I/O) requests between VMs on a comput-
ing node and available storage, such as storage 140.

[0013] The computing node 112 may include user VM
114, user VM 116, a controller VM 118, and a hypervisor

120. The user VM 114, user VM 116, the controller VM 118,
and the hypervisor 120 may be implemented similarly to
analogous components described above with respect to the
computing node 102. For example, the user VM 114 and
user VM 116 may be implemented as described above with
respect to the user VM 104 and user VM 106. The controller
VM 118 may be implemented as described above with
respect to controller VM 108. The hypervisor 120 may be
implemented as described above with respect to the hyper-
visor 110. In the embodiment of FIG. 1, the hypervisor 120
may be a different type of hypervisor than the hypervisor
110. For example, the hypervisor 120 may be Hyper-V,
while the hypervisor 110 may be ESX(1). In some examples,
the hypervisor 110 may be of a same type as the hypervisor

120.

[0014] The controller VM 108 and controller VM 118 may
communicate with one another via the network 122. By
linking the controller VM 108 and controller VM 118
together via the network 122, a distributed network of
computing nodes including computing node 102 and com-
puting node 112 can be created.

[0015] Controller VMs, such as controller VM 108 and
controller VM 118, may each execute a variety of services
and may coordinate, for example, through communication
over network 122. Services running on controller VMs may
utilize an amount of local memory to support their opera-
tions. For example, services running on controller VM 108
may utilize memory 1n local memory 142. Services running

Apr. 30, 2020

on controller VM 118 may utilize memory in local memory
144. The local memory 142 and local memory 144 may be
shared by VMs on computing node 102 and computing node
112, respectively, and the use of local memory 142 and/or
local memory 144 may be controlled by hypervisor 110 and
hypervisor 120, respectively. Moreover, multiple instances
of the same service may be running throughout the system—
¢.2. a same services stack may be operating on each con-
troller VM. For example, an instance of a service may be
running on controller VM 108 and a second instance of the
service may be running on controller VM 118.

[0016] Generally, controller VMs described herein, such
as controller VM 108 and controller VM 118 may be
employed to control and manage any type of storage device,
including all those shown 1n storage 140 of FIG. 1, including
local storage 124 (e.g., SSD 126 and HDD 128), cloud
storage 136, and networked storage 138. Controller VMs
described herein may implement storage controller logic and
may virtualize all storage hardware as one global resource
pool (e.g., storage 140) that may provide reliability, avail-
ability, and performance. IP-based requests are generally
used (e.g., by user VMs described herein) to send I/O
requests to the controller VMs. For example, user VM 104
and user VM 106 may send storage requests to controller
VM 108 using over a virtual bus. Controller VMs described
herein, such as controller VM 108, may directly implement
storage and I/O optimizations within the direct data access
path. Communication between hypervisors and controller
VMs described herein may occur using IP requests.

[0017] Note that controller VMs are provided as virtual
machines utilizing hypervisors described herein—ior
example, the controller VM 108 1s provided behind hyper-
visor 110. Since the controller VMs run “above” the hyper-
visors, examples described herein may be implemented
within any virtual machine architecture because the control-
ler VMs may be used in conjunction with generally any
hypervisor from any virtualization vendor.

[0018] Virtual disks (vDisks) may be structured from the
storage devices 1n storage 140, as described herein. A vDisk
generally refers to the storage abstraction that may be
exposed by a controller VM to be used by a user VM. In
some examples, the vDisk may be exposed via 1SCSI
(“internet small computer system interface”) or NFS (“net-
work file system”™) and may be mounted as a virtual disk on
the user VM. For example, the controller VM 108 may
expose one or more vDisks of the storage 140 and the
hypervisor may attach the vDisks to one or more VMs, and
the virtualized operating system may mount a vDisk on one

or more user VMSs, such as user VM 104 and/or user VM
106.

[0019] During operation, user VMs (e.g., user VM 104
and/or user VM 106) may provide storage input/output (I/0)
requests to controller VMs (e.g., controller VM 108 and/or
hypervisor 110). Accordingly, a user VM may provide an I/O
request over a virtual bus to a hypervisor as an Internet
Small Computer system Interface (1ISCSI) and/or Network
File system (NFS) request. The 1SCSI generally refers to an
IP-based storage networking standard for linking data stor-
age facilities together. By carrying SCSI commands over IP
networks, 1SCSI can be used to facilitate data transiers over
intranets and to manage storage over any suitable type of
network or the Internet. The 1SCSI protocol allows 1SCSI
initiators to send SCSI commands to 1SCSI targets at remote
locations over a network. In some examples, user VMs may

US 2020/0133701 Al

send I/O requests to controller VMs 1n the form of NES
requests. The NFS refers to an IP-based file access standard
in which NFS clients send file-based requests to NFS servers
via a proxy folder (directory) called “mount point”. Gener-
ally, then, examples of systems described herein may utilize
an IP-based protocol (e.g., 1ISCSI and/or NES) to commu-
nicate between hypervisors and controller VMs.

[0020] During operation, examples of user VMs described
herein may provide storage requests using an IP based
protocol, such as SMB. The storage requests may designate
the IP address for a controller VM from which the user VM
desires I/O services. The storage request may be provided
from the user VM to a virtual switch within a hypervisor to
be routed to the correct destination. For examples, the user
VM 104 may provide a storage request to hypervisor 110.
The storage request may request I/0O services from controller
VM 108 and/or controller VM 118. If the request 1s to be
intended to be handled by a controller VM 1n a same service
node as the user VM (e.g., controller VM 108 1n the same
computing node as user VM 104) then the storage request
may be internally routed within computing node 102 to the
controller VM 108. In some examples, the storage request
may be directed to a controller VM on another computing
node. Accordingly, the hypervisor (e.g., hypervisor 110)
may provide the storage request to a physical switch to be
sent over a network (e.g., network 122) to another comput-
ing node running the requested controller VM (e.g., com-
puting node 112 runming controller VM 118).

[0021] Accordingly, hypervisors described herein may
manage I/0 requests between user VMs 1n a system and a
storage pool. Controller VMs may virtualize 1/0 access to
hardware resources within a storage pool according to
examples described herein. In this manner, a separate and
dedicated controller (e.g., controller VM) may be provided
for each and every computing node within a virtualized
computing system (e.g., a cluster of computing nodes that
run hypervisor virtualization software), since each comput-
ing node may include its own controller VM. Each new
computing node 1n the system may include a controller VM
to share in the overall workload of the system to handle
storage tasks. Therefore, the examples described herein may
be advantageously scalable, and may provide advantages
over approaches that have a limited number of controllers.
Consequently, examples described herein may provide a
massively-parallel storage architecture that scales as and
when hypervisor computing nodes are added to the system.

[0022] In some examples, the hypervisor, such as hyper-
visor 110, may include a host agent 112 configured to
mediate communication between controller VM 108 and
hypervisor 110. For example, host agent 112 may simulate
a secure shell (SSH) connection to use a client/service
socket to communicate from controller VM 108 to hyper-
visor 110. The host agent 112 may also be configured to
manage software services. For example, host agent 112 may
be configured to launch and/or stop one or more software
services. In some examples, host agent 112 may be config-
ured to access a host agent table and update the host agent
table before starting or stopping a service, where the host
agent table contains information about the services. For
example, the host agent table may contain information that
indicates when a critical operation 1s performed by a soft-
ware service to be stopped.

[0023] Examples of critical operations may include a
disaster recovery, such as backup of data in a storage device.

Apr. 30, 2020

In contrast, examples of non-critical operations may include
collecting statistical data off the network. In some examples,
the host agent table may be contained 1n a local memory,
such as memory 142 and accessed by the hypervisor 110.
The host agent table may also be contained 1n a local storage,
such as 124, 130, a cloud storage such as 136, and a
networked storage such as 130, which may be shared by one
or more computer nodes 102, 112 on the computing net-
work.

[0024] In some examples, each of the services launched by
the host agent 112 may be configured to perform seli-
diagnosis and determine whether that service needs to be
re-started. In performing the self-diagnosis operation, a
process may determine whether the service performance has
met a criteria, for example, whether the service performance
has reached below a threshold. In some examples, the
service performance may include memory utilization or
service response time. The service performance will have
reached below a threshold when the service has cumula-
tively caused significant memory leaks or the system
response time has exceeded a threshold, in which case the
service needs to be re-started. In some examples, the host
agent may be configured to access the host agent table to
determine whether the service can be immediately re-started
or whether a re-start needs to be suspended. For example, 1f
a service 1s performing a critical operation, the service may
not be re-started immediately. On the other hand, 1f a service
1s not currently performing any critical operation and the
service performance has reached below a threshold, the
service may be stopped immediately and re-started.

[0025] Examples of systems described herein may include
one or more administrator systems, such as admin system
158 of FIG. 1. The administrator system may be imple-
mented using, for example, one or more computers, servers,
laptops, desktops, tablets, mobile phones, or other comput-
ing systems. In some examples, the admin system 158 may
be wholly and/or partially implemented using one of the
computing nodes of a distributed computing system
described herein. However, in some examples (such as
shown 1n FIG. 1), the admin system 158 may be a diflerent
computing system from the virtualized system and may be
in communication with a CVM of the virtualized system
(e.g., controller VM 108 of FIG. 1) using a wired or wireless
connection (e.g., over a network).

[0026] Administrator systems described herein may host
one or more user interfaces, e.g., user intertace 160. The user
interface may be implemented, for example, by displaying a
user interface on a display of the administrator system. The
user interface may receive mput from one or more users
(e.g., administrators) using one or more input device(s) of
the administrator system, such as, but not limited to, a
keyboard, mouse, touchscreen, and/or voice input. The user
interface 160 may provide input to controller VM 108 and/or
may communicate with the host agent 112. The user inter-
face 160 may be implemented, for example, using a web
service provided by the controller VM 108 or one or more
other controller VMs described herein. In some examples,
the user interface 160 may be implemented using a web
service provided by controller VM 108 and information
from controller VM 108 may be provided to admin system
158 for display 1n the user interface 160.

[0027] Administrator systems may have access to (e.g.,
receive data from and/or provide data to) any number of
clusters, including a single cluster or multiple clusters. In the

US 2020/0133701 Al

example of FIG. 1, the admin system 158 may communicate
with the host agent 112 to start or stop a service.

[0028] With reference to FIG. 2A, a host agent (e.g., 112
in FIG. 1) may manage various software services. For
example, a process 200 associated with a service may
receive a request to start an operation at 202. The request
may be from one or more processes of a service. The request
may also be from another service. For example, a disaster
recovery (DR) service may receive a request to start a
backup operation. A network service may receive a request
to obtain statistics of the network. Before starting the
operation at 208, the process may determine whether the
operation to be started includes any critical operations at
204. In some examples, the host agent may include a host
agent table to record information about the critical opera-
tions that are pending. For example, 11 the operation includes
a critical operation, the process may update the host agent
table at 206 by inserting information about the critical
operation to be started in the host agent table. In some
examples, critical operations may be categorized into vari-
ous types of operations, such as BackupVMI1, BackupVM2,
or other disaster recoveries. In some examples, each of the
critical operations may have multiple 1nstances as initiated
by one or more services. Thus, the host agent table may
include multiple entries, each entry corresponding to each
type of critical operation. The host agent table may also
include a count number associated with each type of critical
operation. When a request for each critical operation 1is
received from a process or service, the count number for that
critical operation increments by one. By the time the process
starts the operation at 208, information about all of the
critical operations that are in operation (pending) in the
service will have been fully recorded in the host agent table.

[0029] With reference to FIG. 2B, a host agent (e.g., 112
in FIG. 1) may also be configured to stop an operation. For
example, process 210 may receive a request to stop an
operation at 212. Before stopping the operation at 218, the
process may determine whether the operation to be stopped
includes any critical operations at 214. If the service
includes a critical operation, the process may update the host
agent table at 216. For example, the process may look for the
entry to the type of critical operation to be stopped and
decrease the count number associated with that type of
critical operation.

[0030] The host agent table may include any suitable data
structure. For example, the host agent table may include a
hash table, which may store each type of critical operation
and the associated count number of instances. In updating
the host agent table, the hash table may receive the type of
the critical operation to be started or stopped 1n a new
service, provide an index to the count number associated
with the type of critical operation and update the count
number based on the index. In some or other examples, other
suitable data structures may be used for the host agent table.
For example, the host agent table may include a flat file 1n
an operation system, or a table 1n a database system. The
host agent table may be dynamically updated when an
operation 1s started or stopped. When no critical operation 1s
pending, the hash table may be cleaned up. For example,
when the count number associated with an entry 1s decreased
to zero, that entry may be removed from the hash table.
When the number of entries in the hash table 1s zero, the
hash table may become empty.

Apr. 30, 2020

[0031] FIG. 3 illustrates a diagram of an example process
of stopping a service 1n accordance with examples described
herein. The example process may be implemented in the
host agent (e.g., 112 1n FIG. 1). In FIG. 3, a process 300 may
include spawning a process at a time interval at 302. The
spawned process may determine a memory utilization of a
service at 304. For example, when a new service 1s started,
the host agent may also spawn a new thread to monitor
memory utilization of the service. Alternatively, and/or
additionally, the new service may spawn a new thread to
monitor the memory utilization of the service itself. In
monitoring the memory utilization of the service, the
spawned thread may determine whether the memory utili-
zation of the service has exceeded a threshold at 306. For
example, 1f a service has a memory leak, the memory leak
may accumulate over time to cause the memory utilization
to exceed a threshold, such as 90%, 80%, or other suitable
threshold. If the memory utilization has not exceeded the
threshold, the process may continue monitoring the memory
utilization at 304 until the memory utilization has exceeded
the threshold. In such case, the process may determine

whether the service has any critical operations pending at
308.

[0032] In some examples, in determining whether the
service has any critical operations pending, the process may
query the host agent table. For example, the process may
interrogate a database to access the host agent table. The
process may also access a hash table of the host agent. If the
host agent table 1s not empty, it means that at least one
instance of a critical operation 1s still pending. In such case,
the process 300 may wait for a time period, such as 60
seconds, and continue checking at 308 until no critical
operation 1s pending. When no critical operation 1s pending,
the process 300 may proceed to stop the service at 312. In
some examples, 1f process 300 1s a spawned thread of a
service to be stopped, stopping the service at 312 includes
killing the thread itself. Additionally, before stopping the
service, process 300 may also record logs at 310 to store
information about the stopped service. For example, the log
may contain the services being stopped and the reasons (e.g.,
memory leaks or abnormal memory utilization) for which
cach of the services 1s stopped. The log may also contain
debugging information that may be captured by the process.

[0033] In some examples, the process may be spawned at
302 at a time interval that 1s determined by the system. For
example, the time 1nterval to spawn the process for memory
utilization monitoring may be 24 hours. The time interval
may also be fewer or more than 24 hours.

[0034] FIG. 4 illustrates a diagram of an example process
ol stopping a service 1n accordance with examples described
herein. The example process may be implemented in the
host agent (e.g., 112 1n FIG. 1). In FIG. 4, a process 400 may
include spawning a process at a time interval at 402. The
spawned process may determine a service time at 404. For
example, when a new service 1s started, the host agent may
also spawn a new thread to monitor the service time.
Alternatively, and/or additionally, the new service may itself
spawn a new thread to monitor the service time. In some
examples, when determining the service time, the process
may perform a self-test and measure the service time. For
example, the process may create a self-test calling service
entry pomnt with predetermined parameters and values.
When the entry point 1s picked up by the service, the self-test
calling service may be performed. In determining the service

US 2020/0133701 Al

time, the process may measure the time it takes to complete
the seli-test 1n the system. The process may compare the
actual service time to an expected service time, which may
be based on the predetermined parameters and values when
creating the service entry point. In other words, the service
time of the self-test may be relative to the expected service
time of the seli-test.

[0035] With further reference to FIG. 4, process 400 may
determine whether a measured service time has exceeded a
threshold. For example, a measured service time may be
compared to a threshold that has a value of a time, e.g., 10
ms. In another example, a measured service time may be
relative to an expected service time. For example, the
threshold may have a value that indicates a maximum
allowed delay of completing the service relative to the
expected service time. The process may continue monitoring
the service time at 404 until the service time has exceeded
the threshold. In such case, the process may determine
whether the service has any critical operations pending at

408.

[0036] In some examples, 1n determining whether the
service has any critical operations pending, the process may
query the host agent table. If the host agent table i1s not
empty, 1t means that at least one instance of a critical
operation 1s still pending. In such case, the process 400 may
wait for a time period, such as 60 seconds, and continue
checking at 408 until no critical operation 1s pending. The
process 400 may proceed to stopping the service at 412. In
some examples, 1f process 400 1s a spawned thread of the
service to be stopped, stopping the service at 412 includes
killing the thread 1itself. Additionally, process 400 may also
record logs at 410 to store information about the stopped
service. For example, the log may contain the services being
stopped and the reasons (e.g., excessive service time) for
which each of the services 1s stopped.

[0037] In some examples, the process may be spawned at
402 at a time 1nterval that 1s determined by the system. For
example, the time interval to spawn the process for moni-
toring the service time may be 1 hour. The time 1nterval may
also be fewer or more than 1 hour.

[0038] The various embodiments described herein provide
advantages over existing systems and methods in managing
soltware services 1n a computing system. For example, with
the host agent, e.g., 112 1n FIG. 1, services that may cause
memory leaks or slow service time may be safely stopped
without 1nterrupting critical operations. Further, services
that have caused memory leaks or have slowed down the
service time may be stopped at an “optimal” time to avoid
being stopped prematurely or too late.

[0039] From the foregoing it will be appreciated that,
although specific embodiments have been described herein
for purposes of 1illustration, various modifications may be
made while remaining with the scope of the claimed tech-
nology. For example, the processes as described 1n FIGS. 3
and 4 may be implemented 1n a host agent (e.g., 112 1n FIG.
1), as a spawned thread of the service being monitored, the
spawned thread may communicate with other processes
(e.g., memory utilization monitoring) via inter-process com-
munication (IPC). In some examples, the spawned process
in FIG. 3 or 4 may be independent of the service being
monitored, where the spawned process may communicate
with the service via other methods, such as using a common
memory, a computer file or a database repository.

Apr. 30, 2020

[0040] In some examples, various processes in FIGS. 3-4
may also be spawned at different time intervals and may be
spawned at one or multiple times, each at a different time
interval. In other vanations, processes 1n FIGS. 3-4 may also
be combined into one process that momitors the memory
utilization and the service time.

[0041] Examples described herein may refer to various
components as “coupled” or signals as being “provided to”
or “received from” certain components. It 1s to be under-
stood that 1n some examples the components are directly
coupled one to another, while 1n other examples the com-
ponents are coupled with itervening components disposed
between them. Similarly, signal may be provided directly to
and/or received directly from the recited components with-
out intervening components, but also may be provided to
and/or received from the certain components through inter-
vening components.

[0042] Various functions described herein may be imple-
mented in hardware, software executed by a processor,
firmware, or any combination thereof. If implemented 1n
software (e.g., 1n the case of the methods described herein),
the functions may be stored on or transmitted over as one or
more 1structions or code on a computer-readable medium.
Computer-readable media includes both non-transitory com-
puter storage media and communication media including
any medium that facilitates transier of a computer program
from one place to another. A non-transitory storage medium
may be any available medium that can be accessed by a
general purpose or special purpose computer. By way of
example, and not limitation, non-transitory computer-read-
able media can comprise RAM, ROM, electrically erasable
programmable read only memory (EEPROM), or optical
disk storage, magnetic disk storage or other magnetic stor-
age devices, or any other non-transitory medium that can be
used to carry or store desired program code means in the
form of instructions or data structures and that can be
accessed by a general-purpose or special-purpose computer,
or a general-purpose or special-purpose processor.

[0043] Other examples and implementations are within
the scope of the disclosure and appended claims. For
example, due to the nature of software, functions described
above can be implemented using soitware executed by a
processor, hardware, firmware, hardwiring, or combinations
of any of these. Features implementing functions may also
be physically located at various positions, including being
distributed such that portions of functions are implemented
at different physical locations.

[0044] Also, as used herein, including in the claims. “or”
as used 1n a list of 1tems (for example, a list of items prefaced
by a phrase such as “at least one of” or “one or more of”)
indicates an inclusive list such that, for example, a list of at
least one of A, B, or C means A or B or C or AB or AC or
BC or ABC (1.e., A and B and C). Also, as used herein, the
phrase “based on” shall not be construed as a reference to a
closed set of conditions. For example, an exemplary step
that 1s described as “based on condition A” may be based on
both a condition A and a condition B without departing from
the scope of the present disclosure. In other words, as used
herein, the phrase “based on” shall be construed in the same
manner as the phrase “based at least 1n part on.”

[0045] From the foregoing it will be appreciated that,
although specific embodiments of the present disclosure
have been described herein for purposes of illustration,
various modifications may be made without deviating from

US 2020/0133701 Al

the spirit and scope of the present disclosure. The descrip-
tion herein 1s provided to enable a person skilled 1n the art
to make or use the disclosure. Various modifications to the
disclosure will be readily apparent to those skilled 1n the art,
and the generic principles defined herein may be applied to
other variations without departing from the scope of the
disclosure. Thus, the disclosure 1s not limited to the
examples and designs described herein, but 1s to be accorded
the broadest scope consistent with the principles and novel
features disclosed herein.
1. A system comprising:
a computing node including a hypervisor, wherein the
hypervisor includes a host agent configured to:
start a service;
determine whether a performance of the service has
met a criteria;
if the performance of the service has met the criteria:

determine whether the service has any pending criti-
cal operations;
11 1t 1s determined that the service has no pending
critical operation, stop the service.
2. The system of claim 1, wherein the criteria comprises
at least one of:

a memory utilization of the service has exceeded a
memory threshold; and

a service time of the service has exceeded a service

threshold.

3. The system of claam 1, wherein the host agent 1s
configured to after starting the service, spawn a process to
determine whether the performance of the service has met
the critena.

4. The system of claim 3, wherein the spawned process 1s
configured to:

determine that the performance of the service has met the
criteria 1f a service time associated with the service has

exceeded a threshold.

5. The system of claim 4, wherein the spawned process 1s
configured to determine the service time by executing a
self-diagnosis service to determine the service time based on
a response time for the self-diagnosis service.

6. The system of claim 1, wherein the host agent 1s
configured to:

when determining that the service has no pending critical
operation and before stopping the service, record in a
log information about a reason to stop the service.

7. The system of claim 1, wherein the hypervisor includes
a host agent table containing information about pending
critical operations associated with the service.

8. The system of claim 25, wherein the host agent 1s
further configured to:

responsive to receiving a request to stop the operation
associated with the service, update the host agent table
by decreasing the number of instances associated with
an entry for the operation to be stopped or removing the
entry for the operation if the operation to be stopped
includes a critical operation; and stop the operation.

9. The system of claam 8, wherein the host agent 1s
configured to determine whether the service has any pending
critical operations by:

determining that the service has no pending critical opera-
tions 1f a number of entries for critical operations 1s
zero; otherwise, determining that the service has at
least a pending critical operation.

Apr. 30, 2020

10. The system of claim 7, wherein the host agent table 1s
a hash table.
11. A method comprising, by a host agent of a computing
node 1n a distributed system:
starting a service;
determining whether a performance of the service has met
a criteria;
1f the performance of the service has met the criteria:
determining whether the service has any pending criti-
cal operations;
if 1t 1s determined that the service has no pending
critical operation, stopping the service.
12. The method of claim 11, wherein the criteria com-
prises at least one of:
a memory utilization of the service has exceeded a
memory threshold; and
a service time of the service has exceeded a service
threshold.
13. The method of claim 12, determining whether the
performance of the service has met the criteria comprises:
by the host agent, after starting the service, spawning a
process configured to
if a memory utilization of the service has exceeded a
threshold, determine that the performance of the
service has met the criteria.
14. The method of claim 12, determining whether the
performance of the service has met the criteria comprises:
by the host agent, after starting the service, spawning a
process configured to
determining that the performance of the service has met
the critenia if a service time associated with the
service has exceeded a threshold.
15. The method of claim 14, wherein determining the
service time associated with the service comprises:
executing a self-diagnosis service to determine the service
time based on a response time for the self-diagnosis
service.
16. The method of claim 11 further comprising, by the
host agent:
when determining that the service has no pending critical
operation and before stopping the service, recording in
a log information about a reason to stop the service.
17. The method of claim 11 further comprising, by the
host agent:
responsive to receiving a request to start an operation
associated with the service, updating a host agent table
to include the operation to be started or to increment a
number of instances associated with an entry for the
operation 1f the operation includes the critical opera-
tion, and starting the operation.
18. The method of claim 17 further comprising, by the
host agent:
responsive to receiving a request to stop the operation
associated with the service, updating the host agent
table by decreasing the number of instances associated
with an entry for the operation to be stopped or remov-
ing the entry for the operation if the operation includes
a critical operation, and stopping the operation.
19. The method of claim 18, determining whether the
service has any pending critical operations comprises:
determining that the service has no pending critical opera-
tions if the number of entries associated with critical
operations 1s zero; otherwise, determining that the
service has at least a pending critical operation.

US 2020/0133701 Al

20. The method of claim 18, wherein the host agent table
1s a hash table.

21. A system comprising;:

a computing node including a hypervisor, wherein the

hypervisor includes a host agent configured to:

start a service;

spawn a process associated with the service, the spawned

process 1s configured to:
determine a memory utilization of the service;
determine whether the memory utilization of the ser-
vice has exceeded a threshold;
if the memory utilization of the service has exceeded
the threshold:
determine whether the service has any pending criti-
cal operations;
11 1t 1s determined that the service has no pending
critical operation, stop the service.

22. The system of claam 21, wherein the hypervisor
includes a host agent table containing information about
pending critical operations associated with the service, and
the host agent 1s configured to:

responsive to recerving a first request to start an operation

associated with the service, update the host agent table
to include the operation to be started or to increment a
number of 1nstances associated with an entry for the
operation 1f the operation includes the critical opera-
tion, start the operation.

23. The system of claim 26, wherein the host agent 1s
configured to determine whether the service has any pending
critical operations by:

determining that the service has no pending critical opera-

tions 1f a number of entries for critical operations 1s
zero; otherwise, determining that the service has at
least a pending critical operation.

24. The system of claim 3, wherein the spawned process
1s configured to determine that the performance of the
service has met the criteria 1f a memory utilization of the
service has exceeded a threshold.

25. The system of claim 7, wherein the host agent 1s
configured to:

responsive to receiving a request to start an operation

associated with the service, update the host agent tablet
to include the operation to be started or to increment a

Apr. 30, 2020

number of instances associated with an entry for the
operation if the operation to be started includes a
critical operation, and start the operation.
26. The system of claim 22, wherein the host agent 1s
further configured to:

responsive to receiving a second request to stop the
operation associated with the service, update the host
agent table by decreasing the number of instances
associated with an entry for the operation to be stopped
or removing the entry for the operation if the operation
includes a critical operation, and stop the operation.

277. A non-transitory computer readable medium compris-
ing instructions that, when executed, cause a computing
node 1n a distributed system to:

start a service;

determine whether a performance of the service has met

a criteria;
1f the performance of the service has met the criteria:
determine whether the service has any pending critical
operations;
if 1t 1s determined that the service has no pending
critical operation, stop the service.

28. The medium of claim 27, wherein the criteria com-
prises at least one of:

a memory utilization of the service has exceeded a

memory threshold; or

a service time of the service has exceeded a service

threshold.

29. The medium of claim 28, wherein instructions for
determining whether the performance of the service has met
the criteria further comprising instructions for:

after starting the service, spawn a process configured to:

if a memory utilization of the service has exceeded a
threshold, determine that the performance of the
service has met the criteria.

30. The medium of claim 28, wherein instructions for
determining whether the performance of the service has met
the criteria further comprising instructions for:

after starting the service, spawn a process configured to:

determine that the performance of the service has met
the criteria 1f a service time associated with the
service has exceeded a threshold.

e % e ex 7

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description/Claims
	Page 13 - Claims

