(19)

United States

US 20200134248A1

12y Patent Application Publication o) Pub. No.: US 2020/0134248 A1

Schieve

43) Pub. Date: Apr. 30, 2020

(54)

(71)

(72)

(73)

(21)
(22)

(63)

(51)

METHOD OF DEBUGGING A PROCESSOR

Advanced Micro Devices, Inc., Santa
Clara, CA (US)

Applicant:

Inventor: Eric W. Schieve, Austin, TX (US)

Advanced Micro Devices, Inc., Santa
Clara, CA (US)

Assignee:

Appl. No.: 16/723,614

Filed: Dec. 20, 2019

Related U.S. Application Data

Continuation of application No. 15/950,147, filed on
Apr. 10, 2018, now Pat. No. 10,534,881.

Publication Classification

Int. CIL.
GO6F 30/3323
GO6F 30/30

(2006.01)
(2006.01)

--

I
-
.

e

)
3
3
it
e
3
3
D
m.
L.
o~

Type3 Subtests

..

.
ttttt

.
--

E Type O Control

i Type 3 Control

| SAMPLE_FEW | SAMIPLE NO_REPL
| DATA :ﬁm ii‘:ig L DATA VIRT ALIAS

| LOUE VIRT Al } SHARED MEM

| SHARED MENS ~

§ CODE WRITABLE

¢ DEFLT PAGING = 4K d CODE RESTORE

L RAND PAGING = 16
i RESTORE DATA
 CRC

| TIMEOQUT = 10s

i SHIFT PHYS CODE
E THVIEQUT = 403

.

{ DEFLY PAGING = 16

(52) U.S. CL
CPC

0000000000

GO6F 30/3323 (2020.01); GO6F 30/30
(2020.01)
(57) ABSTRACT
Methods for debugging a processor based on executing a
randomly created and randomly executed executable on a
fabricated processor. The executable may execute via startup
firmware. By implementing randomization at multiple levels
in the testing of the processor, coupled with highly specific
test generation constraint rules, highly focused tests on a
micro-architectural feature are implemented while at the
same time applying a high degree of random permutation 1n
the way 1t stresses that specific feature. This allows for the
detection and diagnosis of errors and bugs in the processor

that elude traditional testing methods. The processor Once
the errors and bugs are detected and diagnosed, the proces-

sor can then be redesigned to no longer produce the anoma-
lies. By eliminating the errors and bugs in the processor, a
processor with improved computational etliciency and reli-
ability can be fabricated.

 TypeN Subtests

<

oo

| Type N Control
L SAMIPLE RAND

i CODE VIRT ALIAS

| SHARED MEM

| DEFLT PAGING = &K
L RAND PAGING = 2
i SHIFT PHYS CODRE

| RE-RAND DATA

L TINMEQUT = 205

--

Patent Application Publication Apr. 30, 2020 Sheet 1 of 7 US 2020/0134248 Al

Figure 1
| Generate N Number of | 100
110 - Test Binaries : B
Link the N Number of
120 — Test Binaries to Form |
Test Library '
130 — | Randomize dataspace
140 Randomily Select M
' Test Binaries From
Test Library
- Allocate Each of the
150 —> M Test binaries to
- MX physical threads
Execute | | Execute Execute
160 o Test | Test | Test |
- Binary Binary Binary
1 2 W

--

Patent Application Publication Apr. 30, 2020 Sheet 2 of 7 US 2020/0134248 Al

Figure 2

200
500 e ——————
, h | Receive Tempiate for |
Template File | -+ Toct Tyne 210
for Test Type X | P

Generate i Number of
Subtest According to ¢ 220
template

\

Compile i Number of |
Subtestinto a Test = 530

205

Test Type X
Binaries.

Subtest 0
Subtest 1
Subtest 2

Subtesti-1

Patent Application Publication Apr. 30,2020 Sheet 3 of 7 US 2020/0134248 Al

Figure 3
5 310

 Randomly select 1 of | //

the i number of o
Control Data

subtests in Test

| Structure for Binary
L Test Type X =
—— |
320 —> Set Address Space
__ Vo
330 —— Set Paging
N

340 —2 Run selected subtest

———

¢
¢
[]
¢
¢
[]
¢
¢
[]
¢
¢
[]
t
W
qq .. e o, o, o o, o, o, o o, o o, o, o, o, o, o, o, o o o, o, o
l’
{ ooo i ooo

300

v
380 > Detect Error

US 2020/0134248 Al

v WQ%,W 1ISSL YOBY S04 SAINIINIIS BIRG JONUOTY roescossssmnedonsmmssscsssssnsee
... m 50T = LNOTNIL |
SO = L3N S0% = LNOINILL | .

ViV ONYYE-38 | 3000 SAHJ LJIHS |

3003 SAHd L3HHS 91 = BNIDY L143¢ | VAV 3HOLSIY |

57 = SNIOVS ONVY |

FHOLIIM 340 P = SNISYd 11430 |

NC = DINIDYd GNY Y

MY = DNIDYd L1430 TBYLINM 30600 | AN GIEVHS |
WIIA QIUMYHS 3N QIUVHS m
SWITY 1HIA GO0 |

QRNYY 31dINVYS 1438 ON FIdINYS | .

A4 TIAVS |

(O3] p BAAY O30T O SGA

{0330 £ BdAY |

Apr. 30, 2020 Sheet 4 of 7

$1510NS yadAl
S1$31GNnS odA
$15330NS TadAL

Patent Application Publication

Patent Application Publication Apr. 30, 2020 Sheet S of 7 US 2020/0134248 Al

7 start ops test_body rand 100 100 1 iQ,_S;
/ 1 MOVZX _REG MEMm Sw link_reg64 base link_regb4
f disp
/ 2 ADD_REG_MEMm link_regl6 base link_regt4 disp lock
510 ~ 1 SUB REG REGm link reglé alulés
\ 3 XADDm base link regb4 disp tink_regl6
\ 1 XADD _REGm alul6 link_reglf
1\ 1 LEAm link regl16 alu64d link regb4 disp
\) 2 CMPXCHG REGm alulf aluls
' end

> start ops main sequential

/ 1 SECTION initialize_regs
1 SMOV REG IMMm rbp 10 NO LABEL

{ 1 SMOV REG REGm r8 rdi NO LABEL
’ 1 SMOV_REG_REGm r9 rdi NO_LABFL
/ 1 SMOV REG REGm r10 rdi NO LABEL
_{f 1 SADD REG IMMm r8 0x1000 NO LABEL
510 < 1 SADD REG IMMm r9 Ox2000 NO LABFL
\ 1 SADD REG IMMm r10 0x3000 NO_LABEL
\ 1 Stest start:
| 1 SECTION test body
1 SDEC_REGm rhp NO_LABEL
1 Sinz test start
ang

~> start ops initialize _regs seguential
/ 1 MOV REG IMMm Srax reg init SNO LARFEL
/ 1 MOV REG IMMm Srbx reg init SNO LABEL
] 1 MOV_REG_IMMm Srox reg_init SNO_LABEL
1 MOV _REG IMMm Srdx reg_init SNO_LABEL
1 MOV REG IMMm Srsireg init SNO LABEL
1 MOV REG IMMm Srbp reg init SNO LABEL

510 < 1 MOV _REG IMMm $r8 reg init SNO_LABEL
N 1 MOV REG IMMm $r9 reg init SNO LABEL

\ 1 MOV_REG_IMMm $ri0 reg_init SNO_LABEL

\ 1 MOV_REG_IMMm $r11 reg_init SNO_LABEL

\ 1 MOV _REG _IMMm $ri2 reg init SNO_LABEL

\ 1 MOV REG IMMm Sri3 reg init SNO LABEL
1 MOV_REG_IMMm 5rid reg init SNO_LABEL
1 MOV REG IMMm 5r15 reg init SNO LABEL
end

Figure 5A

Patent Application Publication
540 T
X}}

520 ﬁ

el
520 —=

Id
M
N

3

f-’""' ~# displacement. <weight min max step mask>

Apr. 30,2020 Sheet 6 of 7 US 2020/0134248 A1l
range of randomized constants to ioad GPRs with 505

<N Max mask>

start immediates reg init

1 O 0OxFFF 1 OFFF O
end

start tokens link regl6

1 ax
end

start tokens link_regb4
1 rax
endg

start tokens alulsd
1 bx

1¢x

1o

1 St

end

start tokens alubd
1rbx

1 rex

1 rdx

1 rsi

end

start tokens base
1 rgi

1r8

19

1ri0

End

start tokens lock
1 LOCK
8 ryud

13is)
N ernd

start immediates disp
T O00xFF0 1 R O

Figure 5B

Patent Application Publication Apr. 30, 2020 Sheet 7 of 7 US 2020/0134248 Al

..

< e e Y

- Y o
: N, T
X g L)

4 N\ .7
--

614

610

- igU re b

US 2020/0134248 Al

METHOD OF DEBUGGING A PROCESSOR

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 15/950,147, filed on Apr. 10, 2018,
which 1s 1ncorporated by reference as 1t fully set forth.

BACKGROUND

[0002] The testing of a processor 1s a time consuming and
expensive process. Traditional testing of processor designs
involves two types of testing: pre-silicon verification and
post-silicon validation.

[0003] Pre-silicon verification involves running a simula-
tion of the processor 1n a virtual environment to detect
anomalies 1n the design. Often pseudo-random test genera-
tion 1s used to generate sequences of transactions at periodic
intervals to re-create real-life traflic scenarios that the pro-
cessor 1s likely to encounter. These pseudo-random tests
may provide randomized coverage of the ISA (Industry Set
Architecture) instruction set as well as processor modes,
virtualization, privilege rings, system management and
exceptions. However, pre-silicon verification tools do not
provide the combination of sharp focus and intense permu-
tation necessary to target specific iternal features of the
processor core. Instead, these tools use a massive number of
random cycles while using internal coverage tools to tell
when most of the internal nodes have been touched by the
stimulus. Not only 1s this process incredibly slow, 1t 1s
fundamentally limited by the ngid timing behavior of the
virtual test environment.

[0004] Post-silicon validation involves operating the fab-
ricated processor chips 1n actual application environments to
validate correct behaviors over specified operating condi-
tions. The objective of validation 1s to ensure that the
product provides a targeted level of customer experience in
terms of performance and function. Bug finding 1s not its
primary goal. However, validation 1s limited 1n its ability to
find bugs by the fact that actual application environments
operate 1n repetitive and predictable ways. Diagnostic appli-
cations and random exercisers are sometimes used as a part
of the validation process but these have significant liabili-
ties. Diagnostics and exercisers are limited 1n their eflec-
tiveness by their need to perform data integrity self-checking
as a pass/faill metric. This puts a tremendously restrictive
burden of rules on how tests can function 1n a multi-
processing environment. As a result, these data coherency
and sharing rules limit the permutation space that 1s critical
for finding functional bugs 1n the design.

[0005] Bugs and errors in the design of the processor
cause undesirable behaviors 1n the computer 1n which they
are installed. For example, a bug 1n the processor may result
in a deadlock, exceptions, stalls and data integrity failures.
When a deadlock occurs 1n a computer utilizing the proces-
sor, the computer must be restarted, and all of the user’s
unsaved data 1s likely lost. When a bug-induced exception
occurs, 1t may result 1n immediate termination of the user’s
application or a crash of the operating system, both of which
are likely to result 1n a loss of data and a loss of service of
the computer. Similarly, when other bug-induced exceptions
and stalls occur, the computer 1s slowed down as additional
computer resources are required to address the faults. In
addition, data integrity failures may allow incorrect data to

Apr. 30, 2020

be written to a user’s files or database. This may pose a
security vulnerability of the computer as the data integrity
faillure may be exploited to access secure data on the
computer.

[0006] There exists a need for a method of efliciently
identifying bugs resident in a fabricated processor that 1s not
limited by the restrictions found 1n the prior art. As a result
of identifying the bugs in the fabricated processor, the design
of the processor can then be improved to no longer produce
the 1dentified bugs and therefore improve the operation of
the computer in which the processor 1s installed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] A more detailed understanding may be had from
the following description, given by way of example in
conjunction with the accompanying drawings, wherein like
reference numerals 1n the figures indicate like elements, and
wherein:

[0008] FIG. 1 1s a flow diagram of the processor redesign
process 1n accordance with certain implementations;
[0009] FIG. 2 1s a flow diagram of the random subtest
generating process for a test type in accordance with certain
implementations;

[0010] FIG. 3 1s a flow diagram of the random runtime
execution process 1n accordance with certain implementa-
tions;

[0011] FIG. 4 1s a graphical representation of the relation-
ship between the test library and the Control Data Structure
in accordance with certain implementations;

[0012] FIG. 5A shows a portion of an example template
file 1n accordance with certain implementations;

[0013] FIG. 5B shows a portion of an example template
file 1n accordance with certain implementations; and
[0014] FIG. 6 1s a block diagram of a computer that may
utilize the processor to perform the debugging of the pro-
cessor 1n accordance with certain implementations.

DETAILED DESCRIPTION

[0015] Example embodiments of the debugging method
include receiving an input of a template file with a plurality
of test types. Then, for each of the plurality of test types, a
number of randomized subtests based on each respective
template file are generated and compiled to form a test
binary. The test binaries for each test type are then linked to
form a test library. A subset of the test binaries 1s then
randomly selected from the test library. Test binaries within
the subset of test binaries are then randomly executed on
physical threads according to a control data structure that 1s
associated with each test binary. Bugs and errors are then
detected 1n the random execution of the test binaries. The

processor 1s then redesigned based on the errors and bugs
detected.

[0016] Implementations of the present disclosed embodi-
ments diagnose errors 1n a processor micro-architecture by
executing a randomly created and randomly executed
executable on a fabricated processor. By implementing
randomization at multiple levels 1n the testing of the pro-
cessor, coupled with highly specific test generation con-
straint rules, implementations of the disclosed embodiments
are able to implement highly focused tests on a micro-
architectural feature while at the same time applying a high
degree of random permutation in the way it stresses that
specific feature. This allows for the detection and diagnosis

US 2020/0134248 Al

of errors and bugs 1n the processor that elude traditional
testing methods. Once the errors and bugs are detected and
diagnosed, the processor can be redesigned to no longer
produce the anomalies. By eliminating the errors and bugs
in the processor, a processor with improved computational
efliciency and reliability can be fabricated.

[0017] Another benefit from the high degree of focus
provided by the disclosed embodiments 1s that in a real-
world processor debug environment, there may exist a
number of very pervasive bugs that have not yet been fixed.
In these conditions, standard validation techniques are ren-
dered useless for finding additional new bugs as they repeat-
edly stumble across the known existing ones. Therefore,
many implementations of the disclosed embodiments can be
casily tuned to bypass (1.e., not stimulate known bug con-
ditions) by focusing tightly on microarchitectural structures,
which allows further in-depth testing to be performed. The
ability to tightly focus on microarchitectural functionality
allows the testing to be “tuned” and adapted based on
learnings developed during the debug process.

[0018] The disclosed embodiments enable and encourage
software behaviors that are entirely unorthodox as compared
to that of applications and diagnostic software. In this
manner, the disclosed embodiments easily apply stress to
corner case areas ol the processor microarchitecture that
may harbor bugs that cannot be found using the prior art.

[0019] By executing a multistage random testing process,
the disclosed embodiments are able to overcome the short
comings of the prior art, which results 1n a processor that 1s
more reliable and has greater computational efliciency.

[0020] FIG. 1 1s a flow diagram of a processor redesign
process 100 1n accordance with certain implementations and
discussed with reference to FIGS. 2-6. A predetermined
number, N, of test binaries 205 (as shown i FIG. 2) are
randomly generated according to a random subtest generat-
ing process 200 for each test type (step 110). In many
implementations, the number N 1s configured to provide the
degree of code permutation that 1s appropriate for the
microarchitecture being tested. For example, fewer subtests
(values of N between 8-16) are often desirable 1n a pre-
silicon emulation environment where test execution time 1s
an 1ssue. In a post-silicon environment, where execution
time 1s not an 1ssue, the number N 1s 1n the hundreds. Then,
the predetermined number of test binaries 205 are linked
together to form a test library 405 as shown in FIG. 4 (step
120).

[0021] The dataspace of a processor 602 (as shown 1n FIG.
6) 1s then randomized by the runtime executive (step 130).
The runtime executive then randomly selects M number of
the test binaries 205 from the test library 405 (step 140). The
value of M 1s determined by the ‘pick’ permutation control
specified for a given test type and implemented by the
runtime executive. Pick controls include such algorithms as
sample with replacement, sample with no replacement,
sampling a subset of subtests less than the number of
threads, or sampling a single subtest to run on all threads.
The type of picking chosen depends on the purpose of the
test and the microarchitecture being tested. For example, a
cross moditying code (CMC) test would want to pick the
same subtest to run on all cores and threads. Then each of the
M test binaries 205 are allocated to MX number of physical
threads according to the pick algorithm (step 150). Each of
the test binaries 205 are then executed on 1ts respective
physical thread according to random runtime execution

Apr. 30, 2020

process 300 as shown 1n FIG. 3 (step 160). The MX physical
threads are then executed and monitored by the runtime
executive until errors (e.g., exceptions, stalls, data integrity
failures) are detected on one or more threads (step 170).
Based on the detected errors, the processor 602 1s redesigned
to no longer produce the detected errors (step 180).

[0022] The processor redesign process 100 1s often itera-
tively repeated to remove additional errors. In many imple-
mentations, the redesign process (step 180) includes a com-
bination of laboratory and simulation investigations. The
investigations are performed to characterize the behavioral
nature of the bug and deductively reduce the set size of
contributory factors. This bounds the nature and scope of the
bug and helps narrow down the design components that are
potentially at fault. The results of these investigations are
then to be utilized to generate a template file 500 (as shown
in FIGS. 5A and 5B) that 1s utilized to create the test binaries
205 used i1n subsequent iterations. The results of these
investigations are then to be utilized to generate the template
file 500 for new test binaries that incorporate technical
learnings derived from the investigations for subsequent
iterations through the processor redesign process 100.

[0023] In laboratory investigations, a variety of on-chip
debug tools (such as tools implementing the IEEE 1500 and
P1687 standards) are used. Examples of specific tools are
taught 1n Instrumentation Design and Debug for Systems on
Chip by Stollon (Stolion, Neal. On-Chip Instrumentation
Design and Debug for Systems on Chip. Springer US, 2011),
which 1s hereby incorporated by reference. For example, a
deadlock can be analyzed using scan tools to dump the state
of most internal flops at the point of failure. Exceptions and
livelocks can be probed using microcoded monitor tools
controlled externally via something like a Joint Test Action
Group (JTAG) bus. With such tools, memory and internal
processor structures (e.g., L1/L2 cache, branch predictors
and pipelines Translation lookaside bullers (TLBs)) can be
probed and register contents viewed. Bugs that have been
determined to occur long upstream of the point of failure are
often analyzed using internal signal trace capture tools.

[0024] Hypotheses of the root causes of the bugs are then
tested through simulation. Then, based on the results of the
simulation testing, new gate models of the processor are
developed to eliminate the bugs.

[0025] Once the bugs have been completely removed, the
new gate models of the processor are manufactured to create
a new ‘spin’ of silicon for the new fixed revision of the
processor 602. The new fixed revision of the processor 602
1s then tested using the processor redesign process 100. As
a result, the processor redesign process 100 i1s able to
identify dithicult to find bugs before they get into the field
(production) and can also shorten the expensive debug time
between bug identification and root cause.

[0026] FIG. 2 depicts an embodiment of the random
subtest generating process 200 for a particular test type 1n
accordance with certain implementations. The template file
500 for the particular test type 1s received (step 210). In
some 1mplementations, an optional seed for the randomiza-
tion 1s also received. The template file 500 1s then parsed,
and a single assembly language source file 1s generated
according to the rules specified 1n the template (step 220).
Step 220 1s repeated for each of the 1 number of subtests to
be generated.

[0027] For example, in template file 505, test_body 1is
defined as ‘rand 100 100 1°. This causes the parser to

US 2020/0134248 Al

randomly grab (according to the weighting factors) exactly
100 1nstructions from the test_body block. In addition, when
the parser encounters a macro-like operation (1.e., ADD_
REG_MEMm followed by a list of names like ‘link_regl6’,
‘base’, ‘disp’, ‘lock’ etc.), the parser uses 1t to look up the
instantiated object and randomly select a value from 1t as
defined by the constraints and rules of that object. These can
either be integers (1immediates class) or strings (tokens
class). This 1s how X86 instructions are built. A type of
instruction macro 1s picked from the Operations (OPS)
Blocks 510 and then the key names associated with 1t are
used to select the parameters for that macro, such as source
and destination register names, immediate values (integer
constants), lock prefixes and a special control used to create
or 1inhibit a label from being automatically assigned to the
istruction. Although X86 instructions are shown in the

example, the same techniques can be generalized to other
processor architectures (e.g., X64, ARM or ARM 64).

[0028] For example, to adapt the processor redesign pro-
cess 100 for the ARM architecture would require adapting
the template file 500 for the new architecture’s instruction
set. This would result in predetermined test binaries 2035 that
are targeted to the unique features of the new processor’s
microarchitecture. As a result, the processor redesign pro-
cess 100 operates 1n the same manner and provides the same
value as a debug tool as 1t would 1n the X86 environment.

[0029] The compiler then receives each of the 1 number of
assembly language source files that behave according to the
rules specified in the template file 500 (step 230). The
compiler then groups the 1 number of assembly source files
together to form a predetermined test binary 205. The
predetermined test binary 205 includes 1 number of subtests
that are individually executed.

[0030] The random subtest generating process 200 1is
repeated for each of the N test types. Therefore, N number
of predetermined test binaries 205 are randomized and
generated according to the rules specified 1n each respective
template. For example, in certain implementations, each of
the N predetermined test binaries 205 are generated to each
test a specific microarchitectural feature. As a result, when
the N predetermined test binaries are executed at run time,
defects 1n specific features in the microarchitecture can be
detected.

[0031] For example, 1n certain implementations, each of
the N predetermined test binaries 205 individually target a
specific feature of the microarchitecture across the length of
the processor’s pipeline. In many instances, the N predeter-
mined test binaries 2035 also include tests to cover elements
in the branch predictor, instruction fetch umit, decoder,
op-cache, scheduler, execution unit, load/store unit and L1
cache of the processor 602.

[0032] In many implementations, the one or more of the N
predetermined test binaries 205 test a number of features
including: memory resource sharing among many threads
using common operating system mutex constructs; monitor-
ing/mwait scenarios across a large number of threads imple-
mented both randomly and 1n the classic producer/consumer
model; micro-op queue loop bufllering; fencing of non-
temporal loads/stores; branch predictor aliasing both
through code reinterpretation and code shifting; code/data
virtual aliasing; opcache fetch moding; deep execution-
scheduler (ExSc) dependency chains to discourage specu-
lation; low ExSc dependency conditions to encourage specu-
lation; spec-lock-map conditions and spec-lock-map aborts;

Apr. 30, 2020

heavy branch prediction and heavy mis-prediction; store-to-
load 1interlocks and store-to-load forwarding conditions;
D-side table walk storms with aligned/misaligned crossers;
cache and bus locking; heavy competition for few cache
lines shared by many threads crossed with locks and capac-
ity evictions; and other like conditions.

[0033] FIG. 3 1s a flow diagram of an embodiment of the
random runtime execution process 300 that 1s executed by
cach of the M physical threads 1n accordance with certain
implementations. The manner in which the random runtime
execution process 300 operates 1s defined by a control data
structure 410 that exists for each of the N test types. The
control data structure 410 1s generated for each of the N
predetermined test binaries 205.

[0034] The following code snippet shows an example of
the control data structure 410:

control data structure declaration
struct test_ list {

int array__size;

int timeout;

int data_ parms;

int test_ sampling;

int data_ malloc_ size;

void (*meminit)(unsigned int *,int);
funcptr *test__ arr;

funcptr *test__end__arr;

int code__parms;

int exec_ flags;

3

// Example of the structure definition for test type 20.
(semaphore ping-pong test)
{NUM__TYPE20_ TESTS,

40,
SHARED+RESTORE+DATA__ALIAS,
SAMPL__FEW,

0x20000,

&meminitRand96k,
predetermined__test type20,
predetermined_ test_ type20__end,
ALT+ALIAS+RELOAD+SHIFT,
MUTE},

[0035] The control data structure 410 specifies how to
select individual subtests from within each of the predeter-
mined test binaries 205 (step 310). For example, in certain
implementations the control data structure 410 specifies a
sample with replacement policy for picking subtests from
their pool. Alternatively, in other implementations the con-
trol data structure 410 specifies a sample with no replace-
ment policy for picking subtests. In other alternatives, the
control data structure 410 specifies that the individual sub-
tests are selected by creating a small temporary pool of
arbitrarily chosen subtests and then randomly pick from this
pool to allocate subtests to threads. This results 1n replication
of subtests across multiple physical threads. The control data
structure 410 1n some embodiments also specifies to popu-
late all logical and physical threads with the same subtest.

[0036] In many implementations, the control data struc-
ture 410 also defines the address space that 1s utilized when
the test binary executes (step 320). For example, in certain
implementations the control data structure 410 specifies an
alternate data address space that 1s the virtual alias of the
default data space. Alternatively, 1n other implementations,
the control data structure 410 specifies an alternate subtest
address that 1s the virtual alias of the subtest in the test

binary.

US 2020/0134248 Al

[0037] The control data structure 410, i1n many 1mplemen-
tations, defines how paging 1s handled for the test binary
(step 330). For example, 1n certain implementations, the
control data structure 410 requires that the default paging
mode (e.g., 4 kB, 2 MB, 1 GB, etc.) be used throughout the
execution of subtests 1n this test binary. In addition, for many
implementations the control data structure 410 also specifies

that an alternate paging mode be randomly switched to
between subtest 1terations.

[0038] The selected sub test 1s then run (step 340). In some
implementations, all subtests are synchronized so that they
begin execution simultaneously. This provides the maxi-
mum opportunity for the tests to interact with one another.
For example, 1n certain implementations subtests complete
at different times but each new iteration launches or re-
launches them simultaneously. In certain 1implementations,
the control data structure 410 includes a CODE WRITABLE
value. The CODE WRITABLE value sets writable code
permission from the Operating System (OS) for Self Modi-
tying Code (SMC)/Cross Moditying Code (CMC) tests.
Subtest code can also be reloaded with a RELOAD com-
mand to restore a test to 1ts original state after a seli-
moditying test. In addition, the control data structure 410 in
many implementations includes a SHARED MEM value.
The SHARED MEM value specifies that a single data space
1s shared by all subtests for a given test type. In some cases,
the control data structure 410 also includes a cyclic redun-
dancy check (CRC) flag. The CRC flag specifies that a CRC

of the data 1mage 1s performed after each subtest iteration.

[0039] The control data structure 410 1n many instances
also defines how the data space 1s configured during each
subtests execution (step 350). For example, in certain imple-
mentations, the data control file includes the wvalue
RESTORE DATA which directs the thread management
function to restore the data space to its original contents
between each iteration of the subtest. The restore data value
1s used for situations where a deterministic data image 1s
expected after each iteration. Alternatively, 1n other imple-
mentations the control data structure 410 includes the value
RE-RAND DATA which causes a randomization of the
shared data space between subtest iterations. This value 1s
utilized to cause continuous variation of Arithmetic Logic
Unit (ALU) behavior, address sequences and code flow
paths within the processor 602.

[0040] In many instances, the control data structure 410
also establishes how the physical subtest code 1s stored and
executed for subsequent iterations (step 360). For example,
in many implementations the control data structure 410
includes the value SHIFT PHYS CODE. The SHIFT PHYS
CODE value causes a shift of the physical subtest code
around by a variable (small) number of bytes between
subtest 1terations. The SHIFT PHYS CODE 1s often used to
test the branch predictor. There are also switches in the
control data structure such as DATA ALIAS and CODE
ALIAS that act to randomly switch the virtual addresses at
which a subtest accesses 1ts code and/or data between each
iteration. Since the code and data occupy a constant physical
space, these addresses are virtual aliases that are chosen and
allocated by the executive. Dynamic shifting of wvirtual
address spaces adds stress to microarchitectural structures
that are indexed/tagged by wvirtual address (1.e., caches,
Translation lookaside buflers (TLLBs), Branch Target Builer
(B1Bs), and the like).

Apr. 30, 2020

[0041] Inmany instances, a time out 1s also included 1n the
control data structure 410. The TIMEOUT value sets the
number of seconds of runtime for a given test type. For
example, a new set of subtests 1s picked every 10 s.
Theretore, 11 the timeout has not expired (step 370), process
300 1s repeated. If the timeout has expired, an error is

detected 1n the thread (step 380).

[0042] FIG. 4 graphically depicts the relationship between
the individual test binaries 205 that are linked to form the
test library 405 and their respective control data structure
410 i accordance with certain implementations. Specifi-
cally, FIG. 4 shows that each predetermined test binary 205
has an associated control data structure 410.

[0043] FIGS. 5A and 5B show portions of an example
template 505 for template 500 1n accordance with certain
implementations. The template file S00 describes the struc-
ture and probabilistic rules for a particular test type. Spe-
cifically, the template file 500 further includes instructions
for macro usage and their respective frequencies. In many
instances, the template 500 also includes rules for address-
ing behavior (limaits, striding, high and low frequency tar-
gets) of the operations. In certain embodiments, the template
500 specifies or limits the register usage. Further, the tem-
plate file 500 1n many implementations also specifies rules
for branch behavior (prediction, taken/not-taken, forward/
reverse, target distance) and looping constructs (size and
iteration ranges). In addition, the template file 500 allows for
the generation of recursive code blocks and public and
private mstruction links. In many cases, the template file 500
also specifies rules for thread-to-thread communication.

[0044] For example, in certain implementations the tem-
plate file 500 1s designed to utilize a variety of arithmetic
logic unit (ALU) operations, as loads and load-op-stores that
are all sequentially dependent so that younger ops may not
be speculatively 1ssued and executed prior to older ops. This
causes the scheduler queue to backup very quickly and force
dispatch stalls. Both high and low degrees of speculation are
micro-architectural boundary conditions for the execution
unit’s scheduler. As such, they are ‘red flag’ scenarios that
may require focus and stress. This type of test provides a
very realistic example of the problems faced by micropro-
cessor 602 design verification engineers.

[0045] The template file 500 contains three types of
blocks. Each of these blocks functions are similar to ‘class’
structures as used 1n any object oriented language like C++
or Ruby. Like ‘class’ structures, the blocks each have their
own methods and 1nstance variables and are instantiated by
a start/end block. Just like 1n other object programming
languages, the object 1s given a name. These names act as a
key 1nto a hash-table of all of the instantiated objects 1n the
weights file. Specifically, the weight file contains ops, imme-
diates and tokens.

[0046] OPS blocks 510 designate a block of instructions.
Each entry in an OPS block 510 is usually the name and
input parameters for an instruction macro. The first param-
eter (an 1nteger) 1s the relative weighting factor for that
particular op. It 1s only significant when ops are being
randomly selected from the list in that block. Randomization
occurs 11 the following keyword 1s ‘rand’ followed by three
numeric parameters that define how many ops 1n total that
are picked from the block. If the keyword following the
name 1s “sequential”, 1t means that the weighting parameters
are 1gnored, and each op 1n that block 1s chosen and placed

US 2020/0134248 Al

into the test file 1 the order 1t appears. This enables the
template file 500 to include iline code snippets or subrou-
tines.

[0047] In the OPS block 510, the second parameter (e.g.,
ADD_REG_MEMm) 1s the name of an instruction macro,
and all subsequent elements on that line are input parameters
to that macro. Each one of the macro parameters 1s either a
literal (preceded by the $ sign) or a key into the hash table
of objects, 1n other words, the name of one of the other
blocks 1n the weights file. For example, as shown in FIG.
S5A, the relative weighting factor (1, 2, 3 etc.) 1s then
followed by the name of the mstruction macro (e.g., ADD_
REG_MEMm) and 1s then subsequently followed by a list of
names (‘link_regl6’, ‘base’, ‘disp’, ‘lock’ etc.) In addition,
cach one of these has 1ts own block 1n the weights file. The
macros are all defined 1n a text header file. This header file
1s read 1n by the parser, and 1ts contents are pre-pended to the
start of the source code for each subtest that the parser
generates. These macro definitions 1n the source file allow
the compiler/assembler to expand each macro instance into
one or more assembly language instructions. There 1s only
one reserved key name in the whole process, and that is
‘main’ used to denote the OPS Blocks 510 where test
execution begins.

[0048] The OPS block also supports a special ‘instruction’
within the ops class which 1s called a SECTION. This
special op SECTION i1s used as 1f it were a recursive call to
another OPS Block 510. For example, when °‘main’ 1s
sequentially executed and the SECTION command 1s
encountered, 1t directs the parser to begin processing the ops
in test_body. In this circumstance, these ops are no longer
picked sequentially. SECTION 1s recursive in the sense that
SECTIONS can exist within SECTIONS within SEC-
TIONS. This provides the ability to embed different mixes
of ops within a test and even nest unique sections within one
another. This particular recursive structure 1s well suited to
test for the micro-op queue loop bufler.

[0049] The template file 500 also contains token blocks
520. A token 1s an alpha-numeric string with an associated
relative weighting factor. Token blocks 520 define groups of
registers, operand size overrides, and other prefixes. For
example, unevenly biasing the selection of an 1ndex register
can be used to focus load/store activity i a particular
address region. Controlling the sets of source and destina-
tion registers used by different types of instructions can
enhance or diminish their inter-dependency.

[0050] Forexample, FIGS. SA and 5B show a template file
505 for a dependency test. In this example, the index register
and the destination register are limited to be 16 or 64 bit
sizes of RAX. In addition, an operation CMPXCHG that
implicitly uses RAX as both a source and a destination 1s
utilized. Thus, every op’s destination 1s also a source oper-
and for the next younger op creating the serializing depen-
dency chain.

[0051] In many implementations, the token blocks 520
also includes a lock token 530. This lock token 530 specifies
the weighting factor for the X86 LOCK prefix which 1s used
to force atomic (locked) behavior for a load-op-store opera-
tion. Locking prevents any other transactions in the machine
from touching that particular memory location (cache line)
during the read/modity/write process. Locked operations
stress a diflicult coherency feature of the machine and are
therefore critical to test. For example, FIG. SB shows 9
load-op-stores with the LOCK prefix attached.

Apr. 30, 2020

[0052] The template file 500 also contains 1mmediate
blocks 3540. Immediate blocks 540 are integers that are
randomly generated via the following syntax used for each
line 1n an 1immediate block. The syntax includes a weight,
start, end, stepsize, and_mask, and or_mask values. The
weight value sets the relative weight of this particular
formula within the immediates block relative to other
weighted elements 1n the block. For example, if there are
three elements 1n a block and the first has a weight of 1, the
second has a weight of 3 and the third has a weight of 4; this
means their probabilities of being picked are as follows: The
first has a /4 probability, the second has a 3% chance, and the
last one has a 45 chance.

[0053] The start value sets the starting (numerically low-
est) integer value 1n a range from which to randomly pick a
value. The end value sets the ending (numerically greatest)
integer value 1n the range. The step size value sets the size
of the stride at which to make random picks. For example,
to pick random 64-byte cache-line aligned values in the
range 0—O0xFFF to use for a displacement field in some
addressing scheme, a start value of 0, an end value of
0x1000 and a step size of 0x40 are used. Calls to the rand(
Jmethod for this immediate object would return random
integers in the set {0, 0x40, 0x80, Oxc0 . . . OxFCO}.

[0054] The and_mask value 1s a bit mask that 1s applied
(bitwise AND) to the number calculated using start, end and
stepsize. For example, a certain implementation the and_
Mask 1s used to force L1 data cache capacity evictions by
restricting addressing to a single specific linear index (ad-
dress bits 11:6) such that random variations in address bits
48:12 quickly fill up all eight ways at that index and force
an eviction. In addition, to create a 32-bit address that
always targets linear index O of the L1 data cache (DC) with
no other guarantee of alignment within the cache line, an
and_mask of OxFFFFFO3F are utilized. Further, to target
linear index 0 and also force DWORD (4 byte) alignment,
then a mask of OXFFFFFO3C are utilized.

[0055] The or_mask value 1s a bit mask applied (bitwise
OR) to the number calculated using start end, stepsize and
and_mask. For example, to generate random numbers that
would always create 4 kb page-misaligned addresses for
quadword (8 byte) accesses, an or_mask of OxFF9 are
utilized.

[0056] In certain implementations, the random runtime
execution process 300 1s firmware based and requires no
operating system, video, keyboard or hard drive. In these
implementations, the random runtime execution process 300
1s automatically invoked immediately upon reset and 1is
loaded from BIOS ROM into main memory executing
without human intervention. For example, previously OS-
provided services such as memory, thread and paging man-
agement as well as exception handling, can be tested without
modification or re-compilation may not be available to the
runtime executive routine. In these implementations, the
runtime executive may need to supply its own services for
memory, thread and page management as well as exception
handling, but the subtest binaries themselves do not require
modification. These implementations allow processors that
may have bugs that are severe enough to prevent the
computer from booting an operating system to be debugged.
As a result, all that 1s needed to debug the processor 602 1s
a ROM to hold the executable and memory 1nto which 1t can
be loaded and executed. These implementations are also
well suited for debugging GPUs.

US 2020/0134248 Al

[0057] FIG. 61s a block diagram of an example device 600
in which the processor 602 1s redesigned using processor
redesign process 100. The device 600 includes, for example,
a server, a computer, a gaming device, a handheld device, a
set-top box, a television, a mobile phone, or a tablet com-
puter. The device 600 includes the processor 602, a memory
604, a storage 606, one or more mput devices 608, and one
or more output devices 610. The device 600 also optionally
includes an 1nput driver 612 and an output driver 614. It 1s
understood that the device 600 includes additional compo-
nents not shown 1n FIG. 6.

[0058] The processor 602 may include a central process-
ing unit (CPU), a graphics processing unit (GPU), a CPU
and GPU located on the same die, or one or more processor
602 cores, wherein each processor 602 core may be a CPU
or a GPU. The memory 604 1s located on the same die as the
compute node or processor 602, or 1s located separately from
the compute node or processor 602. In an implementation,
the memory 604 includes a volatile or non-volatile memory,

for example, random access memory (RAM), dynamic
RAM, or a cache.

[0059] The storage 606 includes a fixed or removable
storage, for example, a hard disk drive, a solid state drive, an
optical disk, or a flash drive. The mput devices 608 include
a keyboard, a keypad, a touch screen, a touch pad, a detector,
a microphone, an accelerometer, a gyroscope, a biometric
scanner, or a network connection (e.g., a wireless local area
network card for transmission and/or reception of wireless
IEEE 802 signals). The output devices 610 include a display,
a speaker, a printer, a haptic feedback device, one or more
lights, an antenna, or a network connection (e.g., a wireless

local area network card for transmission and/or reception of
wireless IEEE 802 signals).

[0060] The mput driver 612 communicates with the com-
pute node or processor 602 and the mnput devices 608, and
permits the compute node or processor 602 to receive input
from the 1mput devices 608. The output driver 614 commu-
nicates with the compute node or processor 602 and the
output devices 610, and permits the processor 602 to send
output to the output devices 610. It 1s noted that the input
driver 612 and the output driver 614 are optional compo-
nents, and that the device 600 operates 1n the same manner
if the mput driver 612 and the output driver 614 are not
present.

[0061] It should be understood that many variations are
possible based on the disclosure herein. Although features
and elements are described above in particular combina-
tions, each feature or element may be used alone, without the
other features and elements, or 1n various combinations with
or without other features and elements.

[0062] The methods provided may be implemented 1n a
general purpose computer, a processor 602, or a processor
core. Examples of processor 602 include a general purpose
processor, a special purpose processor, a conventional pro-
cessor, a digital signal processor (DSP), a plurality of
MICroprocessors, One or more miCroprocessors 1n associa-
tion with a DSP core, a controller, a microcontroller, Appli-
cation Specific Integrated Circuits (ASICs), Field Program-
mable Gate Arrays (FPGAs) circuits, any other type of
integrated circuit (IC), and/or a state machine. Such proces-
sors may be manufactured by configuring a manufacturing
process using the results of processed hardware description
language (HDL) instructions and other intermediary data
including netlists (such instructions capable of being stored

Apr. 30, 2020

on a computer readable media). The results of such process-
ing may be maskworks that are then used 1n a semiconductor
manufacturing process to manufacture a processor which
implements aspects of the embodiments.

[0063] The methods or flow charts provided herein may be
implemented in a computer program, software, or firmware
incorporated 1n a non-transitory computer-readable storage
medium for execution by a general purpose computer or a
processor 602. Examples of non-transitory computer-read-
able storage mediums 1nclude a read only memory (ROM),
a random access memory (RAM), a register, cache memory,
semiconductor memory devices, magnetic media such as

internal hard disks and removable disks, magneto-optical
media, and optical media such as CD-ROM disks, and
digital versatile disks (DVDs).

What 1s claimed 1s:
1. A method for debugging a processor comprising:

generating a predetermined number of randomized sub-
tests according to a respective template file for each of
a plurality of test types;

creating a test library of respective test binaries for each
of the plurality of test types;

executing one or more randomly selected subsets of test
binaries from the test library, wherein each of the
randomly selected subset of test binaries are executed
on a number of physical threads of a processor accord-
ing to a control data structure for each test binary,
wherein the executing 1s performed via startup firm-
ware; and

detecting one or more errors in executing the randomly
selected subset of test binaries from the test library.

2. The method of claim 1, wherein the startup firmware
executes without an operating system (OS).

3. The method of claim 1, wherein the executing requires
no operating system (OS), hard drive, or mput/output (I/O)
device.

4. The method of claim 1, wherein the executing 1s
performed without user intervention.

5. The method of claim 1, wherein the startup firmware 1s

loaded from basic input output system (BIOS) read-only
memory (ROM).

6. The method of claim 1, wherein the executing includes
randomly selecting particular randomized subtests from
cach test binary of the subset of test binaries and running
cach of the selected particular randomized subtests.

7. The method of claim 1, wherein the randomly selected
subsets are selected by creating a temporary pool of arbi-
trarily chosen subtests and randomly selecting subsets from
the temporary pool.

8. The method of claim 1, wherein the executing includes
randomly shifting physical code of the one or more ran-
domly selected subtests by a variable number of bytes 1n the
control data structure after each of the particular randomized
subtests 1s run.

9. The method of claim 1, wherein the control data
structure specifies a timeout for executing the one or more
randomly selected subsets of test binaries.

10. The method of claim 1, wherein the respective tem-
plate file of the particular test type includes a weighting file
that specifies a branch prediction behavior within the tem-
plate that 1s used to generate the predetermined number of
randomized subtests.

US 2020/0134248 Al

11. A method for debugging a processor comprising;:
generating a predetermined number of randomized sub-
tests according to a respective template file for each of
a plurality of test types;

compiling the predetermined number of randomized sub-
tests 1nto a test binary for each of the plurality of test
types;

creating a test library using the test binaries for each of the

plurality of test types;

executing one or more randomly selected subsets of test

binaries from the test library, wherein each of the
randomly selected subset of test binaries are executed
on a number of physical threads of a processor accord-
ing to a control data structure for each test binary,
wherein the executing 1s performed via startup firm-
ware;

detecting one or more errors 1 executing the randomly

selected subset of test binaries from the test library; and
redesigning the processor based on the detected one or
more errors.

12. The method of claim 11, wherein the startup firmware
executes without an operating system (OS).

13. The method of claam 11, wherein the executing
requires no operating system (OS), hard drive, or nput/
output (I/O) device.

14. The method of claim 11, wherein the executing is
performed without user intervention.

Apr. 30, 2020

15. The method of claim 11, wherein the startup firmware
1s loaded from basic input output system (BIOS) read-only
memory (ROM).

16. The method of claam 11, wherein the executing
includes randomly selecting particular randomized subtests
from each test binary of the subset of test binaries and
running each of the selected particular randomized subtests.

17. The method of claim 11, whereimn the randomly
selected subsets are selected by creating a temporary pool of
arbitrarily chosen subtests and randomly selecting subsets
from the temporary pool.

18. The method of claam 11, wherein the executing
includes randomly shifting physical code of the one or more
randomly selected subtests by a variable number of bytes in
the control data structure after each of the particular ran-
domized subtests 1s run.

19. The method of claim 11, wherein the control data
structure specifies a timeout for executing the one or more
randomly selected subsets of test binaries.

20. The method of claim 11, wherein the respective
template file of the particular test type 1includes a weighting
file that specifies a branch prediction behavior within the
template that 1s used to generate the predetermined number
of randomized subtests.

x s e e s

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description/Claims
	Page 15 - Claims

