a9y United States
a2y Patent Application Publication o) Pub. No.: US 2020/0136908 A1

Pérez-Aradros Herce

US 20200136908A1

43) Pub. Date: Apr. 30, 2020

(54)

(71)

(72)

(21)
(22)

(51)

(52)

AUTODISCOVERY WITH DYNAMIC
CONFIGURATION LAUNCHING

Applicant: Elasticsearch B.V, Mountain View, CA
(US)

Inventor: Carlos Pérez-Aradros Herce, Logrono

(ES)
Appl. No.: 16/175,682

Filed: Oct. 30, 2018

Publication Classification

Int. ClL.
HO4L 12/24
HO4L 12/26

U.S. CL

CPC HO4L 41/0886 (2013.01); HO4L 41/12
(2013.01); HO4L 41/0816 (2013.01); HO4L
43/065 (2013.01); HO4L 41/0843 (2013.01)

1300
\

(2006.01)
(2006.01)

(57) ABSTRACT

Methods and systems for autodiscovery with dynamic con-
figuration are provided. Exemplary methods include: gen-
erating a configuration template for a provider, the configu-
ration template including one or more conditions;
monitoring for launch of a new event from a provider; based
on the monitoring, detecting the new event; determining, for
the detected new event, occurrence of at least one condition
of the configuration template; and in response to the deter-
mining, automatically launching a configuration associated
with the new event. New events may be emitted to a
common bus by various providers. The provider may be a
container-based provider, container orchestration platiform,
port-based provider, process-based provider, file search pro-
vider, or the like. For container providers, an automatically
launched configuration can be automatically stopped once
the container exits. The method may include determining
that a detected new container includes one or more hints for
determining a particular configuration to automatically
launch.

Generating a configuration template for a provider, the
configuration template including one or more condgitions.

1302

Monitoring for launch of a new event from a provider.

1304

Based on the monitoring, detecting the new event.

Determining, for the detected new event, occurrence of at
least one condition of the configuration template.
1308

1306

In response to the determining, automatically launching a

configuration associated with the new event.
1310

| D

vOEL HA1SN1O

US 2020/0136908 Al

VTt

AION IN3IMO

Apr. 30, 2020 Sheet 1 of 10

|
“ S T N n_n_<
!

001

Patent Application Publication

US 2020/0136908 Al

Apr. 30, 2020 Sheet 2 of 10

Patent Application Publication

L L L L L L R
v.v.v.v.v.v.v.v.v.

Al
>

L L P L L P L P L L L L L L L P L L L L L L L L L L L L L L L L N
-
.v

74

>

L
-

»

. e OOO0 ’
BP0 0 0 00 00 0 0) RN A A AN -

PEAAAAA LS X XXX XXX .

B NN I NNINE
S sosios
B NN NI N NN
L A P P A A AL A AL A A A

»

x
x

-
S S SN
S S S S S S S
w ke A A A ke A A ke ke A ke ke ke ke ke
NN NN NN NN NN

N N N N N N N N N N N N NN NN IR
A NN
SSSNSNNNNNNENNNNS
S SIS
DOOOOOOOOOOODDODER
S ST S S S SIS

TN K e e e e e ke ke ke ke
NN NN NN NN NN

> .
PO N NN NI NN NN

SR NN NN NN NN NN NN

RN I N NN NN NN
NN NN NN

WA e e e e e e e

LR T RS R R R S S

LA S L L L L L L L L L

R R A T A A AN

P S S SIS SIS
o
A A A
e e e e
P I I N N N N DD
S S S SSSSSSSSSISSISISNS
A A A A A .
e e e ey »
N N N N N DD Gl
v e e e e e e e e e e o e el
A A A A

k
.t&»k&»kk»k&»k&»kws
> xxx X DODOGDE
A N N Al
L R R R T

Yo X
X X
X x
X X
X X

.
LN 2 2 T I O L b b b b b b b b b b b b ol

1

!.Q .

.-.4 .-.. .-.. .-.. ..-.
. . . - - . - . .
. AN v.v.v.v v.v.v.. bv.v.v. Ov.v.v *e e *e e rae

« ‘s’ “a
. . »
* d -
0 [»
Bl 0- .o.
*, o- '
.
v »
0 »
* -
0 -,
\.- .
-
. 4 »
* -
0 »
* -
0 -,
\.- .
»
. 4 »
* -
0 »
* -
0 -,
\.- >
>
. ‘h
A \.. .OD
) - -
* * -
v s ~a .
*
v
*
~ . .
\.- \J- .O’
* * -
- 0 »
-~ o bb
* * >
. Pt}
*
-
o . -
\.- \..- »
* * -
- 0 »,
-~ o »
* L4
. . e
*
-
-~ .o »
* * -
~ . - . »
* * -
-) »
* . o
- .
-~ .
\.u 4 ...
. 1.0...0.\ PP PP FEPCICN POPCPCN ‘2’8 s e'.0&.0 '
* e [Mt St Ll Pl B Ll Mt e
~. .
*
-
*
.
*
-~ .
\.u
o s e s a, e « _a_e .8 « _a e s « _a s e o e 4 s _s e 4 s .
-~ A aS SN AN 800 T 0, v, o0 RANS ..QO.:
* L
. > a
* » ’
-
*
-)
- ‘e .
- 0 »
* * -
. 0 »
* * -
. , . >
* >
-
*
\.- -.
\.- \.. .OD
- 0 »
-~ o bb
* * -
. ~a .
*
-
\.- a.
I.s \J- »
* * -
~ 0 »
s o bb
‘wa - »
o
., :
.0. ‘o'’ » “.
. - EL
0..- . 2%2%" o br
. 00»' ‘o . br
’ S R DR R R
LI AL AL GO X « '
"0’ .
» .o
« . * *.
R T R s »,
- QAOO-OvaOvaO-.O-O-; o »
.o * pgJ
,n
.tv »
»
.- ' .b
.a . 4 -,
OQ Bl »
LA * -
" s -,
2 >~ >
A >
- 4
*
- .
A ' a b’
* * -
~ . - . »
~ o br
* * -
. ~a '
* .
-~ .
\.- .
-~ o bb
* * -
~ . - . »
* L) . .
- N *
-~ » :
*
-~ .
*
-
*
.
*
-~ .
*
-
*
.
*
-~ .
*
-
*
.
*
-~ .
*
-
A s »
* » -
~ . - . »
* * -
- 0 »
-~ o bb
* L4
. . e
*
-
-~ .o »
* * -
~ . - . »
* * -
- 0 »
* * -
. ,n .
* >
-~ .
*
- .
-~ 4 >
* * -
~ . - . »
* * -
- 0 »
* * -
. ,n >
* >
-~ .
*
A ‘s
A ’a »
* * -
- . - . »
<+ * -
. . »,
* ~a '
.
.
e bb
* -
- . »
* -
. »
)
. ..
. bb
* -
- . »
* -
. »
.
'
. *
0 »
* -
- . .OD
. X
..
‘o -,
0 »
» -
0 »
00. LG
-
T a . 0.0.. .
S S P PO v - CPE PO - vy
.. .'! \'.r.r.. * l'.r.r.. U'.r.rQ .'.r.r. " n.'.r.rs !r.'.r.. * 'r.'.r.r. -

e MM melee yelee Tesles . eee: cees. vees. Mo

. "

a .

R :

.v

i

”

«xx (X

Hu xnxx%%xnx '

Ov XNHX”““XHNN“NHNN

XX XX XX XN XX XXN
.ch . xxxxw%wxxxw xﬂ
.'b XXN XXX XXN XXX Il
: S
. R T """

. » X X_X XX X_X XX Xll%‘l‘l%‘l

% e ux.xnxx%%%%%%ﬂ"v?{?{)

2 3% e e 0}

R

N R A A i

- g e e e

x o s

e »9

.’” . T 3 v.v »

.D

.Q

%

..

e ewes ewes eeel eesl weee eee s eee el
S M mee el meles vees eees eees e
.tvt .,

v,

.o-

»

A

.o-

Or

i

.o-

Or

»

.o-

Or

.

.o-

..v

.

.o-

..

s

00

.o-

s

T,

»- .
- ..Ot»
OO I OO GO OO
e Satatats St O T S R S X S Vin'a'y' 0”0o»o

»

.D

.Q

» .

L) x_) ¥ PRI IR K]

; sy

- e %

« "R a e e e o

TR o

- B_X X L J

%, “STaTaTaT R e e a :

: S :

- B_X X L3

* o AR o

TR o

- B_X X L J

2 “STaTaTaT R e e a :

: S :

- B_X X L3

v o AR o

_ TR o

- B_X X L J

x “STaTaTaT R e e a :

; oot 3

> B_X X L3

o AR o

. A O o

% g

.c” o

%

W el el eleel salels awale Celals el

.
.I.I.-‘- -.-.I.-‘ .'-.I... .-.-bu.s. '-.-.I.l . '-.-.I.-

'-.I.-‘-

- - I.-.t :

-.I..'ﬂ' -.I.-.‘. ‘- I.-.t '-.I.-‘l . .-.I.-‘- -.-.I.-‘- -.-.I’

L]

.I..'-‘Q . ~I..'-.. -.I.-.-‘. -.I.-.-. -- I..'t. '-.I.-Q-

- - -.COS

I..'-.‘ :

. ..o Ve .. m . eo R R ‘e SR T '
T T e T T T T T T T T LT T T e e T T T L T T T
e e e e e e T e e e e T T T
RPN PR
e e e T T T T T T T e e e T T
e e e e T e e e e T T T
e e IR R
e e e e T T T T T T e e e e T T T T T T
e e e e e e T e e e e T T T
RPN PR
e e e T T T T T T el e e e e e T T T T
R e e e T T T e e T T T T
RN
f B N s
e e e T T T e e e
a e T T
e e e T T T T T T T T e T T T T T T T
R e e e T T T e e T T T T
. RN
R e e e e T T T T T T T T T T T T T T T T
e e e T T T e e e
a e T T
............. e e e e T T T T T T T T T T T T T T T T e T T T T T T T T T T
.............. e e T T e e e T e T T T
. B I T T T L R T S S e s S i e
2 P P P P T e e T P T T T e T T T T P P T e P P T i P P R T e T P P P P AO;.&.AOA.atn.a.atn.a.a.n.a.a.n.a.a.n.a.a.n.a.a.n.a.a.n.a.atn.a.atn.a.a.n.a.a.n.a.a.n.a.atn.a.atn.a.a.n.a.a.n.a.a.n.a.a.n.a.a.n.a.a.n.a.a. T T T M e N B T e T T T s S T S N S i T Ay T ey R e N AR S RTINS e iy
e Tt e T e e e T e T T e T
e e T el el e e el e e el e e el e e el e e e e e e B R EPRCRERE
.. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.-.---. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -" ------------- .- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .--.-. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .--.-. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. ‘.
e e T e e e W w e w e e w e e W e e e e T e T e T e e T T T e T T T T T T T T T T T
e e R PR R RPRPRPR ..*. * : '.. Sttt
..-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -.--.-.-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- ‘. -------------- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.-.-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .--
e e e e e e e e e e e e e e e e e T T e T e e T
e e e e e e e e e e T T T T T
.. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.-.---. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -" ------------- .- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .--.-. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .--.-. -.- .--.-. -.- .-- -. -.- .-- -. -.- .-- -. -t
e e e e e e e e e e e e e e T e T e e e T T T e e e T T T T T T e
e e T e e T e T e e e e T T .-II-. L T T el
0... . B T N s A R e e !D B T L e "‘.‘.‘ J.....l“- ..a\. Vs.l.'r\... St oC" - s.. . .o
T e e ‘a. . ‘- PRI ..!v 2 ¢ s s s s s s s s s e B L T T T T L T I A I N I I N IR ..\....-Alllﬂ JC “.. -.&v..'l.. , ;c.l. hll' i, . ,
. . . \.Qﬁ. - JEIERE R !. B A T BN N BRI N | \ICQA.‘...CI CJ.U --.l.'Q\ \!.Q’s.!lll. {o . (. 0; LN
.. | I 3 e s s s 8 s ® LIl I vl.v- LRl T e MR 2R PP P
AT T T o Il = I e AT T TR I e R T S A e N TS SR R AT NI ST SR e N RORTS ST SN et RRTAN ST NI e AT RRTA AT R AT R S S e N NI SR SN T R ST SR e N R TR R e e e R R R R .
e e e e e e e A s WA wa T e e e e e T T T T T e e T T e e e R T e e)
PR RSN UC DRI ECRCNEIEIEDEECRCRCICIEIERCRCREDEREREREIES 3 JEPE JEPCHE IEM-SUIES. I ERERENE. - JEDERENEDF v G - CRERCREN - DERERCNC ¥ SIEp I € COENERCEREIEREE Lt ESENEEERE .u. LT e e T T T T e T T
..-- -.--.- .-- -. -.- .-- - -- -- -.--.- ‘. -------------- -. -.- .-- -. -.- .--.-. -.- .-- -. -.- - . -. -. ------------- .- - . -. -.- .-- -. . - .--.-. -.- .---.--.-.-- -.--.-.---.--.- .--.-. -.- .-- -. -.- .-- -. -.- .-- -. -.- .-- -. -.- .--t
e e e e e e e e e e e e T e RECICREE A T e e e e ...0....0... R 00. 00..........0;0..0.0&0»1 OAO..OO»...v.Oa..Q. o e ma et e e e
............................ ..‘ f! TR U LI PR O RO ECEOTR X S L B e S i e e T e e A
a0 P PR ' ' ' t I)Jlﬁqx ' P * ' ' ' ' ' ' ' ' ' ' ' . ' ' ...0-.0. .-.O.OOv.bv..Q..t..uo.vo v.otb..ot. L R N PR ' ' ' ' ' ' ' ' '
DRI TN Fgena el L el e el . e e T N e e T e e B e
' '
..... .}P..fa. aver L S e e e e e L T T T T T T L R T L T d e T T T e B el e e e T e e e e e
'Y e * N ‘ . . .!s e . . P T
T B T T e L NI PN BN !D N P PR N T D I P D PR D
e e e e e e e e e e e e T . C e T T T T e T T T T e PRI) e e el e e T T T T
.. - B e o e e e W W . .
L T T N T O‘ . tp..............!p . Lty b..i .Q‘l?.ﬁb. LT \v.ltitcj‘\qlvtv. ..vv..ut-.&.ut-.bOOv...vtvOO . e 0.0!0.0 t..o!.. b LN T T T N L N N N T
Y PR ' ' ' ' ' ' cs" N) . . o B w8 - . . x R PN R R N O N . . B R ' ' ' ' ' ' ' ' ' '
-0... R P N B BN PN I B NERR RN I v v SRR v v I IR IR R IO X RN 4.00.. ., . !. e ..c.‘- .Qf.. e h.‘..l..g .‘.Ia.i . IR '!00.00!&'0 . e 00!&'0-0.00. ..-.!0!)0.!0041..0-.0. ..0.. ..c.a..-..b-b. P I T I I I PR
.................. OC.I&J'%.% U o WS « o l.. . » ll-..li“c% -‘ln . . » a . >N
. PR ' ' ' ' ' ' A . N . SRDLIERE = IR RN MAERE ' . .
0... R R R e e S !D . s'\\. e e ot
e e e e e e e e e e e e e W e e e e e e e e e e W B e e .. Lt e e e e e T ... e
T e e e e e R A e e e T T T T T T T
a. .. !. . T D N I PR PRI
OatabaOatababatababatabaOatabaOatababatabaOatab..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..Oatab..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..Oatab..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..Oatab..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..Oatab..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..\.0;0..Oatab..OatababatababatabaOatabaOatababatababatababis TR T R R R AT T R A AT MR MR RRTH RRTIMTa N
e e
St e e e e T T T T T T T T T e T T T T T T T T T T
e e T T T
e e T T T T T
LTt e e T T T T T T T T e T T T T e e T T T e e T e T T T e T T T T T T T
' ' ' PR ' ' ' ' ' o Vet a Vae N
. Lt e e ...“.h.‘”b OO b-”‘ v t‘n’
Os i e PRI AN . I‘
& e e e e e e e e e e e e e *“. o e v . cv
® - o ' ' ' ' ' ' ' ' ' a. o o llt ')
L S e e T A R L I N
e e e e o e e o o e e W . . B Ot
) ' ' ' ' ' ' ' ' P ' PR ' ' PR .
0"."." e e e e T e e T T e e T e e e e e
P e e e N e -)) .)
DxCaC (N e e e e T “)) A T an A #........v.-t.ai\vaQ\OO.vQ c.s e e e T

B e s e . G ey

S -!000. c!.o“- 00“ .
........... e . 2% N NN

LU IR RN DAL DR DR DR DR DR L L R DR DR DR DR DR R DR

0 0 0.0 0 0 0 0 0000000000ttt RN RO ARRRRRERRRRE

Apr. 30, 2020 Sheet 3 of 10

.
.
.
.
.
.
.
.
.
.
-
.
‘ I P) Dl
., Lttt \0..... SRR TR
. R Sttt e e e e e
L) ’ 7 T N aa B ..r)0
1 , T SRR e e A .a-«\
* . s v. . RS -0».«&...;« »00t
~ e o Pe e s s s s 8.8 8.8 s » . » L)
§ * E I *. Sy !..0.-!00..10;!0.10.!0.
(3 . o . . e ..-.00190.0v. .
A CRa N R S
b e e e e e e e
S T T T I P N I DI Tttt e e e e e
(3 e T P YR
Y v........OOvQ|.|Q» 0.\0900. 0910’ . .
.............. 3. B a A4
() IR v... (R vs 0&;0.-0509 0.00» Ll
»-!¢ll-.l..t. l“*..
. e SR A
) . ' ' . PR . PR
\Ov Lttt e e e e e e e e e
@, R T e e e e s e s e s e e s e s e 8 8 s e s 8 e s 8 8 8 s s 8 B s s 8 8 s s 8 8 4 s 8 8 e s s 8 8 s e s 8 e s s 8 s s s 8 8 s s & s s s 8 8 s e ® 8 e s 8 s 8 s s 8 8 s s s 8 & s s 8 & s s 8 s s s 8 s s e ® 8 e s 8 s s s s 8 8 s 8 8 8 s s s 8 & s s 8 e 8 s 8 s s e 8 8 e s 8 8 e s s s s s e s e sm s
) . ' ' . PR . ' '
% e T T T
.01 Lttt L
) . ' ' . P . ' '
.0: Lttt e e e e e e e
A - S I B~ -y I W F 4 R T . - . - Y 2 20~ .« T
0. Lttt
(Y . ' ' . ' PR ' ' . '
”- LTttt oeLeoeeoeleeleee e e el eeee e e e e ee e e el e ee e
e T
0. B T T T T T T Tt R
0- . - . > . > e . ' . - . - . > . P Y Ve . ' . - . - v a e . . . - . - e T2 . > . a Ve . . . - . > v a e . P . - . > v a . - .
.OI
0-
a
0'
»

"»
N_n
u:u:n
A
X x
.
i X 4
&f&*v*"

.

n

|
x X
x
x
*x
x
)'u .

| U
a'a a'a a'a’ a'a a'a a'a a'a’ a'a Tala a'a A, Al LAl dal dal aal eTal A’ Wla e aa . a'a a'a a'a a'a a'a ‘a'a aa ‘asa Tal. al. A, VAl A aa’ . n'a’ aal Al wa’ aa’ aa e ala - - aa aa a'a ‘a'a - s - s Y
T S S e L T S S S T S T e T T O PR I S L L T S A L T T S R O T e A Y R Y .
T T T T T T T T L L AT R Ay SCr e XrS 23
B S T 4 ’
e AR JSALSSINGI .
T T T T T T T T T R Y . . ' . e’
P R, A p , >
I 2
e i

Hmwmmmmmmmmmmmmmmmmmmmmwmmmmmmm.mmm.mmm.m.mmm.m.mHmmNmmmmmmmmmmmmummmmmHmmmummmmHmmmummm”mHmmmmm”mHmmmumHmHmwmummm”mmmHmwmummm”WWWHmwmmm”mmmHmwmummm.m.mmm.mmm.m.mmm.mmmmWWWmmwmmmmWWWmmwmmmmmmwmwmmmmﬁm | w mww.,*@ Qﬁ@@mﬁ&w@ w@wmw wmﬁf

”.....\Oﬁ.... . e

.vm.»v....{x)u),. :
.............. - .. ”..\ y Mw c m\‘. F
.M M 53 ¥ ..,..,u.......“...u” .
. R
....................... RS "
.............................. R A'.
... il S e
o} ...M.i...f..n. LN L AR »
: ...-...au. ..0....&..0..-... .\i ‘a ...
D JENL R R L R D T B <
. 71.... .0 K M B RN ..s
e R e R Tttt e
TR B D N o D N D B N I N B N N o O B D B B B SR I DE ISR o
> R . . R R . . . e e e e e e e e e e e e I I I e e e e e e e e . e e e e R R »
r osbv ov|1 osbv ovi. osb. ovi. osb. ovi. lsb. ovi nlsb .nlvi nlsb nlvi nlss nlvs nls. nlvs nls. .nls. nls -nls. -vls -nlv -vls -nls -vl. -nl. -vl. -nl tvl \tnl \tvl 1)\5 1tvl 1)\\ 1tv\ 1)\. 1tv. 1)\. 1tv. 1)\ .1)\. \1)\ ottn. ovtn ottn ovt. ott. bvt. b!h. .s

LA TA T

sjejdway Bijuoo

.l..ﬁ.l“-l.- .lr-l.-l -..-.-.l“.-“w.“
.nxuxxxxvuvﬁx““ﬁyﬂx,“x”xﬂ "unxn ﬂ”xn o

w”x“x“xnwnx”x”ﬂ”n”x”x“x n“nnuxx...rxn
oo T oo o o g R R T K K %

3

IR A R W R)
Rl o o X
Y ”NXNNNNN'\“INNNNXN.\“NNNNNNN.\”
xR X)
Y N X, Nﬂ
y N R
e

.
g .
»
. 3
t.l' I
.l - L L L L)

L

Patent Application Publication

Patent Application Publication Apr. 30, 2020 Sheet 4 of 10 US 2020/0136908 Al

400~

metricbeat.autodiscover:
providers:
- type: docker
templates:
- condition.contains:
docker.container.image: etcd
config:
- module: etcd
metricsets: ["leader', "self", "store']
hosts: "S{data.host}:2379"

output .elasticsearch:
hosts: [“localhost:9200"]

FIG. 4

Patent Application Publication Apr. 30, 2020 Sheet 5 of 10 US 2020/0136908 Al

500~

Aspect: port
Module: apache
Hint: 80, 443

Aspect: process
Module: mysql
Hint: mysqld

Aspect: docker—-image

Module: postgresql
Hint: postgresql

FIG. 5

600~

- autodiscover:
providers:
- type: ports
hosts: [“localhost”]

FIG. 6

Patent Application Publication Apr. 30, 2020 Sheet 6 of 10 US 2020/0136908 Al

700~

autodiscover:
providers:
- type: docker
- type: ports

FIG. 7

800~

autodiscover:
providers:
- type: kubernetes
templates:
— condition.equals:
pod. labels:
environment: production
app: apache
config:
module: apache

FIG. 8

Patent Application Publication Apr. 30, 2020 Sheet 7 of 10 US 2020/0136908 Al

900~

autodiscover:
providers:
- type: kubernetes
hints.enabled: true

FIG. 9

1000
N

annotations:
co.elastic.logs/multiline.pattern: 'A\['
co.elastic.logs/multiline.negate: 'true'
co.elastic.logs/multiline.match: after

FIG. 10

Patent Application Publication Apr. 30, 2020 Sheet 8 of 10 US 2020/0136908 Al

1100
N

annotations:
co.elastic.logs/module: nginx
co.elastic.logs/fileset.stdout: access
co.elastic.logs/fileset.stderr: error

FIG. 11

1200
~N

annotations:
co.elastic.metrics/module: nginx
co.elastic.metrics/metricsets: stubstatus
co.elastic.metrics/hosts: 'S${data.host}:80"
co.elastic.metrics/period: 10s

FIG. 12

Patent Application Publication Apr. 30, 2020 Sheet 9 of 10 US 2020/0136908 Al

1300
N

Generating a configuration template for a provider, the

configuration template including one or more conditions.
1302

Monitoring for launch of a new event from a provider.
1304

Based on the monitoring, detecting the new event.
1306

Determining, for the detected new event, occurrence of at
least one condition of the configuration template.
1308

In response to the determining, automatically launching a
configuration associated with the new event.
1310

FIG. 13

Patent Application Publication Apr. 30, 2020 Sheet 10 of 10 US 2020/0136908 Al

1400
~

OQUTPUT
DEVICES

1450

PROCESSOR

1410

MEMORY INPUT DEVICES
1420 1460

MASS
STORAGE

DISPLAY

SYSTEM
1470

1430

PORTABLE
STORAGE
1440

PERIPHERALS
1480

1490

US 2020/0136908 Al

AUTODISCOVERY WITH DYNAMIC
CONFIGURATION LAUNCHING

FIELD

[0001] The present technology pertains in general to com-
puter systems and more specifically, to monitoring events
and dynamic configuration.

BACKGROUND

[0002] The approaches described 1n this section could be
pursued but are not necessarily approaches that have previ-
ously been conceived or pursued. Therefore, unless other-
wise indicated, 1t should not be assumed that any approaches
described 1n this section qualify as prior art merely by virtue
of their inclusion 1n this section.

[0003] Data communications networks can be used for a
distributed application structure that divides tasks between
the providers of a resource or service, called servers, and
service requesters, called clients. A server “host” runs one or
more server programs, which share their resources with
clients. Traditionally, a user sets up a new host, configures
all the services to run on the new host, and configures the
monitoring agent to query them periodically. Configuration
management tools can be used to facilitate the process,
however, the process 1s very static.

[0004] The use of contamer architectures, for one
example, has resulted 1n a very dynamic environment for
which traditional static methods have many drawbacks.
Deployments are dynamic where containers sets may grow,
shrink, disappear, coming and going from one node (e.g.,
server) to another. As a result of the dynamic nature, there
1s no fixed Internet Protocol (IP) address from which to
retrieve metrics, logs, etc.

SUMMARY

[0005] This summary 1s provided to introduce a selection
of concepts 1n a simplified form that are further described 1n
the Detailed Description below. This summary 1s not
intended to 1dentify key or essential features of the claimed
subject matter, nor 1s 1t intended to be used as an aid in
determining the scope of the claimed subject matter.
[0006] The present disclosure provides various embodi-
ments of systems and methods for autodiscovery monitoring,
with dynamic configuration launching as described herein.
In various embodiments, autodiscover providers work by
watching for events on the system and translating those
events 1nto internal autodiscover events with a common
format. Providers may create and send the events to a
common bus. A user can configure a provider using fields
from the autodiscover event to set conditions that, when met,
automatically launch specific configurations (e.g., instanti-
ate a new module).

[0007] One of the many advantages of various embodi-
ments of the present technology 1s enabling other compo-
nents to react and adapt to changes 1n dynamic infrastruc-
tures.

[0008] In various embodiments, an autodiscovery com-
mon event bus also referred to herein as a common bus 1s
provided. Events may be generated by providers (e.g. con-
tainer-related providers, port-based providers, process-based
providers, file search providers, and others providers that
may be configured to take advantage of the present tech-
nology). Modules may be enabled/disabled based on detec-

Apr. 30, 2020

tion of certain conditions. Some embodiments provide hints-
based autodiscovery where hints are information a module
can provide to facilitate the autodiscovery process.

[0009] Exemplary methods include: generating a configu-
ration template for a provider, the configuration template
including one or more conditions; monitoring for launch of
a new event from a provider; based on the monitoring,
detecting the new event; determining, for the detected new
event, occurrence of at least one condition of the configu-
ration template; and 1n response to the determining, auto-
matically launching a configuration associated with the new
event.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Embodiments are illustrated by way of example,
and not by limitation, 1n the figures of the accompanying
drawings, 1n which like references indicate similar elements
and 1n which:

[0011] FIG. 1 1s a simplified block diagram of a system
having a distributed application structure, according to some
embodiments.

[0012] FIG. 2 1s an example diagram illustrating various
aspects and process flow, according to example embodi-
ments.

[0013] FIG. 3 1s a diagram 1llustrating various aspects for
an exemplary autodiscovery and module launching process
for use with container-related providers, according to an
example embodiment.

[0014] FIG. 4 illustrates an example configuration tem-
plate for configuring METRICBEAT to use the DOCKER
autodiscover provider.

[0015] FIG. S illustrates an example of hints for port-
based, process-based and container-based providers.

[0016] FIG. 6 illustrates an example config for a localhost
fully automatic discovery.

[0017] FIG. 7 illustrates an example autodiscover “con-
fig”.
[0018] FIG. 8 illustrates an example autodiscover config

for KUBERNETES.

[0019] FIG. 9 illustrates another example of an autodis-
cover conflg for KUBERNETES.

[0020] FIG. 10 1illustrates annotations, according to an
example embodiment.

[0021] FIG. 11 illustrated further annotations, according to
an example embodiment.

[0022] FIG. 12 illustrated additional annotations, accord-
ing to an example embodiment.

[0023] FIG. 13 1s a simplified flow diagram of a method,
according to an example embodiment.

[0024] FIG. 14 1s a simplified block diagram of a com-
puting system, according to some embodiments.

DETAILED DESCRIPTION

[0025] While this technology 1s susceptible of embodi-
ment 1n many different forms, there 1s shown 1n the drawings
and will herein be described 1n detail several specific
embodiments with the understanding that the present dis-
closure 1s to be considered as an exemplification of the
principles of the technology and 1s not intended to limit the
technology to the embodiments illustrated. The terminology
used herein 1s for the purpose of describing particular
embodiments only and 1s not intended to be limiting of the

technology. As used herein, the singular forms “a,” “an,” and

US 2020/0136908 Al

“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises,” “comprising,”
“includes,” and/or “including,” when used 1n this specifica-
tion, specily the presence of stated features, integers, steps,
operations, elements, and/or components, but do not pre-
clude the presence or addition of one or more other features,
integers, steps, operations, elements, components, and/or
groups thereof. It will be understood that like or analogous
clements and/or components, referred to herein, may be
identified throughout the drawings with like reference char-
acters. It will be further understood that several of the figures
are merely schematic representations of the present technol-
ogy. As such, some of the components may have been
distorted from their actual scale for pictorial clarty.

[0026] The present disclosure 1s related to various embodi-
ments of systems and methods for autodiscovery monitoring,
with dynamic configuration launch. A user can utilize vari-
ous embodiments to configure providers (e.g., container
providers, etc.) that monitor for system changes and emit
events to a common bus. Based on these events, the system
in various embodiments detects situations when there 1s
something new that can be monitored and instantiates new
modules for 1t. The autodiscover aspects can enable other
components to react and adapt to changes in dynamic
infrastructures.

[0027] FIG. 1 1s a simplified diagram illustrating a system
100 to 1illustrate certain concepts of the distributed nature
and distributed application structure, according to some
embodiments. System 100 includes client application 110A,
one or more nodes 1201-120X, and connections 140. Col-
lectively, one or more nodes 1201-120X form cluster 130A.
When only one node (e.g., node 1201) 1s running, then
cluster 130A 1s just one node. In various embodiments, a
cluster (e.g., cluster 130A) 1s a collection of one or more
nodes (servers) (e.g., one or more nodes 1201-120X) that
together store data and provides federated indexing and
search capabilities across all nodes. A cluster can be 1den-
tified by a unique name, such that a node can be part of a
cluster when the node 1s set up to join the cluster by its name.
A cluster may have only one node 1n 1t. In some embodi-
ments, a node (e.g., one or more nodes 1201-120X) 1s a
single server that 1s part of a cluster (e.g., cluster 130A),
stores data, and participates in the cluster’s indexing and
search capabilities. A node can be identified by a name
which by default 1s a random Universally Unique IDentifier
(UUID) that 1s assigned to the node at startup. Any number
of nodes can be in a single cluster. In some embodiments,
nodes (e.g., one or more nodes 1201-120X) can communi-
cate using an application protocol (e.g., Hypertext Transfer
Protocol (HTTP), transport layer protocol (e.g., Transmis-
sion Control Protocol (TCP)), and the like. Nodes can know
about all the other nodes 1n the cluster (e.g., cluster 130A)
and can forward client (e.g., client 11A) requests to the
appropriate node. Fach node can serve one or more pur-
poses, master node and data node.

[0028] Each of client application 110A and one or more
nodes 1201-120X can be a container, physical computing
system, virtual machine, and the like. Generally, client
application 110A can run on the same or different physical
computing system, virtual machine, container, and the like
as each of one or more nodes 1201-120X. Each of one or
more nodes 1201-120X can run on the same or different
physical computing system, virtual machine, container, and

Apr. 30, 2020

the like as the others of one or more nodes 1201-120X. A
physical computing system 1s described further 1n relation to

the exemplary computer system 1100 of FIG. 14. Virtual
machines may provide a substitute for a physical computing
system and the functionality needed to execute entire oper-
ating systems. Virtual machines can be created and run by a
hypervisor which uses native execution to share and manage
hardware, allowing for multiple environments which are
1solated from one another, yet can exist on the same physical
computing system.

[0029] Containers, 1n various embodiments, are an oper-
ating system-level virtualization method for deploying and
running distributed applications without launching an entire
virtual machine for each application. Containers can look
like real computers from the point of view of programs
running in them. Generally, a computer program running on
an operating system can see all resources (e.g., connected
devices, files and folders, network shares, CPU power, etc.)
of that computer. However, programs runmng inside a
container can only see the container’s contents and devices
assigned to the container. DOCKER 1s an open source
collection of tools for creating and deploying software
within containers. Containers can be arranged, coordinated,
and managed by a container orchestration platform (e.g.,
KUBERNETES, DOCKER SWARM, AMAZON ELAS-
TIC CONTAINER SERVICE, and the like). In contrast to
hypervisor-based virtualization, containers may be an
abstraction performed at the operating system (OS) level,
whereas virtual machines are an abstraction of physical
hardware.

[0030] When client application 110A runs on a different
physical server from a node (e.g, of one or more nodes
1201-120X), connections 140 can be a data communications
network (e.g., various combinations and permutations of
wired and wireless networks such as the Internet, local area
networks (LAN), metropolitan area networks (MAN), wide
area networks (WAN), and the like using Ethernet, Wi-Fi,
cellular networks, and the like). When a node (of one or
more nodes 1201-120X) runs on a different physical com-
puting system from another node (of one or more nodes
1201-120X), connections 140 can be a data communications
network. Further details regarding the distributed applica-
tion structure can be found in commonly assigned U.S.

patent application Ser. No. 16/047,959, filed Jul. 27, 2018
and 1ncorporated by reference herein.

[0031] Having provided the above details of certain con-
cepts of the distributed application structure described
above, the description now turns to further detailing aspects
of the present technology for autodiscovery, etc. according
to various embodiments.

[0032] The autodiscovery can be used with BEATS 1n

some ol the embodiments. BEATS are open source data
shippers that can be 1nstalled as agent on a user’s server to

send operational data to ELASTICSEARCH (a distributed,
multitenant-capable full-text search engine), for instance.

[0033] FIG. 2 1s an example diagram of a system 200
illustrating various BEATS and connections and flow with
respect to other aspects of an integrated solution referred to
as ELASTIC STACK. BEATS can capture various items
including but not limited to audit data (AUDITBEAT), log
files (FILEBEAT), availability (HEARTBEAT), metrics
(METRICBEAT), network tratic (PACKETBEAT), and
windows event logs (WINLOGBEAT). BEATS can send
data directly into ELASTICSEARCH or via LOGSTASH (a

US 2020/0136908 Al

data-collection and log-parsing engine) where i1t can be
further processed and enhanced before visualizing it 1n
KIBANA (an analytics and wvisualization platiorm).
Although FIG. 2 includes BEATS and other particular
aspects and components, the present technology is not
limited to utilizing some or all of the components and
aspects.

[0034] Autodiscovery can provide a way to automatically
discover anything that the BEAT can monitor from the host.
For example, 11 there 1s an APACHE service running 1n the
system, autodiscovery can help FILEBEAT, METRICBEAT,
PACKBEAT and others to detect the APACHE service and
self configure themselves to get logs/metrics from the
Apache service.

[0035] FIG. 3 1s an diagram 1illustrating various aspects for
an example 300 of an autodiscovery and module launching
process for use with a container provider such as DOCKER
and container orchestration platform such as KUBER-
NETES, according to an example embodiment.

[0036] Further regarding the autodiscover event 310 1n the

example 1 FIG. 3, BEATS Autodiscover may provide
support for multiple providers, e.g., DOCKER, DOCKER

SWARM, KUBERNETES, AMAZON ELASTIC CON-
TAINER SERVICE, port-based providers, process-based
providers, file search providers, to name several. For
example, such support can include but not be limited to,
support DOCKER 1ncluding monitoring DOCKER applica-
tion program interface (API) and checking for every new
container, support KUBERNETES including watching
KUBERNETES API and matching labels/images, support-
ing Nmap and other port-based providers, supporting ps and
other process-based providers, supporting file search pro-
viders, and other providers that are suitable to practice the
present technology. The providers may implement a way to
watch for events on a specific platform. Once an event
happens, the provider can 1ssue an autodiscover event,
containing the information needed to react to it (e.g., check
for a condition being satisfied, etc.). Autodiscovery provid-
ers can cooperate on the discovery process, signaling dis-
covery events and listening for such events when, for
example, host 1s discovered, a host:port 1s discovered, a file
1s discovered, to name a few. For example, a port-based
scanner can nmap every time a DOCKER provider signals
a new container

[0037] In various embodiments, for the match condition
320 aspect in the example in FIG. 3, events are checked
against a list of conditions that appear 1n a configuration
(also referred to as “‘config”) generated for this purpose.
There may be one or more conditions. If one of the condi-
tions matches the event, the process will spawn the specified
set of configs for that event.

[0038] FIG. 4 illustrates an example configuration tem-
plate i1dentified as “config” 400 for configuring METRIC-

BEAT to use the DOCKER autodiscover provider. For this
“conflg” example, a user can define a list of templates
having a condition that should trigger certain ones of the
templates. In the example 1n FIG. 4, the condition 1s match-
ing events that have the “container image” that contains
“etcd” (the term “contains” 1s used here since the image field
stores name:tag pairs).

[0039] Configuration templates may contain variables,
these are substituted using variable expansion (see “var
expansion” 330), by actual values from the event that
triggered the condition. In the example in FIG. 4, the

Apr. 30, 2020

configuration template 400 includes a ${data.host} variable
that 1s also shown 1n the “config template” 350 portion in
FIG. 3. The use of variable 1n various embodiments, mecha-
nism can enable a user to to define dynamic configs that can
depend on the status of a container, like the IP address. The
use of variables 1n this way can also allow for more complex
configurations, through the use of labels and annotations.
Referring to the examples in FIG. 3 and FIG. 4, in response
to the condition being satisfied (1.e., the “etcd” container
(runtime instance of the image) being created), METRIC-
BEAT will launch the “etcd” module to monitor the con-
tainer, replacing the ${data.host} variable with the Internet
Protocol (IP) address of the container. In some embodi-
ments, the configuration template does not include a vari-
able. In other embodiments, one or more variables are
included.

[0040] A launch module step 340 1s shown 1n the example
in FIG. 3. For step 340 1n various embodiments, the method
will replace the ${data.host} variable with the container IP
address to create the “final configuration” shown at 360. In
various embodiments of the method, the final configuration
1s created and then launched. Valid configurations may
include, for example, modules in METRICBEAT (to get
metrics) and inputs in FILEBEAT (to get log files).

[0041] There may be both start and stop events, so a
configuration launched by autodiscover will be automati-
cally stopped once the container goes away, according to
various embodiments. This automatically stopped feature
does not require any special configuration by the user, 1n
various embodiments.

[0042] Metadata can be very useful when navigating logs
and metrics information, for instance, by allowing a user to
filter the information and focus on just that filtered infor-
mation that matters to the user. Typically, an add_kuber-
netes_metadata processor can be used to annotate each of
the events with relevant metadata based on which KUBER -
NETES pod the event originated from. For this typical use,
cach event might be annotated with, for example, Pod Name,
Namespace, and Labels. For use with DOCKER, an add_
docker_metadata processor can typically be used to annotate
cach event with relevant metadata from DOCKER contain-
ers such as Container ID, Name, Image, and Labels. In some
embodiments of the autodiscover method of the present
technology, the events processed by the autodiscover will
automatically get enriched with DOCKER and/or KUBER -
NETES metadata. Consequently, according to some
embodiments, there 1s no need to use the add_docker
metadata or add_kubernetes_metadata processors to provide
the enrichment.

[0043] In various embodiments, providers would 1mple-
ment the same interface, and receive a module factory from
the BEAT, so they can instantiate new modules when a
match happens. The providers may be fully automatic (no
need for user mput to do a match, and instantiate it) or in
some embodiments, the providers may need some user
definitions/mappings (guided discovery).

[0044] According to various embodiments, the user can
configure several providers at the same time, the configured
providers can cooperate on autodiscovery. For instance if
KUBERNETES detects a new pod, KUBERNETES can
signal 1ts IP to the port-based provider such as Nmap, as will
be described in further detail below. In various embodi-
ments, the iterface provided by the BEAT to the autodis-
cover service will provide the tools needed for this func-

US 2020/0136908 Al

tionality including at least modules (e.g., a list of modules
available to the BEAT that integrates the autodiscovery
aspects; Start/Stop for Create/Start/Stop methods to 1nstan-
tiate modules when the modules are discovered, and to
remove the modules 1n response to the condition 1s no longer
met; module defaults can be provided since users may want
to override default settings for some modules. In some
embodiments, default settings mechanism are provided for
some modules where autodiscover may just override specific
parts of hit (‘hosts’ or file paths), for example using some
formatted strings:hosts: [“(HOST):$(PORT)”].

[0045] Hints-based autodiscovery may be provided. In
various embodiments, hints are information a module can
provide to facilitate the autodiscovery process. A module
may be a group of settings or code put together for various
tasks, e.g., modules for metric collecting, for simplifying the
collection, parsing, and visualization of common log formats
for log files, etc. The BEAT may be asked for hints on a
specific aspect, and gets the list of hints for each module.
[0046] In various embodiments, a user can utilize hints to
define how to momnitor the user’s containers. Traditionally, a
user would need to update their BEATS settings file to
configure the monitoring of a newly deployed application. In
various embodiments, hints-based autodiscover inverts the
control of monitoring settings, by providing the ability for
the user to store monitoring settings next to the application
container instead of at a central place. The present technol-
ogy can thus empower a team that 1s building and deploying
an app to take responsibility on defining how to monitor 1t.

[0047] Hints can help speed up the autodiscovery process.
For instance, a port-based scanner would ask for hints on
port aspect, and then scan the given ports first, or perhaps
only scan those. In some embodiments, a user may want to
provide manual hints according to their infrastructure, e.g.,
to override apache ports.

[0048] Autodiscovery providers can cooperate on the dis-
covery process, signaling discovery events and listening for
such events when, for example, host 1s discovered, a host:
port 1s discovered, a file 1s discovered, to name a few. For
example, a port-based scanner can nmap every time a
DOCKER provider signals a new container

[0049] FIG. 5 illustrates an example 500 of hints for
port-based, process-based and DOCKER providers. FIG. 6
illustrates an example config 600 for a localhost fully
automatic discovery.

[0050] Referring to FIG. 5 and FIG. 6, a process 1n an

example embodiments of the hints-based autodiscovery.
This exemplary process includes getting hints on aspect port
(see 500). The apache module returns [80, 443] as the hint
for the port. An Ip provider may scan open ports (localhost
case can be optimized to just get listening sockets). A new
host:port event can be emitted for all open ports by the
provider. A check may be run against all matching ports
(scanned, hinted). Then, the process can instantiate modules
for ports that pass the check.

[0051] FIG. 7 illustrates an example autodiscover config
for DOCKER and 1p (fully automatic, providers coopera-
tion). In this example, the ports provider does nothing at the
beginning (no hosts to scan); DOCKER watch container API
for new containers; a new container 1s launched and
DOCKER detects it and emits a new host event. The Ip
provider listens to that event, 1n this example. In example
embodiments, the provider gets hints from the BEAT and
scans ports on the host starting with (port) hints; emits a new

Apr. 30, 2020

host:port event for all open ports; runs a check against all
matching ports (scanned, hinted), and instantiate modules
that pass the check.

[0052] FIG. 8 illustrates an example autodiscover config
800 for KUBERNETES guided discovery. For this example,
a user defines a list of modules to match with labels, when
a new KUBERNETES pod matching them starts the module
gets a new 1nstance. An example simplified process for this
1s as follows: watch KUBERNETES API for new pods; get
a new pod, go over pods definitions and match them; emait
a new host:port event for all pod ports; run a check against
the host:port; and 1f the check passes, a module 1s 1nstanti-
ated.

[0053] FIG. 9 illustrates an example of an autodiscover
config 900 for KUBERNETES. This config 900 enables
hints-based autodiscover for KUBERNETES container logs.
Various embodiments enable a user, for example, to utilize
KUBERNETES Pod annotations or DOCKER labels to tell
FILEBEAT and METRICBEAT how to treat the user’s
container logs. For instance, 1f the user 1s running a JAVA
application 1n a pod, the user can add the annotations to it
[0054] FIG. 10 1illustrates example annotations 1000,
according to an example embodiment. When a pod has
multiple containers, the settings are shared, in various
embodiments, unless the container name 1s put 1n the hint. In
response the start of a KUBERNETES pod, FILEBEAT can
process the annotations and start reading its logs with the
multiline pattern given in the annotations, minded to put
JAVA stack traces together.

[0055] According to various embodiments, a user can also
use modules to process logs into structured data. For
instance, 1f the user 1s running an NGINX server, the user
may just add the annotations and all 1ts logs will be pro-
cessed 1nto structured data to provide msights about activi-
ties logged.

[0056] FIG. 11 illustrates additional example annotations
1100, according to an example embodiment. For this
example, each stream of the log output 1s mapped to a
different fileset. A user may also map all streams to a single
fileset by defining just co.elastic.logs/fileset.

[0057] FIG. 12 illustrated further example annotations
1200, according to an example embodiment. A user may also
benefit from hints when using METRICBEAT. This example
in FIG. 12 shows how a user could configure the same
NGINX 1nstance to make METRICBEAT fetch metrics from
it. The annotations 1200 can include variable expansion and
in this example ${data.host} is a variable for the IP address
of the container. The use of variables in this way can also
allow for more complex configurations, through the use of
labels and annotations.

[0058] In some embodiments, 1f the user 1s running both
FILEBEAT and METRICBEAT, both sets of hits can be
used together.

[0059] As can be seen from the above, 1n various embodi-
ments, hints-based autodiscovery moves the configuration of
a user’s monitoring settings next to the applications the user
wants to monitor, bringing the right tools to teams, espe-
cially 1n multi-tenant scenarios. Hints-based autodiscovery
can also provide a simple set of instructions for a user to
work with, making the experience simple and focused.

[0060] FIG. 13 1s a simplified tlow diagram of a method

1300 for the autodiscover with dynamic launching according
to an example embodiment, with further details described
above and below.

US 2020/0136908 Al

[0061] Step 1302 includes generating a configuration tem-
plate for a provider, the configuration template, as described
turther herein.

[0062] Step 1304 includes monitoring for launch of a new
event from a provider, as described further herein

[0063] Step 1306 includes, based on the monitoring,
detecting the new event, as described further herein. This
may be creation of the new event and may involve placing
the new event on a common event bus as described further
herein.

[0064] Step 1308 includes determining, for the detected
new event, occurrence of at least one condition of the
configuration template, as described further herein.

[0065] Step 1310 includes 1n response to the determining,
automatically launching a configuration associated with the
new event, as described further herein. The configuration
may be a module comprising a group of settings for a
particular task, e.g., getting metrics, getting logs, to name a
few tasks.

[0066] As described further herein, new events may be
emitted to a common bus by various providers. The provider
may be a container-based provider, container orchestration
platform, port-based provider, process-based provider, file
search provider, or the like, as described further herein. For
container providers, an automatically launched configura-
tion can be automatically stopped once the container exits.
The method may include determining that a detected new
container includes one or more hints for determining a
particular configuration to automatically launch, as
described further herein.

[0067] FIG. 14 illustrates an exemplary computer system
1400 that may be used to implement some embodiments of
the present invention. The computer system 1400 1n FIG. 14
may be implemented 1n the contexts of the likes of com-
puting systems, networks, servers, or combinations thereof.
The computer system 1400 in FIG. 14 includes one or more
processor unit(s) 1410 and main memory 1420. Main
memory 1420 stores, in part, instructions and data for
execution by processor unit(s) 1410. Main memory 1420
stores the executable code when 1in operation, 1n this
example. The computer system 1400 in FIG. 14 further
includes a mass data storage 1430, portable storage device
1440, output devices 1450, user mput devices 1460, a
graphics display system 1470, and peripheral device(s)
1480.

[0068] The components shown 1n FIG. 14 are depicted as
being connected via a single bus 1490. The components may
be connected through one or more data transport means.
Processor unit(s) 1410 and main memory 1420 are con-
nected via a local microprocessor bus, and the mass data
storage 1430, peripheral device(s) 1480, portable storage
device 1440, and graphics display system 1470 are con-
nected via one or more put/output (I/0O) buses.

[0069] Mass data storage 1430, which can be implemented
with a magnetic disk drive, solid state drive, or an optical
disk drive, 1s a non-volatile storage device for storing data
and 1nstructions for use by processor unit(s) 1410. Mass data
storage 1430 stores the system software for implementing
embodiments of the present disclosure for purposes of
loading that software into main memory 1420.

[0070] Portable storage device 1440 operates 1n conjunc-
tion with a portable non-volatile storage medium, such as a
flash drive, tloppy disk, compact disk, digital video disc, or
Universal Serial Bus (USB) storage device, to mput and

Apr. 30, 2020

output data and code to and from the computer system 1400
in FIG. 14. The system software for implementing embodi-
ments of the present disclosure 1s stored on such a portable
medium and input to the computer system 1400 via the
portable storage device 1440.

[0071] User input devices 1460 can provide a portion of a
user interface. User input devices 14140 may include one or
more microphones, an alphanumeric keypad, such as a
keyboard, for inputting alphanumeric and other information,
or a pointing device, such as a mouse, a trackball, stylus, or
cursor direction keys. User input devices 1460 can also
include a touchscreen. Additionally, the computer system
1400 as shown 1n FIG. 14 includes output devices 1450.
Suitable output devices 1450 include speakers, printers,
network interfaces, and monitors.

[0072] Graphics display system 1470 include a lLiquid
crystal display (LCD) or other suitable display device.
Graphics display system 1470 1s configurable to receive
textual and graphical information and processes the infor-
mation for output to the display device.

[0073] Pernpheral device(s) 1480 may include any type of
computer support device to add additional functionality to
the computer system.

[0074] Some of the components provided in the computer
system 1400 i FIG. 14 can be those typically found in
computer systems that may be suitable for use with embodi-
ments of the present disclosure and are intended to represent
a broad category of such computer components. Thus, the
computer system 1400 in FIG. 14 can be a personal com-
puter (PC), hand held computer system, telephone, mobile
computer system, workstation, tablet, phablet, mobile
phone, server, minicomputer, mainframe computer, wear-
able, or any other computer system. The computer may also
include different bus configurations, networked platiorms,

multi-processor platiorms, and the like. Various operating
systems may be used including UNIX, LINUX, WIN-

DOWS, MAC OS, PALM OS, QNX ANDROID, I0S,
CHROME, and other suitable operating systems.

[0075] Some of the above-described functions may be
composed of instructions that are stored on storage media
(e.g., computer-readable medium). The instructions may be
retrieved and executed by the processor. Some examples of
storage media are memory devices, tapes, disks, and the like.
The 1nstructions are operational when executed by the
processor to direct the processor to operate i accord with
the technology. Those skilled in the art are familiar with
instructions, processor(s), and storage media.

[0076] Insome embodiments, the computing system 1400
may be implemented as a cloud-based computing environ-
ment, such as a virtual machine operating within a comput-
ing cloud. In other embodiments, the computing system
1400 may 1tself include a cloud-based computing environ-
ment, where the functionalities of the computing system
1400 are executed 1n a distributed fashion. Thus, the com-
puting system 1400, when configured as a computing cloud,
may 1nclude pluralities of computing devices 1n various
forms, as will be described 1n greater detail below.

[0077] In general, a cloud-based computing environment
1s a resource that typically combines the computational
power of a large grouping of processors (such as within web
servers) and/or that combines the storage capacity of a large
grouping of computer memories or storage devices. Systems
that provide cloud-based resources may be utilized exclu-
sively by their owners or such systems may be accessible to

US 2020/0136908 Al

outside users who deploy applications within the computing
infrastructure to obtain the benefit of large computational or
storage resources.

[0078] The cloud 1s formed, for example, by a network of
web servers that comprise a plurality of computing devices,
such as the computing system 1400, with each server (or at
least a plurality thereotf) providing processor and/or storage
resources. These servers manage workloads provided by
multiple users (e.g., cloud resource customers or other
users). Typically, each user places workload demands upon
the cloud that vary 1n real-time, sometimes dramatically. The
nature and extent of these variations typically depends on
the type of business associated with the user.

[0079] It 1s noteworthy that any hardware platform suit-
able for performing the processing described herein 1is
suitable for use with the technology. The terms “computer-
readable storage medium” and “computer-readable storage
media” as used herein refer to any medium or media that
participate in providing instructions to a CPU for execution.
Such media can take many forms, including, but not limited
to, non-volatile media, volatile media and transmission
media. Non-volatile media include, e.g., optical, magnetic,
and solid-state disks, such as a fixed disk. Volatile media
include dynamic memory, such as system random-access
memory (RAM). Transmission media include coaxial
cables, copper wire and fiber optics, among others, including
the wires that comprise one embodiment of a bus. Trans-
mission media can also take the form of acoustic or light
waves, such as those generated during radio frequency (RF)
and infrared (IR) data communications. Common forms of
computer-readable media include, e.g., a floppy disk, a
flexible disk, a hard disk, magnetic tape, any other magnetic
medium, a CD-ROM disk, digital video disk (DVD), any
other optical medium, any other physical medium with
patterns of marks or holes, a RAM, a programmable read-
only memory (PROM), an erasable programmable read-only
memory (EPROM), an electrically erasable programmable
read-only memory (EEPROM), a Flash memory, any other
memory chip or data exchange adapter, a carrier wave, or
any other medium from which a computer can read.

[0080] Various forms of computer-readable media may be
involved in carrying one or more sequences of one or more
instructions to a CPU for execution. A bus carries the data
to system RAM, from which a CPU retrieves and executes
the 1nstructions. The instructions received by system RAM
can optionally be stored on a fixed disk either before or after
execution by a CPU.

[0081] Computer program code for carrying out opera-
tions for aspects of the present technology may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
JAVA, SMALLTALK, C++ or the like and conventional
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (e.g., through the Internet using an Inter-
net Service Provider).

Apr. 30, 2020

[0082] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, matenal,
or act for performing the function i1n combination with other
claimed elements as specifically claimed. The description of
the present technology has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the mvention. Exemplary embodiments were cho-
sen and described 1n order to best explain the principles of
the present technology and its practical application, and to
enable others of ordinary skill 1n the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

[0083] Aspects of the present technology are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the tlowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the flowchart and/or
block diagram block or blocks.

[0084] These computer program instructions may also be
stored 1n a computer readable medium that can direct a
computer, other programmable data processing apparatus, or
other devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified 1n the flowchart and/or
block diagram block or blocks.

[0085] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series ol opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or

blocks.

[0086] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present technology. In this regard, each block 1n the flow-
chart or block diagrams may represent a module, segment,
or portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted 1n the block may occur out
of the order noted in the figures. For example, two blocks
shown 1n succession may, 1n fact, be executed substantially
concurrently, or the blocks may sometimes be executed 1n
the reverse order, depending upon the functionality

US 2020/0136908 Al

involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks 1n the block diagrams and/or flowchart illustration,
can be mmplemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0087] The description of the present technology has been
presented for purposes of illustration and description, but 1s
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art without
departing from the scope and spirit of the invention. Exem-
plary embodiments were chosen and described in order to
best explain the principles of the present technology and its
practical application, and to enable others of ordinary skill
in the art to understand the invention for various embodi-
ments with various modifications as are suited to the par-
ticular use contemplated.

1. A computer-implemented method for autodiscovery
with dynamic configuration, the computer-implemented
method comprising;:

generating a configuration template for a provider, the

configuration template including one or more condi-
tions;

monitoring for launch of a new event from a provider;

based on the monitoring, detecting the new event;

determining, for the detected new event, occurrence of at
least one condition of the configuration template; and

in response to the determiming of the occurrence of the at
least one condition of the configuration template for the
detected new event, automatically launching a configu-
ration associated with the new event.

2. The method of claim 1, wherein the configuration 1s a
module and the launching 1s an instantiation of the module.

3. The method of claim 2, wherein the module comprises
a group of settings for particular tasks.

4. The method of claim 1, wherein the new event 1is
emitted to a common bus by the provider.

5. The method of claim 4, wherein the new event 1s one
of a plurality of events emitted to the common bus by the
provider and other providers.

6. The method of claim 1, wherein the provider 1s a
container provider or a container orchestration platform and
the new event 1s a new container.

7. The method of claam 6, wherein the provider is

DOCKER or KUBERNETES.

8. The method of claim 1, wherein the provider 1s a
port-based provider, process-based provider, or file search
provider.

9. The method of claim 1, further comprising determining
that the detected new container included one or more hints.

10. The method of claim 9, wherein the configuration
includes container labels or container annotations, wherein
the one or more hints are located 1n the container labels or
container annotations.

11. The method of claim 9, wherein, based on the one or
more hints, determining a configuration of a module.

Apr. 30, 2020

12. The method of claim 1, wherein the monitoring
includes monitoring container API for signals indicative of
the new container.

13. The method of claim 12, further comprising retrieving
logs from the new container based on the one or more hints
instead of being based on a default retrieval process.

14. The method of claim 9, wherein the one or more hints
include a hint on specific ports aspect to use, so as to enable
a port scanner, based on the hint, to scan only the specific
ports.

15. The method of claim 1, wherein the configuration
automatically launched 1s automatically stopped once the
container exits.

16. The method of claim 1, wherein the configuration
template includes a variable, the variable being substituted
by actual values from the new event that triggered at least
one of the one or more conditions.

17. The method of claim 16, further comprising, creating
a new configuration by replacing a variable in the configu-
ration template with a container IP address for the new event
which triggered the at least one condition.

18. The method of claim 1, further comprising automati-
cally enriching the new event with DOCKER or KUBER -
NETES metadata.

19. A system comprising;:

a processor; and

a memory communicatively coupled to the processor, the

memory storing instructions executable by the proces-

sor to perform a method, the method comprising:

generating a configuration template for a provider, the
configuration template including one or more con-
ditions;

monitoring for launch of a new event from a provider;

based on the monitoring, detecting the new event;

determining, for the detected new event, occurrence of
at least one condition of the configuration template;
and

1in response to the determining of the occurrence of the
at least one condition of the configuration template
for the detected new event, automatically launching
a configuration associated with the new event.

20. A system comprising:

means for generating a configuration template for a pro-

vider, the configuration template including one or more

conditions;

means for monitoring for launch of a new event from a
provider;

means for, based on the monitoring, detecting the new
cvent,

means for, determiming, for the detected new event,
occurrence of at least one condition of the configuration
template; and

means for, in response to the determining of the occur-
rence of the at least one condition of the configuration
template for the detected new event, automatically
launching a configuration associated with the new
event.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description/Claims

