12 United States Patent
Collins

US010642581B2

US 10,642,581 B2
May 35, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(60)

(51)

(52)

(58)

SYSTEMS AND METHODS FOR BUILDING
APPLICATIONS USING BUILDING BLOCKS
LINKABLE WITH METADATA

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventor: Keith Collins, White Salmon, WA (US)

Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 16/221,007

Filed: Dec. 14, 2018

Prior Publication Data

US 2019/01141352 Al Apr. 18, 2019

Related U.S. Application Data

Continuation of application No. 15/399,560, filed on
Jan. 5, 2017, now Pat. No. 10,180,823.

Provisional application No. 62/395,892, filed on Sep.
16, 2016.

Int. Cl.
GO6F 9/44 (2018.01)
GOGF 8/34 (2018.01)
GOG6F 8/36 (2018.01)
U.S. CL.

CPC . GO6F 8/34 (2013.01); GO6F 8/36 (2013.01)

Field of Classification Search
CPC GO6F 8/34; GO6F 8/36
USPC 717/109

See application file for complete search history.

0000000000000000000000000000000000000

00

(56) References Cited
U.S. PATENT DOCUMENTS
5,613,111 A 3/1997 Malatesta et al.
7,584,207 B2 9/2009 Mortensen et al.
7,721,259 B2 5/2010 Heinke et al.
8,103,641 B2 1/2012 Baskaran et al.
8,752,015 B2 6/2014 Basak et al.
8,966,465 B2 2/2015 Kondurl
9,052,978 B2 6/2015 Appadurai
10,180,823 B2 1/2019 Collins
2001/0037494 A1 11/2001 Levien
(Continued)

OTHER PUBLICAITTONS

Title: Towards a restful plug and play experience in the web of
things, author: V Stirbu, published on 2008.*

(Continued)

Primary Examiner — Chameli Das

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton, LLP

(57) ABSTRACT

Systems and methods relate to creating applications using
building blocks linked together with metadata. A user inter-
face can enable a user to create an application. Creating the
application can include defining a new building block con-
figured to generate output data. The new building block can
include one or more existing building blocks and the meta-
data associated with the existing building blocks. For
example, a building block can include at least one input/
output (I/0) feature configured to receive inputs and/or
generate outputs. Further, the existing building block can
correspond to a data structure including external I/O {fea-
tures. The new building block can be linked to an existing
building block by mapping an external I/O feature of the
existing building block to an open I/O feature of the new
building block. The mapping can be stored in metadata
associated with the new building block.

20 Claims, 12 Drawing Sheets

200
Ewé wwwwwwwwwwwwwwwww :
u sana™™
ng
(it Bk _E" ol
F edire

: Building [P0 WOt 290 |,

Spenr KO i Block Sosom 1 |
Faatre A y ‘ e (o7 IQ
; 220 = Buikling [® 235 7 Fastue©

Q | vo{ SocK f

228 ;

i

t

Datsbase ; 40
246 ,
L f

-

Bullding Buikiing Buitding
Bigck Biock Block
220 228 230
- Custon
o o e b e of 235
[rew
1 Blook
\ l ugo?-os&w-u /

US 10,642,581 B2
Page 2

(56)

2003/0221184
2004/0107125

2005/0038942
2006/0144010
2007/0143501

2007/0203956
2008/0276218
2009/0037875
2009/0064090
2010/0223597
2010/0325085
2011/0161477

2012/0266063
2014/0282367

2014/0289702

2015/0113499
2015/0301698

2016/0283200
2016/0294929
2016/0321040

2017/0003843

References Cited

U.S. PATENT DOCUMENTS

Al
Al*

Al
Al
Al*

Al
Al
Al
Al
Al
Al
Al*

Al
Al*

Al*

Al
Al*

Al*
Al*
Al
Al

11/2003
6/2004

2/2005
7/2006
6/2007

8/2007
11/2008
2/2009
3/2009
9/2010
12/2010
6/2011

10/2012
9/2014

9/2014

4/2015
10/2015

9/2016
10/2016
11/2016

1/2017

Gunjal et al.

Guheen G06Q) 50/01
705/319

Swanson

Wolf

Pashaccocovvvvvvninnin, GO6F 8/30
709/246

Anderson et al.

Taylor et al.

Jones et al.

Anonsen et al.

Jain

Stritzel

Kowalski HO041. 67/2823
709/223

Bushnell

Harrilloovvvinnni, GO6F 8/31
717/105

McMahon GO6F 21/60
717/120

Sharma et al.

Roques GOO6F 3/0482
715/736

Standley GO6F 8/34

Chmielewskt GO6F 16/25

Sankaranarasimhan

[.1ao et al.

2017/0279691 Al* 9/2017 Willhams HO4L 41/5077
2018/0081639 Al 3/2018 Collins et al.
2018/0081640 Al 3/2018 Collins et al.
2018/0329693 Al* 11/2018 Ekstenccccoe.., GOO6F 16/21
2018/0349154 Al1* 12/2018 Standley GO6F 1/24

OTHER PUBLICAITTONS

Title: REST1iul web services for service provisioning in next gen-
eration networks: a survey; author: F Belgasmi et al, published on

2011.*

Title: Dynamic web service composition: A new approach in
building reliable web service, author: PPW Chan et al, published on
2008.*

Title: Web service composition-current solutions and open prob-
lems; author: B Srivastava et al, published on 2003 .*

Hick, et al., “Using Meta-Data to Support Customization”, 1999.

“Oracle Fusion Applications”, Extensibility for Developers, 11g
Release 8 (11.1.8) Refresh 5, Jun. 2014.

Wikman, Eric, “Creating Upgrade-Safe Customizations”, Epicom
Blog, Jan. 2, 2009.

U.S. Appl. No. 15/399,560 received a Non-Final Oflice Action dated
Mar. 16, 2018 13 pages.

U.S. Appl. No. 15/399,560 received Notice of Allowance dated Sep.
5, 2018. 11 pages.

U.S. Appl. No. 15/399,565, Non-Final Office Action dated Apr. 16,
2019, 17 pages.

* cited by examiner

U.S. Patent May 5, 2020 Sheet 1 of 12 US 10,642,581 B2
?002
102
110 On-Site Client 1 System 119

First Sub-System

122

118
- Content

Management
Resource

120
Resource

152

Agent
Levice
124
Frocessing
Hesoures
125
scheduling
Resource

evice

Second Sub-System

130
Levice
132

Network
Configuring
Resoures

116
Sub-System Coordination Resource

128
Ferformance
Monior

Hesoures

114

.....
-~

Virtual Client System

142 144
| Resource Resource
WiFi »
Levice MNetwork

146

Usage Monitor
Resource

150
Resource

154

Allocation Hesouree

Client 2 System

13
Equipment
REeSoUrce

<
136

138
140
HEsSourcs Levice

Processing
Resource

FIG. 1

US 10,642,581 B2

Sheet 2 of 12

May 5, 2020

U.S. Patent

an - JO

iy ATy > L

oy 3% o M

F] . —t -

et » - i

T = oy
i e o= i
£, £ Y
7 Wiy

el ‘e\\u ew.l

‘.

.‘}o“.!r.“ ."}.t’t W Gy Pyt ol g ol Sy ol P l.,l.
4 ¥ s 3
.“ m..t atﬂn &

. - v.l. n.

e Gy M3

A ““ G X 3 m s

Ml 8 I..”\.. i .lh

X oo ﬂ-m {13 .

P :

X, R

T P e P g e g g

Aetwieh Auiwieh Feieish, Yeln'st wYielns' welns' wielnts' Wieins' eieiehs Aeieieh Aeieieh Weinieh Yielniest Wielnle' wWieldle' Welnr Wieln'r ey Ay

FIG. 2

U.S. Patent May 5, 2020 Sheet 3 of 12 US 10,642,581 B2

300

A

Provide interface configured 10 enable user 10 build application

310
Heceive first input comresponding to request {0 buld new buliding dlock
315
Adg one or more VO features 1o the new buliding biock
320

Access a phurality of exdsting building blocks, each existing buiiding block
corresponding to a data strycture comprising one of more externat /O features

325
S

Generate menu obigct that faciliiales selection of one or mors
cuiliaing biocks from amongst the plurality of existing buiiding BIOCKS

230
Receive second input corresponding 1o seiection,
identified using the menu object, of a particular buiiding block

335

Receive third inpul corresponding o selection of a particular externatl VO feature of

the particuiar bulding block ¢ add o an open VO fealure of the new buliding block
340

Assign the particular exiernal VO feature of the panticuiar bulding plock 1o the
cpen /O feature of the new puiiding block, the assignment including
sioring assignment metadata in association with the new buiiding biock

245

otore definition of new building block, the definition including
the one or more gpen VO features and the assignment metadala

FIG. 3

U.S. Patent May 5, 2020 Sheet 4 of 12 US 10,642,581 B2

400

A

405
Access a piuraity of existing bullding blocks, each existing buiding block
corresponding 1o web service associgted with uniform resource identifier (URID
410
identify pullding biock from amongst the plurality of existing builging bIocks
415
Transiorm the builging block inlo machine-reagable description {anguage that
ncludes gt least one inpul parameter and g representation of the suiput
420

invoke the web sarvice that corresponds 1o the bullding BIocK

423
S

Heceive communicalion corresponding to the cutput of the buliding biock,
the output being represented in accordance with the represeniation of
ihe output included in the machine-readable description language

FIG. 4

U.S. Patent May 5, 2020 Sheet 5 of 12 US 10,642,581 B2

U0

\ﬁik 505

Frovide inlerface 10 enable uyser to define g
cusiomization setting for one or more bBuiliding DIGCKS

510
identity applicalion ciass associated with existing butliding block
515
identity new application ¢iass associated with new
buitding block corresponding 1o the existing building dlock
52()
Receive nput corresponding 1o selection of selectiable feature,
ihe selection of the seleciable fealure moditying state of the
selectabie feature between a first mode and a second mode
525

(senerate and siore mode metadatla associated with new buliding
piock, the mode metadata corresponding to the first mode or the
second mode pased on ihe selection of ihe seleciable feature

230

Receive request to execute the new bullding block at a later time

D35

Petermine whether the mode metadala corresponds to first mode or second mode

040 545

Vhen mode metadata corresponds to
second moede, call new application
class, such that customized meladata
associaled with new building biock is
applied to copy of the one or more
renderning objects

Yhen mode metadata corresponds 1o
Hirst mode, call apphication ¢lass, such

that customized metadata associated
with new builgding block is apphied 10
ihe one or more renderning objecis

FIG. 5

9 Ol

TR U 3L

US 10,642,581 B2

SRS SR, N PRSPPI Sy NGNS N PR [N PPUUPUGPR) NP

-

L9
HERW ATy
SISy DEHES

Sheet 6 of 12

Ay gLS

AOOES VRIS AR

U

W WGAETY W3 ey adA memidre UoIHSO ~ uoEods
77 UGBS

fnnisy

fF A 12

J. UL o

o -

.
.d

17

H

May 5, 2020

ST AL HAYYY

114

& 8 o & wufiisan ddy pides moAey

U.S. Patent

L i

US 10,642,581 B2

—_— L ALY
004 -
Pz

0cL

<rdden Jons UM

4

\‘.h‘!:
Gw
c

-t
L
!“
ton

.3

Sheet 7 of 12
i)
a2 W
i
- nxr=-
. ¢
.
Oh
3
‘a
o
‘:.)3
‘E‘D
S
U3

i

el

ameme mnenemen _ el
Busideyy Gutinba)y SIUewEd - _ G4 Wi

WREIEUSET] IS8] G 1

—
)
—
)
" SANLIL A SIGEIRAY
"
Wa

OPL

SR 3G e 1Y

Uizl SEoistnied OU ~ UOHRZRI wNRIBT W oLz

donGuatg 10388

S1ad0y IRCAR T SIBIERAY

U.S. Patent

US 10,642,581 B2

DUGUS HI0BIGS &
SSANRE SIIRWCS @
DINEL SIMLET @
AN TATEI R

FIuML B @

QR W @

Al Terel ity NG W #

WSO WHIENT

AR T 2

PO
—

S5 el ﬂ L G ey Y
Free

SRR

.

JIYHL LG e
GEAS, ONTELS @
ING OIS 8

AL WHIR @
NG WO 8
NG =
TS S1HVES

=

I yutE et g
\A\‘ cooad unid @
¢

PG Wi
GPE Vive B

Sheet 8 of 12

aitisdosg | b pud epeaydey;

S el oGt o

D EY

L

ERIES DT | iapRRitey

] O

e T T

: 4

May 5, 2020

qrdf s Jusne sk m mm“%m yRitieea],

woRg By

A2 2YS

U.S. Patent

U.S. Patent May 5, 2020 Sheet 9 of 12 US 10,642,581 B2

Layouts - Search 300

Layoul Names QUSTOM APP
Descriphion Qustaization for Parent

sss

Fvent Delsils

Event Type S4VE
Root Fackane {1 Q. FLIGHTPLAN _GYNO
Fagty o G4
GCiass {3 PARRNT

Method OnSagveBEvent

Rool Packags B {0E
Path

Ciges R OURTOR

Event Yypn T
Root Package 8y Q8 FLIGHTRLAN _SYNC
Fathr Fots
Giass {3 FARERT
Methaed OninitEveat

LR TRLAN_SYNC

FIG. 9

U.S. Patent May 5, 2020 Sheet 10 of 12 US 10,642,581 B2

TOQOX

atabase
1018

Database
1014

Component component
1018 1020
Component
1022

Server
1012

Network(s)
1010

1006

FIG. 10

US 10,642,581 B2

Sheet 11 of 12

May 5, 2020

U.S. Patent

LL Ol

vyl
el S0INISS
SAAIRS PRIBYS {BUISIUI PepinGid

gOL1

G I T

SSINOSHN AUNMONNSBIU PELL
1Isanbax aonias

Y4N)
jislabrURY AU

74N
DULICHUCIY pur
s dBuRW JODIO

gLt
{SINIOMIGN

caan)
OriL SOIAIBS

7211 HIPINGI ST

BUILOISIAGIL] JBPIO « \ F Tleoweqmsid

A%

UORRASSUO JBpIn

Zvil peLl
Uvil 1senbeNM aniAeg
JisteBruBR 1800 SSSHSSQ 4RO .w.w ww
AN N
oS L1 | popinoig
— —_— N R POV 4l
TR P11 AN | so1na] S0
N PROIO 11 PRoIO N pRoio ” VELL Jsanben aoias .

A
WIBISAS SINOIUISBAU DRoHY

Mocit

cl Ol

gid1
Wa1sAsang abvioig

US 10,642,581 B2

Gk

SO
3fBI0IS SIBDBA M
~JENGLION

Gidi
Lis1sAe BunriD

BT

Ul i Yool

g\ saepdn | | swrsns | | spos TIoT
o , i
. 44 Occi
N sipiBold uoneoiddy JaEay BIPoN |
5 — abRIOIS 2IORPES M
= e Jich rendiion
b - AJCGULSIN LUBISAR
1 wissAsgns sUoRESIUNWILUGD
—
3
—
3
' A} _ .
- 302 1 YLok 2ol t
= TTA) Hury pun hun
LLIGISASONS O] UOHBISIaY Ouissaoosd gng BLISS800IU gng
BLSSa00) A
S SUOEN
GOzt 120 4)

HUN DUISSE00 o

U.S. Patent

US 10,642,581 B2

1

SYSTEMS AND METHODS FOR BUILDING
APPLICATIONS USING BUILDING BLOCKS
LINKABLE WITH METADATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation application of U.S.
application Ser. No. 15/399,560, filed on Jan. 5, 2017, which
claims the priority benefit of U.S. Provisional Application
No. 62/395,892, filed on Sep. 16, 2016, the disclosures of
cach of which are herein incorporated by reference in their
entirety for all purposes.

FIELD

The present disclosure relates generally to building appli-
cations. More specifically, the present disclosure relates to
building applications using building blocks that are linkable
with customizable metadata.

BACKGROUND

Generally, users have increasingly been customizing
applications created by application providers (e.g., applica-
tions created by PEOPLESOFT™). However, customiza-
tions performed by users are problematic. For instance, 1t the
application 1s modified by the application provider (e.g.,
upgraded or patched), the customizations performed by the
user to the application are overridden. Users often generate
and review reports to determine how the look and feel has
changed or other customized settings have been lost after the
application 1s modified. Users may have to re-customize the
application to achieve the look and feel and customized
settings they prefer. This process can be very complex and
burdensome due to the number of changes in the customi-
zation.

SUMMARY

Certain aspects and features of the present disclosure
relate to systems and methods for creating applications using,
building blocks that can be linked together with metadata. In
one embodiment, a user interface can be provided to enable
a user to create an application. Creating the application can
include defining a new building block configured to generate
output data. To generate the output data, the new building
block can include one or more existing building blocks and
the metadata associated with the existing building blocks.
For example, a building block can include a portion of code
(e.g., executable logic) that corresponds to at least one
input/output (I/0) feature configured to receive iputs and/or
generate outputs. Further, the building block can correspond
to a data structure including external I/O features. The
external I/O features can include inputs that are defined for
storage to the data structure and/or outputs that are defined
for retrieval from the data structure. The new building block
can be linked to an existing building block by mapping an
[/O feature of the existing building block to an open /O
feature of the new building block. The mapping can be
stored 1n metadata associated with the new building block,
such that when the new building block 1s accessed at a later
time, the metadata indicates that the open I/O feature 1s
linked to the I/O feature of the existing building block.

In another embodiment, the I/O features of previously
defined bwlding blocks can be selectable from a menu
object (e.g., a drop down menu). For example, the menu

10

15

20

25

30

35

40

45

50

55

60

65

2

object can be dynamically generated 1n response to a detec-
tion of a request to build a new building block. In response
to detecting the request, the menu object can display a list of
existing building blocks, such that the I/O features of the
displayed building blocks are the types of I/O features that
are compatible with the open I/O feature of the new building
block. The list of existing building blocks displayed can be
dynamically updated (e.g., each time a list 1s requested for
use 1n building a new building block or connecting to an
existing building block, the list 1s determined by determin-
ing, at that time, a collection of then-available building
blocks and/or their I/0O features and populating the list based
on the collection), such that the list of previously-defined
building blocks grows as more building blocks are defined.
For example, the new building block, along with the meta-
data associated with the new building block, becomes avail-
able for selection using the menu object when the new
building block 1s registered.

In another embodiment, the building blocks may be called
as web services (e.g., a representational state transfer
(REST) service) that can be interacted with either inside of
a building block architecture or outside of the building block
architecture using exposed protocols. A REST service 1s an
architectural style for networked applications. For example,
the building block can be combinable with other building
blocks within the building block architecture that exposes
one or more particular other building blocks that are not
exposed using web services. In this embodiment, a building
block can be transformed 1nto a machine-readable descrip-
tion language (e.g., a web application description language
(WADL), a web service description language (WSDL), etc.)
that can be modified and/or called using a URI. In an
embodiment, the building block architecture can include a
PEOPLESOFT™ platiorm.

In another embodiment, a single-click user interface (UI)
tool (e.g., a checkbox feature) can be provided on the user
interface. The single-click Ul tool can facilitate toggling
between unselected and selected based on a single item of
user input (e.g., a single click, a single tap, a single swipe,
or a single keypress) recetved at a building block configu-
ration interface. In some instances, the toggling causes
switching between customization modes. For example, 1n a
first mode (e.g., when the checkbox feature 1s unselected),
the rendering object associated with an existing building
block 1s executed at runtime without executing any custom-
1zed metadata. In this example, when 1n the first mode, the
delivered application without any customizations 1s
executed at runtime. In some instances, the toggling causes
switching between using another building block and then
customizing based on metadata on top of a (single) render-
ing object (customized with metadata) (e.g., a first mode), or
copying another building block and creating a custom build-
ing block that generates 1ts own rendering object (natively
custom) (e.g., a second mode), when referencing an existing
building block from a new building block. In some
instances, a delivered application can correspond to an
original application class created by the application pro-
vider. A user can customize the delivered application by
creating a new application class, which includes customized
metadata to be applied to the delivered application. In these
instances, at runtime, the output data and the associated
metadata that 1s generated from executing the original
application class 1s stored as a rendering object and 1s used
as mput to the new application class. Advantageously, the
output data and the associated metadata generated from the
original application class can be selectively customized
(e.g., overridden) by metadata of the new application class

US 10,642,581 B2

3

without modifying the original application class or metadata
of the delivered application. As only a non-limiting example,
if executing the original application class generates a table
of 20 columns and 4 rows, the new application class can be
coded to select some or all of the data in the table or to
extend the table to 25 columns. In this example, the metadata
included in the new application class can override the
metadata stored in the rendering object (from the original
application class). In some instances, only the new applica-
tion class 1s executed. In these instances, when a particular
mode 1s selected by the user, the original application class 1s
not executed, but rather, only the new application class 1s
executed, thereby generating the data structure coded 1n the
new application class. It will be appreciated that an appli-
cation class can be associated with an event (e.g., a save
event, an mitialization event, etc.). It will further be appre-
ciated that the selective execution of (1) the original appli-
cation class followed by the new application class, or (2)
only of the new application class, can be on an event-by-
event basis.

In some embodiments, a computer-implemented method
1s provided. The method can include providing an interface
configured to enable a user to build an application. For
example, building the application can include linking build-
ing blocks. The building blocks can be configured to process
data from data structures. A first input can be received via the
interface, wherein the first input corresponds to a request to
build a new building block. Further, the method can include
adding one or more 1I/O features to the new building block.
For example, the one or more open I/O features can com-
prise one or more open nputs to the new building block
and/or one or more open outputs from the new building
block. A plurality of existing building blocks can be
accessed. Each existing building block of the plurality of
existing building blocks can correspond to a data structure
comprising one or more external I/0 features. For example,
the one or more external I/0 features can comprise one or
more mputs that are defined for storage to the data structure
and/or one or more outputs that are defined for retrieval from
the data structure. The method can also include generating a
menu object that facilitates a selection of one or more
building blocks from amongst the plurality of existing
building blocks. An identifier of each of the one or more
building blocks can be displayed when the menu object 1s
selected. A second input corresponding to a selection, 1den-
tified using the menu object, of a particular building block
can be received. A third mput corresponding to a selection
of a particular external I/O feature of the particular building
block can be receirved. For example, the third input can be
received to add to a particular open I/O feature of the new
building block. The method can also include assigning the
particular external I/O feature of the particular building
block to the particular open I/0 feature of the new building
block. The assigning can include storing assignment meta-
data 1n association with the new building block. Further, the
assignment metadata can indicate a link from the particular
external I/O feature to the particular open I/O feature. For
example, either an mput of the particular building block can
be mapped to an output of the new building block or an
output of the particular building block can be mapped to an
input of the new building block. The definition of the new
building block can be stored. The definition can comprise
the one or more open I/O features and the assignment
metadata.

In some embodiments, another computer-implemented
method 1s provided. The method can include accessing a
plurality of existing building blocks. Each existing building

10

15

20

25

30

35

40

45

50

55

60

65

4

block of the plurality of existing building blocks can corre-
spond to a web service associated with a uniform resource
identifier (URI). Further, each existing building block can
correspond to a data structure configured to receive an input
and generate an output using executable logic. A building
block from amongst the plurality of existing building blocks
can be 1dentified. The building block can be transformed into
a machine-readable description language that includes at
least one 1nput parameter and a representation of the output
associated with the building block. Further, the web service
that corresponds to the building block can be invoked. For
example, the invocation of the web service can include
calling the URI associated with the web service. The calling
of the URI can cause the at least one input parameter to pass
through the building block, such that the output 1s generated.
A communication corresponding to the output of the build-
ing block can be received. The output can be represented 1n
accordance with the representation of the output included 1n
the machine-readable description language. The building
block may also be accessible as a building block that can be
combined with other building blocks within a building block
architecture that also exposes one or more particular other
building blocks that are not exposed using web services.

In some embodiments, another computer-implemented
method 1s provided. The method can include providing an
interface to enable a user to define a customization setting of
building blocks. The method can include identifying an
application class associated with an existing building block.
For example, the application class ca be associated with one
or more rendering objects. The application class can also
correspond to executable logic. Further, the method can
include 1dentifying a new application class associated with
a new building block corresponding to the existing building
block. The new application class can be associated with one
or more new rendering objects. The new application class
can also correspond to new executable logic including
customized metadata. An item of user input (for example, a
single click, a single tap, a single swipe, or a single keypress)
can be receirved at a building block configuration interface
that facilitates a selection. For example, the user input can
correspond to a selection of a selectable feature. The state of
the selectable feature can define the customization setting
for the new building block. The selection of the selectable
feature can cause the state of the selectable feature to be
modified between a first mode and a second mode, and vice
versa. In response to receiving the user iput, mode meta-
data associated with the new building block can be gener-
ated and stored. The mode metadata can correspond to a first
mode 1n association with the new building block if the first
mode 1s selected, or a second mode 1n association with the
new building block 1f the second mode 1s selected can be
processed. If the second mode 1s selected, responsive to
receiving the iput, a copy of the one or more rendering
objects can be stored 1n association with the new building
block. The method can include receiving a request to
execute the new building block. In response to receiving the
request, the method can include determining whether the
mode metadata corresponds to the first mode or the second
mode. When the mode metadata corresponds to the first
mode, the application class can be called, such that the
customized metadata associated with the new building block
1s applied to the one or more rendering objects. When the
mode metadata corresponds to the second mode, the new
application class can be called, such that the customized
metadata associated with the new building block 1s applied
the copy of the one or more rendering objects that was stored
responsive to receiving the nput.

US 10,642,581 B2

S

In some embodiments, a computer-program product 1s
provided that 1s tangibly embodied 1n a non-transitory
machine-readable storage medium. The computer-program
product can include instructions configured to cause one or
more data processors to perform part or all of a method
disclosed herein. In some embodiments, a system 1s pro-
vided. The system can include one or more data processors
and a non-transitory computer readable storage medium
contaiming instructions which, when executed on the one or
more data processors, cause the one or more data processors
to perform part or all of a method disclosed herein.

Advantageously, new applications can be built and/or
existing applications can customized without changing the
metadata of the underlying original application. Further, any
changes made to the metadata of the original application
(e.g., 1n an update or a patch) would not override metadata
associated with new or customized applications.

The following detailed description together with the
accompanying drawings will provide a better understanding
of the nature and advantages of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[llustrative embodiments of the present invention are
described 1n detail below with reference to the following
drawing figures:

FIG. 1 shows an example network for controlling
resource access and operation across sub-systems and/or
systems.

FIG. 2 shows a simplified block diagram of components
ol an application.

FIG. 3 1s a flowchart illustrating a process for building an
application.

FIG. 4 1s a flowchart illustrating a process for calling
building blocks as web services.

FI1G. 5 1s a flowchart illustrating a process for customizing
applications.

FIG. 6 shows an example interface for building an appli-
cation using building blocks.

FIG. 7 shows an example interface for mapping primi-
tives to data structures of building blocks.

FIG. 8 shows an example interface for building an appli-
cation using containers.

FIG. 9 shows an example interface for customizing meta-
data associated with the containers shown in FIG. 8.

FIG. 10 depicts a simplified diagram of a distributed
system for implementing one of the embodiments.

FIG. 11 1s a simplified block diagram of components of a
system environment by which services provided by the
components of an embodiment system may be oflered as
cloud services, 1n accordance with an embodiment of the
present disclosure.

FIG. 12 illustrates an exemplary computer system, in
which various embodiments of the present invention may be
implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, specific details are set forth in order to provide a
thorough understanding of embodiments of the nvention.
However, 1t will be apparent that various embodiments may
be practiced without these specific details. The figures and
description are not intended to be restrictive.

FIG. 1 shows an example network 100 for controlling
resource access and operation across sub-systems and/or
systems. Network 100 includes systems corresponding to

10

15

20

25

30

35

40

45

50

55

60

65

6

multiple clients and to multiple locations. More specifically,
cach of on-site client 1 system 102, virtual client system 106
and client 2 system 104 can correspond to a set of devices
and/or other components, such as one or more servers (e.g.,
and/or server farms or server clusters), user devices (e.g.,
desktop computers, laptops, tablets, or smart phones), data
storage devices (e.g., network-attached storage), and/or
equipment. The set of devices and/or other components can,
in some 1nstances (e.g., for on-site client 1 system), be
co-located, such as being located within one or more build-
ings or geographical areas associated with the client. In
some 1nstances, the clients need not be co-located but are
connected via a network (e.g., a private network). In
instances where different parts of a given client’s system are
at different locations (e.g., part being at an on-site location
and part being virtual), the systems may communicate via a
network, such as a WiF1 network 108.

A system can 1nclude multiple sub-systems. Each of the
multiple sub-systems may (for example) be configured to
perform a different type of operation, to use diflerent
resources (and/or different types of resources), to generate
different types of outputs, to be located at different geo-
graphical locations, to correspond to (e.g., to grant access to)
different agents or users (e.g., to different departments of an
organization), and so on. For example, on-site client system
102 can include a first sub-system 110 and a second sub-
system 112. First sub-system 110 can be configured to
receive and respond to requests from user devices for
content, and second sub-system 112 can be configured to
dynamically monitor and re-configure network resources.
First sub-system 110 and second sub-system 112 may com-
municate via WikF1 network 108 or a local area network 114.
Each of first sub-system 110 and second sub-system 112 can
further communicate with a sub-system coordination
resource 116. Sub-system coordination resource 116 may
process data from each of one or more sub-systems to (for
example) determine whether operation at one sub-system 1s
consistent with operation at another sub-system or with
system-level policies and/or to determine how one or more
resources are to be allocated to a sub-system.

The implementation depicted 1in FIG. 1 illustrates various
types of resources of systems. It will be appreciated that
these resources are illustrative. Resources represented by
separate blocks may, but need not, correspond to separate
devices or groups of devices.

In the depicted instance, first sub-system 110 includes a
content management resource 118, which 1s configured to
query one or more data stores for content responsive to
content requests and to transmit responses to content
requests. For example, content management resource 118
may be configured to recetve HT'TP requests from a user
device 119 and respond with webpage data. First sub-system
110 can further include a security resource 120, which may
be configured to determine what data various users are
authorized to receive and/or what types of actions various
agents are authorized to make. For example, security
resource 120 may receive or intercept a request from an
agent device 122 to add or modify data 1n a content data
store (e.g., stored locally at first sub-system 110 or remotely)
and to determine whether such an addition or modification
1s allowed (e.g., based on an authentication of agent device
122 and/or information associated with the request).

First sub-system 110 also includes a processing resource
124, which can be configured to perform data processing,
such as processing retrieved content (e.g., to convert 1t from
a first to a second format or identifying particular content
objects to retrieve 1n response to a request). First sub-system

US 10,642,581 B2

7

110 further includes a scheduling resource 126, which may
monitor incoming requests and 1dentify when each request 1s
to be processed (e.g., by managing a request queue).

Second sub-system 112 includes a performance monitor
resource 128, which may assess a data log corresponding to
requests being handled by first sub-system 110. The assess-
ment may 1iclude monitoring a speed at which the requests
are processed and an error rate. Results of the assessment
can be transmitted to another agent device 130. A network
configuring resource 132 can initiate various reconfigura-
tions that may influence performance, such as server allo-
cation. A reconfiguration may be automatically performed or
performed responsive to a request from man agent device,
such as agent device 130. An agent-initiated reconfiguration
may require an authorization of the agent or agent device.

Client 2 system 104 includes an equipment resource 134
that may be configured to generate outputs. For example,
equipment resource 134 may (for example) process iputs
(e.g., parts, materials and/or input data) to generate a tan-
gible product (e.g., a manufactured or assembled part) or
intangible result (e.g., quantitative characterization of a
sample or part, biological metric, environmental data, wire-
less signal characteristics, and so on). A sensor resource 136
can be configured to generate readings corresponding to an
operation ol equipment resource 134, such as an operating
temperature and/or energy being used. A processing
resource 138 can send instruction communications to equip-
ment resource 134, which can control an operation of the
equipment resource (e.g., to define mputs, 1dentify types of
processing and/or indicate when the resource 1s to operate).
Processing resource 138 may determine such instructions in
response to processing requests for particular outputs. Pro-
cessing resource 138 may further or alternatively assess data
corresponding to operation of equipment resource 134 (e.g.,
characteristics of output data, etliciency of product and/or
sensor readings) to determine whether an alert condition 1s
satisfied. In some instances, processing resource 138 oper-
ates so as to schedule operations at one or more equipment
resources 134, schedule request processing and/or coordi-
nate process control (e.g., via assessment of sensor mea-
surements).

Agent device 140 may provide operation parameters
and/or gain access to data. For example, an operation
parameter may include or at least partly define a part of a
workflow that 1s to occur (e.g., at least partly via equipment
resource 134) as part of a processing of a request. In some
istances, a local or remote security resource verifies that a
particular agent device or corresponding agent 1s authorized
to provide such parameters and/or gain access.

Virtual client system 106 1includes various resources for a
system that are, for example, operating in the cloud. In some
instances, part or all of virtual client system 106 1s identified
as being or being used for or by an on-site sub-system (e.g.,
first sub-system 110 and/or second sub-system 112). A
component may, but need not, be shared across two or more
sub-systems. In some instances, part or all of virtual client
system 106 corresponds to a separate sub-system from one,
more or all on-site sub-systems. In some instances, virtual
client system 106 includes multiple sub-systems.

In the depicted instance, virtual client system 106
includes a data storage resource 142, which may include
databases and/or data stores for a client. The databases
and/or data stores may be configured to facilitate periodic
updating and/or retrieving data in response to queries gen-
erated and coordinated by a query resource 144. For
example, a data store can include content objects managed
by content management resource 118, and query resource

10

15

20

25

30

35

40

45

50

55

60

65

8

144 can be configured to generate a query for content objects
from an external source (e.g., a source system 146). As
another example, a data store can include historical opera-
tional data of one or more equipment resources 134 for client
2 system. As yet another example, a data store can include
data corresponding to requests for particular types of outputs
of equipment resource 134, such that queries of the data
store (e.g., as performed using query resource 144) can be
used to control operation parameters of equipment resource
134 to facilitate responsiveness to the requests.

A usage monitor resource 148 can generate data logs
corresponding to (for example) incoming communications,
internal system performance (e.g., of content retrieval or
equipment operation) and/or system communications. For
example, usage monitor 148 can generate and maintain a
data log assessed by performance monitor resource 128
based on monitoring of requests and request responses
processed by content management resource 118. As another
example, usage monitor 148 can generate and maintain a
data log of a quality metric and/or of maintenance events
corresponding to equipment resource 134. As yet another
example, usage monitor 148 can generate and maintain a
data log of sensor measurements collected by sensor
resource 136.

Another security resource 150 can assess system access
requests, usage patterns, and/or system events to monitor for
security threats. For example, a frequency, source and/or
request content of content-object requests may be assessed.
As another example, a data log 1s assessed to determine
whether any patterns, trends and/or log-element frequencies
are idicative of a security threat. As yet another example,
security resource 150 may monitor equipment operation or
agent 1nstructions to determine whether any operations or
instructions are atypical from one or more characteristics of
previous 1nstructions or correspond to satisfaction of an alert
indication. When security resource 150 detects a potential
threat decision, 1t may trigger an alert to be transmitted to an
agent device, such as agent device 122, agent device 140, or
an external agent device 152.

An allocation resource 152 can control which cloud
resources are allocated to a given client, client sub-system,
task performance, and so on. For example, allocation
resource 152 can control allocation of memory, data stores
(e.g., network attached storage), processors, and/or virtual
machines.

FIG. 2 shows a simplified block diagram of components
of an application. As illustrated 1n the example of FIG. 2,
application 200 can be created by a user. For example, the
user can be a developer that interacts with a user interface to
build or create the application. In some instances, the
application can be executable on a browser that 1s running on
a user device (e.g., a mobile device, a smart phone, a tablet
computer, a laptop, a desktop, and electronic kiosk, and
other suitable devices). Further, the application can be
associated with a URI, such that when the application 1is
called (e.g., by entering the URI into the browser running on
the user device), the application can be executed (e.g.,
rendered at run time).

In an embodiment, the user can build application 200
using the user interface. The user interface can receive a
request from the user to build new building block 20S5. For
example, the user interface can receive an mput correspond-
ing to a selection of a selectable feature (e.g., a button, link,
etc.) that mitiates a request to build a new building block. A
building block can include a portion of code (e.g., execut-
able logic) of an existing application, such that the portion
of code 1s configured to receive mputs and generate outputs.

US 10,642,581 B2

9

Further, a building block can include a data structure that
stores data of one or more data types in records or databases
(e.g., columns, rows, tables, lists, etc.). In an embodiment,
the data structure can comprise one or more external input/
output (I/0) features. An external I/O feature can include an
input that 1s defined for storage to the data structure and/or
one or more outputs that are defined for retrieval from the
data structure. In some cases, a building block can be defined
by mput(s) or used value(s), 1f any; intermediate operation(s)
based on the 1nput(s) or other specified value(s) or setting(s);
and/or any one or more of the following output(s): data to be
provided in-line directly to another connected building block
(pushed output); data stored 1n a data structure to be made
available to other building blocks (pullable output); interface
configuration, interface configuration metadata; and/or inter-
face content to be rendered on a part of the graphical user
interface to which the building block is plugged 1n. In some
cases, the pushed output(s) and/or pullable output can be (or
be associated with) an I/O feature of a building block.

New building block 205 can include one or more open I/0
features. For example, an open I/O feature can include an
unassigned (e.g., open) mput to new building block 205
and/or an unassigned (e.g., open) output to new building
block 205. An open input can be an input that has not yet
been linked to a source (e.g., a record, a database, an output
of an existing building block or application, etc.). Further, an
open output can be an output that has not yet been linked to
a destination (e.g., a record, a database, an nput of an
existing building block or application).

The user can map existing /O features from existing
building blocks to the open I/O features of new building
block 205 using assignment metadata. For example, the user
can select a particular existing building block (e.g., building
block 220) using a menu object (e.g., a drop down menu) as
discussed below with respect to FIGS. 3-6. The user can then
map open I/O feature A to one of the I/O features of building
block 220 (e.g., the mput of building block 220). As only a
non-limiting example, building block 220 can be configured
to recerve a user mput, such as a user identification (ID), an
address, a phone number, or any other input entered by a
user. While not shown 1n FIG. 2, open I/0O feature A can also
be mapped to an output of building block 220. As only a
non-limiting example, the output of building block 220 can
be a function that queries a database for additional infor-
mation associated with the user ID (e.g., user groups, profile
information, etc.).

Mapping an open I/O feature to an I/O feature of an
existing building block can include storing assignment meta-
data 1n association with new building block 205. In an
embodiment, the assignment metadata can include metadata
that identifies that the open I/O feature 1s contextually
mapped to the mput of building block 220. In another
embodiment, the assignment metadata can include metadata
that retrieves data from a URI associated with the I/O feature
of building block 220. For example, when the executable
logic associated with new building block 205 runs, the
assignment metadata causes open I/O feature A to get or
retrieve data from the assigned I/0 feature of building block
220. In this example, the assigned I/O feature of building
block 220 can correspond to a data structure that stores
various records of data. The assignment metadata can i1den-
tify that open I/0 feature 1s to retrieve data from a particular
record of the data structure that corresponds to building
block 220. The various records of data can be retrieved by
another building block and/or defined for storage using data
from an output of another building block. In another
embodiment, the assignment metadata can include a pointer

10

15

20

25

30

35

40

45

50

55

60

65

10

(e.g., a URI, URL) to a network or database location for
retrieving data or pushing out data for storage.

In addition, the user can select additional existing build-
ing blocks to cascade, combine, or link with an I/O feature
(e.g., an output) of building block 220. In the example
illustrated 1n FIG. 2, the user selected an I/O feature of
building block 225 (e.g., an mput of building block 225) to
receive an output of building block 220. In this example,
when the executable logic associated with building block
225 1s executed at run time, the executable logic, when
executed, can analyze the assignment metadata associated
with building block 225 to determine that an input of
building block 225 is to receive an output of building block
220.

In some embodiments, building blocks can retrieve data
from records or databases and/or push data for storage to
records or databases. For example, building block 225 can
have an 1I/O feature (e.g., an 1nput) that retrieves data from
a database (e.g., database 240). Continuing with an example
above, 11 open I/O feature A corresponds to a user input of
a user 1D, the data representing the user ID can be passed
through building block 220 to an output of building block
220 and into an mput of building block 225. Further,
building block 225 can query database 240 for additional
information associated with the user ID (e.g., user groups,
profile information, etc.). Database 240 can return the addi-
tional information to building block 225, and as an example,
the additional mnformation can be received at an 1/O feature
(e.g., mput) of building block 2285.

Further, building blocks can be customized without
changing any metadata associated with the underlying build-
ing blocks that are being customized. For example, the user
creating new building block 205 can select building block
230 (e.g., using a menu object discussed later) as part of
building application 200. Building block 230 may have one
or more 1mputs (e.g., I/O features) and one or more outputs
(e.g., I/O feature). However, the use may customize the
metadata associated with building block 230. For example,
if building block 230 includes a function to display a header
with static text, the user can customize building block 230
by adding customized metadata 235. As a further example,
customized metadata 235 can include a copy of the metadata
of building block 230, but with a modification to the header
to different text or to an input received at an I/O feature of
building block 225 (e.g., the user ID received at building
block 220).

It will be appreciated that building blocks 220, 225, and
230 are existing building blocks that were previously created
by a developer. Each of building blocks 220, 225, and 230
can have one or more iputs and one or more outputs. For
example, when the user who 1s creating new building block
205 selects building block 220 from a menu object (e.g., a
dynamically populated drop-down menu), the user interface
can display all of the one or more inputs and one or more
outputs previously linked to building block 220. From this
list of one or more mputs and one or more outputs associated
with building block 220, the user can select an I/O feature
(e.g., an mput and/or an output) from this list to assign to
open I/0 feature A, for example. The selection of a particular
I/O feature associated with building block 220 can cause
assignment metadata (e.g., metadata identifying the link
between open I/O feature A and the selected 1/O feature of
building block 220) to be created and stored.

In an embodiment, the user can add existing applications
to application 200. For example, the user can add application
210 and application 215 to application 200. In this example,
when an existing application 1s added to a new application

US 10,642,581 B2

11

being created, that existing application can be displayed as
a button or link when the new application 1s rendered 1n a
browser. When the button or link associated with the exist-
ing application 1s selected on the displayed new application
that 1s rendered on the browser of a device, the existing
application can be executed and the functions included in the
new application can be performed.

It will be appreciated that building block data store 245
stores all of the existing building blocks and the metadata
(e.g., assignment metadata) associated with the building
blocks. It will also be appreciated that the building block
data store 245 can store new building block 205 after it 1s

completed and the assignment metadata i1dentifying that
building blocks 220, 225, and 230 are included in new

building block 205, and the links between the building
blocks. For example, building block data store 243 can store
metadata that identifies that open I/O feature A of new
building block 2035 1s mapped to a specific I/O feature of
building block 220, and so on. It will also be appreciated that
the menu object included 1n the user interface can display
new building block 205 when it 1s completed (e.g., regis-
tered). Advantageously, the menu object 1s dynamically
generated 1n response to a selection to build a new building
block, such that the nputs/outputs are the types of inputs/
outputs that are compatible with the current/customized
building block, and such that the previously defined building
blocks list grows as more building blocks are created.

It will also be appreciated that the building blocks can
correspond to web services (e.g., a REST service). The
building block can be called by entering the corresponding
URI into a browser. In an embodiment, the code underlying
the building block can be transformed into a web application
description language (WADL) or web service description
language (WSDL). The WADL or WSDL can expose all of
the URIs included 1n the layout of the building block. A URI
can correspond to a container or building block. A user can
modity the WADL or WSDL to change the input parameters
that pass through the building block or to change the
representation of the output (e.g., whether the output 1s 1n
XML, JSON (JavaScript Object Notation), etc.). In this
embodiment, there may not be a need for an HTML interface
because the calling of the web service can be achieved by
entering the corresponding URI into the browser window.

FIG. 3 1s a flowchart 1llustrating a process for building an
application. Process 300 can be performed to build an
application using one or more existing building blocks that
are linkable using metadata. Further, process 300 can be
executed at least 1n part at a user device and/or one or more
servers. At block 303, an interface configured to enable a
user to build an application can be provided. For example,
the user can be a developer that interacts with a user
interface executing on a user device to build or create an
application. In some instances, the application can be
executable on a browser that 1s running on the user device
(e.g., a mobile device, a smart phone, a tablet computer, a
laptop, a desktop, and electronic kiosk, and other suitable
devices). Further, building an application on the interface
can include linking building blocks. A building block can
correspond to a data structure, and the linking of building
blocks defines how data from the data structure will be
processed (e.g., the context for processing data stored in the
data structure). For example, linking an output of a first
building block to an mnput of a second building block defines
the context of processing the output of the first building
block as the input to the second building block.

At block 310, first input can be received via the interface.
For example, the first input can correspond to a user request-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

ing to building a new building block. In some 1nstances, the
first input can correspond to a selection of a button, link, or
other selectable object presented on the interface. In these
instances, the selection of the button, link, or other selectable
object can 1nitiate the process of defining the new building
block (as further described in blocks 315 to 345 below).

At block 315, one or more open I/O features can be added
to the new building block. For example, the interface can
enable the user to add one or more open I/O features to be
assigned to the new building block. In some instances, one
or more open I/O features include one or more open inputs
to the new building block and/or one or more open outputs
from the new building block. When an open input 1s added
to the new building block, the new building block 1s con-
figured to receive an 1nput (e.g., a user iput received at the
interface or an output from an existing building block).
Further, when an open output 1s added to the new building
block, the new building block 1s configured to generate an
output from the new building block.

At block 320, a plurality of existing building blocks can
be accessed. Each existing building block of the plurality of
existing building blocks can correspond to a data structure
comprising one or more external I/O features. In some
instances, the one or more external I/O features can include
one or more inputs that are defined for storage to the data
structure. Further, in some instances, the one or more
external I/O features can include one or more outputs that
are defined for retrieval from the data structure. As discussed
below, an external I/0O feature can be assigned or linked to
an open 1/O feature of the new building block using the
interface.

At block 325, a menu object can be generated and
displayed on the interface. For example, the menu object can
facilitate a selection of one or more building blocks from
amongst the plurality of existing building blocks. In some
instances, an 1dentifier of some or all of the existing building
blocks can be displayed within the menu object. For
example, the menu object can be a drop down menu that
displays the 1dentifiers for each of some or all of the existing
building blocks.

Advantageously, according to aspects of the present dis-
closure, when a new building block 1s created (e.g., gener-
ated, built, defined, registered, etc.), that new building block,
or at least an identifier of that new building block, is
included 1n the one or more existing building blocks that are
displayed in the menu object. The menu object facilitates
selection of one or more existing building blocks 1 a
dynamic manner because the menu object displays existing
building blocks and new building blocks as they are regis-
tered. For example, the menu object can display a list of
existing building blocks, such that each existing building
block on the list has external I/0 features that are compatible
with the open I/O feature of the new building block. The list
of existing building blocks displayed within the menu object
(1in response to the selection of the menu object) can be
dynamically updated, such that the list of previously-defined
building blocks grows as more building blocks are defined.
For example, each time a list 1s requested for use (e.g., when
the menu object 1s selected) 1n building a new building block
or connecting to an existing building block, the list 1s
generated by determining, at that time, a collection of
then-available building blocks and/or their I/O features and
populating the list based on the collection. The new building
block, along with the metadata associated with the new
building block, may become available for selection using the
menu object when the new building block 1s generated (e.g.,
registered, created, built, etc.).

US 10,642,581 B2

13

It will also be appreciated that the menu object can display
building blocks (e.g., or 1identifiers of building blocks) based
on a role of the user (e.g., the developer). For example, 1f the
user only has limited permissions to access a limited set of
building blocks, then only the limited set of building blocks
will be displayed when the menu object 1s selected. How-
ever, 1f the user has full access to all building blocks, then
the menu object can display a list of all of the building
blocks or a subset of all of the building blocks (e.g., the
subset being all of the building blocks having compatible
I/0 tfeatures with the selected open 1I/O feature of the new
building block).

At block 330, second input corresponding to a selection
can be received via the interface. For example, the second
input can correspond to a selection of an existing building
block from the list of one or more existing building blocks
displayed in the menu object. In this example, the selection
of the existing building block 1s identified using the menu
object (e.g., an 1tem on the list of existing building blocks
displayed in the menu object 1s selected). In some 1nstances,
upon recerving the second nput, the interface can be modi-
fied to display one or more external I/O features associated
with the existing building block that was selected from the
menu object. The displayed one or more external 1/0 fea-
tures may be available for selection to be linked with an
open I/O feature of the new building block.

At block 335, third input corresponding to another selec-
tion can be received via the interface. For example, the third
input can correspond to a selection of a particular external
[/0 feature of the existing building block selected in the
menu object. In some instances, when an existing building
block 1s selected from a list of building blocks displayed in
the menu object, the available external I/0O features for that
selected building block are also displayed in the interface.
The third input can correspond to a selection of one of the
available external I/O features of the selected building block.
The selection of a particular external I/O feature from a list
of available external I/O features can be linked (e.g., added)
to a particular open 1I/O feature of the new building block.

It will be appreciated that, when the available external I/O
features of the selected existing building block are dis-
played, a data truncation test can also be performed. The
data truncation test can determine 1f there 1s potential for
data truncation from the mapping of the particular external
[/0 feature to the open I/O feature of the new building block.
[T the potential for data truncation exists, then virtual trans-
formation building blocks can be automatically called. For
example, the virtual transformation building blocks can be
automatically combined with a selected iput (after the
input) or output (before the output) building block if a
selection 1s made to connect two otherwise incompatible
data types. In this example, the virtual transformation build-
ing blocks can be applied 1n scenarios where data truncation
or data loss can be avoided through data transformation
(e.g., int—=string and string(20)—string(40)). In an embodi-
ment, when the virtual transformation building blocks are
called, a message can be presented to the user on the
interface requesting that the user confirm calling of the
virtual transformation building blocks.

At block 340, the particular external I/O feature (which
was selected at block 335) can be assigned to a particular
open /O {feature of the new building block. In some
instances, assigning the particular I/0 feature to a particular
open I/O feature can be achieved by storing assignment
metadata 1n association with the new building block. For
example, the assignment metadata can include data indicat-
ing that the particular external 1I/O feature 1s linked to the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

particular open I/O feature of the new building block.
Linking a particular external I/O feature of an existing
building block to a particular open 1/0O of the new building
block can include mapping either an 1input of the particular
building block to an output of the new building block, or an

output of the particular building block to an input of the new
building block.

At block 345, a definition of the new building block can
be stored. For example, the definition of the new building
block can include data representing the one or more open 1/0
features and the assignment metadata. In some 1nstances, the
assignment metadata can include data that represents a link
to one or more external I/O features of one or more existing
building blocks. Advantageously, when the defimition of the
new building block 1s stored or registered (e.g., in a data
store within the building block platform), the new building
block can be listed in the menu object as an existing building
block 1f the menu object 1s selected at a later time. If a new
building block (which has been registered) 1s selected at a
later time using the menu object, then the one or more open
[/O features can be treated as one or more external I/O
teatures and displayed 1n the interface as being available for
selection 1n association with a different new building block.

FIG. 4 1s a flowchart illustrating a process for calling
building blocks as web services. Process 400 can be per-
formed to call one or more building blocks and/or one or
more applications using web services (e.g., a REST service).
Further, process 400 can be executed at least in part at a user
device and/or one or more servers. Process 400 begins at
block 405, where a plurality of existing building blocks can
be accessed. In some 1nstances, each existing building block
of the plurality of existing building blocks can correspond to
a web service associated with a uniform resource i1dentifier
(URI). Further, each existing building block can correspond
to a data structure configured to receive an input and/or
generate an output using executable logic. In some
instances, when the URI associated with the web service 1s
received as an input at a web browser, the building block that
corresponds to the web service can be executed. At block
410, a building block from amongst the plurality of existing
building blocks can be identified.

At block 415, the building block (1dentified at block 410)
can be transformed into a machine-readable description
language that includes at least one input parameter and a
representation of the output associated with the building
block. For example, the machine-readable description lan-
guage can be a WADL or WSDL transformation of the
building block.

At block 420, the web service that corresponds to the
building block can be invoked. In some instances, the
invocation of the web service can include calling the URI
associated with the web service. Further, calling the URI can
cause the at least one mput parameter to pass through the
building block, such that the output i1s generated. For
example, mnvoking the web service can include receiving the
URI of the application as an input to a web browser.

At block 425, a communication corresponding to the
output of the building block can be received in response to
calling the URI associated with the web service. For
example, the output can be represented 1n accordance with
the representation of the output included in the machine-
readable description language. In some 1nstances, the output
can be stored 1n the data structure or 1n another data structure
associated with the building block. Further, in some
instances, the building block 1s accessible as a building
block that can be combined with other building blocks
within a secure building block architecture service (e.g.,

US 10,642,581 B2

15

such as one that 1s accessible via authentication) that also
exposes, for building within the building block architecture
service, one or more particular other building blocks that are
not exposed using web services.

It will be appreciated that an application can be trans-
formed into a REST service (e.g., Web Application Descrip-
tion Language (WADL)). For example, the interface can
include a wizard that guides the user through a process of
transforming the application into the WADL. In this
example, the user can select an existing application (includ-
ing one or more building blocks) or an existing building
block using the interface, and then the application (and the
one or more building blocks that make up the application) or
the existing building block can be transformed into the

WADL. When the application or the building block 1is
transformed into the WADL., the WADL can be used to call
the application or the building block using one or more URIs
included 1n the WADL. For example, a user outside the
building block architecture can view the WADL (e.g., using
an Application Program Interface (API)) and identify the
URIs for the applications or building blocks included 1n the
WADL. Additionally, header properties of the WADL can be
modified to define the format of the data (e.g., the output of
the application or building block) to be received 1n response
to calling an application or executing a building block. As a
further example, 1f an application being called using a
WADVL 1s configured to output data in HTML, a user can
modily a request header when calling the application, such
that the output data 1s received 1n JSON, instead of HTML.

FIG. 5 15 a tflowchart illustrating a process for customizing
applications. Process 500 enables a user (e.g., an adminis-
trator) to turn on and ofl customizations that are applied to
an application and/or to a building block included in an
application. Further, process 500 can be executed at least 1n
part at a user device and/or one or more servers. For
instance, delivered applications (e.g., applications provided
by an application provider, such as PEOPLESOFT™) may
be customized by an administrator. Advantageously, 11 a
delivered application 1s modified (e.g., with a patch or an
update) by the application provider, the administrator can
turn on or ofl the customizations applied to the delivered
application using process 3500, for example, in order to
determine which modifications were made by the applica-
tion provider.

Process 500 begins at block 505, where an interface 1s
provided to the user (e.g., displayed on a user device). For
example, the interface can be configured to enable a user to
define a customization setting for one or more building
blocks associated with an application. In some instances, the
customization setting for one or more building blocks can be
a setting that indicates whether to apply customized meta-
data (e.g., generated by a new application class) to one or
more rendering objects of an existing building block, or to
create a custom building block that generates its own
rendering object.

At block 510, one or more application classes associated
with an application can be i1dentified. An application class
can be associated with one or more rendering objects. For
example, a rendering object can include executable logic
that includes one or more functions configured to process an
imput and generate an output. As a further example, an
application class can be a program including executable
code (e.g., PEOPLECODE™), In some instances, the appli-
cation class can be identified using the interface (e.g., 1n
event details 910 or 920 as shown 1n FIG. 9). For example,
intertace 800 can include a tab that links to an interface page

10

15

20

25

30

35

40

45

50

55

60

65

16

displaying the application classes associated with the appli-
cation or new building block being created.

At block 515, a new application class associated with a
new building block can be identified. The new building
block can correspond to an existing building block 1n that an
open I/0O feature of the new building block can be linked to
an external I/0 feature of the existing building block. As an
example, the new application class can include new execut-
able logic that includes customized metadata. In this
example, when an administrator customizes a delivered
application, the code for the customizations can be stored 1n
the new application class. Fach building block can be
associated with one or more new rendering objects. For
example, when a building block 1s executed, the data that 1s
generated can be stored as an object and passed through a
new application class, depending on the customization set-
ting. Further, the new application class can correspond to
new executable logic including customized metadata.

At block 520, input can be received via the interface. For
example, the mput can include a single click, a single tap, a
single swipe, or a single keypress, or any combination
thereof. As another example, the mput can correspond to a
selection of a selectable feature (e.g., a checkbox). In some
instances, the interface can be a building block configuration
interface that facilitates receiving the input. As only a
non-limiting illustration, FIGS. 6-9 show examples of inter-
faces that may include a building block configuration inter-
face. In some 1nstances, a state of the selectable feature
defines the customization setting for the new building block.
The selection of the selectable feature can cause the state of
the selectable feature to be modified (e.g., toggled) between
a first mode and a second mode.

At block 525, responsive to the selection (at block 520),
the mode metadata can be generated and stored in associa-
tion with the new bulding block. For example, the mode
metadata can correspond to a first mode if the state of the
selectable feature corresponds to the first mode, or a second
mode 11 the state of the selectable feature corresponds to the
second mode. The mput of block 520 can correspond to a
selection (using the selectable feature presented on the
interface) of either the first mode or the second mode. In
some examples, the selection of the second mode using the
selectable feature can cause a copy of the one or more
rendering objects to be stored in association with the new
building block (e.g., in a server as metadata). In these
examples, the new building block 1s configured, such that at
runtime, the new building block generates its own new
rendering object and does not receive the rendering object of
the existing building block as input.

At block 530, a request can be received to execute the new
building block. For example, the request to execute can be
a request to 1nstantiate the new building block. At block 535,
in response to the request received at block 3530, 1t 1s
determined whether the mode metadata corresponds to the
first mode or the second mode. For example, 1f the mode
metadata corresponds to the first mode, process 500 pro-
ceeds to block 540 where the application class 1s called, such
that the customized metadata associated with the new build-
ing block 1s applied to the one or more rendering objects
(e.g., associated with the application class). If the mode
metadata 1s associated with the second mode, process 500
proceeds to block 545, where the new application class 1s
called, such that the customized metadata associated with
the new building block 1s applied the copy of the one or more
rendering objects that was stored responsive to receiving the
selection of the selectable feature. In some 1nstances, the
first mode can correspond to a situation 1n which an existing

US 10,642,581 B2

17

building block 1s customized based on metadata that 1s
executed on top of a (single) rendering object (e.g., custom-
1zed with metadata). For example, at runtime of executing
the new building block, the one or more rendering objects
associated with the application class are passed as input into
the new application class and the customized metadata of the
new application class 1s executed. The second mode can
correspond to a situation 1n which an existing building block
1s copied and a custom building block 1s created, such that
the custom building block generates 1ts own rendering object
(natively custom), instead of using the rendering object of
the existing building block. For example, at runtime of
executing the new building block, the one or more rendering
objects associated with the application class are not passed
as input 1nto the new application class and the one or more
new rendering objects associated with the new application
class are generated.

FIG. 6 shows an example interface for building an appli-
cation using existing building blocks. In an embodiment, the
interface can include Layout Rapid App Designer 600
(referred to herein as app designer 600). For example, app
designer 600 can enable a user (e.g., a developer, an admin-
istrator, etc.) to rapidly design, create, or build a new
application without needing to write any code. In this
example, app designer 600 enables the user to design a
layout (e.g., layout 620) for the new application that includes
one or more existing building blocks (e.g., header 630). The
one or more existing building blocks can be tied together or
connected using context data (e.g., assignment metadata). In
an embodiment, app designer 600 can include Mobile Appli-
cation Platform (MAP) Store 610, layout section 620, cle-
ments section 640, a “set permissions’ button 650, a “launch
application” 660, and a save button 670.

MAP Store 610 can include a group search bar and a
description bar. The group search bar can enable the user to
search for existing building blocks to add to layout 620. For
example, selecting the group search bar (e.g., the magnify-
ing glass icon) causes a lookup popup window to be pre-
sented to the user. The user can then select a group of one
or more building blocks from the lookup popup window. In
an embodiment, when a building block 1s selected from the
lookup popup window, the building blocks included 1n the
group are populated in the “selected group description™
section 615. In an embodiment, MAP Store 610 can access
building block data store 245 as shown 1n FIG. 2. Further,
building blocks can be customized. When the customized
building block 1s completed and stored, that customized
building block becomes available 1n MAP Store 610 (e.g.,
becomes available 1n the lookup popup window), such that
the previously defined building blocks list grows as more
building blocks are defined.

In some 1nstances, layout 620 can include the core data set
that 1s rendered when the new application 1s executed. For
example, the developer or administrator can select an exist-
ing building block that prompts for an mput (e.g., a user ID)
that can be populated in the data structure associated with
the selected building block. To achieve this, the developer or
administrator would select the building block and add 1t to
layout 620. In some instances, layout 620 indicates what
code 1s rendered and how the code 1s rendered (e.g., where
it 1s displayed on the browser screen) when the application
1s executed (e.g., at run time). For example, layout 620 can
include a header section, a content section, and a footer
section. The various building blocks can be added to these
different sections of layout 620.

For example, layout 620 can include a building block 630
that corresponds to maintenance records. As a non-limiting

10

15

20

25

30

35

40

45

50

55

60

65

18

example, the maintenance records can include records asso-
ciated with planes, cars, or other suitable vehicle. In this
example, building block 630 can include a data structure
including values of all of the maintenance records associated
with a particular vehicle. Examples of the data structure can
include a chart, an array, a grid, a table, and excel sheet, and
so on. The data structure can include one or more columns
of data and one or more rows of data.

Element section 640 can include one or more elements
(e.g., widgets) that can impact properties of the building
blocks included in layout 620. For example, an element in
clement section 640 can include a widget for changing the
representation of the data structure (e.g., to change a view
type, change a structure type, change label text, and the like).
Using the example of building block 630 being a data
structure of maintenance records, the properties of building
block 630 as 1t 1s represented 1n layout 620 can include
presenting the maintenance records 1n a table form when the
new application 1s rendered on a browser. The user can select
building block 630 and also select the widget for changing
the representation of the data structure. Upon selecting the
widget, the properties of building block 630 as 1t 1s included
in layout 620 can be changed (e.g., changing the mainte-
nance records so that they are represented 1n a list view as
opposed to the table form) when the new application 1s
rendered using a browser.

In this example, while the representation of the mainte-
nance records were changed from a table form to a list view,
it will be appreciated that the underlying maintenance
records (e.g., the values of the maintenance records) were
not changed. In this example, the selection of the widget
only caused the table form of the maintenance records to be
transformed 1nto a list view of the maintenance records.
According to embodiments of the present disclosure, the
layout (e.g., layout section 620) changes the representation
and properties of the building blocks that are included 1n the
new application, such that the building blocks are presented
in accordance with the determined properties. In an embodi-
ment, a modification to the representation and properties of
a building block when the building block 1s included 1n
layout 620 refers to a modification of the metadata of the
building block only within layout 620. In this embodiment,
the modifications to the metadata of the building block
within layout 620 (e.g., moditying building block 630 so that
the data structure 1s represented as a list view instead of a
table form at run time) do not impact the metadata of the
underlying building block (e.g., as stored in building block
data store 245, or as accessible by the MAP Store, etc.). For
example, the underlying building block still corresponds to
the data structure (e.g., the records that store the mainte-
nance records of the vehicle are unchanged), but only the
representation (e.g., table form or list view) 1s changed when
building block 630 1s added to layout 620.

App designer 600 can also include a “set permissions”
button 650, a “launch application” button 660, and a *“save”
button 670. In an example, the “set permissions” button 650
can be selected to define the permissions associated with
cach building block and/or application. For example, per-
missions can be set to require that valid login credentials
betore the functionality of a building block can be accessed
by an end user of the application. In another embodiment,
end users of the application can have full access to a subset
of building blocks, and can have limited access (e.g., requir-
ing login credentials) for another subset of building blocks.
Further, the “launch application” button 660 can launch the
new application. For example, launching the application can
render the building blocks in layout 620 on a browser

US 10,642,581 B2

19

window. Further, the “save” button 670 can be clicked to
save the current status (e.g., current configuration or prop-
erties) of the building blocks 1n layout 620.

It will be appreciated that a building block can include
definitions of contexts (e.g., the building block, when called,
prompts the end user of the application to enter a mailing
address). When the building block 1s included in the new
application, the building block can include different URIs
that the developer used when the building block was created.
When certain mput 1s iputted into the building block, the
output can be determined. For example, the user can tie the
output of an existing building block and feed that into an
input of a new building block being created for a new
application.

FIG. 7 an example interface for mapping primitives to
data structures of building blocks. The interface can include
URI Mapping page 700. When a building block 1s selected
from the Selected Group Description 615 (as shown 1n FIG.
6), the URI Mapping page 700 can be displayed. The URI
Mapping page 700 enables a user to add an open I/O feature
(e.g., an unassigned input) to the selected building block
using metadata from the existing building block (e.g.,
assignment metadata that identifies any other 1I/O features of
other building blocks mapped to an I/O feature of the
existing building block). In an embodiment, URI Mapping
page 700 can include a “mapping layouts” menu object 710,
“available layout URIs” section 720, “URI elements requir-
ing mapping” section 730, and “available primitives” sec-
tion 740. For example, a primitive can be a data element
included 1n a data structure.

In an embodiment, assignment metadata can correspond
to the mapping information of I/O features defined for a
particular building block. If a user (e.g., a developer) builds
an application using app designer 600, for example, the user
can define what location to get inputs (e.g., a record location
in a data structure) and what location to store outputs (e.g.,
a record location 1n a data structure) for a new building block
to be rendered when the application 1s called (e.g.,
executed). At the application layer of the new application or
building block, for example, there may be a Representa-
tional State Transter (REST) service that 1s created. The
REST service can 1dentity the URI that corresponds to the
input, for example. The specific context of data can be based
off the URI. When the user builds an application, the user
actually 1s building the URI because when the user defines
the application, and the user can add the one or more 1nputs,
which can return specific context when the application 1s
rendered at run time (e.g., using a browser). Further, the
output that 1s received after the application 1s rendered can
correspond to the logical structure of data that 1s used to
drive the application. For example, the building block data
store 245 can provide access to a plurality of existing
building blocks. As described above, a building block 1s a
piece of code of an existing application. When a new
building block 1s being created, the open 1/0O features of the
new building block can be added or defined. The open I/O
teatures for the new building block can be the inputs for that
building block, from another building block, or from the
user interface. These inputs can be passed through the
application, which would generate contextual data that that
application uses, and the user can take that data and map that
to an input of another building block.

In the example URI Mapping page 700 of FIG. 7, when
a building block 1s selected to be added to the new appli-
cation (as shown with respect to FIG. 6), the URI Mapping
page 700 can be presented to the user to enable the user to
add open I/0 features to the new building block, and to map

10

15

20

25

30

35

40

45

50

55

60

65

20

the open I/O features to I/O features of existing building
blocks. For example, the “mapping layouts” menu object
710 provides a drop-down menu showing all of the I/O
features that exists for an added open I/O feature of the new
building block that i1s added to the new application. For
example, “available layout URIs” section 720 shows a list of
defined open I/O features for the new building block. In this
example, the open I/O features for the new building block
include “A/C Number,” “Pilot Name,” and “Fight Test

Destination.” As a further example, the user can select at
least one of the items (e.g., “Pilot Name™) 1n *“‘available
layout URIs” section 720 as an open input of the new
building block. Accordingly, the inputs can be of a particular
data type (e.g., string(30)) given that that the selected open
input of the new building block 1s, for example, “Pilot

Name” as shown by the selected checkbox corresponding to
“Pi1lot Name.”

The “mapping layouts” menu object 710 provides a
drop-down menu of all available contextual building blocks
from which the open input can be taken. For example,
“mapping layouts” menu object 710 can display a drop-
down menu object of all existing building blocks from
which data representing the “Pilot Name™ can be taken. In
FIG. 7, “mapping layouts” menu object shows that the “Pilot
Name” (selected 1n the “available layout URIs” section 720)
can be taken from the building block that corresponds to
“Maintenance Records.” Further, examples of the menu
object of “mapping layouts” menu object 710 can include a
drop down list, a search field with predictive text, a flyout
menu, a dropline menu, an accordion menu, or other suitable
menu object.

In some embodiments, a data type checking analysis 1s
performed, such that the building blocks listed in the drop-
down menu of “mapping layouts” menu object 710 all
correspond to the same data type as the selected open 1nput
(e.g., “Pilot Name™), which was selected 1n “available layout
URIs” section 720. For example, the data type of string(30)
can be retrieved from the building block associated with
maintenance records and can be fed into the open I/0 feature
of “Pilot Name,” which also has a data type of string(30).

In some embodiments, “available primitives” section 740
can show all primitives 1n the data structure that correspond
to the maintenance records building block. For example, a
primitive can be a data element included 1n the data struc-
ture. In this example, the maintenance records building
block corresponds to a data structure that includes primitives
(e.g., records) of “pilot,” “aircrait number,” “squadron,”
“aircrait type,” and so on. In some embodiments, the primi-
tives shown 1n “available primitives” section 740 can be
primitives that share a compatible data type as the selected
open I/O feature “Pilot Name” (e.g., only primitives that
share a string(30) data type with the open I/O feature).

In one embodiment, 1f a primitive having a data type of an
integer 1s selected to be mapped with the open I/O feature
that has a data type of string(30), the URI Mapping page 700
can present an error indicating that the mapping 1s 1ncom-
patible. For example, an incompatible mapping can refer to
the potential occurrence of data truncation 1f an I/0O feature
were fed into the selected open I/O feature of the new
building block. In another embodiment, a data truncation
test can be performed upon the selection of an available
primitive for mapping onto the open I/O {feature. For
example, the data truncation test can determine if the data
can be mapped from the selected primitive (e.g., “pilot” 750)
to the open I/O feature (e.g., “Pilot Name™) without data
truncation.

2?2 &¢

US 10,642,581 B2

21

It the potential for data truncation exists from the map-
ping, then virtual transformation building blocks can be
automatically called. For example, the virtual transforma-
tion building blocks can be automatically combined with a
selected 1nput (after the mput) or output (before the output)
building block 1f a selection 1s made to connect two other-
wise mcompatible data types. In this example, the virtual
transformation building blocks can be applied 1n scenarios
where data truncation or data loss can be avoided through
data transformation (e.g., int—string and string(20)—string
(40)). In an embodiment, when the virtual transformation
building blocks are called, a message can be presented to the
user requesting that the calling of the virtual transformation
building blocks be confirmed by the user before the trans-
formation building blocks are called.

In an embodiment, the selection of a primitive from the
“available primitives” section 740 can be performed by
receiving an 1nput corresponding to a selection of the
checkbox next to “Primitive” in the “URI Flements Requir-
ing Mapping” section 730. Upon checking the checkbox
next to “Primitive” in the “URI Flements Requiring Map-
ping” section 730, the URI Mapping page 700 presents a
page to the user where the user can select an available
primitive from the list of available primitives. In one
embodiment, the page also shows the various data types
associated with the available primitives, such that 1f the user
selects a primitive having an incompatible data type, then a
warning or error message can be displayed. In another
embodiment, the virtual transformation building blocks can
be automatically called to facilitate a transformation of the
mapped data, such that data truncation does not occur.
Further, selection of “Constant” 1n the “URI elements requir-
ing mapping’ section 730 can prompt the user to enter text
that can be used as static text, such that the input of “Pilot
Name” may always be the entered text.

It will be appreciated that the “mapping layouts” menu
object 710, when selected, can display a hierarchy of avail-
able building blocks to which the open I/O feature can be
mapped. It will also be appreciated that the building blocks
can be categorized manually, automatically, or by the owner
of the building block (e.g., the developer who created the
building block). The categorization of the building blocks
can be used to sort the list of displayed building blocks
available for mapping. It will also be appreciated that the
“mapping layouts” menu object 710 can also be a search tab
that populates the relevant building blocks as text 1s entered
into the search tab (e.g., using predictive text techniques). It
will also be appreciated that menu object 710 can display
building blocks based on a role of the user (e.g., the
developer). For example, 1f the user only has limited per-
missions to access a limited set of building blocks, then only
the limited set of building blocks will be displayed when the
menu object 710 1s selected. However, 1 the user has full
access to all building blocks, then the menu object can
display a list of all of the building blocks or a subset of all
of the building blocks (e.g., the subset being all of the
building blocks having compatible I/O features with the
selected open I/O feature of the new building block).

FIG. 8 shows an example interface for building an appli-
cation using containers. FIG. 6 showed an example interface
for building an application using a rapid app designer 600,
where the user did not need to write any code. However,
FIG. 8 shows an example interface for building an applica-
tion using containers (e.g., used mterchangeably with build-
ing blocks herein), such that the user may need to write code
to customize the containers and/or events associated with the
containers. The example interface of FIG. 8 1s an application

10

15

20

25

30

35

40

45

50

55

60

65

22

designer interface 800 that includes layout 810, parent data
structure 840, and custom data structure 850. In some
embodiments, application designer interface 800 enables a
user to define data structures and to customize existing
containers and data structures. Further, application designer
interface 800 also enables a user (e.g., a developer) to define
inputs for containers and data structures associated with the
containers. For example, a user can define that a container
will receive an mput of a user ID, then the user can select a
user 1d primitive (e.g., data element) from parent data
structure 840 or custom data structure 850.

In an embodiment, a containers (e.g., container 820) can
refer to building blocks. For example, a container can refer
to a section on a page (e.g., a header, content section, a
footer, etc.). Further, the context metadata (e.g., the assign-
ment metadata) can be the mapping of containers to one or
more other containers, such that the I/O {features of one
container are the types of I/O features that are compatible
with the other containers. For example, one container can
show a list of flight cards. For one application, whenever
code 1s wrapped 1n a container, that container 1s defined 1n
a building block data store. While an application can include
one or more containers, on the back end (e.g., the servers
rendering the code) the complete application 1s being
executed.

Layout 810 can include one or more containers that will
make up the application being built by the user. For example,
a contaimner can be a header of the application when the
application 1s rendered on a browser. In this example, the
user can add existing containers from previously-built appli-
cations, customize the existing containers, or create new
containers. When a container 1s added to layout 810, the user
can associate a primitive (e.g., a data element of a data
structure) with the container, such that the defined inputs can
populate the rows and columns of the data structure. In an
embodiment, the data structure can drive the data used in the
application. For example, 1f the container corresponds to an
input (e.g., code that gets a value or mput), then a data
clement (e.g., primitive) of the data structure can be mapped
to the container such that the input of the container comes
from the data element.

For example, layout 810 can include container 820 cor-
responding to “Mapbutton_2,” which can be a button dis-
played on a browser page when the application 1s executed.
The “Label Text” column can be modified by the user, such
that the text entered 1n the “Label Text” box can be presented
on the browser page when the application 1s executed.
Further, properties 830 can be a link to another page or a
popup window of application designer 800 that enables the
user to customize metadata associated with container 820.
For example, the user can map container 820 to a primitive
of data structure 840 or custom data structure 850.

In an embodiment, parent data structure 840 can be
customized by the user. For example, to customize the
EXAMPLE Application, the user can create a new Layout
via the MAP Layout Designer as Type: custom and assign
layout 810 to be customized (Parent Layout). The user has
the option to assign an additional data structure (e.g., custom
data structure 850) to the customized layout (which 1is
different from layout 810). Application designer 800 can
display both the data structure 840 (e.g., corresponding to
layout 810, the Parent Layout) and custom data structure 850
(e.g., corresponding to at least a portion of data structure
840) on the lett side. For the custom layout (not shown), the
page 1s initially empty of elements other than the Header and
Footer containers. The application designer 800 can display
all the events assigned to a container included 1n layout 810.

US 10,642,581 B2

23

Further, the user can optionally assign their own created
application classes that can be used to modify any data and
content assigned on the layout 810.

FIG. 9 shows an example interface for customizing meta-
data associated with the containers shown in FIG. 8. The
example interface can include building block configuration
interface 900. Building block configuration interface 900
can include event details 910 and 930 for the parent appli-
cation (e.g., the original application that 1s potentially being
customized). The event details describe the configuration
settings for events. For example, the parent application can
include a save button, such that when the save button 1s
clicked a save event occurs (e.g., a popup window appears
on the browser with a message). Further, building block
configuration interface 900 can also include custom event
details 920 and 940. The custom event details can include
customizations made to containers of the parent application
that are included in the custom application. For example, the
user can add a custom application by adding containers from
the parent application to a custom layout. Any changes or
customizations made to the containers added to the custom
layout would not affect the metadata of the containers
included in the parent application because these containers
are added to the new custom layout and their corresponding
metadata 1s also saved 1n association with the custom layout.
Accordingly, in some embodiments, changes made to the
containers in the custom layout impact the container in the
custom application, but not the same container in the parent
application.

For example, the assigned application class for “Event
Type: INIT” can modify the corresponding container of the
parent application, such that the value entered for the “Entry
Input Element” reads “Custom Input”. Further, the assigned
application class for “Event Type: SAVE” can modily the
corresponding container of the parent application, such that
the popup text will display “Data Submit read from Custom
Example.” In an embodiment, at runtime, the MAP frame-
work builds (e.g., merges) the parent application metadata
(e.g., from the EXAMPLE application) with that of the
custom metadata of the custom application to generate the
customized application. Additionally, the original
EXAMPLE metadata 1s not aflected such that if the project
with the EXAMPLE metadata was re-imported it would
have no eflect to the customized metadata. The user (e.g., a
developer) can add additional pages to the EXAMPLE
application by adding pages via the customized layout. If the
user wants to run the original parent application (e.g., the
EXAMPLE application), the user can turn off the Custom
changes by selecting the “No Custom” check box on the
custom layout. For example, the user can via People Code
based on context at runtime selectively decide 1n a piece-
meal manner which container element(s) to use from either
the original application (EXAMPLE) or the custom appli-
cation.

As another example, the user has the option of calling the
application class for the event of the parent application and
running the customized event on top of running the parent
event, or calling the customized application class with the
customized event only. In this example, the user can unselect
checkbox 950, if the user wants to call the application class
for the event of the parent application and runming the
customized event on top of running the parent event. Fur-
ther, the user can select checkbox 950, 1f the user wants to
call the customized application class with the customized
event only. In this latter example, no rendering objects of the
parent application will be rendered at runtime, instead, only
the rendering objects in the application class of the custom-

10

15

20

25

30

35

40

45

50

55

60

65

24

1zed event will be rendered at runtime. For example, 1f the
parent has business logic that the user would like to use 1n
the customized events, the user can unselect checkbox 950.
In this example, the parent application still runs, but once the
parent runs, the parent event (e.g., the save event), the data
structure associated with the container of the parent event 1s
populated and included 1n the rendering object of the parent
event. Before the rendering object renders, the user can
modity the MAP object (e.g., change data, remove rows,
change property values, etc.). In this case, the parent appli-
cation’s rendering object will be rendered at runtime, but
with the values of the customized portions (e.g., with the
custom event details 920). In another embodiment, the user
can select checkbox 950 (*Custom event only™), so that the
rendering object of the parent application 1s not rendered,
but rather, only the application class of the customized event
will be rendered at run time. For example, only the custom
event would run, and not run the parent logic. It will be
appreciated that the customizations are autonomous to the
parent because the original parent metadata 1s unmodified
when the parent event 1s modified 1n a customized applica-
tion. Advantageously, upgrades or patches made to the
parent application do not impact the customized application.
As another advantage, the checkbox 950 1s available for
cach container included in the customized application. For
example, for each container in the custom application, the
user can selectively run the custom event or the parent event.
Further, when running the parent event with the customized
metadata, the rendering object of the parent application can
be changed to accomplish customization, and the parent
application runs as 1s with the customized metadata. It will
be appreciated that the customized metadata can be over-
ridden on a container-by-container basis. For example, using
the properties (e.g., properties link 830 of FIG. 8), the
customized metadata of a container can be overridden, such
that even of the associated checkbox 950 for the container 1s
selected, the customized metadata would not be rendered at
runtime, but rather the parent container building block
would run. The ability to override customized metadata in
the properties section of the containers can be performed on
a piecemeal basis (e.g., on a container-by-container basis).

FIG. 10 depicts a simplified diagram of a distributed
system 1000 for implementing one of the embodiments. In
the 1llustrated embodiment, distributed system 1000
includes one or more client computing devices 1002, 1004,
1006, and 1008, which are configured to execute and operate
a client application such as a web browser, proprietary client
(e.g., Oracle Forms), or the like over one or more network(s)
1010. Server 1012 may be communicatively coupled with
remote client computing devices 1002, 1004, 1006, and
1008 via network 1010.

In various embodiments, server 1012 may be adapted to
run one or more services or software applications provided
by one or more of the components of the system. In some
embodiments, these services may be oflered as web-based or
cloud services or under a Software as a Service (SaaS)
model to the users of client computing devices 1002, 1004,
1006, and/or 708. Users operating client computing devices
1002, 1004, 1006, and/or 1008 may 1n turn utilize one or
more client applications to interact with server 1012 to
utilize the services provided by these components.

In the configuration depicted in the figure, the software
components 1018, 1020 and 1022 of system 1000 are shown
as being implemented on server 1012. In other embodi-
ments, one or more ol the components of system 1000
and/or the services provided by these components may also
be implemented by one or more of the client computing

US 10,642,581 B2

25

devices 1002, 1004, 1006, and/or 1008. Users operating the
client computing devices may then utilize one or more client
applications to use the services provided by these compo-
nents. These components may be implemented 1n hardware,
firmware, software, or combinations thereof. It should be
appreciated that various different system configurations are
possible, which may be different from distributed system
1000. The embodiment shown 1n the figure 1s thus one
example of a distributed system for implementing an

embodiment system and 1s not intended to be limiting.

Client computing devices 1002, 1004, 1006, and/or 1008
may be portable handheld devices (e.g., an iIPhone®, cellular
telephone, an 1Pad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass®
head mounted display), running software such as Microsoft
Windows Mobile®, and/or a variety of mobile operating
systems such as 10S, Windows Phone, Android, BlackBerry
10, Palm OS, and the like, and being Internet, e-mail, short
message service (SMS), Blackberry®, or other communi-
cation protocol enabled. The client computing devices can
be general purpose personal computers including, by way of
example, personal computers and/or laptop computers run-
ning various versions of Microsoft Windows®, Apple
Macintosh®, and/or Linux operating systems. The client
computing devices can be workstation computers running
any of a variety of commercially-available UNIX® or
UNIX-like operating systems, including without limitation
the variety of GNU/Linux operating systems, such as for
example, Google Chrome OS. Alternatively, or in addition,
client computing devices 1002, 1004, 1006, and 1008 may
be any other electronic device, such as a thin-client com-
puter, an Internet-enabled gaming system (e.g., a Microsoft
Xbox gaming console with or without a Kinect® gesture
input device), and/or a personal messaging device, capable
of communicating over network(s) 710.

Although exemplary distributed system 1000 1s shown
with four client computing devices, any number of client
computing devices may be supported. Other devices, such as
devices with sensors, etc., may interact with server 1012.

Network(s) 1010 in distributed system 1000 may be any
type of network familiar to those skilled in the art that can
support data communications using any of a variety of
commercially-available protocols, including without limita-
tion TCP/IP (transmission control protocol/Internet proto-
col), SNA (systems network architecture), IPX (Internet
packet exchange), AppleTalk, and the like. Merely by way of
example, network(s) 1010 can be a local area network
(LAN), such as one based on Ethernet, Token-Ring and/or
the like. Network(s) 1010 can be a wide-area network and
the Internet. It can include a virtual network, including
without limitation a virtual private network (VPN), an
intranet, an extranet, a public switched telephone network
(PSTN), an infra-red network, a wireless network (e.g., a
network operating under any of the Institute of Electrical
and Electronics (IEEE) 802.11 suite of protocols, Blu-
etooth®, and/or any other wireless protocol); and/or any
combination of these and/or other networks.

Server 1012 may be composed of one or more general
purpose computers, specialized server computers (including,
by way of example, PC (personal computer) servers,
UNIX® servers, mid-range servers, mainframe computers,
rack-mounted servers, etc.), server farms, server clusters, or
any other appropriate arrangement and/or combination. In
various embodiments, server 1012 may be adapted to run
one or more services or software applications described 1n
the foregoing disclosure. For example, server 1012 may

10

15

20

25

30

35

40

45

50

55

60

65

26

correspond to a server for performing processing described
above according to an embodiment of the present disclosure.

Server 1012 may run an operating system including any
of those discussed above, as well as any commercially
available server operating system. Server 1012 may also run
any of a variety of additional server applications and/or
mid-tier applications, including HI'TP (hypertext transport
protocol) servers, FTP (file transfer protocol) servers, CGI
(common gateway interface) servers, JAVA® servers, data-
base servers, and the like. Exemplary database servers
include without limitation those commercially available
from Oracle, Microsoit, Sybase, IBM (International Busi-
ness Machines), and the like.

In some implementations, server 1012 may include one or
more applications to analyze and consolidate data feeds
and/or event updates received from users of client comput-
ing devices 1002, 1004, 1006, and 1008. As an example,
data feeds and/or event updates may include, but are not
limited to, Twitter® feeds, Facebook® updates or real-time
updates received from one or more third party information
sources and continuous data streams, which may include
real-time events related to sensor data applications, financial
tickers, network performance measuring tools (e.g., network
monitoring and trathic management applications), click-
stream analysis tools, automobile tratlic monitoring, and the
like. Server 1012 may also include one or more applications
to display the data feeds and/or real-time events via one or
more display devices of client computing devices 1002,
1004, 1006, and 1008.

Distributed system 1000 may also include one or more
databases 1014 and 1016. Databases 1014 and 1016 may
reside 1n a variety of locations. By way of example, one or
more ol databases 1014 and 1016 may reside on a non-
transitory storage medium local to (and/or resident 1n) server
1012. Alternatively, databases 1014 and 1016 may be remote
from server 1012 and in communication with server 1012
via a network-based or dedicated connection. In one set of
embodiments, databases 1014 and 1016 may reside 1n a
storage-area network (SAN). Similarly, any necessary files
for performing the functions attributed to server 1012 may
be stored locally on server 1012 and/or remotely, as appro-
priate. In one set of embodiments, databases 1014 and 1016
may include relational databases, such as databases provided
by Oracle, that are adapted to store, update, and retrieve data
in response to SQL-formatted commands.

FIG. 11 1s a simplified block diagram of one or more
components of a system environment 1100 by which ser-
vices provided by one or more components of an embodi-
ment system may be offered as cloud services, 1n accordance
with an embodiment of the present disclosure. In the illus-
trated embodiment, system environment 1100 includes one
or more client computing devices 1104, 1106, and 1108 that
may be used by users to interact with a cloud infrastructure
system 1102 that provides cloud services. The client com-
puting devices may be configured to operate a client appli-
cation such as a web browser, a proprietary client application
(e.g., Oracle Forms), or some other application, which may
be used by a user of the client computing device to interact
with cloud infrastructure system 1102 to use services pro-
vided by cloud infrastructure system 1102.

It should be appreciated that cloud infrastructure system
1102 depicted 1n the figure may have other components than
those depicted. Further, the embodiment shown 1n the figure
1s only one example of a cloud infrastructure system that
may incorporate an embodiment of the invention. In some
other embodiments, cloud infrastructure system 1102 may
have more or fewer components than shown 1n the figure,

US 10,642,581 B2

27

may combine two or more components, or may have a
different configuration or arrangement of components.

Client computing devices 1104, 1106, and 1108 may be
devices similar to those described above for 1002, 1004,
1006, and 1008.

Although exemplary system environment 1100 1s shown
with three client computing devices, any number of client
computing devices may be supported. Other devices such as
devices with sensors, etc. may interact with cloud infrastruc-
ture system 1102.

Network(s) 1110 may facilitate communications and
exchange of data between clients 1104, 1106, and 1108 and
cloud infrastructure system 1102. Each network may be any
type of network familiar to those skilled in the art that can
support data communications using any of a variety of
commercially-available protocols, including those described
above for network(s) 1110.

Cloud ifrastructure system 1102 may comprise one or
more computers and/or servers that may include those
described above for server 1012.

In certain embodiments, services provided by the cloud
infrastructure system may include a host of services that are
made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions,
Web-based e-mail services, hosted oflice suites and docu-
ment collaboration services, database processing, managed
technical support services, and the like. Services provided
by the cloud infrastructure system can dynamically scale to
meet the needs of its users. A specific instantiation of a
service provided by cloud infrastructure system is referred to
herein as a “service instance.” In general, any service made
available to a user via a communication network, such as the
Internet, from a cloud service provider’s system 1s referred
to as a “cloud service.” Typically, in a public cloud envi-
ronment, servers and systems that make up the cloud service
provider’s system are different from the customer’s own
on-premises servers and systems. For example, a cloud
service provider’s system may host an application, and a
user may, via a communication network such as the Internet,
on demand, order and use the application.

In some examples, a service 1n a computer network cloud
infrastructure may include protected computer network
access to storage, a hosted database, a hosted web server, a
software application, or other service provided by a cloud
vendor to a user, or as otherwise known in the art. For
example, a service can include password-protected access to
remote storage on the cloud through the Internet. As another
example, a service can 1clude a web service-based hosted
relational database and a script-language middleware engine
for private use by a networked developer. As another
example, a service can include access to an email software
application hosted on a cloud vendor’s web site.

In certain embodiments, cloud infrastructure system 1102
may include a suite of applications, middleware, and data-
base service offerings that are delivered to a customer 1n a
self-service, subscription-based, elastically scalable, reli-
able, highly available, and secure manner. An example of
such a cloud frastructure system 1s the Oracle Public
Cloud provided by the present assignee.

In various embodiments, cloud infrastructure system 1102
may be adapted to automatically provision, manage and
track a customer’s subscription to services oflered by cloud
infrastructure system 1102. Cloud infrastructure system
1102 may provide the cloud services via different deploy-
ment models. For example, services may be provided under
a public cloud model 1n which cloud infrastructure system
1102 1s owned by an organization selling cloud services

10

15

20

25

30

35

40

45

50

55

60

65

28

(e.g., owned by Oracle) and the services are made available
to the general public or different industry enterprises. As
another example, services may be provided under a private
cloud model 1n which cloud infrastructure system 1102 1s
operated solely for a single organization and may provide
services for one or more entities within the organization. The
cloud services may also be provided under a community
cloud model in which cloud infrastructure system 1102 and
the services provided by cloud infrastructure system 1102
are shared by several organizations 1n a related community.
The cloud services may also be provided under a hybrid
cloud model, which 1s a combination of two or more
different models.

In some embodiments, the services provided by cloud
infrastructure system 802 may include one or more services
provided under Software as a Service (SaaS) category,
Platform as a Service (PaaS) category, Infrastructure as a
Service (IaaS) category, or other categories of services
including hybrid services. A customer, via a subscription
order, may order one or more services provided by cloud
infrastructure system 1102. Cloud infrastructure system
1102 then performs processing to provide the services in the
customer’s subscription order.

In some embodiments, the services provided by cloud
infrastructure system 802 may include, without limitation,
application services, platform services and infrastructure
services. In some examples, application services may be
provided by the cloud infrastructure system via a SaaS
platform. The SaaS platform may be configured to provide
cloud services that fall under the SaaS category. For
example, the SaaS platform may provide capabilities to
build and deliver a suite of on-demand applications on an
integrated development and deployment platform. The SaaS
platform may manage and control the underlying software
and infrastructure for providing the SaaS services. By uti-
lizing the services provided by the SaaS platform, customers
can utilize applications executing on the cloud infrastructure
system. Customers can acquire the application services
without the need for customers to purchase separate licenses
and support. Various different SaaS services may be pro-
vided. Examples include, without limitation, services that
provide solutions for sales performance management, enter-
prise integration, and business flexibility for large organi-
zations.

In some embodiments, platform services may be provided
by the cloud infrastructure system via a PaaS platform. The
PaaS platform may be configured to provide cloud services
that fall under the PaaS category. Examples of platform
services may include without limitation services that enable
organizations (such as Oracle) to consolidate existing appli-
cations on a shared, common architecture, as well as the
ability to build new applications that leverage the shared
services provided by the platform. The PaaS platform may
manage and control the underlying software and infrastruc-
ture for providing the PaaS services. Customers can acquire
the PaaS services provided by the cloud infrastructure
system without the need for customers to purchase separate
licenses and support. Examples of platform services include,
without limitation, Oracle Java Cloud Service (JCS), Oracle
Database Cloud Service (DBCS), and others.

By utilizing the services provided by the PaaS platform,
customers can employ programming languages and tools
supported by the cloud infrastructure system and also con-
trol the deployed services. In some embodiments, platform
services provided by the cloud infrastructure system may
include database cloud services, middleware cloud services
(e.g., Oracle Fusion Middleware services), and Java cloud

US 10,642,581 B2

29

services. In one embodiment, database cloud services may
support shared service deployment models that enable orga-
nizations to pool database resources and ofler customers a
Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for
customers to develop and deploy various business applica-
tions, and Java cloud services may provide a platform for
customers to deploy Java applications, in the cloud infra-
structure system.

Various different infrastructure services may be provided
by an IaaS platform 1n the cloud infrastructure system. The
infrastructure services facilitate the management and control
of the underlying computing resources, such as storage,
networks, and other fundamental computing resources for
customers utilizing services provided by the SaaS platform
and the PaaS platform.

In certain embodiments, cloud infrastructure system 1102
may also include infrastructure resources 1130 for providing
the resources used to provide various services to customers
of the cloud infrastructure system. In one embodiment,
infrastructure resources 1130 may include pre-integrated
and optimized combinations of hardware, such as servers,
storage, and networking resources to execute the services
provided by the PaaS platform and the SaaS platform.

In some embodiments, resources 1n cloud infrastructure
system 802 may be shared by multiple users and dynami-
cally re-allocated per demand. Additionally, resources may
be allocated to users in different time zones. For example,
cloud infrastructure system 1130 may enable a first set of
users 1n a first time zone to utilize resources of the cloud
infrastructure system for a specified number of hours and
then enable the re-allocation of the same resources to
another set of users located 1n a different time zone, thereby
maximizing the utilization of resources.

In certain embodiments, a number of internal shared
services 1132 may be provided that are shared by different
components or modules of cloud infrastructure system 1102
and by the services provided by cloud infrastructure system
1102. These internal shared services may include, without
limitation, a security and identity service, an integration
service, an enterprise repository service, an enterprise man-
ager service, a virus scanning and white list service, a high
availability, backup and recovery service, service {for
enabling cloud support, an email service, a notification
service, a file transfer service, and the like.

In certain embodiments, cloud infrastructure system 802
may provide comprehensive management of cloud services
(e.g., SaaS, PaaS, and IaaS services) in the cloud infrastruc-
ture system. In one embodiment, cloud management func-
tionality may include capabilities for provisioning, manag-
ing and tracking a customer’s subscription received by cloud
infrastructure system 1102, and the like.

In one embodiment, as depicted in the figure, cloud
management functionality may be provided by one or more
modules, such as an order management module 1120, an
order orchestration module 1122, an order provisioning
module 1124, an order management and monitoring module
1126, and an identity management module 1128. These
modules may include or be provided using one or more
computers and/or servers, which may be general purpose
computers, specialized server computers, server farms,
server clusters, or any other appropriate arrangement and/or
combination.

In exemplary operation 1134, a customer using a client
device, such as client device 1104, 1106 or 1108, may
interact with cloud infrastructure system 1102 by requesting
one or more services provided by cloud infrastructure sys-

10

15

20

25

30

35

40

45

50

55

60

65

30

tem 1102 and placing an order for a subscription for one or
more services oflered by cloud infrastructure system 1102.
In certain embodiments, the customer may access a cloud
User Interface (UI), cloud UI 1112, cloud UI 1114 and/or
cloud UI 1116 and place a subscription order via these Uls.
The order information received by cloud infrastructure sys-
tem 1102 1n response to the customer placing an order may
include information identifying the customer and one or
more services offered by the cloud infrastructure system
1102 that the customer intends to subscribe to.

After an order has been placed by the customer, the order
information 1s received via the cloud Uls, 1112, 1114 and/or
1116.

At operation 1136, the order 1s stored in order database
1118. Order database 1118 can be one of several databases
operated by cloud infrastructure system 1118 and operated 1n
conjunction with other system elements.

At operation 1138, the order information 1s forwarded to
an order management module 1120. In some 1nstances, order
management module 1120 may be configured to perform
billing and accounting functions related to the order, such as
verilying the order, and upon verfication, booking the order.

At operation 1140, information regarding the order 1is
communicated to an order orchestration module 1122. Order
orchestration module 1122 may utilize the order information
to orchestrate the provisioning of services and resources for
the order placed by the customer. In some instances, order
orchestration module 1122 may orchestrate the provisioning
of resources to support the subscribed services using the
services of order provisioning module 1124.

In certain embodiments, order orchestration module 1122
enables the management of business processes associated
with each order and applies business logic to determine
whether an order should proceed to provisioming. At opera-
tion 1142, upon receiving an order for a new subscription,
order orchestration module 1122 sends a request to order
provisioning module 1124 to allocate resources and config-
ure those resources needed to fulfill the subscription order.
Order provisioning module 1124 enables the allocation of
resources for the services ordered by the customer. Order
provisioning module 1124 provides a level of abstraction
between the cloud services provided by cloud infrastructure
system 1100 and the physical implementation layer that 1s
used to provision the resources for providing the requested
services. Order orchestration module 1122 may thus be
1solated from implementation details, such as whether or not
services and resources are actually provisioned on the fly or
pre-provisioned and only allocated/assigned upon request.

At operation 1144, once the services and resources are
provisioned, a notification of the provided service may be
sent to customers on client devices 1104, 1106 and/or 1108
by order provisioning module 1124 of cloud infrastructure
system 1102.

At operation 1146, the customer’s subscription order may
be managed and tracked by an order management and
monitoring module 1126. In some instances, order manage-
ment and monitoring module 1126 may be configured to
collect usage statistics for the services in the subscription
order, such as the amount of storage used, the amount data
transferred, the number of users, and the amount of system
up time and system down time.

In certain embodiments, cloud infrastructure system 1100
may include an 1dentity management module 1128. Identity
management module 1128 may be configured to provide
identity services, such as access management and authori-
zation services 1n cloud infrastructure system 1100. In some
embodiments, 1dentity management module 1128 may con-

US 10,642,581 B2

31

trol information about customers who wish to utilize the
services provided by cloud infrastructure system 1102. Such
information can include information that authenticates the
identities of such customers and information that describes
which actions those customers are authorized to perform
relative to various system resources (e.g., files, directories,
applications, communication ports, memory segments, etc.)
Identity management module 1128 may also include the
management of descriptive information about each customer
and about how and by whom that descriptive information
can be accessed and modified.

FIG. 12 illustrates an exemplary computer system 1200,
in which various embodiments of the present invention may
be implemented. The system 1200 may be used to imple-
ment any of the computer systems described above. As
shown 1n the figure, computer system 1200 includes a
processing unit 1204 that communicates with a number of
peripheral subsystems via a bus subsystem 1202. These
peripheral subsystems may include a processing accelera-
tion unit 1206, an I/O subsystem 1208, a storage subsystem
1218 and a communications subsystem 1224. Storage sub-
system 1218 includes tangible computer-readable storage
media 1222 and a system memory 1210.

Bus subsystem 1202 provides a mechanism for letting the
various components and subsystems of computer system
1200 communicate with each other as intended. Although
bus subsystem 1202 1s shown schematically as a single bus,
alternative embodiments of the bus subsystem may utilize
multiple buses. Bus subsystem 1202 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. For example, such architectures
may include an Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Flectronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus, which can be implemented as a Mezzanine bus
manufactured to the IEEE P1386.1 standard.

Processing unit 1204, which can be implemented as one
or more 1ntegrated circuits (e.g., a conventional micropro-
cessor or microcontroller), controls the operation of com-
puter system 1200. One or more processors may be included
in processing unit 1204. These processors may include
single core or multicore processors. In certain embodiments,
processing unit 1204 may be implemented as one or more
independent processing units 1232 and/or 1234 with single
or multicore processors included 1n each processing unit. In
other embodiments, processing unit 1204 may also be
implemented as a quad-core processing unit formed by
integrating two dual-core processors into a single chip.

In various embodiments, processing unit 1204 can
execute a variety of programs in response to program code
and can maintain multiple concurrently executing programs
or processes. At any given time, some or all of the program
code to be executed can be resident in processor(s) 1204
and/or 1n storage subsystem 1218. Through suitable pro-
gramming, processor(s) 1204 can provide various function-
alities described above. Computer system 1200 may addi-
tionally include a processing acceleration unit 1206, which
can include a digital signal processor (DSP), a special-
purpose processor, and/or the like.

[/O subsystem 1208 may include user interface input
devices and user interface output devices. User interface
input devices may include a keyboard, pointing devices such
as a mouse or trackball, a touchpad or touch screen incor-
porated 1nto a display, a scroll wheel, a click wheel, a dial,
a button, a switch, a keypad, audio mput devices with voice

10

15

20

25

30

35

40

45

50

55

60

65

32

command recognition systems, microphones, and other
types of imput devices. User interface input devices may
include, for example, motion sensing and/or gesture recog-
nition devices such as the Microsoft Kinect® motion sensor
that enables users to control and interact with an input
device, such as the Microsoit Xbox® 360 game controller,
through a natural user interface using gestures and spoken
commands. User interface mput devices may also include
eye gesture recognition devices such as the Google Glass®
blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users
and transforms the eye gestures as input into an input device
(e.g., Google Glass®). Additionally, user interface input
devices may include voice recognition sensing devices that
enable users to mteract with voice recognition systems (e.g.,
S1ri® navigator), through voice commands.

User imterface mput devices may also include, without
limitation, three dimensional (3D) mice, joysticks or point-
ing sticks, gamepads and graphic tablets, and audio/visual
devices such as speakers, digital cameras, digital camcord-
ers, portable media players, webcams, 1mage scanners, {in-
gerprint scanners, barcode reader 3D scanners, 3D printers,
laser rangefinders, and eye gaze tracking devices. Addition-
ally, user interface input devices may include, for example,
medical 1maging mnput devices such as computed tomogra-
phy, magnetic resonance 1maging, position emission tomog-
raphy, medical ultrasonography devices. User interface
input devices may also include, for example, audio nput
devices such as MIDI keyboards, digital musical instru-
ments and the like.

User iterface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liquid crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” 1s mtended to include all
possible types of devices and mechanisms for outputting
information from computer system 1200 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

Computer system 1200 may comprise a storage subsys-
tem 1218 that comprises software elements, shown as being
currently located within a system memory 1210. System
memory 1210 may store program 1nstructions that are load-
able and executable on processing unit 1204, as well as data
generated during the execution of these programs.

Depending on the configuration and type of computer
system 1200, system memory 1210 may be volatile (such as
random access memory (RAM)) and/or non-volatile (such as
read-only memory (ROM), flash memory, etc.) The RAM
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
and executed by processing unit 1204. In some implemen-
tations, system memory 1210 may include multiple different
types of memory, such as static random access memory
(SRAM) or dynamic random access memory (DRAM). In
some 1mplementations, a basic input/output system (BIOS),
containing the basic routines that help to transfer informa-
tion between elements within computer system 1200, such
as during start-up, may typically be stored in the ROM. By
way of example, and not limitation, system memory 1210
also 1llustrates application programs 1212, which may

US 10,642,581 B2

33

include client applications, Web browsers, mid-tier applica-
tions, relational database management systems (RDBMS),
etc., program data 1214, and an operating system 1216. By
way of example, operating system 1216 may include various
versions of Microsoft Windows®, Apple Macintosh®, and/
or Linux operating systems, a variety of commercially-
available UNIX® or UNIX-like operating systems (includ-
ing without limitation the variety of GNU/Linux operating
systems, the Google Chrome® OS, and the like) and/or
mobile operating systems such as 10S, Windows® Phone,
Android® OS, BlackBerry® 10 OS, and Palm® OS oper-
ating systems.

Storage subsystem 1218 may also provide a tangible
computer-readable storage medium for storing the basic
programming and data constructs that provide the function-
ality of some embodiments. Software (programs, code mod-
ules, mstructions) that when executed by a processor pro-
vide the functionality described above may be stored in
storage subsystem 1218. These software modules or instruc-
tions may be executed by processing umit 1204. Storage
subsystem 1218 may also provide a repository for storing
data used 1n accordance with the present invention.

Storage subsystem 1200 may also include a computer-
readable storage media reader 1220 that can further be
connected to computer-readable storage media 1222.
Together and, optionally, 1n combination with system
memory 1210, computer-readable storage media 1222 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
1ly and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable information.

Computer-readable storage media 1222 containing code,
or portions of code, can also include any appropriate media
known or used in the art, including storage media and
communication media, such as but not limited to, volatile
and non-volatile, removable and non-removable media
implemented 1n any method or technology for storage and/or
transmission of information. This can include tangible com-
puter-readable storage media such as RAM, ROM, elec-
tronically erasable programmable ROM (EEPROM), flash
memory or other memory technology, CD-ROM, digital
versatile disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other tangible computer read-
able media. This can also include nontangible computer-
readable media, such as data signals, data transmissions, or
any other medium which can be used to transmit the desired
information and which can be accessed by computing sys-
tem 1200,

By way of example, computer-readable storage media
1222 may include a hard disk drive that reads from or writes
to non-removable, nonvolatile magnetic media, a magnetic
disk drive that reads from or writes to a removable, non-
volatile magnetic disk, and an optical disk drive that reads
from or writes to a removable, nonvolatile optical disk such
as a CD ROM, DVD, and Blu-Ray® disk, or other optical
media. Computer-readable storage media 1222 may include,
but 1s not limited to, Zip® drives, flash memory cards,
universal serial bus (USB) flash drives, secure digital (SD)
cards, DVD disks, digital video tape, and the like. Com-
puter-readable storage media 1222 may also 1nclude, solid-
state drives (SSD) based on non-volatile memory such as
flash-memory based SSDs, enterprise flash drives, solid state
ROM, and the like, SSDs based on volatile memory such as
solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybnd
SSDs that use a combination of DRAM and flash memory

10

15

20

25

30

35

40

45

50

55

60

65

34

based SSDs. The disk drives and their associated computer-
readable media may provide non-volatile storage of com-
puter-readable 1nstructions, data structures, program mod-
ules, and other data for computer system 1200.

Communications subsystem 1224 provides an interface to
other computer systems and networks. Communications
subsystem 1224 serves as an interface for receiving data
from and transmitting data to other systems from computer
system 1200. For example, communications subsystem
1224 may enable computer system 1200 to connect to one or
more devices via the Internet. In some embodiments com-
munications subsystem 1224 can include radio frequency
(RF) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular telephone technol-
ogy, advanced data network technology, such as 3G, 4G or
EDGE (enhanced data rates for global evolution), WiFi
(IEEE 802.11 family standards, or other mobile communi-
cation technologies, or any combination thereof), global
positioning system (GPS) receiver components, and/or other
components. In some embodiments communications sub-
system 1224 can provide wired network connectivity (e.g.,
Ethernet) 1n addition to or instead of a wireless interface.

In some embodiments, communications subsystem 1224
may also receive input communication in the form of
structured and/or unstructured data feeds 1226, event
streams 1228, event updates 1230, and the like on behalf of
one or more users who may use computer system 1200.

By way of example, communications subsystem 1224
may be configured to receive data feeds 1226 in real-time
from users of social networks and/or other communication
services such as Twitter® feeds, Facebook® updates, web
feeds such as Rich Site Summary (RSS) feeds, and/or
real-time updates from one or more third party information
SOurces.

Additionally, communications subsystem 1224 may also
be configured to receive data 1n the form of continuous data
streams, which may include event streams 1228 of real-time
events and/or event updates 1230, that may be continuous or
unbounded in nature with no explicit end. Examples of
applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network
performance measuring tools (e.g. network monitoring and
traflic management applications), clickstream analysis tools,
automobile tratlic monitoring, and the like.

Communications subsystem 1224 may also be configured
to output the structured and/or unstructured data feeds 1226,
event streams 1228, event updates 1230, and the like to one
or more databases that may be in communication with one
or more streaming data source computers coupled to com-
puter system 1200.

Computer system 1200 can be one of various types,
including a handheld portable device (e.g., an 1Phone®
cellular phone, an 1Pad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a PC, a workstation, a mainframe, a kiosk, a server
rack, or any other data processing system.

Due to the ever-changing nature of computers and net-
works, the description of computer system 1200 depicted in
the figure 1s intended only as a specific example. Many other
configurations having more or fewer components than the
system depicted in the figure are possible. For example,
customized hardware might also be used and/or particular
clements might be implemented in hardware, firmware,
software (including applets), or a combination. Further,
connection to other computing devices, such as network
input/output devices, may be employed. Based on the dis-
closure and teachings provided herein, a person of ordinary

US 10,642,581 B2

35 36
skill 1n the art will appreciate other ways and/or methods to 6. The computer-implemented method of claim 1, turther
implement the various embodiments. comprising;
In the foregoing specification, aspects of the invention are modifying the representation of the output included in the

machine-readable description language;

invoking the web service using the modified machine-
readable description language; and

recerving the output associated with the building block,
the output being represented in accordance with the

described with reference to specific embodiments thereof,
but those skilled in the art will recognize that the invention >
1s not limited thereto. Various features and aspects of the
above-described invention may be used individually or

jointly. Further, embodiments can be utilized in any number modification of the representation of the output.

of environments and applications beyond those described 7. The computer-implemented method of claim 1,
herein without departing from the broader spirit and scope of 'Y Wherein the web service is a Representational State Transfer
the specification. The specification and drawings are, (REST) service, wherein the selected building block 1s
accordingly, to be regarded as 1llustrative rather than restric- transformed into the machine-readable description lan-

guage, and wherein the machine-readable description lan-
guage 1s callable using an additional URI.
15 8. A system, comprising;
one or more data processors; and

five.

What 1s claimed 1s:

1. A computer-implemented method comprising: a non-transitory computer-readable storage medium con-

identifying, by a computing device, a set of existing taining instructions which, when executed on the one or
building blocks, each existing building block of the set more data processors, cause the one or more data
of existing building blocks corresponding to a web 20 processors to perform operations including:
service associated with a uniform resource identifier identifying a set of existing building blocks, each
(URI), the set of existing building blocks including a existing building block of the set of existing building
first subset and a second subset, each building block of blocks corresponding to a web service associated
the first subset being exposed using a corresponding with a uniform resource identifier (URI), the set of
web service, each building block of the second subset 25 existing building blocks including a first subset and

a second subset, each building block of the first
subset being exposed using a corresponding web
service, each building block of the second subset not
being exposed using a web service, and each existing
building block of the set of existing building blocks
corresponding to a data structure configured to
receive an input and generate an output using execut-

not being exposed using a web service, and each
existing building block of the set of existing building
blocks corresponding to a data structure configured to
receive an input and generate an output using execut-
able logic; 30
selecting a building block from amongst the set of exist-

ing building blocks, the selected building block corre- able logic:
: 1 21C,

spondlng to a first bullqmg, block from the first subset selecting a building block from amongst the set of

linked to a second building block from the second existing building blocks, the selected building block

subset; 39 corresponding to a first building block from the first
transforming the selected building block into a machine- subset linked to a second building block from the

readable description language that includes at least one second subset;

input parameter and a representation of the output transforming the selected building block into a

associated with the selected building block; machine-readable description language that includes
invoking the web service that corresponds to the selected 40 at least one 1mput parameter and a representation of

building block, the invocation of the web service the output associated with the selected building

including executing each of the first and second build- block;

ing blocks causing the at least one input parameter to invoking the web service that corresponds to the

pass through the building block, such that the output 1s selected building block, the invocation of the web

generated; and 45 service including executing each of the first and
rece1ving a communication corresponding to the output of second building blocks causing the at least one 1nput

the building block, the output being represented in parameter to pass through the building block, such

accordance with the representation of the output that the output 1s generated; and

included 1n the machine-readable description language. receiving a communication corresponding to the output

2. The computer-implemented method of claim 1, 50 of the building block, the output being represented 1n
wherein the selected bwlding block 1s accessible as a accordance with the representation of the output
building block that 1s combinable with one or more other included in the machine-readable description lan-
building blocks within a secure building block architecture guage.
service, wherein the secure building block architecture ser- 9. The system of claim 8, wherein the selected building
vice exposes, for building within the secure building block 55 block 1s accessible as a building block that 1s combinable
architecture service, one or more particular other building with one or more other building blocks within a secure
blocks that are not exposed using web services. building block architecture service, wherein the secure

3. The computer-implemented method of claim 2, building block architecture service exposes, for building
wherein the web service 1s mvoked outside of the secure within the secure building block architecture service, one or
building block architecture service using an exposed proto- 60 more particular other building blocks that are not exposed
col. using web services.

4. The computer-implemented method of claim 2, 10. The system of claim 9, wherein the web service 1s
wherein the web service 1s 1nvoked 1nside the secure build- invoked outside of the secure building block architecture
ing block architecture service. service using an exposed protocol.

5. The computer-implemented method of claim 2, 65 11. The system of claim 9, wherein the web service 1s
wherein the secure building block architecture service i1s invoked 1inside the secure building block architecture ser-

accessible via authentication. vice.

US 10,642,581 B2

37

12. The system of claim 9, wherein the secure building
block architecture service 1s accessible via authentication.

13. The system of claim 8, wherein the operations further
comprise:

modifying the representation of the output included 1n the

machine-readable description language;

invoking the web service using the modified machine-

readable description language; and
receiving the output associated with the building block, the
output being represented 1n accordance with the modifica-
tion of the representation of the output.

14. The system of claim 8, wherein the web service 1s a
Representational State Transfer (REST) service, wherein the
selected building block 1s transformed into the machine-
readable description language, and wherein the machine-
readable description language 1s callable using an additional
URI.

15. A computer-program product tangibly embodied 1n a
non-transitory machine-readable storage medium, including
istructions configured to cause a data processing apparatus
to perform operations including:

identifying, by a computing device, a set ol existing

building blocks, each existing building block of the set
of existing building blocks corresponding to a web
service associated with a uniform resource identifier
(URI), the set of existing building blocks including a
first subset and a second subset, each building block of
the first subset being exposed using a corresponding
web service, each building block of the second subset
not being exposed using a web service, and each
existing building block of the set of existing building
blocks corresponding to a data structure configured to
receive an input and generate an output using execut-
able logic;

selecting a building block from amongst the set of exist-

ing building blocks, the selected building block corre-
sponding to a first building block from the first subset
linked to a second building block from the second
subset;

transforming the selected building block into a machine-

readable description language that includes at least one

10

15

20

25

30

35

40

38

input parameter and a representation of the output
associated with the selected building block;

invoking the web service that corresponds to the selected

building block, the invocation of the web service
including executing each of the first and second build-
ing blocks causing the at least one iput parameter to
pass through the building block, such that the output 1s
generated; and

receiving a communication corresponding to the output of

the building block, the output being represented in
accordance with the representation of the output
included 1n the machine-readable description language.

16. The computer-program product of claim 15, wherein
the selected building block 1s accessible as a building block
that 1s combinable with one or more other building blocks
within a secure building block architecture service, wherein
the secure building block architecture service exposes, for
building within the secure building block architecture ser-
vice, one or more particular other building blocks that are
not exposed using web services.

17. The computer-program product of claim 16, wherein
the web service 1s mvoked outside of the secure building
block architecture service using an exposed protocol.

18. The computer-program product of claim 16, wherein
the web service 1s invoked 1nside the secure building block
architecture service.

19. The computer-program product of claim 16, wherein
the secure building block architecture service 1s accessible
via authentication.

20. The computer-program product of claim 15, wherein
the operations further comprise:

moditying the representation of the output included 1n the

machine-readable description language;

invoking the web service using the modified machine-
readable description language; and

recerving the output associated with the building block,
the output being represented 1n accordance with the
modification of the representation of the output.

e e e e e

	Page 1 - Bibliography/Abstract
	Page 2 - Bibliography
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Description
	Page 31 - Description
	Page 32 - Description/Claims
	Page 33 - Claims

