12 United States Patent

Li et al.

US010642722B2

US 10,642,722 B2
May 35, 2020

(10) Patent No.:
45) Date of Patent:

(54) REGRESSION TESTING OF AN
APPLICATION THAT USES BIG DATA AS A
SOURCE OF DATA

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Jeff J. Li, Parkland, FLL (US); Vanessa
V. Michelini, Boca Raton, FL (US);
Fang Wang, Plano, TX (US); Jia Xu,
Cambrnidge, MA (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 15/866,086

(22) Filed: Jan. 9, 2018
(65) Prior Publication Data
US 2019/0213117 Al Jul. 11, 2019
(51) Int. CL
GO6F 11/36 (2006.01)
(52) U.S. CL
CPC GO6F 11/3688 (2013.01); GO6F 11/368

(2013.01); GO6F 113684 (2013.01); GO6F
11/3692 (2013.01)

(58) Field of Classification Search
CPC ... GO6F 11/368; GO6F 11/3684; GO6F
11/3688; GO6F 11/3692; GO6F 11/273;

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

7/1998 Reinhardt
11/2005 Blum et al.

(Continued)

5,778,169 A
6,966,013 B2

FOREIGN PATENT DOCUMENTS

7/2012
3/2015

CN 102591772 A
JP 2015043181 A

OTHER PUBLICAITTONS

“Database—How to write Unit Tests for functions that rely on
dynamic data?,” [online] Stack Overflow, Stack Exchange Inc. ©
2018, [retreived Jan. 9, 2018], retrieved from the Internet: <https://
stackovertlow.com/questions/10288096/how-to-write-unit-tests-for-
functions-that-rely-on-dynamic-data>, 3 pg.

(Continued)

Primary Examiner — We1 Y Zhen

Assistant Examiner — Mohammed N Huda

(74) Attorney, Agent, or Firm — Cuenot, Forsythe &
Kim, LLC

(57) ABSTRACT

An application performs a regression test by the application
processing a use case. Actual output data generated by the
application processing the use case can be compared to
expected output data and whether the actual output data
matches the expected output data can be determined.
Responsive to determining that the actual output data does
not match the expected output data, the actual output data
can be compared to refreshed source data and whether the
actual output data matches the refreshed source data can be
determined. Responsive to determining that the actual out-
put data matches the refreshed source data, an automated
remedy action can be automatically selected, and the
expected output data can be updated with the refreshed
source data by implementing the automated remedy action.

17 Claims, 9 Drawing Sheets

Application
100

Database
110

Application

Regression
Test
Framework
155

Big Data
Big Data Analyzer
115 120

Regression Use
Test Output| [Cases
Capture 130
Code
160

Use Case

Case
Analyzers

125

Lest Use » Outputs
Case 135
Database
150

A

\ 4

Test Use
Cases
140

Test Use
Case

Outputs
145

US 10,642,722 B2
Page 2

(58) Field of Classification Search
CPC .. GO6F 11/36; GO6F 11/3604; GO6F 11/3664;
GO6F 3/0482; GO6F 3/04842
USPC e 717/124

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,178,063 Bl 2/2007 Smith
8,151,146 B2 4/2012 Ostrand et al.
8,276,123 Bl 9/2012 Deng et al.
8,701,092 Bl 4/2014 Colcord
9,032,361 B2 5/2015 Dhalait
9,846,638 B2* 12/2017 Koneru et al. GO6F 11/3688
2003/0018932 Al1* 1/2003 Blum et al. GO6F 11/273
714/46
2005/0182664 Al 8/2005 Abraham-Fuchs et al.
2005/0278577 Al* 12/2005 Doong et al. GO6F 11/3688
714/38.1

10/2006 Jakubiak
5/2008 Homer et al.
4/2009 Branca et al. GO6F 11/3688
714/38.1
6/2011 Broadfootetal.c.eevviviinil.

GOOF 11/3688

2006/0225048 Al
2008/0115028 Al
2009/0106597 Al*

2011/0145653 Al*

714/38.1
2014/0278469 Al 9/2014 Secci
2016/0140442 Al 5/2016 Lee et al.
2018/0060210 Al* 3/2018 Pandey et al. GOOF 11/3688

OTHER PUBLICATIONS

Artzi, S. et al., “Automatic Generation of Unit Regression Tests,”
[online] MIT CSAIL, Retrieved from the Internet: <http://people.

csail.mit.edu/akiezun/unit-regression-tests.pdf>, 11 pg, Dec. 16, 2005.
Coverity QA Team, “How to improve regression testing effective-
ness by 30%?” [online] Synopsys, Inc. © 2016, Jan. 30, 2013
[retreived Jul. 8, 2016], retrieved from the Internet: <http://blog.
coverity.com/2013/01/30/improving-regression-testing-effectiveness/
#.V1IwUITkitKWg>, 4 pg.

“System and Method to Improve Testing Feedback in a Software
Application Development Environment,” [online] IP.Com Prior Art

Database, Technical Disclosure IPCOMO000241375D, Apr. 21, 2015,
2 pg.

Tsal, W. et al., “Scenario-based functional regression testing,” In
25th Annual Int’l. Computer Software and Applications Confer-
ence, COMPSAC 2001, IEEE, 8 pg.

IBM, “Method to automatically/dynamically identify and launch the
test suites, that have code updates in the new build,” [online] IP.Com
Prior Art Database, Technical Disclosure IPCOMO000177444D, Dec.
15, 2008, 4 pg.

Jin, W. et al., “Automated behavioral regression testing,” 2010
Third Int’l Cont. on Software Testing, Verification and Validation,
(ICST) 137-146, Apr. 6, 2010, pp. 137-146, IEEE.

Gligoric, M. et al., “Practical regression test selection with dynamic
file dependencies,” In Proc. of 2015 Int’l. Sym. on Software Testing
and Analysis, Jul. 13, 2015, pp. 211-222, ACM.

Zhu, F. et al., “Automating regression testing for real-time software
in a distributed environment,” First Int’l. Sym. on Object-Oriented
Real-time Distributed Computing, ISORC 98, pp. 373-382, Apr. 20,

1998, IEEE.
Robins, J.M. et al., “Analysis of semiparametric regression models
for repeated outcomes 1n the presence of missing data,” Journal of

the American Statistical Association, vol. 90, No. 429, pp. 106-121,
1995.

* cited by examiner

U.S. Patent

Big Data
115

May 5, 2020

Application
100

Application
Database
110

Big Data

Analyzer
120

Case
Analyzers

125

Test Use
Cases
140

Sheet 1 of 9

Regression
Test

Framework
155

Regression
Test Output
Capture
Code
160

Test Use
Case
Database
150

Test Use
Case

Outputs
145

FIG. 1

US 10,642,722 B2

Use
Cases
130

Use Case

Outputs
135

U.S. Patent May 5, 2020 Sheet 2 of 9 US 10,642,722 B2

User Feedback | | Regression Test | |Refreshed Source Data| | Test Result(s)
240 210 232 245
Application Use Cases
100 205

Use Case Remedy

Use Case Instances
230
Actual Output(s)
235

Expected Output(s) Output Matcher
220 250
Remedy Actions
215

Field Change New Data Remedy Missing Data

Remedy Action Action Remedy Action
255 260 265

Actions
225

200

.
Validation \ ahdajuon
270 Operations

Customized

Operation
290

SQL Operations

285

U.S. Patent May 5, 2020

300

Recelve a use case
302

Initiate processing of the use
case 1n a production mode of the
application
304

Determine whether the use case

1s covered by the applicatoin
306

Is the
use case covered?
308

Increase a use case counter that

tracks usage of the use case
314

(Generate a use case 1nstance,
process the use case 1instance,

and output use case results
316

Receive user feedback and
associate the user feedback with

the use case
318

FIG. 3

No

Sheet 3 of 9 US 10,642,722 B2

Add the use case as a new use

case
310

Generate notification indicating
that an expected output for the

use case 1s to be generated
312

Analyze the usage of the use
case to determine an
effectiveness of regression
testing
320

Analyze the user feedback to
improve the use case and the
application
322

U.S. Patent May 5, 2020 Sheet 4 of 9 US 10,642,722 B2

400

Receive a database connection and
schema information

402

Analyze test use cases and their

expected results
404

Automatically generate regression test

output capture code
406

Automatically instrument the
application code at proper places to
invoke the regression testing output

capture module to save regression
testing actual output data, compare the
actual output data with expected output
data, and generate a testing result when

the application runs in regression

testing mode
408

FI1G. 4

9 "DId

ce9 0£9 3CY 9C9 144 Y 0C9 919

v v v v v

ani A9OUED QSIS <19
C0000LION xonldg 1SBAIE JUSLINDDY 000D [°85t)°%(]

US 10,642,722 B2

snIp

SUNINIDD
STOWL 3UNINIDD ani mownTt pIjo QSIS
DI[OS UI UOKIQIYU]] bl | [0000.LON Xond L PHOS [000D]| [°5€)9S[]] €019
&
s | O] uounmuody| Oseyq|#[RUL[IUID| UONIIPI| OWENIOUB)| IPODINVUE)| #ISLISN
\f,
3 009
=
72
—
S
e~ ces 0¢S CS QCS 7S CCsS 0CS
4 ' ' ' ' }
= snip 190UR))
IpuadsnS [| Z0000LON Xsniqg 2000D| «4=TIS
7 Puk SNIp X Yim Apnig P 1SBAIE JUIINIAY

>IOWIL 3UNINID ani mownTt pIjo
PI[OS UT UOTIQIYU] }] bl | [0000LION X ol L PHOS [000D]| €0I¢

00§

U.S. Patent

US 10,642,722 B2

May 35, 2020 Sheet 6 of 9

U.S. Patent

TeL
v

AdeIdy | QUOWIOH
SUISIOAY

3nip 7 pue
onIp A yum Apmg

sjownt

PI[OS U1 UOBIqIYU]

o[LL

0¢L 8CL 9CL

v v

- €0000.LON
papuadsng - Z0000.LON
.

SUNINIIYY

SUTHNIOY [O000.LON

JURUIINIOY | 3SBYJ | #[ELLL[EIIUI]D)

LI

Vel

Xani(

Xoni(q|inownJ, pIjos

UOTIRIIPIIN

CCL

v

SOJ-101d20aY
JUDLINDYY

190Uk) 15Ealy

JUDIINDY

SWIENJOOUE)

0cCL

£000D

c000D

1000D

APONIddUR))| (JIROURISUTUNY

81L 91L

v v

[umy| 1osenNas| «VvIL

jumy| 19senos)| «—7CIL

U | [o88))os]| €4 01L

00L

U.S. Patent May 5, 2020 Sheet 7 of 9 US 10,642,722 B2

300

Recelve a regression test use case
302

Run the application in regression testing

mode
804

Generate at least one use case 1nstance

and process the use case instance(s)
806

Save data outputs as actual output data
808

Compare the actual output data to the
corresponding expected output data,
one record at a time

810
No Invoke the remedy actions to correct the
expected output data
814
Yes
More

Yes
~ records to compare?
316

More
actual output data
to compare to expected output
data?
313

Output testing result(s)

820

FIG. 8

U.S. Patent May 5, 2020 Sheet 8 of 9 US 10,642,722 B2

900

An application can perform a regression test by the application

processing a use case
902

Compare actual output data generated by the application
processing the use case to expected output data, and determine

whether the actual output data matches the expected output data
904

Responsive to determining that the actual output data does not
match the expected output data, compare the actual output data to
refreshed source data and determine whether the actual output

data matches the retreshed source data
906

Responsive to determining that the actual output data matches the
refreshed source data, automatically select an automated remedy
action, and update, using a processor, the expected output data
with the refreshed source data by implementing the automated

remedy action
908

FIG. 9

U.S. Patent May 5, 2020 Sheet 9 of 9 US 10,642,722 B2

1000

Pointing Network

Keyboard

1040 Adapter

1045

Device
1035

System Bus
1015
Processor W Q
1005 >

1020 Bulk Storage

Memory Elements Device

Operating System Application

1050 100

FIG. 10

US 10,642,722 B2

1

REGRESSION TESTING OF AN
APPLICATION THAT USES BIG DATA AS A
SOURCE OF DATA

BACKGROUND

The present imnvention relates to data processing systems,
and more specifically, to regression testing.

Regression testing 1s a type of software testing which
verifles that software which was previously developed and
tested still performs properly, for example after the software
1s changed, for example to incorporate software enhance-
ments, patches, configuration changes, etc. To implement
regression testing, test use cases typically are run by the
soltware to generate test results. If the test results match
expected test results, this can indicate that the software still
1s functioning properly. If the test results do not match
expected test results, this can indicate that the changes to the
software has created bugs or regressions in the software.

SUMMARY

A method includes an application performing a regression
test by the application processing a use case. The method
also can include comparing actual output data generated by
the application processing the use case to expected output
data and determining whether the actual output data matches
the expected output data. The method also can include,
responsive to determining that the actual output data does
not match the expected output data, comparing the actual
output data to refreshed source data and determining
whether the actual output data matches the refreshed source
data. The method also can 1nclude, responsive to determin-
ing that the actual output data matches the refreshed source
data, automatically selecting an automated remedy action,
and updating, using a processor, the expected output data
with the refreshed source data by implementing the auto-
mated remedy action.

A system includes a processor programmed to initiate
executable operations. The executable operations include an
application performing a regression test by the application
processing a use case. The executable operations also can
include comparing actual output data generated by the
application processing the use case to expected output data
and determining whether the actual output data matches the
expected output data. The executable operations also can
include, responsive to determining that the actual output
data does not match the expected output data, comparing the
actual output data to refreshed source data and determining
whether the actual output data matches the refreshed source
data. The executable operations also can include, responsive
to determining that the actual output data matches the
refreshed source data, automatically selecting an automated
remedy action, and updating the expected output data with
the refreshed source data by implementing the automated
remedy action.

A computer program product includes a computer read-
able storage medium having program code stored thereon.
The program code 1s executable by a data processing system
to 1nitiate operations. The operations include an application
performing a regression test by the application processing a
use case. The operations also can include comparing actual
output data generated by the application processing the use
case to expected output data and determining whether the
actual output data matches the expected output data. The
operations also can include, responsive to determinming that
the actual output data does not match the expected output

10

15

20

25

30

35

40

45

50

55

60

65

2

data, comparing the actual output data to refreshed source
data and determining whether the actual output data matches
the refreshed source data. The operations also can include,
responsive to determinming that the actual output data
matches the refreshed source data, automatically selecting
an automated remedy action, and updating the expected

output data with the refreshed source data by implementing
the automated remedy action.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating an example archi-
tecture for an application on which regression testing i1s
performed.

FIG. 2 1s a block diagram illustrating an example archi-
tecture for updating expected output data.

FIG. 3 1s a tlowchart illustrating an example of a method
of tracking and analyzing usage of an application.

FIG. 4 1s a flowchart illustrating an example of a method
of automatically generating and using regression test output
capture code.

FIG. 5 1s a data table presenting an example of a data table
that stores source data.

FIG. 6 1s a data table presenting an example of data table
that stores expected output data.

FIG. 7 1s a data table presenting an example of data table
that stores actual output data.

FIG. 8 1s a flowchart illustrating an example of a method
ol performing a regression test.

FIG. 9 1s a flowchart illustrating an example of a method
of updating expected output data with refreshed source data.

FIG. 10 1s a block diagram illustrating example architec-
ture for a data processing system.

DETAILED DESCRIPTION

The present invention relates to data processing systems,
and more specifically, to regression testing.

Arrangements described herein relate to regression testing
ol an application that uses big data as a source of data. Big
data 1s a term used 1n the art that describes a large volume
of data, which may include both structured and unstructured
data, that can be analyzed for insights that lead to better
decisions. The big data can be dynamic, meaning that 1t
changes over time, sometimes constantly. For example, 1n
the field of medical research, big data may be updated to
include new, updated and/or changed source data (e.g.,
clinical trial information) from government agencies and
medical research institutes as that source data becomes
available.

Because big data 1s 1n a constant state of change, per-
forming regression testing on applications that use big data
1s challenging. Test use cases and expected outputs often-
times are used during regression testing. Specifically, actual
outputs from processing test use cases are compared to the
expected outputs to determine whether applications are
functioning properly. The data used by the test use cases,
however, may change between the time the regression
testing 1s performed and the time when the expected outputs
were generated. Thus, the actual outputs generated during
the regression testing may not match the expected outputs.
This can lead to a conclusion that there are defects (e.g.,
bugs) 1n the application when, 1n fact, the application i1s
performing properly. Arrangements described herein
improve the accuracy of regression testing, and improve the
operation of data processing systems performing regression
testing on applications.

US 10,642,722 B2

3

Several definitions that apply throughout this document
now will be presented.

As defined herein, the term regression test means an
automated test that verifies whether software which was
previously developed and tested still performs properly.

As defined herein, the term ‘““use case” means a list of
actions or event steps defining interactions between a role
and a system (e.g., application executed by a data processing
system) to achieve a goal. A role can be a user or an external
system.

As defined herein, the term “test use case” means a use
case used to perform a regression test.

As defined herein, the term “actual output data” means
data output 1n real time by an application processing a use
case.

As defined herein, the term “expected output data” means
data expected to be output by an application processing a use
case.

As defined herein, the term “‘source data” means data
obtained from one or more data sources. An example of
source data 1s big data received from one or more external
data sources.

As defined herein, the term “refreshed source data” means
source data that has been added, updated and/or changed
since source data was previously recerved. For example,
source data can be received, and at a later point 1n time that
source data can be updated and/or changed, or new source
data can be added.

As defined herein, the term “trial data” means source data
generated for testing performed to determine the perfor-
mance, qualities or suitability of something. An example of
trial data 1s clinical trial data representing the definition of a
climcal trial (e.g. recruiting status, indication, patient con-
dition, etc.).

As defined herein, the term “remedy action” means a
computing process implemented to correct and/or update
data.

As defined herein, the term “responsive to” means
responding or reacting readily to an action or event. Thus, 1f
a second action 1s performed “responsive to” a first action,
there 1s a causal relationship between an occurrence of the
first action and an occurrence of the second action, and the
term “responsive to” indicates such causal relationship.

As defined herein, the term “computer readable storage
medium” means a storage medium that contains or stores
program code for use by or in connection with an 1nstruction
execution system, apparatus, or device. As defined herein, a
“computer readable storage medium™ 1s not a transitory,
propagating signal per se.

As defined herein, the term “data processing system”
means one or more hardware systems configured to process
data, each hardware system including at least one processor
programmed to initiate executable operations and memory.

As defined herein, the term “processor’” means at least one
hardware circuit (e.g., an integrated circuit) configured to
carry out istructions contained in program code. Examples
of a processor include, but are not limited to, a central
processing unit (CPU), an array processor, a vector proces-
sor, a digital signal processor (DSP), a field-programmable
gate array (FPGA), a programmable logic array (PLA), an
application specific integrated circuit (ASIC), program-
mable logic circuitry, and a controller.

As defined herein, the term “real time” means a level of
processing responsiveness that a user or system senses as
suiliciently immediate for a particular process or determi-
nation to be made, or that enables the processor to keep up
with some external process.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

As defined herein, the term “output” means storing in
memory elements, writing to display or other peripheral
output device, sending or transmitting to another system,
exporting, or similar operations.

As defined herein, the term “automatically” means with-
out user intervention.

As defined herein, the term “user” means a person (1.€., a
human being).

FIG. 1 1s a block diagram illustrating an example archi-
tecture for an application 100 on which regression testing 1s
performed. The application 100 can include an application
database 110, or the application 100 can be communica-
tively linked to the application database 110. For example,
the application database 110 can be hosted by a data pro-
cessing system that hosts the application 100 or can be
hosted by a data processing system to which the application
100 1s communicatively linked via one or more communi-
cation networks.

The application database 110 can store big data 115
collected from one or more external systems. The applica-
tion 100 can include a big data analyzer 120 configured to
analyze the big data 115 to identify in the big data 115 data
pertinent to the application 100, and store the identified
information in the application database 110. For example,
the big data analyzer 120 can extract and cleans the big data
115, and store the cleansed data to the application database
110 using known data cleansing techniques. Because big
data 115 from external sources may be changing frequently
(or constantly), the big data analyzer 120 can refresh and
update the application database 110, for example periodi-
cally, to synchromize the stored data with the big data 115
stored by the external sources.

The application 100 also can include case analyzers 125.
The case analyzers 125 can be configured to, 1n a production
mode, analyze use cases 130 received by the application 100
(e.g., use cases presented by users of the application 100),
reference data 1n the application database 110 pertinent to
the use cases 130, and output analytical results as use case
output 135. The analytical results can include information
from the application database 110 applicable to the use case
130. In 1llustration, a use case 130 can include a patient’s
medical information, including medical symptoms the
patient may be exhibiting/suffering. The case analyzers 125
can analyze the use case 130, identily 1n the application
database 110 data pertinent to the patient’s medical infor-
mation, analyze the identified data 1n the context of the
patient’s medical information, and generate corresponding
analytical results as use case output 135. The analytical
results can include any of a variety of information, such as
clinical trial information.

The case analyzers 125 also can process test use cases 140
and generate test use case outputs 145 resulting from such
processing. The test use cases 140 and test use case outputs
145 can be stored 1n a test use case database 150. The
application 100 include the test use case database 150, or the
application 100 can be communicatively linked to the test
use case database 150, for example as previously described
with respect to the application database 110.

The application 100 also can include a regression test
framework 155. The regression test framework 155 can be
used to perform regression testing in the application 100.
The regression test framework 155 can automatically gen-
erate regression test output capture code 160 used by the
case analyzers 125 to capture and save regression testing
results during a regression testing mode. The regression
testing results can include actual outputs generated by the
case analyzers 125 processing test use cases 140, and results

US 10,642,722 B2

S

of a comparison of the actual outputs to expected outputs,
which are based on previously generated test use case
outputs 145. The regression test framework 155 can auto-
matically mstrument the case analyzers 125 with the regres-
sion test output capture code 160 for use during regression
testing. Further operations performed by the regression test
framework 155 will be described herein.

FIG. 2 1s a block diagram illustrating an example archi-
tecture 200 for updating expected output data. The applica-
tion 100 can process use cases 130 and test use cases 140
(FIG. 1), collectively indicated 1n FIG. 2 as use cases 205.
Each use case 205 can be uniquely identified by key data
fields specific for each application 100 for which the use
case may be used. In genomic analytics, for example, each
use case can be uniquely identified by a patient cancer
disease code and a patient’s gene mutations. One or more
regression tests 210 can be defined to test a use case 205
using different data sets. Users also may use the application
to process an undefined use case 205. By way of example,
the application 100 may analyze a cancer disease and gene
mutations which are not covered by the regression tests 210.
In this case, the application 100 can invoke an automated
remedy action 2135 to add a new use case 205 to the system,
and then generate a notification, for example a notification
communicated to a quality assurance department, to add a
coverage to the new use case 205. Further details of the
architecture 200 are described with reference to the follow-
ing flowcharts.

FIG. 3 1s a flowchart illustrating an example of a method
300 tracking and analyzing usage of the application 100. The
method 300 can be performed 1n real time. In the following
description, reference will be made to FIGS. 1, 2 and 3.

At step 302, the application 100 can receive a use case
130. At step 304, the application 100 can 1nitiate processing
of the use case 130 1n a production mode. At step 306, the
application 100 can determine whether the use case 130 1s
covered by the application. For example, the application 100
can determine whether there 1s at least one expected output
(e.g., a use case output 135 or a test use case output 145) for
the use case 130 available to the application 100. Each use
case 130 can have one or more sets of expected output data
(heremafter “expected output(s)”) 220. In genomic analyt-
ics, for example, a first expected output can indicate medi-
cations expected to be i1dentified by the application 100
based on the patient disease and gene mutations. A second
output can indicate source data (e.g., trial data) expected to
be found for the use case. Some use cases, for example new
use cases, may not yet have expected outputs 220 defined for
the use cases, however.

Referring to decision box 308, 1f the use case 1s not
presently covered by the application 100 (e.g., an expected
output has not been generated/defined), at step 310 the
application 100 can add the use case 130 to the use cases 205
as a new use case, for example using a use case remedy
action 2235. Further, at step 312, the application 100 can
generate a notification indicating that an expected output for
the user case 1s to be generated (e.g., defined). The appli-
cation 100 can communicate the notification to a department
(e.g., quality assurance) and/or one or more people assigned
to generate expected outputs. Referring again to decision
box 308, 11 the use case 1s already covered by the application
100, at step 314 the application 100 can increase a use case
counter for the use case 130 that tracks usage of the use case
130.

At step 316, the application 100 can generate a use case
instance 230 for the use case 130, process the use case
instance 230 using refreshed source data 232, and output

10

15

20

25

30

35

40

45

50

55

60

65

6

results of such processing as actual output data (hereinafter
“actual output(s)”) 235. At step 318, the application 100 can
receive user feedback 240 regarding the use case results and
associate the user feedback with the use case 130. For
example, the user can review the results of the actual output
235, and enter into the application the user feedback 240
pertaining to the results.

At step 320, the application 100 can analyze the usage of
the user case to determine an eflectiveness of regression
testing, for example previously performed regression test-
ing. In 1llustration, the application 100 can determine, based
on the user feedback 240, an accuracy of the actual output
235. If the user feedback 240 indicates that the accuracy of
the actual output 235 i1s good, the application 100 can
determine that the eflectiveness of the regression testing 1s
high. If the user feedback 240 suggests a number changes to
the actual output 235 that 1s higher than a first threshold
level, but does not exceed a second threshold level, the
application 100 can determine that eflectiveness of the
regression testing 1s moderate. If the user feedback 240
suggests a number changes to the actual output 235 that 1s
higher than the second threshold level, the application 100
can determine that the eflectiveness of the regression testing
1s low.

At step 322, the application 100 can analyze the user
feedback to improve the use case 130 and the application
100. For example, the application 100 can improve the use
case by implementing a use case remedy action 225 to add
to the use case additional information that would serve to
provide better searches of the application database 110 (FIG.
1). Further, the application 100 can update one or more of
the case analyzers 125 used to process the use case 130. In
illustration, the application 100 can update the case
analyzer(s) 125 to search for additional information in the
application database 110 that the user feedback indicates
should be provided 1n the actual output 235.

The method 300 also can be used to process test use cases
140 1n a production mode. Accordingly, production mode
testing can be performed for the application 100 using test
use cases 140 and case analyzer(s) 125 can be updated
accordingly.

FIG. 4 1s a flowchart illustrating an example of a method
400 of automatically generating and using the regression test
output capture code 160. The method 400 can be performed
in real time. In the following description, reference will be
made to FIGS. 1, 2 and 4-7. The method 400 can be
implemented during regression mode testing of the applica-
tion 100.

At step 402, the application 100 can receive a database
connection and schema information for the test use case
database 150 (FIG. 1). The test use case database 150 can
store test use cases 140 and their corresponding test use case
outputs (e.g., expected outputs). In one arrangement, the test
use cases 140 can be test use cases that are specifically
configured for regression mode testing, but this need not be
the case. At step 404, the regression test framework 155 of
the application 100 can analyze the test use cases 140 and
their expected test use case outputs 145.

At step 406, based on the analysis performed at step 404,
the regression test framework 155 can automatically gener-
ate the regression test output capture code 160. The regres-
sion test output capture code 160 can be dynamically
generated during regression testing, and can be configured
for the specily type of test use cases 140 being used to
perform the regression testing. In this regard, different types
of use cases may include different types of data, and may use
different types of data fields. By configuring the regression

US 10,642,722 B2

7

test output capture code 160 based on the test use cases 140
being used, the accuracy of the regression testing 1s
improved, and the risk of errors being generated by a data
processing system executing the application 100 during the
regression testing 1s mitigated. Further, use of data process-
ing resources (e.g., hardware processor resources and
memory resources) by the regression test output capture
code 160 during regression testing can be minimized,
thereby freeing such data processing resources to be used for
other purposes and/or reducing power usage by the data
processing resources.

FIG. 5 1s a data table 500 presenting an example of source
data from which expected output data 220 may be based. In
this example, the source data 1s trial data for clinical trials
associated with various medications. The data table 500 can
include one or more source data records 510, 512, and each
source data record 510, 512 can include a plurality of fields
520, 522, 524, 526, 528, 530, 532. In this example, for each
source data record 510, 512 the field 520 can indicate a
cancer code, the field 522 can indicate a cancer name, the
field 524 can indicate medication(s) tested to treat the
cancer, the field 526 can indicate a clinical trial number, the
field 528 can indicate a phase of a clinical trial for which the
data 1s generated, the field 530 can indicate a recruitment
status of the clinical trial, and the field 532 can indicate a
title of the clinical trial. This 1s merely an example, however,
and the source data records 510, 512 can include any of a
myriad of other information.

In this example, the source data 1s refreshed source data
232. For example, the field 530 in the source data record
previously may have indicated “Recruiting.” That field 530,
however, may have been refreshed with updated and/or
changed data, and thus may presently indicate “Suspended.”

The regression test framework 155 can generate regres-
s10n test output capture code 160 configured to generate one
or more data tables 1n which to store the expected output 220
for each of the test use cases 140, and store expected output
data to such data table(s) as one or more expected output
data records. The regression test framework 155 can define
in the regression test output capture code 160 the structure
of the generated data table(s). For example, the regression
test framework 155 can define fields for data table(s) that
match fields of the source data presented in the data table
500.

Not all fields of the source data need be 1ncluded in the
generated data tables. Instead, the regression test framework
155 can identily key data fields 1n the source data that are
specifically pertinent to the application 100, and fields
related to the key data fields, and include the identified fields
in the generated table. Such fields can include fields that
correspond to actual output data contained 1n actual
output(s) 235 generated by the application 100 while pro-
cessing the test use case(s) for which the regression test
output capture code 160 i1s being generated. Accordingly,
during regression testing, the expected output 220 can be
limited to expected output data that corresponds to actual
output data generated by the application 100 while process-
ing the test use case(s) 140. Moreover, field headers (e.g.,
field names) for the data table(s) can be specified to match
field headers for the source data, and thus actual output data
that the application 100 will generate processing the selected
test use cases 140. This can improve accuracy when com-
paring actual outputs 235 to expected outputs 220 and
mitigate data processing errors which may otherwise occur
if the field headers do not match. Specitying the specific data
structure of the data table(s) for the expected output(s) 220
in this manner also serves to reduce the amount of data

10

15

20

25

30

35

40

45

50

55

60

65

8

processing resources (e.g., hardware processor resources
and memory resources) that are utilized during regression
testing, which i1mproves operation of a data processing
system executing the application 100, for example during
regression testing.

An example of a data table 600 generated to store data for
expected output(s) 220 1s presented 1n FIG. 6. The data table
600 can include one or more expected output data records
610, 612. Each data record 610, 612 can include a field 616
indicating the respective test use case 140 to which the data
record 610, 612 corresponds. For example, the data records
610, 612 can indicate “UseCasel” to represent a first test use
case 140. Each data record 610, 612 also can include each
of the fields 620, 622, 624, 626, 628, 630, 632 which,
respectively, are defined to match definitions of fields 520-
532 for a corresponding source data record 510, 512 of the
data table 500. In this example, the data table 600 was
generated from the source data of FIG. 5 before the field 530
for the source data record 512 was changed and/or updated
from “Recruiting” to “Suspended” during a refresh opera-
tion performed to update and/or change the corresponding
record 512 1in the application database 110. Nonetheless,
when the source data 1s loaded from test use case outputs
145 1nto the data table 600, that data will comply with the
structure of the source data, and thus actual output data that
will be generated by processing use case instances 230 of the
test use cases 140 (205 1n FIG. 2). The regression test output
capture code 160 can be configured to, during regression
testing, load 1into memory of the data processing system the
data table 600 as an expected output 220.

The regression test output capture code 160 generated by
the regression test framework 155 also can be configured to
save actual outputs 235 generated by processing the test use
case 140 1n order to capture testing results. Referring to FIG.
7, an example of a data table 700 presenting an actual output.
The data table 700 can include one or more data records 710,
712, 714. Each data record 710, 712, 714 can include a field
716 1ndicating the respective test use case 140 to which the
data record 710, 712, 714 corresponds. For example, each of
the data records 710, 712, 714 can indicate “UseCasel” to

represent a first test use case 140 being tested. Each data
record 710, 712, 714 also can include a field 718 indicating

a particular use case instance 230 of the test use case 140
(e.g., runl). Each data record 710, 712, 714 also can include
fields 720, 722, 724, 726, 728, 730, 732 which, respectively,
correspond to fields 520-532 for a corresponding source data
record 510, 512 of the data table 500, but contain actual
output data resulting from the present regression testing
performed on the test use case 140. The data contained in
fields 720-732 may differ from the expected output data
table 600 of FIG. 6 if there are differences between the
expected output 220 (e.g., previously generated test use case
outputs 145) and the actual output 235, however. For
example, 1I the source data contained in the application
database 110 changed between a time when the test use case
outputs 145 were generated and a time when the test use case
140 1s processed during regression testing to generate the
actual output 235, the data table 700 may include retfreshed
source data 232.

In the example presented in FIG. 7, the data “Suspended”
of the field 730 in the data record 712 differs from the data

“Recruiting” 1n the field 630 of the data record 612 because
the data 1n the data record 612 was generated before the field
530 of the source record 512 was updated from “Recruiting”
to “Suspended.” As will be described, automated remedy
actions 215 can be implemented to update the expected

output data with the refreshed source data 232. Further, the

US 10,642,722 B2

9

data table 700 can include one or more data records 714 that
do not correspond to data records 610, 612 contained in the
data table 600, for example 11 the actual output 235 includes
data from the application database 110 not captured in the
expected output 220. The data table 700 also may be lacking
one or more data records corresponding to data records 610,
612 of the data table 600, for example 11 processing the use
case mstance 230 does not capture as actual output 235 data
contained 1n the expected output 220.

At step 408, the regression test framework 155 can
instrument the case analyzers 125 of the application 100 at
proper places to imvoke the regression test output capture
code 160 to capture and save regression testing actual output
data 235, compare the actual output 235 with expected
output data 220, and generate a test result 245 when the
application 100 runs 1n regression testing mode. The regres-
sion test framework 1355 can include in the regression test
output capture code 160 an output matcher 250 configured
to compare expected outputs 220 to actual outputs 235. The
regression test framework 155 can configure the output
matcher 250 to compare the fields specified 1n the data table
(e.g., data table 600) containing the expected output data to
corresponding fields of a data table (e.g., data table 700)
contaiming the actual output data, and output results of such
comparison.

FIG. 8 1s a flowchart illustrating an example of a method
800 of performing a regression test. The method 800 can be
performed 1n real time. In the following description, refer-
ence will be made to FIGS. 1, 2 and 5-8.

At step 802 the application 100 can receive a test use case
140 (205 1n FIG. 2). At step 804 the application 100 can run
in regression mode testing. At step 806, the application 100
can generate at least one use case instance 230 of the test use
case 140 and process the use case instances 230. For
example, 1f the same test use case 140 1s submitted multiple
times by one or more users, a use case instance 230 can be
generated for each test use case 140. The application 100 can
generate one or more data records of actual output 235 for
cach test use case 140 based on processing the use case
instance 230. At step 808, the application 100 can save the
data records of output data as actual outputs 235. For
example, the application 100 can create the data table 700
and store the actual output 235 to the data table 700 as data
records 712-714. The actual output 235 can indicate a
variety of information selected from data records of the
application database 110, for example information presented
in FIG. 5.

At step 810, the output matcher 250 can match the actual
outputs 2335 to the expected outputs 220 for the test use case
140. In this regard, the output matcher 250 can load the
expected outputs 220, for example from data table 600, into
memory, access the actual outputs 235 from memory, and
compare the actual output data contained i1n the actual
outputs 235 to the corresponding expected output data
contained in the expected outputs 220, beginning with a first
actual output data record. Referring to decision box 812, for
each data record, if the actual output 235 does not match the
expected output 220, at step 814 the application can 1nvoke
one or more automated remedy actions 215, which will be
described in further detail. Referring to decision box 816, 1f
there are more data records to compare for the present use
case 1stance, the process can return to step 810 and com-
pare the output matcher 250 can compare the actual output
data to the corresponding expected output data for a next
data record. If there are no further data records to compare
for the present use case instance, referring to decision box
818, 1f there are more actual outputs 235 for one or more

10

15

20

25

30

35

40

45

50

55

60

65

10

additional use case 1nstances 230 to compare to the expected
outputs 220, the process can return to step 810, and the
output matcher 250 can compare the actual output 235 to the
expected output 220 for a next use case instance 230,
beginning with a first output data record for that use case
instance 230. If there are no more actual outputs 235 for one
or more additional use case nstances 230 to compare to the
expected outputs 220, at step 820 the output matcher 250 can
output results of the comparisons as test results 245.
Referring again to step 814, the remedy actions 215 can
include, for example, a field change remedy action 255, a
new data remedy action 260 and a missing data remedy
action 265. The field change remedy action 255 can define
actions to be performed to update the expected output data

with refreshed source data 232 in response to the value of a

data field 720-732 1n an actual output data record 710, 712
1s different from the value of the matching data field 620-632
in the expected output data record 610, 612. An expected
output data record 610, 612 matches to an actual output data
record 710, 712 1f both data records have the same key
values (e.g., CancerCode, Medication, ClinicalTrial #).

The new data remedy action 260 can define actions to be
performed 1n response to an actual output data record 710,
712 of the actual output 235 for a test use case 140 not
having a matching data record in the expected outputs 220
for that test use case 140 (e.g., there 1s no expected output
data record 610, 612 that matches the actual output data
record 710, 712). In genomic analytics, for example, the
application 100 may find 1n the refreshed source data 232 a
new drug or a new clinical trial while processing a test use
case 140 that was not 1included 1n the expected outputs 220.
The new data remedy action 260 can be implemented to
validate the new data, and update the corresponding
expected output 220 with the refreshed source data 232.

The missing data remedy action 265 can define actions to
be performed 1n response to an expected output data record
610, 612 of the expected output 220 for a test use case 140
not having a matching data record in the actual output 235
for that test use case 140. In genomic analytics, for example,
the application 100 may find that a clinical trial 1s recently
closed and no longer 1n the actual output 235 for the test use
case 140. In such case, the missing data remedy action 265
can be implemented to verity the status of the clinical trial
and update the expected output 220 for the test use case 140
accordingly.

The application 100 can implement the remedy actions
215 by performing validation 270 on the expected output
220 and/or the actual output 235. The validation 270 can
initiate validation operations 275, for example, to determine
whether there 1s a mismatch between the expected output
220 and an actual output 235 for a test use case 140 based
on changes 1n inputs 280. The inputs 280 can, for example,
be recent input changes. The validation 270 can 1nitiate one
or more validation operations 275 to validate the input
changes. Examples of validation operations 275 include, but
are not limited to, structured query language (SQL) opera-
tions 2835 and customized operations 290. A SQL operation
285 can, for example, query an input table to confirm the
latest mmput change. A customized operation 290, for
example, can be configured to perform a more complex
validation. If a mismatch 1s expected and caused by a recent
input 280 that changes data, a suitable remedy action 215
(e.g., field change remedy action 255, new data remedy
action 260 and/or missing data remedy action 265) can be
implemented to update the expected output 220 with the
refreshed source data 232 automatically.

US 10,642,722 B2

11

In 1llustration, referring to FIG. 6, assume that for the data
record 612 for an expected output 220 contains data indi-
cating “recruiting’” 1n the field 630. Also, referring to FIG. 7,
assume that for the data record 712 for an actual output 235
contains data indicating “suspended” in the field 730. The
application 100 can 1nitiate the validation 270 to determine
which data 1s correct (e.g., whether the fields 530, 630
should 1ndicate “recruiting” or “suspended”) by analyzing
the data stored in the application database 110. In illustra-
tion, the application 100 can specity the following validation
operation 275:

ActualOutput.Data record.Recruitment==Select recruit-

ment

from clinical TriallnputTable where CancerCode=

ActualOutput.Data record.CancerCode and Medication=

ActualOutput.Data record.Medication and clinicalTrnal

-

ActualOutput.Data record.clinicalTrial #

The application 100 can automatically generate program
code to perform a field change remedy action 255 from the
above specification. In 1llustration, the field change remedy
action 235 can generate SQL for a SQL operation 285 by
replacing the placeholders ActualOutput.Data record.Can-
cerCode, ActualOutput.Data record.Medication, and Actua-
10utput.Data record.clinicalTrial # with values of the mis-
matched actual output data record 712. The application 100
can execute the SQL to access the recruitment data for the
clinical trial and compare that data to the data in the field 730
of the actual output data record 712. If the comparison
indicates a match, the change 1s expected, and the applica-
tion 100 can implement the field change remedy action 2355
to update the corresponding field 630 in the expected output
data record 612 with the refreshed source data 232. If the
comparison does not indicate a match, the application 100
can output an indicator indicating a test error.

In another example, referring to FIG. 7, a new clinical

trial NCT0003 may have been created and open for a cancer
condition C0003. The data record 714 can include key

values CancerCode C0003, Medication DrugX and Clini-
calTrial # NCTO0003. The data record 714 can be considered
a new data record 1f there 1s not a matching data record 1n
the expected output 220 (e.g., the expected output data table
600). The application 100 can implement the new data
remedy action 260 and the validation 270 to validate the data
contained 1n the data record 714.

In illustration, a first validation operation 275 can deter-
mine whether the CancerCode C0003 1n the new data record
714 1s related to the cancer code of the use case. For
instance, the Application 100 can specily validation opera-
tion 275 for the first validation:

1==Select count(*) from DieaseCodeTable where dis-

caseCode=

UseCase.DiseaseCode and relevantDiseaseCode=

ActualOutput.Data record.CancerCode
Further, a second validation operation 275 can determine 1f
the new data record 1s generated from a clinical trial input
table (e.g., data table 500). For instance, the Application 100
can specily the following validation operation 275 for the
second validation:

ActualOutput.Data record.Phase, ActualOutput.Data

record.Recruitment, ActualOutput.Data
record. Title==Select

Phase, Recruitment, Title from clinmicalTriallnputTable
where

CancerCode=ActualOutput.Data record.CancerCode and
Drug=

ActualOutput.Data record.Drug and clinicalTrial #=

10

15

20

25

30

35

40

45

50

55

60

65

12

ActualOutput.Data record. clinicalTral #

The application 100 can automatically generate from the
first validation specification program code configured to
perform a new data remedy action 260. In illustration, the
new data remedy action 260 can generate first SQL for a
SQL operation 285 by replacing the placeholders UseCase-
DiseaseCode 1n the specified first validation operation 275
with the disease code of the test use case 140 and Actua-
10utput.Data record.CancerCode with the cancer code (e.g.,
CancerCode C0003) in the new data record 714. The appli-
cation 100 can execute the first SQL to check 11 the disease
codes are related. If the disease codes are not related, the
application 100 can output an indicator indicating a test
eITor.

If, however, the disease codes are related, the application
100 can automatically generate from the second validation
specification program code configured to continue the new
data remedy action 260. In illustration, the new data remedy
action 260 can generate second SQL for a SQL operation
285 by replacing the placeholders 1n the specified second
validation operation 275 with actual values contained 1n the
new data record 714. The application 100 can execute the
second SQL to compare the values of the data fields “Phase,”
“Recruitment,” and “Title” 1n the new data record 714 with
the corresponding values 1n the clinical trial information. I
the values do not match, the application 100 can output an
indicator indicating a test error. If the values do match, the
application 100 can add data from the fields 716, 720-732
representing refreshed source data 232 to the expected
output 220. The missing data remedy action 265 and its
validation can be specified and implemented 1n a similar
manner.

Changes to the expected output 220 can be saved to the
corresponding test use case output(s) 145. Invoking remedy
actions to correct expected output data as described herein
improves accuracy of results generated by the data process-
ing system when performing regression testing. Specifically,
the expected output data can be corrected during a present
instance of regression testing, and used for future instances
of regression testing. Although future instances of regression
testing may further correct the output data, for example it
source data applicable to the test use cases 140 being used
changes again before the next regression test 1s performed
using those test use cases 140, the level of correction to that
expected output data will be minimized.

FIG. 9 15 a flowchart illustrating an example of a method
900 of updating expected output data with refreshed source
data 232. The method 900 can be performed 1n real time. In
the following description, reference will be made to FIGS.
2 and 9.

At step 902, the application 100 can perform a regression
test 210 by the application 100 processing a use case 205. At
step 904, the application 100 can compare actual output data
235 generated by the application 100 processing the use case
205 to expected output data 220, and determine whether the
actual output data 235 matches the expected output data 220.
At step 906, responsive to determining that the actual output
data 235 does not match the expected output data 220, the
application 100 can compare the actual output data 235 to
refreshed source data 232 and determine whether the actual
output data 235 matches the refreshed source data 232. At
step 908, responsive to determining that the actual output
data 235 matches the refreshed source data 232, the appli-
cation 100 can automatically select an automated remedy
action 260, and update, using a processor, the expected
output data 220 with the refreshed source data 232 by
implementing the automated remedy action 260.

US 10,642,722 B2

13

FIG. 10 1s a block diagram 1llustrating example architec-
ture for a data processing system 1000. The data processing
system 1000 can include at least one processor 1005 (e.g., a
central processing unit) coupled to memory elements 1010
through a system bus 1015 or other suitable circuitry. As
such, the data processing system 1000 can store program
code within the memory elements 1010. The processor 1005
can execute the program code accessed from the memory
clements 1010 via the system bus 1015. It should be
appreciated that the data processing system 1000 can be
implemented 1n the form of any system including a proces-
sor and memory that 1s capable of performing the functions
and/or operations described within this specification. For
example, the data processing system 1000 can be imple-
mented as a server, a plurality of communicatively linked
servers, a workstation, a desktop computer, a mobile com-
puter, a tablet computer, a laptop computer, a netbook
computer, and so on.

The memory elements 1010 can include one or more
physical memory devices such as, for example, local
memory 1020 and one or more bulk storage devices 1025.
Local memory 1020 refers to random access memory
(RAM) or other non-persistent memory device(s) generally
used during actual execution of the program code. The bulk
storage device(s) 1025 can be implemented as a hard disk
drive (HDD), solid state drive (SSD), or other persistent data
storage device. The data processing system 1000 also can
include one or more cache memories (not shown) that
provide temporary storage of at least some program code in
order to reduce the number of times program code must be
retrieved from the bulk storage device 1025 during execu-
tion.

Input/output (I/0) devices such as a display 1030, a
pointing device 1035 and, optionally, a keyboard 1040 can
be coupled to the data processing system 1000. The I/O
devices can be coupled to the data processing system 1000
either directly or through intervening I/O controllers. For
example, the display 1030 can be coupled to the data
processing system 1000 via a graphics processing unit
(GPU), which may be a component of the processor 1005 or
a discrete device. One or more network adapters 1045 also
can be coupled to data processing system 1000 to enable the
data processing system 1000 to become coupled to other
systems, computer systems, remote printers, and/or remote
storage devices through intervening private or public net-
works. Modems, cable modems, transceivers, and Fthernet
cards are examples of different types of network adapters
1045 that can be used with the data processing system 1000.

As pictured 1n FIG. 10, the memory elements 1010 can
store the components of the data processing system 1000,
namely an operating system 1050 and the application 100.
Being implemented 1n the form of executable program code,
these components of the data processing system 1000 can be
executed by the data processing system 1000 and, as such,
can be considered part of the data processing system 1000.
Moreover, the application 100 and components used/pro-
cessed by the application 100 (e.g., application database 110,
big data analyzer 120, case analyzers 125, test use case
database 150, use cases 130, use case outputs 135, test use
cases 140, test use case outputs 145, regression test frame-
work 155 and regression test output capture code 160 of
FIG. 1, and components 205, 210, 215, 220, 225, 230, 245,
250, 255, 260, 265, 275, 285, 290 of FIG. 2) are functional
data structures that impart functionality when employed as
part of the data processing system 1000.

Each of expected outputs 220, actual outputs 235, test
results 245 and various other outputs generated by the

10

15

20

25

30

35

40

45

50

55

60

65

14

application 100 can be output to, and stored within, the
memory elements 1010. As used herein, “outputting” and/or
“output” can mean storing in the memory elements 1010, for
example, writing to a file stored in the memory elements
1010, writing to the display 1030 or other peripheral output
device, playing audible notifications, sending or transmitting
to another system, exporting, or similar operations.

While the disclosure concludes with claims defining novel
features, 1t 1s believed that the various features described
herein will be better understood from a consideration of the
description 1n conjunction with the drawings. The
process(es), machine(s), manufacture(s) and any variations
thereof described within this disclosure are provided for
purposes of illustration. Any specific structural and func-
tional details described are not to be interpreted as limiting,
but merely as a basis for the claims and as a representative
basis for teaching one skilled 1n the art to variously employ
the features described 1n virtually any appropriately detailed
structure. Further, the terms and phrases used within this
disclosure are not intended to be limiting, but rather to
provide an understandable description of the features
described.

For purposes of simplicity and clanity of illustration,
clements shown 1n the figures have not necessarily been
drawn to scale. For example, the dimensions of some of the
clements may be exaggerated relative to other elements for
clarity. Further, where considered appropriate, reference
numbers are repeated among the figures to indicate corre-
sponding, analogous, or like features.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
data recorded thereon, and any suitable combination of the
foregoing. A computer readable storage medium, as used
herein, 1s not to be construed as being transitory signals per
se, such as radio waves or other freely propagating electro-
magnetic waves, eclectromagnetic waves propagating
through a waveguide or other transmission media (e.g., light
pulses passing through a fiber-optic cable), or electrical
signals transmitted through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,

US 10,642,722 B2

15

wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network 1interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent 1nstructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart illustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
istructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other

10

15

20

25

30

35

40

45

50

55

60

65

16

device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart(s) and block diagram(s) in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present imnvention. In this regard, each block in the
flowchart(s) or block diagram(s) may represent a module,
segment, or portion of 1nstructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, 1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart 1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a,” “an,” and “the” are mtended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “includes,” “including,”
“comprises,” and/or “comprising,” when used in this dis-
closure, specily the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.

Retference throughout this disclosure to “one embodi-
ment,” “an embodiment,” “one arrangement,” “an arrange-
ment,” “one aspect,” “an aspect,” or similar language means
that a particular feature, structure, or characteristic described
in connection with the embodiment 1s included 1n at least
one embodiment described within this disclosure. Thus,
appearances of the phrases “one embodiment,” “an embodi-
ment,” “one arrangement,” “an arrangement,” “‘one aspect,”
“an aspect,” and similar language throughout this disclosure
may, but do not necessarily, all refer to the same embodi-
ment.

The term “plurality,” as used herein, 1s defined as two or
more than two. The term “another,” as used herein, 1s
defined as at least a second or more. The term “coupled,” as
used herein, 1s defined as connected, whether directly with-
out any intervening elements or indirectly with one or more
intervening elements, unless otherwise indicated. Two ele-
ments also can be coupled mechanically, electrically, or
communicatively linked through a communication channel,
pathway, network, or system. The term “and/or” as used
herein refers to and encompasses any and all possible
combinations of one or more of the associated listed 1tems.
It will also be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms,
as these terms are only used to distinguish one element from
another unless stated otherwise or the context indicates
otherwise.

The term “if” may be construed to mean “when” or
“upon” or “in response to determining”’ or “in response to
detecting,” depending on the context. Similarly, the phrase
“if 1t 1s determined” or ““if [a stated condition or event] 1s
detected” may be construed to mean “upon determining” or

2?2 &«

2?2 &¢

US 10,642,722 B2

17

“1n response to determining” or “upon detecting [the stated
condition or event]” or “in response to detecting [the stated
condition or event],” depending on the context.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What 1s claimed 1s:

1. A method, comprising:

an application performing a regression test by the appli-
cation processing a use case;

comparing actual output data generated by the application
processing the use case to expected output data and
determining whether the actual output data matches the
expected output data;

responsive to the determiming that the actual output data
does not match the expected output data, comparing the
actual output data to refreshed source data and deter-
mining whether the actual output data matches the
refreshed source data; and

responsive to the determinming that the actual output data
matches the refreshed source data, automatically select-
ing at least a first automated remedy action, and updat-
1ng, using a processor, the expected output data with the
refreshed source data by implementing the first auto-
mated remedy action, wherein the first automated rem-
edy action 1s a new data remedy action that defines
actions to be performed to update the expected output
data for the use case 1n response to an actual output data
record of the actual output data not having a matching
data record 1n the expected output data for the use case.

2. The method of claim 1, further comprising:

responsive to the determiming that the actual output data
matches the refreshed source data, automatically select-
ing a second automated remedy action, and updating
the expected output data with the refreshed source data
by implementing the second automated remedy action,
wherein the second automated remedy action 1s a field
change remedy action that defines actions to be per-
formed to update the expected output data for the use
case 1n response to a value of a data field 1n the actual
output data for the use case being different than a value
of a matching data field i the expected output data.

3. The method of claim 1, turther comprising;:

responsive to the determiming that the actual output data
matches the refreshed source data, automatically select-
ing a second automated remedy action, and updating
the expected output data with the refreshed source data
by implementing the second automated remedy action,
wherein the second automated remedy action 1s a
missing data remedy action that defines actions to be
performed to update the expected output data for the
use case 1n response to an expected output data record

of the expected output data not having a matching data
record 1n the actual output data for the use case.

5

10

15

20

25

30

35

40

45

50

55

18

4. The method of claim 1, further comprising:

automatically generating regression test output capture
code based, at least 1n part, on the expected output data,
the regression test output capture code configured to

perform:
creating a first data table and storing the expected

output data to the first data table;
creating a second data table and storing the actual
output data to the second data table; and
performing the comparing the actual output data to the
expected output data;
wherein the regression test output capture code 1s invoked
by the application during the regression test.
5. The method of claim 4, further comprising:
analyzing the use case and the expected output data;
wherein automatically generating regression test output
capture code 1s based on the analyzing the use case and
the expected output data.

6. The method of claim 4, further comprising;:
instrumenting the application to invoke the regression test

output capture code during the regression testing.

7. A system, comprising:

a processor programmed to 1nitiate executable operations
comprising:

an application performing a regression test by the appli-
cation processing a use case;

comparing actual output data generated by the application
processing the use case to expected output data and
determining whether the actual output data matches the
expected output data;

responsive to the determining that the actual output data
does not match the expected output data, comparing the
actual output data to refreshed source data and deter-
mining whether the actual output data matches the
refreshed source data; and

responsive to the determining that the actual output data
matches the refreshed source data, automatically select-
ing at least a first automated remedy action, and updat-
ing the expected output data with the refreshed source
data by implementing the first automated remedy
action, wherein the first automated remedy action 1s a
new data remedy action that defines actions to be
performed to update the expected output data for the
use case 1n response to an actual output data record of
the actual output data not having a matching data
record 1n the expected output data for the use case.

8. The system of claim 7, the executable operations

further comprising;:

responsive to the determining that the actual output data
matches the refreshed source data, automatically select-
ing a second automated remedy action, and updating
the expected output data with the refreshed source data
by implementing the second automated remedy action,
wherein the second automated remedy action 1s a field
change remedy action that defines actions to be per-
formed to update the expected output data for the use
case 1n response to a value of a data field in the actual
output data for the use case being difierent than a value
of a matching data field in the expected output data.

9. The system of claim 7, the executable operations

60 further comprising:

65

responsive to the determining that the actual output data
matches the refreshed source data, automatically select-
ing a second automated remedy action, and updating
the expected output data with the refreshed source data
by implementing the second automated remedy action,
wherein the second automated remedy action 1s a
missing data remedy action that defines actions to be

US 10,642,722 B2

19

performed to update the expected output data for the
use case 1n response to an expected output data record
of the expected output data not having a matching data
record 1n the actual output data for the use case.
10. The system of claim 7, the executable operations
further comprising;:
automatically generating regression test output capture
code based, at least 1n part, on the expected output data,
the regression test output capture code configured to
perform:
creating a first data table and storing the expected
output data to the first data table;
creating a second data table and storing the actual
output data to the second data table; and

performing the comparing the actual output data to the
expected output data;

wherein the regression test output capture code 1s invoked
by the application during the regression test.

11. The system of claim 10, the executable operations

further comprising;:

analyzing the use case and the expected output data;

wherein automatically generating regression test output
capture code 1s based on the analyzing the use case and
the expected output data.

12. The system of claim 10, the executable operations

turther comprising:

instrumenting the application to invoke the regression test
output capture code during the regression testing.

13. A computer program product, comprising:

a computer readable storage medium having program
code stored thereon, the program code executable by a
data processing system to initiate operations including:

an application performing a regression test by the appli-
cation processing a use case;

comparing actual output data generated by the application
processing the use case to expected output data and
determining whether the actual output data matches the
expected output data;

responsive to the determinming that the actual output data
does not match the expected output data, comparing the
actual output data to refreshed source data and deter-
mining whether the actual output data matches the
refreshed source data; and

responsive to the determinming that the actual output data
matches the refreshed source data, automatically select-
ing at least a first automated remedy action, and updat-
ing the expected output data with the refreshed source
data by implementing the first automated remedy
action, wherein the first automated remedy action 1s a
new data remedy action that defines actions to be
performed to update the expected output data for the

use case 1n response to an actual output data record of

5

10

15

20

25

30

35

40

45

50

20

the actual output data not having a matching data
record 1n the expected output data for the use case.

14. The computer program product of claim 13, wherein

the program code 1s executable by the data processing

system to 1nitiate operations further comprising:
responsive to the determining that the actual output data

matches the refreshed source data, automatically select-
ing a second automated remedy action, and updating
the expected output data with the refreshed source data
by implementing the second automated remedy action,
wherein the second automated remedy action 1s a field
change remedy action that defines actions to be per-
formed to update the expected output data for the use
case 1n response to a value of a data field 1n the actual
output data for the use case being different than a value
of a matching data field in the expected output data.

15. The computer program product of claim 13, wherein
the program code 1s executable by the data processing
system to initiate operations further comprising:

responsive to the determining that the actual output data

matches the refreshed source data, automatically select-
ing a second automated remedy action, and updating
the expected output data with the refreshed source data
by implementing the second automated remedy action,
wherein the second automated remedy action 1s a
missing data remedy action that defines actions to be
performed to update the expected output data for the
use case 1n response to an expected output data record
of the expected output data not having a matching data
record 1n the actual output data for the use case.

16. The computer program product of claim 13, wherein
the program code 1s executable by the data processing
system to initiate operations further comprising:

automatically generating regression test output capture

code based, at least 1n part, on the expected output data,

the regression test output capture code configured to

perform:

creating a first data table and storing the expected
output data to the first data table;

creating a second data table and storing the actual
output data to the second data table; and

performing the comparing the actual output data to the
expected output data;

wherein the regression test output capture code 1s invoked

by the application during the regression test.

17. The computer program product of claim 16, wherein
the program code 1s executable by the data processing
system to initiate operations further comprising:

analyzing the use case and the expected output data;

wherein automatically generating regression test output

capture code 1s based on the analyzing the use case and
the expected output data.

e e e e e

	Page 1 - Bibliography/Abstract
	Page 2 - Bibliography
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description/Claims
	Page 21 - Claims

