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57 ABSTRACT

Burst-switching nodes using a common-memory or a time
shared space switch and employing flow-rate control are dis-
closed. Within a switching node, data bursts are segmented
into data segments of a fixed size with some segments con-
taining information bits as well as null bits. A switching node
handles data streams allocated different flow rates and, for
any data stream, the internal flow rate through the switching
node can be higher than the external flow rate due to null
padding of segmented data. The switching node is provided
with a sufficient internal capacity expansion in order to offset
the effect of null padding. A controller of the switching node
is provided with a flow-rate-regulation apparatus to enable
scheduling the transfer of data segments across the switching
node in a manner that guarantees adherence to the allocated
information flow rates.
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FLOW-RATE-REGULATED BURST
SWITCHES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The Application is a Divisional of U.S. patent appli-
cation Ser. No. 10/437,628, filed May 14, 2003, entitled
FLOW-RATE-REGULATED BURST SWITCHES, whichis
incorporated herein by reference.

BACKGROUND TO THE INVENTION

[0002] 1. Field of Invention

[0003] The present invention relates to data networks and,
in particular, to a burst-switching network with rate-regulated
transfer of data.

[0004] 2. Description of the Related Prior Art

[0005] Since its inception in the nineteenth century, the
circuit-switched telephone network provided a high-quality
service where a path of fixed capacity, from a traffic source to
a traffic sink, is guaranteed during a connection period. Cir-
cuit switching, however, was considered unsuitable for data
communications. Unlike voice communications, data trans-
fer tends to be sporadic, thus leading to poor utilization of a
circuit-switched connection of fixed capacity. This led to the
concept of packet switching where data are organized in
packets of arbitrary lengths, each packet carrying in its header
sufficient information to enable its routing through a packet
network. With uncoordinated packet sources and unknown
data rates, successful transfer of packets in a packet network
cannot be guaranteed and several techniques, well known in
the art, were developed to reduce the probability of packet
loss en route.

[0006] Ina network where a data stream traverses interme-
diate nodes, rate regulation need be applied only at the source
node. However, each intermediate node must still forward the
individual packets of the data stream. To reduce the packet-
forwarding effort, it is beneficial to aggregate the packets of a
data stream into data bursts, each data burst comprising a
relatively large number of packets; 160 for example. A major
justification for packet aggregation is the currently available
high-capacity optical channels. A packet of 150 bytes trans-
ferred over a channel of 150 Mb/s capacity has a duration of
8 microseconds. A packet of 10,000 bytes has the same dura-
tion of 8 microseconds on a 10 Gb/s channel. While aggre-
gation is desirable in a network employing electronic core
nodes, it is necessary in a network employing optical core
nodes. The switching latency of a fast optical switch is likely
to be of the order of 100 nanoseconds while a packet of 150
bytes has a duration of only 120 nanoseconds in a 10 Gb/s
channel. Thus, if individual packets are switched in an optical
core node, a significant proportion of channel capacity and
switch capacity would be wasted. In addition, because optical
switches are currently bufferless, the transmission of data
packets at the edge nodes must be precisely timed to arrive at
an optical switch at pre-calculated instants of time and the use
of aggregated packets, i.e., data bursts, would significantly
reduce the time-coordination effort.

[0007] Providing reliable services in a data network
requires end-to-end paths of controllable capacity allocation
(flow-rate allocation). Much of the work done in this area
focused on the transfer of data blocks of fixed size, as in
Asynchronous-transfer mode (ATM) communications where
several devices were developed to regulate the transfer of

Aug. 20, 2009

ATM cells. There is a need, however, for a device to realize
flow-rate regulation in a network transferring variable size
packets or data bursts where each burst may comprise several
packets. Such a device must be scalable to handle a very large
number of data streams of diverse flow-rate requirements and
be adapted for use in an edge node or in a core node. The
flow-rate allocations can be dynamic and the envisaged
device must, therefore, be adapted to handle time-varying
flow-rate allocations.

[0008] InU.S. patent application Ser. No. 10/054,5009, filed
on Nov. 13, 2001 by the present inventors and titled “Rate
Regulated Burst Switching”, a method and apparatus are
provided for low latency loss-free burst switching. Burst-
transfer schedules are initiated by controllers of bufferless
core nodes and distributed to respective edge nodes. In a
composite-star network having edge nodes interconnected by
independent core nodes, the burst-transter schedules are ini-
tiated by any of a plurality of bufferless core nodes and
distributed to respective edge nodes. Burst formation takes
place at source nodes and a burst size is determined according
to an allocated flow-rate of a burst stream to which the burst
belongs. An allocated flow-rate of a burst stream may be
modified according to observed usage of scheduled bursts of
a burst stream. A method of control-burst exchange between
each of a plurality of edge nodes and each of a plurality of
bufferless core nodes enables burst scheduling, time coordi-
nation, and loss-free burst switching. The method of the
above patent application requires that a controller of each
optical core node have a burst-description generator driven by
a flow-rate regulator.

[0009] A network providing optical burst switching in the
core requires flow-rate regulation at the electronic edge nodes
to enable contention-free switching at subsequent core nodes.
The bursts are generally of arbitrary sizes and switching at the
electronic edge nodes requires burst segmentation into data
segments of equal size, with a proportion of the data segments
including null data. Prior-art flow-rate regulation methods do
not take into account the data composition within switched
data segments, thus compromising the accuracy of flow-rate
control.

[0010] There is a need, therefore, for methods and appara-
tus for regulating the flow of a large number of streams of
variable-size data packets or bursts based on flow-rate allo-
cations that are adapted to time-varying traffic conditions.
The apparatus need also be coordinated with scheduling
devices in both edge nodes and core nodes. Where data pack-
ets or bursts are segmented to facilitate switching, the flow
control must be based on the actual information content in the
switched data segments. Such an apparatus would enable
reliable burst switching with service-quality control.

SUMMARY OF THE INVENTION

[0011] The invention provides methods and apparatus for
regulating the transfer of data bursts across a data network
comprising electronic edge nodes, collectively referenced as
the edge, interconnected by fast-switching optical core nodes,
collectively referenced as the core. To facilitate switching at
an electronic edge node, data bursts are organized into data
segments of equal size. A data segment may include null data
in addition to the information bits. The null data are removed
at the output of an edge node and the information data is
collated into bursts each carrying only information bits in
addition to a header necessary for downstream processing. To
ensure loss-free transfer of bursts from the edge to the core,
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burst transfer permits are generated at controllers of the opti-
cal core and sent to respective edge nodes based on flow-rate-
allocation requests. Null-padding is not visible outside the
edge nodes and only the information content is subject to
transfer rate regulation to ensure high efficiency and high
service quality.

[0012] According to an aspect of the present invention,
there is provided a method of temporal switching of a suc-
cession of data bursts of variable sizes each of the data bursts
containing information bits and belonging to one of a multi-
plicity of data streams and each of the data streams is granted
an allocated flow rate. The method comprising steps of seg-
menting each of the data bursts into data segments, each of the
data segments containing a number of the information bits not
exceeding a predefined fixed segment size of W bits, comple-
menting each of the data segments having a number of infor-
mation bits less than W with null bits, recording the number of
the information bits in each of the data segments, writing the
resulting succession of data segments in at least one memory
device, and reading, from the at least one memory device,
data bursts according to the allocated flow rate granted to each
data stream. The methods includes the further step of spatial
switching wherein the succession of data bursts is received
from at least two input channels, each of the at least two input
channels having a corresponding input-channel capacity and
the at least two input channels accessing the information-
memory device in an arbitrary input-access order. The data
bursts are read by at least two output channels, each of the at
least two output channels having a corresponding output-
channel capacity and accessing the information-memory in
an arbitrary output-access order.

[0013] In accordance with another aspect of the present
invention, there is provided a common-memory switch com-
prising a number M>1 of input ports, a number N1 of output
ports, a memory device storing data segments each having a
segment size of W bits, and a controller including an output
bit-rate regulation device. Each of the data segments is asso-
ciated with one of predefined data streams and at least one of
the data segments contains a number of information bits less
than the segment size W. The controller is operable to assign
a nominal bit-rate to each of said plurality of predefined data
streams, and the flow-rate regulation device is operable to use
the number of information bits and said nominal flow rate to
select at least one of said data segments for dequeueing.
Additionally, at least one of the output ports is adapted to
time-lock to an external switching node.

[0014] In accordance with a further aspect of the present
invention, there is provided an edge node comprising a plu-
rality of input-ports, each of said input ports including a rate
regulator, a plurality of output ports each of said output ports
including a burst-formation device, a space switch connect-
ing said plurality of input ports to said plurality of output
ports, and a scheduler to schedule the transfer of variable
length packets from said plurality of input ports to said plu-
rality of output ports. Each of said variable length packets
belongs to one of a plurality of data streams. The variable-
length packets associated with a selected one of said data
streams are aggregated at each output port into data bursts and
each of said output ports is adapted to transmit continuous
concatenated data bursts. Additionally, at least one of the
output ports is adapted to time-lock to an external switching
node.

[0015] Other aspects and features of the present invention
will become apparent to those of ordinary skill in the art upon
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review of the following description of specific embodiments
of the invention in conjunction with the accompanying fig-
ures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] In the figures which illustrate example embodi-
ments of this invention:

[0017] FIG. 1 illustrates the input and output ports of a
telecommunication network;

[0018] FIG. 2 illustrates the network of FIG. 1 with the
network ports grouped in edge nodes interconnected by a
static core;

[0019] FIG. 3 illustrates the network of FIG. 1 with the
network ports grouped in edge nodes interconnected by
switching core nodes;

[0020] FIG. 4 illustrates an edge node having internal
expansion to compensate for idle time-intervals caused by
segmentation of variable-size packets into segments of equal
size;

[0021] FIG. 5 illustrates the granularity of data transfer
across the edge node of FIG. 4;

[0022] FIG. 6 illustrates a data structure, in accordance
with an embodiment of the present invention, containing
control data used to manage the rate of transfer of information
bits in a buffer holding data segments belonging to multiple
data streams at an input port or an output port of the edge node
of FIG. 4, where a data segment may carry both information
bits and null bits. The data structure can also be used in a
controller of the core node of FIG. 3;

[0023] FIG. 7 illustrates a step of updating the data struc-
ture of FIG. 6 after inserting a packet in an input buffer;
[0024] FIG. 8 illustrates a step of updating the data struc-
ture of FIG. 6 after removing a packet from the input buffer;
[0025] FIG. 9 is a logical representation of the data seg-
ments contained in the data structure of FIG. 8, the data
segments sorted according to the data streams to which they

belong;

[0026] FIG.10is aflow chart describing a process of packet
enqueueing;

[0027] FIG. 11 is a flow chart describing a process of burst

enqueueing in accordance with an embodiment of the present
invention;

[0028] FIG. 12 is a flow chart describing a packet or burst
release process;
[0029] FIG. 13 illustrates the dependence of inter-burst

intervals on a corresponding specified flow-rate requirement;
[0030] FIG. 14 illustrates the change of inter-burst intervals
as the flow-rate allocations for a burst stream changes with
time;

[0031] FIG. 15 illustrates the process of regulating the
dequeueing of data bursts from a data-burst buffer to conform
to anallocated flow rate in accordance with an embodiment of
the present invention;

[0032] FIG. 16 illustrates a data structure for rate regulation
of a packet stream or a burst stream according to an embodi-
ment of the present invention;

[0033] FIG. 17 illustrates a device for packet or burst rate
regulation based on descriptors of individual packets or
bursts, using the data structure of FIG. 16, according to an
embodiment of the present invention;

[0034] FIG. 18 illustrates a device for packet or burst rate
regulation for multiple streams based on flow-rate-alloca-
tions, using the data structure of FIG. 16, according to an
embodiment of the present invention;
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[0035] FIG. 19 illustrates a calendar-addressing unit used
in the devices of FIG. 17 and FIG. 18, in accordance with an
embodiment of the present invention;

[0036] FIG. 20 is a flow chart illustrating a process of
populating a scheduling calendar for the device of FIG. 17 of
the device of FIG. 18, in accordance with an embodiment of
the present invention;

[0037] FIG. 21 is a flow chart illustrating the operation of
the device of FIG. 17 or the device of FIG. 18, in accordance
with an embodiment of the present invention;

[0038] FIG. 22 illustrates a prior art flow-rate-controlled
common-memory switch;

[0039] FIG. 23 illustrates a common-memory edge node
provided with an edge-node controller that includes a rate
regulator for regulating data transfer according to informa-
tion-bit content, in accordance with an embodiment of the
present invention;

[0040] FIG. 24 illustrates an edge node comprising input
ports and output ports interconnected through a space switch
and communicating with an edge node controller, with each
input port provided with a rate regulator based on informa-
tion-flow-rate accounting, in accordance with an embodi-
ment of the present invention;

[0041] FIG. 25 illustrates an edge node similar to the edge
node of FIG. 24 except that none of the input ports is provided
with a rate regulator, and a shared rate-regulator is associated
with the edge-node controller, in accordance with an embodi-
ment of the present invention;

[0042] FIG. 26-A illustrates a prior art method of burst
scheduling based on path reservation for each individual
burst;

[0043] FIG. 26-B illustrates a prior art method of burst
scheduling based on prior notification instead of path reser-
vation;

[0044] FIG. 27 illustrates a burst-width modulation system
where the burst-size varies with the flow-rate variation of a
data stream, according to an embodiment of the present
invention;

[0045] FIG. 28-A illustrates the use of burst-width modu-
lation to represent flow-rate variation, according to an
embodiment of the present invention;

[0046] FIG.28-B illustrates the use of burst-position modu-
lation to represent flow-rate variation, according to an
embodiment of the present invention;

[0047] FIG. 29 illustrates a network having edge nodes and
bufferless core nodes with rate regulators provided at each
edge node, according to an embodiment of the present inven-
tion;

[0048] FIG. 30 is a flow chart of the main steps of burst
formation at an outbound port of an edge node;

[0049] FIG. 31 is a flow chart of the main steps of burst
formation at an outbound port of an edge node under flow-rate
constraints, according to an embodiment of the present inven-
tion; and

[0050] FIG. 32 is a flow chart of the main steps of burst
formation at an outbound port of an edge node under flow-rate
constraints where burst descriptors are generated at a control-
ler of a core node, according to an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

[0051] For ease of reference, the terminology used in
describing the embodiments of the invention is listed below.
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Edge node: A switching node having subtending information
sources and sinks and connecting to other nodes is called an
edge node.

Core node: A switching node connecting only to other nodes
is called a core node.

Outer port: A port receiving signals from a source, or trans-
mitting signals to, a sink is called an outer port.

Inner port: A port receiving signals from, or transmitting
signals to, another node is called an inner port.

Input port: A port of a switching node receiving information
signals from either a subtending information source or from
an external node is called an input port.

Output port: A port of a switching node transmitting infor-
mation signals to either a subtending information sink or an
external node is called an output port.

Ingress port: An input port receiving information signals from
subtending information sources is referenced as an ingress
port.

Egress port: An output port transmitting information signals
to subtending information sinks is referenced as an egress
port.

Inbound port: An input port receiving information signals
from external nodes is referenced as an inbound port.
Outbound port: An output port transmitting information sig-
nals to external nodes is referenced as an outbound port.
Inbound channel: An inbound channel is a communication
channel, usually a wavelength channel in a fiber-optic link,
connecting an inbound port to an external node.

Outbound channel: An outbound channel is a communication
channel, usually a wavelength channel in a fiber-optic link,
connecting an outbound port to an external node.

Inlet port: An input port of a core node is herein called an inlet
port for ease of distinction.

Outlet port: An output port of a core node is herein called an
outlet port for ease of distinction.

Uplink: An uplink is a communication link, usually a mul-
tiple-channel link, from an edge node to a core node.
Downlink: A downlink is a communication link, usually a
multiple-channel link, from a core node to an edge node
[0052] Up-channel: An up-channel is a channel, usually a
wavelength channel, within an uplink.

[0053] Down-channel: A down-channel is a channel, usu-
ally a wavelength channel, within a downlink

Upstream: The adjective ‘upstream’ refers to a flow in the
direction from an edge node to a core node.

Downstream: The adjective ‘downstream’ refers to a flow in
the direction from a core node to an edge node.

Outer capacity: The outer capacity of a node or a network is
the sum of the capacities of ingress ports or the sum of the
capacities of egress ports, whichever is smaller.

Inner capacity: The inner capacity of a node is the sum of the
capacities of its inner input ports or the sum of the capacities
of its outer output ports, whichever is smaller. The inner
capacity of a network is the sum of the capacities of the
network’s inner ports, divided by two. The network’s inner
ports comprise input ports and output ports, and the sum of
the capacities of the input inner ports is equal to the sum of the
capacities of the inner output ports, hence the division by two.
Data packet: It is a conventional data block of arbitrary size
and having an identifying header.

Data burst: A data burst is an aggregation of data packets
having a burst header in addition to the individual packet
headers; a data burst may contain only one packet of a large
size, in which case only the burst header is required.
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Burst-transfer duration: The time required to transfer a data
burst along a transmission medium.

Burst weight: Either the number of bits in a burst or the time
it takes to transmit the burst over a designated channel defines
a ‘burst weight’.

Nominal burst size: It is a recommended maximum size of a
burst belonging to a given data stream. The actual size of the
aggregate of packets constituting the burst may be smaller
than the nominal size.

Nominal burst weight: Either a recommended maximum size
or a recommended maximum burst transmission duration
defines a nominal burst weight.

Data stream: A data stream is a flow of data units having the
same destination edge node and, possibly, assigned to the
same route towards the destination node.

Packet stream: A packet stream is a data stream where the data
units are data packets generally of variable and arbitrary sizes.
Burst stream: A burst stream is a data stream in which data
units are aggregated into data bursts. Where distinction is not
required, the terms ‘data stream’, ‘packet stream’, and “burst
stream’ may be used interchangeably.

Segmentation: The process of dividing a data packet or burst
into data segments of equal size.

Segmentation waste: It is the proportion of null bits in a
segmented packet stream or burst stream, resulting from seg-
menting packets or bursts of arbitrary sizes.

Internal blocking: The unavailability of a path between an
input port and an output port, where both ports have sufficient
free capacity for a requested connection, is called internal
blocking. Internal blocking is normally a result of contention
and may, therefore, be called ‘contention loss’ or ‘matching
loss’.

Flow rate: The mean rate, usually in bits per second, of'a data
stream of any data format.

Nominal flow rate: A flow rate allocated to a data stream and
possibly modified with time.

Regulation: The term regulation refers to a process of
dequeueing data from a data buffer at regular intervals. When
the data buffer contains data belonging to several data
streams, it may not be possible to dequeue data units of a
given data stream at exactly equal intervals and the regulation
process attempts to minimize the variance of successive
dequeue intervals.

Scheduling: The term scheduling refers to a process of deter-
mining the exact time at which a data unit may be transmitted
from a data buffer to meet contention requirements in a sub-
sequent processing stage. In the burst scheduling methods in
accordance with the present invention, a regulation process
may precede a scheduling process.

Calendar: an array having a predefined number of records,
each record corresponding to a time slot and containing an
identifier of a data stream and possibly other information
related to the data stream.

Calendar slot: an entry in a calendar containing a single
record

Calendar record: An entry in a calendar corresponding to a
data segment or a data block. The record may include the data
segment (data block) itself, or a pointer to the data segment
(data block) held in a separate data memory.

Calendar time slot: time taken to read and process a record in
a calendar
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Calendar period: It is the time taken to read and process each
entry in a calendar, the calendar period equals the number of
calendar slots multiplied by the duration of a calendar time
slot.

Counter: The term is used herein to refer to a clock-driven
counter, which can be an up-counter or a down-counter. The
counter output takes values between zero and (K-1), K>1
being the counter cycle.

Common-memory: It is a memory device shared by at least
two input channels and at least one output channel; a com-
mon-memory is usually selected to be a wide memory com-
prising several memory devices that are identically addressed
Common-memory cycle: It is a sequence of events where
each input channel and each output channel accesses the
common memory during a predefined time frame, with each
input channel allocated an access interval and each output
channel allocated an access interval within the predefined
time frame, thus avoiding access contention. The access inter-
vals allocated to the input channels need not be equal and the
access intervals allocated to the output channels need not be
equal.

Common-memory-switch period: It is the duration of a com-
mon-memory cycle.

Linking: A process of tracking data bursts stored in a memory
device, where each data burst may contain several data seg-
ments.

Chaining: The process oftracking data segments belonging to
a data burst and stored in arbitrary addresses in a memory
device.

Time Locking: A first controller is time-locked to a second
controllerifasignal transmitted at an instant of time indicated
by a time counter at the first controller arrives at the second
controller at the same instant of time as indicated by an
identical time counter at the second controller.

Data Network

[0054] A telecommunication network has outer ports (FIG.
1) and inner ports (FIG. 1 and FIG. 2). The outer ports com-
prise input ports and output ports. Similarly, the inner ports
comprise input ports and output ports. The outer ports are
connected to traffic sources and traffic sinks, and the inner
ports are connected to each other. The ports are typically
grouped into sets, each of which comprising an edge node or
acorenode. An edge node includes outer ports and inner ports
while a core node includes only inner ports. Within an edge
node, outer input ports may communicate directly with outer
output ports. Outer ports of different edge nodes communi-
cate with each other through their inner ports and possibly
also through core nodes. The term “outer capacity” relates to
the total capacity of the outer ports of a network and the term
“inner capacity” relates to the total capacity of the inner ports
of'a network. The outer capacity is the capacity available to
network users. In an ideal network, the ratio of inner capacity
to outer capacity is close to one. A high ratio is generally
indicative of an inefficient network.

[0055] An edge node comprises a source node and a sink
node, with the source node connecting to data sources and the
sink node connecting to data sinks. In an edge node, the outer
ports connected to data sources are called ingress ports and
the outer ports connected to data sinks are called egress ports.
The inner ports that receive signals from other nodes are
called inbound ports and the inner ports that send signals to
other nodes are called outbound ports. A link from a source
edge node to a core node is called an uplink and a link from a
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core node to a sink edge node is called a downlink. A channel
in an uplink is called an upstream channel and a channel in a
downlink is called a downstream channel.

[0056] Itis widely accepted that end-to-end data rate regu-
lation is an effective way to reduce packet loss to acceptable
levels. This approach has been well articulated in several text
books and countless technical papers. Rate regulation ensures
that a connection from a traffic source to a traffic sink has a
restrained flow rate, or that a path from a source edge node to
a sink edge node has a guaranteed flow-rate allocation. The
number of simultaneous connections in a network can be
considerably high, and attempting to regulate each connec-
tion individually has two main drawbacks. The first is the
resulting excessive signaling and the second is the reduced
utilization of transport resources because the relative flow-
rate fluctuation of an individual connection is naturally higher
than that of an aggregation of a large number of connections.
It is, therefore, more beneficial to use paths of regulated
flow-rates, from each source node to each sink node. The
aggregate traffic from a source node to a sink node is herein-
after called an aggregate data stream. Individual connections
within a path may be regulated exclusively at the source
nodes.

NETWORK DESCRIPTION AND DEFINITIONS

[0057] FIG. 1 illustrates a generic view of a connecting
network 100 which includes a plurality of ingress ports 102
and a plurality of egress ports 104. The ingress ports 102 and
egress ports 104 are paired into dual ports (referenced gener-
ally as 106) each dual port 106 comprising an ingress port 102
and an egress port 104. FIG. 2 illustrates the grouping of dual
ports 106 into edge nodes 208 where the edge nodes are
interconnected by links (e.g., link 210) of fixed capacities.
These links can be realized through cross-connecting devices
well known in the art (not illustrated in FIG. 2). The capacity
of'a path from one edge node 208 to another is static, and the
connecting network 200 may be used to carry conventional
packet data.

[0058] FIG. 3 illustrates an alternative connecting network
300 of the edge nodes 208 of the connecting network 200 of
FIG. 2 where the edge nodes 208 are interconnected through
fast switching core nodes 312. Thus, a link of adaptive capac-
ity from one edge node 208 to another edge node 208 is
realized by switching at a core node 312. The core nodes 312
preferably comprise optical switches adapted for burst
switching.

[0059] FIG. 4 illustrates an edge node 208 comprising a
switching fabric 420, ingress ports 422 for receiving signals
from subtending sources, inbound ports 424 for receiving
signals from core nodes or other edge nodes, egress ports 426
for transmitting signals to subtending sinks, and outbound
ports 428 for transmitting signals to core nodes or other edge
nodes. The switching fabric 420 provides internal capacity
expansion where the inner capacity of the edge node exceeds
the input capacity or the output capacity. The expansion is
required for two reasons. Firstly, to compensate for segmen-
tation waste where data packets received from serial links at
the input ports are segmented into data segments of fixed
length (fixed number of bits), thus resulting in a rounding-up
waste, also called segmentation waste. Secondly to reduce or
eliminate internal blocking within the edge node arising from
vacancy misalignment at input and output ports and conven-
tionally called ‘mismatch blocking’.
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[0060] FIG. 5 illustrates the granularity of data transfer
across the edge node of FIG. 4. At each ingress port 422, data
packets are received from data sources. The packets are seg-
mented and switched across the switching fabric 420 to egress
ports 426 and outbound ports 428. Segmented packets
received at the egress ports are assembled into data packets
and transmitted to data sinks, as indicated in quadrant 522. At
each outbound port 428, packets are aggregated into bursts
and transmitted to a core node, or to another edge node, as
indicated in quadrant 524. At an inbound port 424, data bursts
are received from a core node. Each data burst may comprise
data segments belonging to several packets. A data burst may
be switched in its entirety to an outbound port 428 as indi-
cated in quadrant 528. Alternatively, at an inbound port, a data
burst may be decomposed into individual packets which may
be segmented and switched across the switch fabric 420 to
egress ports 426 as indicated in quadrant 526. Switching
large-size data bursts rather than data packets in the core is
necessitated by switching latency in the optical switching
fabrics used in the core and by the need to reduce the sched-
uling effort at the core-node controllers.

Data Structure for Flow-Rate Accounting

[0061] At an edge node, data is received from data sources
in the form of packets, generally of variable sizes. In order to
facilitate switching within the edge node, the data may be
segmented into data segments of equal sizes. Each packet is
preferably transmitted from the edge node in the same vari-
able-length format in which it was received from the packet
source, even though an additional header may be required.
Packet segmentation may necessitate null-padding, i.e., add-
ing null data to an incomplete data segment. Null-padding
thus increases the data flow rate. The information length
(information size) of a segment is defined according to the
number of information bits it contains. The flow-rate of the
packets transmitted by the edge node is preferably regulated
to avoid congestion en route, and it is necessary then to devise
a means for regulating the actual packet data within the data
segments. Data packets may be aggregated into data bursts
which are preferably transmitted without null padding.

[0062] FIG. 6 illustrates a data structure 600 for controlling
the enqueueing of data segments formed from packets of
variable lengths and dequeueing the data segments under rate
control where rate control is applied to the received data
packets and not necessarily to the segmented data packets.
Eachpacket is segmented into an integer number of segments,
the last of which is padded with null data when the packet
length is not an integer multiple of a segment length. The
segments of a given packet need not occupy consecutive
positions in a data buffer. The data structure, containing con-
trol data, comprises:

[0063] an array X (referenced as 612), having elements
X(), 0=j=8, S being the number of data streams where
an element X(j) indicates the position in the data buffer
at which the first segment of the next packet belonging to
stream j is to be dequeued,

[0064] an array Y (referenced as 614), having elements
Y(§), 0=j=S, where an element Y(j) indicates the posi-
tion at which the last segment belonging to stream j is
written in the data buffer,

[0065] an array D (referenced as 632), having elements
D(k), 0=k=K, where an element D(k) holds a data
segment and K is the maximum number of data seg-
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ments that can be held in the data buffer, a data segment
may include bits used for null padding,

[0066] an array A (referenced as 622), having elements
A(k), 0=k=K, where element A(k) contains either an
index of a free position in the data buffer or a null value;
each element in the array contains a null value if the data
buffer is fully occupied,

[0067] an array B (referenced as 626), having elements
B(k), 0=k=K, with element B(k) storing the number of
information bits in a data segment stored in positionk in
the data buffer,

[0068] an array E (referenced as 628), having elements
E(k), 0=k=K, with element E(k) indicating whether
position k in the data buffer is unused (E(k)=x), contains
a first segment of a packet (E(k)=1), or contains a con-
tinuation segment (E(k)=0), x being a null value, and

[0069] an array L (referenced as 624) having elements
L(k), 0=k=K, with element k indicating whether posi-
tion k in the data buffer is vacant (L(k)=x), contains the
last segment of a packet (L(k)=¢, a null value), or a
pointer to a position in the data buffer D holding a
segment belonging to the same stream to which a seg-
ment in position k belongs. The pointer (k) has a value
0=L(k)<K.

[0070] Two pointers, Index_1 and Index_2, are used to
track the vacant positions in the data buffer D. Index_1 is the
index of an element in array A which contains the next occu-
pied storage position in the data buffer containing array D.
Index_2 is the index of an element in array A which contains
the next vacant storage position in the data buffer. When the
data buffer is full, Index_1 equals Index_2.

[0071] In the example of FIG. 6, there are five streams
(8=5), referenced individually or collectively as 608 and
labeled 0 to 4. The data buffer can hold 16 segments (K=16)
in array D. For data stream 608-2, for example, the next
segment to be dequeued is in position 6 in the data buffer
(X(2)=6), and the last segment written in the data buffer is in
position 12 (Y(2)=12). The segments belonging to stream
608-2 can be determined as follows: The first segment is in
position 6. The segment length is B(6)=8 (i.e., the number of
information bits is 8) and it is the first segment of a segmented
packet because E(6)=1. The second segment is in position 15
(L(6)=15). The second segment has a length of 8 units (B(15)
=8) and it is a continuation segment of the segmented packet
because E(15)=0. The third segment is in position 1, because
L(15)=1. The third segment has a length of 8 (B(1)=8), and it
is a first segment of a segmented packet, because E(1)=1. The
fourth segment is in position 12 because L(1)=12. Its length is
7units (B(12)=7), it is a continuation segment (E(12)=0), and
it is the last segment in the data buffer belonging to stream 2
(L(12)=¢).

[0072] FIG. 7 illustrates the insertion in the data structure
600 of a new segmented packet belonging to stream 1. The
new packet is segmented into two segments of lengths 8 and
5.Index_1 in FIG. 6, which points to the first element in array
A containing a free position in the data buffer indicates that
position 8 in the data buffer is free. The selected position is
then 8, the entry A(index_1) is set to a null value 4 (see FIG.
7), and index-1 is increased by unity. As shown in FIG. 6, the
last written segment of stream 1 was in position 10 (Y(1)=10).
L(10)=¢ is now changed to [.(10)=8 and the first segment of
the new packet is written in D(8) and E(8) is set equal to 1
because the segment is the first in the new packet. To insert the
second segment, the value of index_1 is increased by 1 to
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indicate that the next vacant position in the data buffer is 11.
The last written segment of stream 1 was in position 8. Thus
L(8) is set to equal 11, and the length of the second segment
(5 units) is written in B(11) with E(11)=0 because the second
segment is a continuation segment.

[0073] FIG. 8 illustrates the dequeueing of a packet belong-
ing to stream 4. As shown in FIG. 6, the packets belonging to
data stream 4 are stored in data buffer positions 9 and 13.
Index_2 points to the element in array A in which the next
vacated position in the data buffer is to be written. As shown
in FIG. 6, the next position to be dequeued is 9 (X(4)=9) and
A(Index_2) is thus set equal to 9. The value of L(9) is 13,
indicating that there is a subsequent segment. The data seg-
ment in position 9 is dequeued and each of 1,(9), B(9), and
E(9) is set to a don’t-care indicator (x) (see FIG. 8). Index_2
is then increased by unity, and A(index_2) is set equal to 13
(Y(4)=13) (see FIG. 7). The segment of length 4 in position
13 is then readout and each of [.(13), B(13), and E(13) is set
to a don’t-care indicator (X). Since the packet belonging to
stream 4 has been dequeued, X(4) and Y(4) are set to a null
value. The cumulative length of a dequeued packet of burst
data may be determined for use in flow-rate accounting, as
will be described below.

[0074] FIG.9illustrates the segments held in the data buffer
after the packet insertion of FIG. 7 and packet dequeueing of
FIG. 8. For example, as discussed in relation to FIG. 6, the
first packet belonging to stream 1 comprises the data stored in
buffer positions 0 and 10 and the second packet comprises the
data stored in positions 8 and 11. (packet 2). The structure 600
facilitates packet or burst parsing and flow-rate accounting.
Other fields in each record array 620 can be added to account
for other related variables.

[0075] Theprocess of insertion and removal of data packets
is described below with reference to FIGS. 10 to 12.

[0076] Array A, having K entries, stores addresses of avail-
able blocks in the data buffer. The array contains a contiguous
list of addresses of available blocks. As described earlier, two
pointers, labeled Index_1 and Index_2, point to the first and
last addresses, respectively, of the list. The two pointers are
initialized as zero. The length of the list, i.e. the number of
addresses in the list equals the difference [Index_2-Index_1]
where [x| indicates a value x modulo K. Array A is initialized
by a list of the addresses of all data blocks, labeled 0 to (K-1).
The addresses may be listed in any order; for example a(j)=j,
0=j<K. FIG. 10 is a flow chart describing a process of packet
enqueueing. Array A is preferably stored in a separate
memory device. In step 1010, packet parameters are received.
The packet parameters include (1) an identifier j of a stream to
which the packet belongs, (2) a packet size indicating the
actual size Q of the received packet, and (3) the number o of
data segments in which the packet is divided. The packet can
only be enqueued if the data buffer has at least o free data
blocks. Thus, in step 1020, the number of free data blocks is
determined as [Index_2-Index_1], and if this number is less
than the required number of blocks, o, the packet can not be
stored and a rejection step 1022 may inform a packet source
of the unavailability of storage space. The process then
returns to step 1010. Otherwise, at step 1030 an address k of
a free block in array D is read from array A at entry Index_1,
Index_1 increased by 1, and the actual size of the packet is
written in entry k of array B. The value Y(j) indicates the
address in the data buffer in which the last data segment
belonging to stream j is written. If the data buffer contains no
packets belonging to stream j, Y(j) equals the null value ¢.
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Thus, if Y(j) is found to equal ¢, the received packet would be
the only packet belonging to stream j and the address k is
therefore written in X(j) as indicated in steps 1032, 1034, and
1036. If stream j has at least one packet already stored in the
data buffer, Y(j) would contain the index of the data buffer at
which the last data segment of stream j has been written. The
new address k obtained from array A is then linked to position
Y(j) as indicated in step 1038. The data segment is then
written in the data buffer, array D, at address k (step 1050). In
step 1052, the number a is reduced by one to determine the
number of remaining data segments in the packet to be
enqueued, if any. If it is determined in step 1054 that there is
at least one segment remaining to be queued, the index of the
last data segment of the packet is stored in Y(j) and packet
continuation is indicated by setting E(k) equal to a (step
1056). A new vacant address is then obtained from array A in
step 1030 and steps 1032, 1034, 1038, 1050, 1052, and 1054
are repeated. When step 1054 indicates that the packet has
been fully entered in the data buffer (0=0), the value of E(k)
is set equal to zero at step 1058 to indicate that there is no
continuation to address k in the data buffer D.

[0077] Each entry in array B is initialized as zero. A null
value can be any unused number in Array A.

[0078] The process of aggregating packets to form a burst
requires two additional arrays. An array U, having one entry
per data stream, stores the permissible burst size per stream
and an array H, also having one entry per data stream, stores
the size of an incomplete burst for each data stream. The
permissible size for a data stream may be determined accord-
ing to different criteria; for example as a function of a flow
rate allocated to the data stream. The data packets of a data
stream may arrive at random and each packet is inserted in the
data structure according to the process described above with
reference to FIG. 10. When packets are aggregated to form a
burst, only the entry of the packet-continuation indicator E
corresponding to the address of the last block of the last
packet of a burst is set equal to 1. The process of FIG. 10 is
thus modified by adding the three steps 1140, 1146, and 1148,
as indicated in FIG. 11. In step 1140, the actual size €2 of a
received packet is added to the current actual cumulative size
H(j) of a current incomplete burst. If the sum exceeds the
permissible size U(j), the current incomplete burst is treated
as a complete burst, and a new burst is formed by setting the
size H(j) equal to the actual size of the new packet (step 1146).
Atthis point, the continuation indicator of the last block of the
burst already has a value of zero, being last set at step 1058. If
the sum does not exceed the permissible size U(j), the new
packet can be appended to the current incomplete burst. The
continuation indicator of the last block of the burst is reset
from 0 to 1 (E(y)=1 in step 1148 and the current size of the
burst is increased by the actual size €2 of the new packet.

[0079] FIG. 12 illustrates a packet-release process. When a
request to release a packet belonging to stream j is received
(step 1210), the address k of the first segment of the head
packetof stream j is read from array X (step 1212). If there are
no packets belonging to stream j, X(j) would have a null value
¢ and no packets are read (steps 1214 and 1216). If there is at
least one packet belonging to stream j, the process continues
to step 1220. The actual length of the packet, which includes
the sum of all its constituent segments, is read from array B at
entry k and entry B(k) is reset to zero (step 1220) for subse-
quent processes. At step 1230, the value of Index_2 which is
the address of array A at which the last vacant data address has
been written is increased by one (modulo K) and the index k
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is written in A(Index_2). At step 1240, a segment is read from
the data buffer at address k, the current value of the continu-
ation field E is retained in e for further examination in step
1250. The continuation field E is then set to a ‘don’t care’
value X, and the data address at which a subsequent segment
of the packet is stored is determined from the link array L.
When the last segment of a packet is read, the address of the
first segment of the following packet, if any, is determined
from operation k<=L (k) of step 1240 and placed in X(j) as
indicated in step 1260 if it is determined in step 1250 that the
retained value € is not equal to zero and, therefore, there is at
least one more data segment to release. The process then
continues to receive a new packet release request in step 1210.
The index k in step 1260 would be equal to the null value ¢ if
the data buffer contains no further packets belonging to
stream j. If, in step 1250, € is found to be zero, the process
continues to step 1220.

Burst-Size Constraints

[0080] At an outbound port (e.g., port 314 of FIG. 3) of an
edge node 208, data packets belonging to the same data
stream are aggregated into data bursts. A data stream includes
packets having the same destination and sharing the same
route. As described earlier, any segmentation null-padding is
preferably removed before transmitting the data burst along a
wavelength channel leading to an optical switching node
where the bursts are switched to respective destination nodes.
Data bursts to different destination nodes are sequentially
transmitted from an output buffer at the outbound port of the
edge node. Delay jitter occurs when a given data burst waits
until other data bursts are dequeued from the output buffer. To
reduce the delay jitter, an upper bound may be imposed on the
burst size so that the burst dequeueing time does not exceed a
specified value. For example, if the capacity of the outbound
port is 10 Gb/s, a wavelength channel emanating from the
output port may carry data at a rate R=10 Gb/s. If the data-
burst dequeueing time is specified as one microsecond, then
the maximum size B of a burst would be 10 kilobits.

[0081] The switching latency at an optical core node 312 to
which edge node 208 subtends can be considerable, of the
order of 100 nanoseconds, for example. This necessitates that
a guard time, at least equal to the switching latency, be
allowed between successive data bursts transmitted from an
outbound port. It is preferable, therefore, that the burst dura-
tion be as high as possible to reduce the relative capacity
waste. In order to increase the burst sizes, packets belonging
to each data stream may be held at an output buffer at an
outbound portuntil a burst having a size close to B, 10 kilobits
in the above example, can be formed. This burst-formation
delay would be negligible for a data stream of a high flow rate.
The burst formation delay for a data stream allocated a flow
rate of p bits per second is d=b/p, where b is the burst size in
bits. For a data stream of a relatively low rate, the burst-
formation delay required to form a burst of a size comparable
to the target burst size B may be unacceptable. For example,
a data stream allocated a flow rate of 10 kilobits per second
requires one second to form a burst of 10 kilobits. A burst-
formation delay of this magnitude may be unacceptable, and
anupper-bound, A, of the formation delay may be imposed. A
reasonable value of A would be one millisecond.

[0082] FIG. 13 illustrates the relation between the forma-
tion delay d and the allocated flow rate p for a data stream at
a given burst size, with the maximum value of d=Aselected to
be 1 millisecond. In this example, if the target burst size is 10
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kilobits, then a stream allocated 80 megabits per second (Mb/
s) would require a formation delay of only 0.125 millisecond.
[0083] Denoting the allocated flow rate for stream j as p,,
0=i<S, S being the number of data streams, then, in a worst-
case scenario, an ingress port 102 of the edge node 208 would
have one data stream directed to one of the output ports of the
edge node 208 and having a flow-rate allocation slightly less
than the bit-rate capacity of the output port. The remaining
data streams from the same ingress port include a data stream
having an insignificant, but non-zero, flow rate to each other
output port of the same edge node 208. Thus, the flow-rate
allocation p; are such that

ZS: pi<<R

=L

with p,.=R, so that

[0084] Because of the requirement that a burst-formation
delay at input should not exceed a permissible upper bound
under any traffic condition, a sufficient internal expansion is
required at the edge node 208 as discussed in relation to FIG.
4.

[0085] An edge node allocates a permissible flow rate for
each burst stream. The edge node may modify the flow-rate
allocation for the burst stream as traffic changes with time. A
method of determining the permissible flow rate is described
in U.S. patent application Ser. No. 09/132,464, filed on Aug.
11, 1998 and titled “Routing and Rate Control in a Universal-
Transfer-Mode Network”. An edge node may connect to sev-
eral optical core nodes, each core node having a core control-
ler. An edge node selects a core node for each burst stream.
The edge node then continually sends the flow-rate allocation
for each burst stream to a respective core controller. The core
controller determines a burst size corresponding to each allo-
cated flow rate. The burst size is selected to meet two require-
ments. The first is the burst-formation delay upper bound A,
and the second is a transmission-duration upper bound A,. A
burst may include several packets and the burst-formation
delay upper bound A, may be imposed so that the first packet
in a burst may not have to wait at the source edge node for
more than A, before being eligible for transmission to the
core. At a flow rate p, a burst of size B bits would have a mean
formation time of b/p. The transmission-duration upper
bound may be imposed to reduce delay jitter at outbound
ports of the edge node. With a transmission rate of R bits per
second, which is the speed of a channel connecting an out-
bound port to a core node, the transmission duration is b/R.
Thus, the largest burst size B, also called a nominal burst size,
must be selected so that B=min {pxA,, RxA,}. The nominal
burst size B is determined by a burst-size calculator that may
be placed either at an outbound port of an edge node or at a
controller of a core node.

[0086] The burst-formation delay affects each burst indi-
vidually while the burst-transmission affects all bursts wait-
ing in an outbound queue. Therefore, A; would be selected to
be much larger than A,. For example, A, would be a millisec-
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ond while A, would be a microsecond. The value of A, must
be much larger than the switching latency in the core.
[0087] FIG. 14 illustrates the change of flow-rate alloca-
tions over successive intervals where the flow-rate allocation
is p, ininterval-A, p,ininterval-B, and p,, in interval-C, with
Po<P1<P,. With py_,, Mb/s, p,=80 Mb/s, p,=120 Mb/s,
R=10 Gb/s, A;=1 millisecond, and A,=2 microsecond, for
example, then at a flow-rate allocation of p,, the nominal
burst size B is 20,000 bits (the lesser of p,xA;=40,000 bits
and RxA,=20,000 bits). The nominal burst size would be
20,000 bits for flow-rate allocations exceeding 40 Mb/s.
Thus, in this example, the nominal burst size remains
unchanged over the three intervals.

[0088] The core controller generates burst descriptors, each
burst descriptor including an input port, an output port, and a
burst size. The burst descriptors are generated at intervals
determined by the flow-rate allocation and the selected burst
sizes B, B,, and B, for allocated flow rates p,, p,, and p,,
respectively. In FIG. 16, the intervals t,, T,, T5, . . . , are
selected such that:

(v 1=T0)=B /P 1,(T3-T2)=(T4=T3)=Bo/Po, (T6=T5)=(T7—T¢)
=(tg=T7)=(To=T5)=B>/P>.

[0089] The burst descriptors are submitted to a scheduler
which determines the time at which a burst corresponding to
each burst descriptor is switched across the optical switch
fabric. The scheduled times are sent to corresponding edge
nodes which transmit the bursts formed at outbound ports at
corresponding times determined according to the time-lock-
ing process.

[0090] FIG. 15 illustrates the process of regulating the
dequeueing of data bursts from a data-burst buffer to conform
to an allocated flow rate. Each data burst is associated with a
burst stream and each burst stream is allocated a flow rate. A
calendar comprising a predetermined number of calendar
slots is used to facilitate the process as described above. In
operation, the calendar is continually scanned with calendar-
slot duration of h seconds. Each time a burst-stream identifier
is read, the burst stream gains one credit unit, which can be
normalized to unity as described earlier. A burst becomes
eligible for dequeueing when a fraction @ of the credit Q of
the burst stream to which it belongs is at least equal to the
burst’s size P (generally weight). FIGS. 15-A to 15-C illus-
trate the build up of credits with time for a burst stream.
Credits are granted at discrete instants of time as illustrated by
the small circles 1520. The discrete instants of time corre-
spond to the calendar time slots at which an identifier of the
burst stream is read from the calendar. Ideally, the discrete
instants would be evenly spread along the calendar. However,
exact even distribution may not be realizable with arbitrary
flow-rate allocations to the multiplicity of burst streams shar-
ing the calendar and an almost equalized distribution suffices.
FIG. 15-A illustrates the case where ®32 1, i.e., a burst is
eligible for dequeueing only when the corresponding burst
stream has accumulated credits Q at least equal to P (QZP).
Two bursts belonging to a specific burst streams arrive at the
burst buffer at the instants indicated. The first burst 1510A
arrives when the specific burst stream has a credit of less than
two units. The burst size (weight) is 6.4 units. The burst has to
wait until the specific burst stream accumulates enough cred-
its. Meanwhile, a second burst 1510B having a size (weight)
of 4.2 units arrives at the burst buffer at the instant indicated
and it must wait until the first burst 1510 A is dequeued and the
burst stream has sufficient credits. The first burst 1510A is
then dequeued when the burst stream accumulated 7 credit
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units. The remainder of 0.6 credit units is retailed for use by
the second burst 1510B. The burst stream continues to accu-
mulate credits as indicated and the second burst 1510B is
dequeued when the burst stream accumulates 4.6 credits (four
new credit units plus the remainder of 0.6 credit units). Natu-
rally, dequeueing can occur only at the discrete instants. The
burst stream now retains a credit of 0.4 units (4.6-4.2).
[0091] FIG. 15-Billustrates the case where the burst arrival
process is as described with reference to FIG. 15-A, but using
a value of @ of 0.5. The first burst 1510A, which has a size
(weight) of 6.4, can be served when the cumulative credit of
the burst stream reaches a value of at least 3.2. The first burst
1510A is therefore dequeued when the credit Q=4. After
dequeueing, the burst stream’s credit becomes —2.4 (which is
the credit value of 4 minus the weight 6.4 of the burst). The
second burst 1510B arrives as indicated and the burst-stream
continues to gain credits with each visit to a calendar slot that
stores an identifier of the burst stream. The size (weight) of
the second burst 15108 is 4.2, and the burst can be dequeued
when the credit of the burst stream is at least 2.1. As indicated,
the second burst is dequeued when the credit Q is 2.6; 5 credit
units gained after five intervals minus the debit of 2.4. The
credit Q is now —1.6 (which is 2.6-4.2).

[0092] FIG. 15-Cillustrates the case where the burst arrival
process is as described with reference to FIG. 15-A, but using
avalue of @ of zero. Thus, a burst can be served as long as the
credit Q of its burst stream is non-negative. The first burst
1510A, which has a size (weight) of 6.4, can be dequeued at
the following instant where the credit Q=2. After dequeueing,
the burst stream’s credit becomes —-4.4 (which is the credit
value of 2 minus the weight 6.4 of the burst). The second burst
1510B arrives as indicated and the burst-stream continues to
gain credits with each visit to a calendar slot that stores an
identifier of the burst stream. The size (weight) of the second
burst 15108 is 4.2, and the burst can be dequeued when the
credit of the burst stream is at least zero. As indicated, the
second burst is dequeued when the credit Q is 0.6; 5 credit
units gained after five intervals minus the debit of 4.4. The
credit Q is now -3.6 (which is 0.6-4.2). In general, the use of
a value of @ that is less than 1 reduces the queueing delay.

Rate-Regulation Device

[0093] InU.S. Pat. No. 6,034,960, issued to Beshai et al. on
Mar. 7, 2000, and titled “ATM Service Scheduler Using
Reverse-Binary Scattering and Time-Space Mapping,” a
method and apparatus for scheduling flow-rate-controlled
data cells of fixed size are described. The method ensures a
low-jitter transmission of data cells by appropriate spacing of
data-cell transfer instants. In the present disclosure, the
method is extended to enable low-jitter scheduling of vari-
able-size data bursts belonging to a large number of burst
streams that share a common high-speed channel so that each
burst stream is allocated a bit-rate usage of the channel. The
method enables the construction of fast burst-scheduling
mechanisms.

[0094] The extended method is described with the help of
FIG. 16, which illustrates four arrays: a flow-rate-allocation
array 1610, a burst-description array 1620 (also called a burst-
record array) holding a record for each data stream, each
record including a candidate burst size 1624 and a credit 1626
of its associated data stream, and two calendar arrays 1630
and 1640. Each of arrays 1610 and 1620 has S entries, S being
the number of data streams. Each of the calendar arrays 1630
and 1640 has a predefined number, K, of entries; the number
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K is preferably a power of 2. Arrays 1610, 1620, 1630, and
1640 are held in four memory devices labeled as M1, M2, M3,
and M4, respectively. The flow-rate allocation array 1610,
stored in memory M1, is used to construct a calendar (array
1630 or array 1640). Each entry 1612 in flow-rate allocation
array 1610 corresponds to a burst stream and indicates the
number of time slots in the calendar required to represent the
flow-rate allocation for the burst stream. The number of allo-
cated time slots for a burst stream need not be an integer. The
number of time-slot allocations for a burst stream to be served
atanormalized flow-rate q, expressed as a fraction of a shared
channel having a capacity of R bits per second, is qxK,
0=q=1. With K selected to be a power of 2, the multiplication
qxK reduces to a fast bit-shift operation. The integer part of
the product qxK is stored in [log,K] bits, where [.] denotes
rounding-up to nearest integer, and the remainder is rounded
up and represented by y bits. A reasonable value of'y is 8 bits,
which yields an accuracy of 1/(256xK) of the channel capac-
ity. With K=16384, and q=0.000128, for example, the repre-
sentative number of time slots is 2.097152. Using an 8-bit
remainder representation, the remainder 0.097152 is repre-
sented by an integer value 25, and the actual representation is
then 2.09765625 time slots leading to an artificial relative
service-rate increase of 0.00024. The relative excess is
smaller for burst streams allocated higher flow-rates.

[0095] The burst-description array 1620, stored in memory
M2, has S records, S being the number of burst streams and
each record corresponds to a burst stream. Each record has
two fields 1624 and 1626. Field 1624 contains a size of a burst
ready to be served, or a burst to be scheduled for service. The
size is translated into a number, generally a real number, of
calendar time slots. The field 1626 contains a credit for a
corresponding burst stream.

[0096] The burst size for a burst stream in field 1624 is
either obtained from the burst buffer (not illustrated) which
may be structured as in FIG. 6 or computed directly from the
flow-rate allocation in a corresponding field 1612. The burst
size for a burst stream is set to zero if there are no waiting
bursts belonging to the burst stream in the burst buffer or if
burst stream is temporarily inactive, i.e., the corresponding
allocated flow-rate in field 1612 is zero.

[0097] A burst is served only if its credit is positive and is
not less than a fraction ® of the burst size, 0=®=1. The
fraction @ is preferably either Y2or 1. If @ is setequalto 1, a
burst can be served, i.e., become a candidate for transfer to a
subsequent processing stage, only if its credit equals or
exceeds its size. A value of V% indicates that a burst can be
served when it has a credit of at least %4 the burst size. When
a burst is served, its credit is adjusted accordingly. Thus, a
given burst that is served when its credit is V2 its size, results
in a debit that can be as large as 2 of the burst size. Thus, a
credit can become negative after a burst is served if @ is
selected to be less than 1.

[0098] The time interval required to read a record in a
calendar array 1630/1640 and execute other operations to
process the read data is denoted “h” and is hereinafter refer-
enced as a calendar time slot. With h=100 nanoseconds, and
a speed ofthe shared service channel of 10 Gb/s, for example,
every calendar time slot represents 1000 bits. A data burst is
represented by a number, not necessarily an integer, of cal-
endar slots. A burst of 16,800 bits, for example, requires 16.8
calendar slots if a calendar slot represents 1000 bits.

[0099] The calendar is used to schedule the bursts. The
duration h of each calendar slot is selected to be sufficient to
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read an entry in a calendar and perform other related arith-
metic and logic operations. The calendar is updated periodi-
cally, with an update period at least equal to the calendar
period Kxh, where K is the number of calendar slots as
defined earlier. With K=16384 and h of 64 nanoseconds, the
calendar period is about one millisecond.

[0100] A calendar is updated either due to a change in
traffic distribution, where the flow-rate allocations change for
some data streams, or due to the allocation of a non-integer
number of calendar slots for at least one data stream. The
calendar update period is preferably an integer multiple of the
calendar period. The calendar’s content may be static, if the
flow-rate allocation for each burst stream is time invariant.
With time-varying flow-rate allocations, the calendar’s con-
tent must be updated and the update interval is preferably an
integer multiple of the calendar scanning period.

[0101] The two memory devices M3 and M4 are used to
store the calendar data and each contains an array of K cal-
endar slots with each entry containing an identifier of a burst
stream. Each burst stream is then represented by a number of
calendar slots. At any time, one of the two memories is in
operation, i.e., used for service-rate regulation, while the
other is in the update mode. The number, S, of burst streams
is arbitrary. The number K is optional; however, it is prefer-
able that K substantially exceed the number of burst streams
to facilitate the process of handling fractional allocations, as
will be described below. It is also preferable that K be a power
of 2, as indicated earlier.

[0102] When a data-stream identifier is read from a calen-
dar 1630/1640, the burst stream gains a credit unit. If burst
size B is expressed in bits, then the credit unit is [3. Preferably,
the burst size B is expressed as Ex[3 where £ is generally a real
number and the burst size is then normalized to £. A burst of
size Exf} becomes eligible for dequeueing from the burst
buffer after the identifier of the burst stream is encountered &
times in the process of continually scanning the calendar
1630/1640. With & generally a real number, fractions of credit
can be included in credit field 1626.

[0103] A calendar data unit f§ is determined as f=Rxh. A
calendar data unit is independent of the segment size. In the
calendar of FIG. 16, a burst of size B=ExExRxh. For a burst
stream having an allocated flow rate p, the mean number of
time slots between successive entries in the calendar contain-
ing the stream identifier is R/p. The mean period m between
successive entries of the burst stream in the calendar is then
=hxR/p. Thus, hxR=nxp, and B=Exnxp. The mean time
interval between successive burst selections is Ext and, hence
the mean burst size is the product of the allocated flow rate
and the mean time interval between successive burst dequeue-
ing instants.

[0104] The calendar-rate unit, v, is the flow rate of a burst
stream allocated one calendar entry per calendar cycle. Thus,
v=R/K. A burst stream allocated a flow-rate p is allocated p/y
entries per calendar cycle. The ratio p/y is generally a real
number and can be less than 1.0. If the ratio p/y is a non-
integer, the number of calendar entries may differ in succes-
sive calendar cycles. If p<y, the data-stream may not have an
entry in the calendar in each calendar cycle. The mean num-
ber of calendar slots between successive entries of a given
burst stream allocated a flow-rate p is pxK/R.

[0105] The calendar 1630 or 1640 is scanned over a time
frame comprising a number of time slots equal to the number
of calendar slots. Scanning the calendar is driven by a cyclic
counter with a counter period having a number of time slots
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equal to the number of calendar slots. During every time slot
of duration h, an entry 1632 or 1642 in the calendar is read at
amemory address determined by a predefined scanning order.
The entry 1632 or 1642 contains an identifier of a burst
stream. When a data stream is read from an entry in a calendar
array 1630/1640, a credit unit is added to field 1626 corre-
sponding to the data stream. Thus, if, for example, a burst
stream is listed four times in a calendar cycle, then during
every calendar scanning cycle, of one millisecond duration
for example, the burst stream gains four credit units. The same
burst stream may be allocated five calendar slots in a subse-
quent calendar period, hence listed five times in the updated
calendar 1640/1630 to be used for a subsequent calendar
scanning. The change in the number of allocated calendar
slots for a data stream may be required either due to a change
in flow-rate allocation or due to a non-integer representation
of flow-rate allocation. For example, an allocation requiring
4.25 time slots per calendar cycle, results in a representation
of'4, 4, 4, and 5, in successive calendar cycles. Therefore, a
calendar may be updated even if the flow-rate allocations for
the burst streams remain unchanged for an extended period of
time.

[0106] The number v of calendar slots required to represent
a data stream having a flow rate p in a channel having a
bit-rate capacity of R should equal pxK/R. With p/R=0.0485,
for example, then using a calendar of 256 calendar slots
v=12.416, while using a calendar having, 2'%, i.e., 65536
calendar slots, the value of v would be 3178.496. The relative
error in representing v by an integer number generally
decreases as the value of K increases. If the calendar length K
is sufficiently large, K being equal to several millions for
example, then calendar update would be needed only if the
flow-rate allocations change. Using such a large memory is
not desirable however and, in any case, a calendar update
facility has to be provided anyway to handle variable flow-
rate allocation.

[0107] To construct a calendar, two counters (not illus-
trated) are used. The first is a cyclic up-counter, ranging from
0to K-1 and s [log,K] bits wide, where [.] denotes rounding
up to nearest integer. The second is a down-counter that starts
with the integer part of allocated calendar slots (field 1612)
plus any carryover credit in field 1626, normalized to time-
slot data width. The down counter is also [log,K] bits wide to
be able to handle a case where the flow-rate allocation for a
burst stream is comparable to the entire capacity of the shared
channel. The allocated rate ‘X’ (field 1612) is added to credit
“y’ (field 1626) and the integer [a+y], where [.] indicates
rounding, is the start value of the down-counter. The remain-
der {(o+y)~[a+y]} is stored back in a credit field 1626 in
memory M2 corresponding to the stream. A positive reading
of'the down counter enables the up-counter and a zero reading
disables the up-counter. For example, if the up-counter is
reset to zero and a first stream is allocated five time slots, the
down counter is initialized to read five (‘00 . .. 00101°). The
reading of the up-counter is the address in the calendar 1630
or 1640 generated in either of the memory devices M3 or M4.
[0108] In order to equitably space the interval between
successive bursts in a burst stream, a scattering step is
required. A simple scattering order can be derived by reading
consecutive numbers in the reverse binary order, i.e., the
least-significant bit becomes the most significant bit, and
vice-versa.

[0109] Two methods of populating and operating the cal-
endars may be used. In a first method, burst-stream identifiers
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are stored in consecutive positions but the calendar slots are
read in a scattered order. In the second method, burst-stream
identifiers are stored in scattered positions in the calendar but
the calendar slots are read consecutively.

[0110] Thus, in one embodiment, in the process of popu-
lating or updating a calendar 1630 or 1640, burst-stream
identifiers are written in a calendar (1630/1640) that is being
updated at consecutive addresses determined by the reading
of the up-counter. The calendar (1630/1640) under construc-
tion is initialized by null values; a null value may be selected
to be any out-of-range value that is easily recognized. Natu-
rally, an overwritten entry must have a null value, because
successive reverse readings of the up-counter are unique. This
verification, that an overwritten entry must contain null data,
can be used to ensure device sanity.

[0111] Inoperation, a calendar 1630 or 1640 is scanned in
areverse binary order. Reading the calendar slots in a reverse-
binary order tends to equalize the spacing, in the time domain,
of consecutive bursts of the same burst stream. This results in
low delay jitter. Without equitable spacing, packet or burst
clustering can occur, leading to delay jitter. The read burst-
stream identifier is used to index memory M2 and the corre-
sponding credit at the indexed entry is increased by 1. The
new total credit is compared with the burst size multiplied by
the fraction ® defined earlier. With ®=14, the binary number
representing the burst size is just shifted one bit. If the credit
is sufficient, the burst stream identifier is placed in a progress
queue (not illustrated) for subsequent processing which
includes dequeueing of burst descriptors, control-data updat-
ing using a data structure such as the one described in FIG. 6,
etc.

[0112] Inanother embodiment, in the process of populating
orupdating a calendar 1630 or 1640, the up-counter is read in
reverse-binary order and the reversed reading is used as an
index to write the burst-stream identifier in the calendar
(1630/1640) that is being updated. The reverse-binary read-
ing leads to index scattering and, hence, nearly equalizes the
spacing, in the time domain, of consecutive bursts of the same
burst stream. This results in low delay jitter. Without equitable
spacing, packet or burst clustering can occur, leading to delay
jitter. The calendar (1630/1640) under construction is initial-
ized by null values; a null value may be selected to be any
out-of-range value that is easily recognized. Naturally, an
overwritten entry must have a null value, because successive
reverse readings of the up-counter are unique. This verifica-
tion, that an overwritten entry must contain null data, can be
used to ensure device sanity.

[0113] In operation, a calendar 1630 or 1640 is read
sequentially every calendar time slot of h seconds (h=64
nanoseconds, for example). The read burst-stream identifier
is used to index memory M2 and the corresponding credit at
the indexed entry is increased by 1. The new total credit is
compared with the burst size multiplied by the fraction ®de-
fined earlier. With ®=4, the binary number representing the
burst size is just shifted one bit. If the credit is sufficient, the
burst stream identifier is placed in a progress queue (not
illustrated) for subsequent processing which includes
dequeueing of burst descriptors, control-data updating using
a data structure such as the one described in FIG. 6, etc.
[0114] The process of addition, comparison, and other
related functions, may require a period of time exceeding the
calendar time slot h. However, noting that a mean burst size
would span several time slots, most calendar scanning steps
require no action. Therefore, to better conserve time, when a
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comparison indicates a sufficient credit for a burst stream, the
identifier of the burst stream is placed in a progress queue for
subsequent processing as described above while the process
of scanning the calendar continues. The subsequent process-
ing includes dequeueing a burst or a burst descriptor and
communicating with the remainder of the regulation mecha-
nism.

Burst-Transfer Regulation Devices

[0115] In general, the term regulation refers to a process of
dequeueing data from a data buffer at regular intervals. When
the data buffer contains data belonging to several data
streams, it may not be possible to dequeue data units of a
given data stream at exactly equal intervals and the regulation
process attempts to minimize the variance of successive
dequeue intervals. The exact time at which a data unit may be
transmitted from a data buffer to meet contention require-
ments in a subsequent processing stage is determined by a
scheduling process.

[0116] The burst regulation method in accordance with the
present invention applies to two applications. In the first
application, the bursts are first received and stored in a buffer
and their descriptors are determined. The burst regulator 1700
of FIG. 17 is then used to regulate the transfer of waiting
bursts from the buffer. Thus, the burst size in field 1624
corresponds to a waiting burst. In a second application, the
schedule is produced for forthcoming bursts and the burst
sizes (burst lengths) are based on flow-rate allocations for
each burst stream. The burst transfer-permit generator 1800
of FIG. 18 generates properly spaced burst descriptors which
are then presented to a scheduler to produce the burst-transfer
permits. In the first case, where bursts are already waiting in
a burst buffer, the scheduled burst is dequeued from its cor-
responding burst buffer. In the second case, permits for trans-
fer of tentative bursts are generated and the size of each burst
is determined according to the flow-rate allocation for the
corresponding burst stream. The tentative permits can be
produced at an output port of an edge node 208 or at a core
node 312.

Burst Regulator

[0117] Referring to FIG. 17, a memory device 1710,
labeled M1, contains flow-rate allocations for each data
stream (referenced as a flow-rate-allocation memory). The
data streams are defined according to an independent admis-
sion process not described in this disclosure. The flow-rate
allocations are either determined by data sources or estimated
by an edge node hosting data sources. The flow-rate alloca-
tions are organized in an array 1610 as illustrated in FIG. 16.
[0118] A memory device 1720, labeled M2, contains, for
each data stream, the size of a candidate burst and a current
credit (referenced as a burst-record memory). The candidate
burst is a burst waiting in a data memory (not illustrated) and
the credit is computed by a processing circuit 1408. The
burst-size and credit data are organized in an array 1620 as
illustrated in FIG. 16. If the data memory contains no bursts
for a given data stream, the corresponding size is set equal to
zero and the corresponding credit is reset to zero. Thus, a
positive credit for a given stream may be reset to zero if there
are no waiting bursts, or if the stream is temporarily assigned
a zero flow rate.

[0119] A memory device 1730, labeled M3, contains a
calendar 1630 and a memory device 1740, labeled M4, stores
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acalendar 1640 (FIG. 16). Each of the two calendars has K>1
calendar slots, where the number K is selected to meet certain
criteria as described earlier. The two memory devices 1730
and 1740 interchange their roles where one operates in an
update mode, to modify a current calendar’s content, while
the other operates in a control mode, where its content is used
to regulate the dequeueing of data bursts from a data buffer.
[0120] The burst flow-rate controller 1708 of F1IG. 17 deter-
mines the instants of time at which segments of a data burst
are released from the burst buffer. The burst flow-rate con-
troller 1708 also performs rudimentary arithmetic and logic
functions. The exchange of roles of calendar memories M3
and M4 is carried out by 1:2 selectors 1735 and 1737 as
indicated, under control of the burst flow-rate controller 1708.
Burst flow-rate controller 1708 directs selector 1737 to write
calendar data in memory 1730 (array 1630) or 1740 (array
1640) and selector 1735 to connect the other memory to the
burst flow-rate controller 1708. To update a calendar, burst
flow-rate controller 1708 adds the allocated rate for each burst
stream as read from memory 1710 to the credit 1626 read
from array 1620 contained in memory 1720 of the burst
stream, rounds the result of the addition to an integer value
and returns a remainder, if any, to credit field 1624 in array
1620 contained in memory 1720. The burst flow-rate control-
ler 1708 controls a calendar addressing unit 1750 through
control links 1752 and 1754. The calendar addressing unit
1750 includes an up counter for addressing the operating
calendar. The addressing unit 1750 also includes an
up-counter controlled by a down counter to be used in the
process of populating one ofthe two calendars 1630 and 1640
as described earlier. The calendar addressing unit 1750 is
illustrated in further detail in FIG. 19. Concurrently, while
one of the two calendars is updated, the other calendar is used
to regulate the dequeueing a burst from a burst queue or to
generate a burst descriptor to be communicated to a respective
burst regulator. Details of the process of calendar 1630/1640
update are described below with reference to FIG. 20. The
process of burst dequeueing using a calendar 1630/1640 is
described below with reference to FIG. 21.

Burst-Permit Regulator

[0121] FIG. 18 is a block diagram of a burst regulator quite
similar to that of FIG. 17, with memory devices 1810, 1820,
1830, and 1840 corresponding to memory devices 1710,
1720, 1730, and 1740, respectively, and uses the same data
structure of FIG. 16. Selectors 1835 and 1837 operate in a
way similar to that of selectors 1735 and 1737, and circuits
1812 and 1712 also operate similarly. The two memory
devices 1830 and 1840 interchange their roles as in the case of
memory devices 1730 and 1740. The main differences are (1)
field 1624 in an array 1620 stored in memory 1720 contains
the size of a waiting burst while field 1624 in an array 1620
stored in memory 1820 contains the size of a forthcoming
burst for which a burst permit is being prepared, and (2) the
burst transfer-permit controller 1808 issues a timed burst
permit while the burst flow-rate controller sends an indication
of a release time of a specific waiting burst. The output of a
burst regulator 1700 is presented to a burst scheduler (not
illustrated) which determines the exact time of transmitting a
burst that is already waiting while the output of a burst trans-
fer-permit generator 1800 is presented to a burst scheduler
(not illustrated) to determine the exact time at which a forth-
coming burst whose size can not exceed the size indicated in
a respective permit is to be transmitted. The process of burst-
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permit regulation is similar to the process of burst-regulation
described with reference to FIG. 20 and FIG. 21. Details of a
burst scheduler are described in Applicant’s U.S. patent appli-
cation Ser. No. 10/054,509.

[0122] FIG. 19 illustrates the calendar-addressing unit
1750 of FIGS. 17 and 18. The calendar-addressing unit 1750
is used in devices 1700 and 1800 and it suffices to describe it
with reference to device 1700. While one of the calendar
memories 1730/1740 is used for burst-transfer regulation, the
other calendar may be updated to reflect new flow-rate allo-
cations. A down counter 1753 and two up counters 1756 and
1758 are used for calendar addressing. Down counter 1753
and up counter 1756 are triggered with a period equal to a
calendar time slot. Up counter 1758 is triggered by the read-
ing of down-counter 1753. The reading of a continuous up-
counter 1756 is used to determine the read addresses in the
operating calendar 1730 or 1740. Down-counter 1753 and
up-counter 1758 are used to determine the write-addresses in
the calendar being updated. Burst flow-rate controller 1708
(FIG. 17) determines the required number v, of calendar slots
per calendar cycle for each burst stream j, 0=j<S, where S is
the total number of burst streams that may have bursts in the
burst buffer. The number v, may vary in successive calendar
cycles even if the flow-rate for its corresponding burst stream
remains constant. This may occur when the burst stream
requires a non-integer number of calendar slots per calendar
cycle. The down counter is reset at the value v; and its reading
decreases by one with every calendar-slot trigger. The reading
of'the down counter is used to trigger up counter 1758.

[0123] A passive 2x2 connector 1759 connects up-counter
1756 to calendar-memory 1730 and up-counter 1758 to cal-
endar memory 1740 during a calendar cycle and in a subse-
quent calendar cycle connects up-counter 1756 to calendar-
memory 1740 and up-counter 1758 to calendar memory
1730. Connector 2x2 is triggered to change connectivity
every calendar cycle. The trigger may be derived from the
reading of the continuous up-counter 1756, or in many other
ways well known in the art.

[0124] In order to equalize the periods between successive
scanning instants of each burst stream, the calendar address-
ing unit 1750 may be operated in one of two modes:

[0125] In the first mode, the output of the interrupted up
counter is used directly to address the calendar memory 1730
or 1740 that is being updated. The output of the continuous up
counter 1756 is mapped onto an address according to a one-
to-one mapping function. A preferred one-to-one mapping
function is a reverse-binary function, where a reverse binary
function converts a first number to a second number such that
the binary representation of said second number is derived
from the binary representation of said first number by revers-
ing the bit order, with the least significant bit of the first
number becoming the most-significant bit of the second num-
ber. Thus, the calendar slots allocated to a burst stream occupy
consecutive calendar slots but are read in a different order.

[0126] Inthe second mode, the output of the interrupted up
counter 1758 is mapped onto an address according to a one-
to-one mapping function, such as the reverse-binary function
described above. The output of the continuous up counter is
used directly to address the operating calendar memory 1730
or 1740. Thus, the calendar slots allocated to a burst stream
occupy dispersed calendar slots and the operating calendar
slots may, therefore, be read sequentially.
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[0127] The one-to-one mapping function attempts to
reduce the variance of the time interval between successive
records for each burst stream.

[0128] It is important to note that a data burst generally
includes several packets and each packet may be segmented
into data segments of equal size with a last data segment of
each packet being null padded with null bits. The null bits are
preferably removed from a dequeued data burst and the rate
regulation is preferably based on actual information bits only.
The information bits include data headers generated at
source. Device 1700 for burst-transfer regulation differs from
the device for ATM-cell transfer regulation described in U.S.
Pat. No. 6,034,960 in two aspects:

[0129] (1)indevice 1700, a data burst is transferred only
when a corresponding burst stream accumulates suffi-
cient credits while in the ATM-cell transfer regulation
device, a data cell is transferred when a corresponding
stream identifier is read from a calendar, credits being
earned with time, and

[0130] (2) in device 1700, the weight of a data burst is a
function of the number of information bits in a waiting
burst, or a specified number of information bits for a
future burst formation, while in the ATM-cell transfer
regulation device the weight of a data cell has a fixed
value which is independent ofthe information content of
the data cell.

[0131] Notably, device 1700 determines dequeueing time
instants for bursts already waiting in a data buffer while
device 1800, for generating burst-transfer permits, deter-
mines dequeueing time instants for bursts to be formed,
according to a size specified in each permit.

[0132] In summary, device 1700 of FIG. 17 regulates the
flow rate of a plurality of burst streams having bursts of
varying burst sizes. Each burst has an identifier associated
with a respective data stream. The device comprises (1) a
burst flow-rate controller 1708, (2) a tlow-rate-allocation
memory 1710 containing flow-rate allocations for each of the
plurality of burst streams, (3) a burst-record memory 1720
containing a record of a selected burst from each active burst
stream, (4) a first calendar memory 1730 organized into a
predefined number of calendar slots, (5) a second calendar
memory 1740 organized into a predefined number of calendar
slots, and (6) a burst-transfer memory 1733 containing iden-
tifiers of data bursts eligible for transfer to a subsequent
processing stage, such as a scheduling stage.

[0133] The burst flow-rate controller 1708 is operable to
determine burst dequeueing instants from the burst buffer
such that for each data stream, the flow-rate allocation mul-
tiplied by the time interval between successive instants equals
the size of a specified burst selected during said time interval.
The weight of a burst may be represented by its length (size),
i.e., the number of bits it contains. Alternatively, the weight of
a burst may be represented by its dequeueing time from its
data buffer. For example, the weight of a burst of 10 kilobits
transmitted on a 10 Gb/s channel may be represented as 10
kilobits or one microsecond. Either representation may be
used in operating device 1700. The number of calendar slots
representing a burst is the ratio of the burst size to the size of
a data segment or, equivalently, the burst-transfer duration
divided by the calendar time-slot duration.

[0134] The burst flow-rate controller includes (a) means for
creating a vector of pointers, each entry of which correspond-
ing to a burst stream, and indicating an address in said burst
buffer of a next-burst to be transferred to said result buffer and
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the length of said next-burst to be placed in respective entries
1624, (b) means for creating a vector of credits, each entry
1626 of which corresponding to a burst stream, (c) means for
creating a calendar having a predefined number of calendar
slots each of which containing an identifier associated with a
respective burst streams, with each of the burst streams given
an allocated number of calendar slots, and (d) means for
continually reading selected ones of the calendar slots. For
each data stream identifier read from a selected calendar slot,
the burst flow-rate controller 1708 is further operable to
increase a previous entry of a credit vector credit, by a pre-
determined credit unit. The credit unit can be the size of a data
segment, if the burst weight is selected to be the burst size.
Alternatively, the credit unit can be the calendar time-slot
duration. Preferably, the burst weight is normalized and
expressed as a number of calendar slots. The burst flow-rate
controller 1708 then determines a weight of a next-burst using
said vector of pointers. If the credit exceeds the weight of the
next-burst or a fraction ® of the weight of the next burst, the
next-burst is transferred from the burst buffer to the result
buffer and the new credit is reduced by length of the next-
burst.

[0135] Device 1800 of FIG. 18 is used for structuring each
data stream into data bursts and regulating the transfer of the
data bursts. Each data stream is assigned a nominal burst size
determined as a function of a nominal flow rate of the data
stream. Device 1800 comprises (1) a burst transfer-permit
controller 1808, (2) a flow-rate-allocation memory 1810 con-
taining flow-rate allocations for each of said plurality of burst
streams, (3) a burst-record memory containing a record of a
burst-descriptor from each active burst stream, (4) a burst-
size calculator (not illustrated) that computes a nominal burst
size for each data stream, (5) a first calendar memory 1830
organized into a predefined number of calendar slots, (6) a
second calendar memory 1840 organized into a predefined
number of calendar slots, and (7) a burst-permit transfer
memory 1833 containing burst-transfer permits to be submit-
ted to a subsequent processing stage such as burst scheduling.
[0136] The flow-rate allocations are received from an input
port of the switching node hosting device 1800. The burst-
size calculator determines a burst-size for each data stream as
a function of the flow-rate allocation for the data stream. The
burst transfer-permit controller 1808 is operable to determine
burst-descriptor generation instants such that, for each data
stream, the flow-rate allocation multiplied by the time interval
between successive generation instants equals the length of a
specified one of said data bursts selected during said time
interval.

[0137] The burst transfer-permit generator includes (a)
means for determining a nominal burst size for each data
stream as a function of its flow rate, (b) means associating a
credit with each data streams and updating the credit, (c)
means for creating a calendar having a predefined number of
calendar slots each of which containing a respective data
stream identifier wherein each of said plurality of data
streams is given an allocated number of calendar slots, and (d)
means for continually scanning selected ones of the calendar
slots to read data-stream identifier. For each data stream iden-
tifier, the burst transfer-permit generator is further operable to
increase a previous entry of a credit by a predetermined
amount, and if the credit exceeds the nominal burst size for
the data stream, a burst-transfer permit comprising a data
stream identifier and a nominal burst size is enqueued in the
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burst-descriptor memory and the new credit is reduced by the
nominal size of the data burst.

[0138] FIG. 20 illustrates the main steps of populating the
calendars 1630/1640 used in FIG. 17 or FIG. 18. In step 2010,
calendar cell INDEX is initialized to zero and a data-stream
index ois initialized to a value o™ determined at the end of an
immediately preceding process of populating calendars 1630/
1640. In step 2020, the number q of calendar slots for stream
o is determined. The number q is generally a real number, and
hence can not always be represented in a calendar having a
finite number of cells. For example, with R=10 Gb/s, p=20
Mb/s, and S=8192, the number q is determined as q=Sxp/
R=16.384 calendar slots. In step 2030, a rounded value is
derived from q, by simply rounding to the nearest integer K
which may be higher or lower than q. The rounding deviation,
which may be positive or negative, is determined and added to
acredit of stream a denoted F(s). In step 2040, a down counter
is initialized to equal K and in step 2050, an identifier of
stream a is written in location INDEX of the calendar being
populated; 1630 (memory 1730) or 1640 (memory 1740). In
step 2060 the INDEX is increased by one and the down
counter is triggered, hence its reading is decreased by one. In
step 2062, if the INDEX equals a predetermined limit, then
control is transferred to step 1670. Otherwise, step 2063 is
considered. The limit preferably equals the number of calen-
dar slots in calendar 1630/1640. In step 2070, the down
counter reading is added to the credit of I'(0) of stream o and
in step 2080, the next stream, o+1, modulo S, is considered
and the process ends, so that a subsequent calendar-populat-
ing process starts at the stream number where a previous
process ends. If in a single populating process all streams are
considered, a new populating process would always start at
stream 0=0. If, in step 2063, it is determined that the down
counter reading has reached zero, control is transferred to step
2064, otherwise, the stream identifier is written in location
INDEX in the calendar memory 1630/1640 (step 2050). In
step 2064, the next stream o0+1 is considered and if in step
2065 it is determined that all data streams have been consid-
ered, the process is terminated in step ‘END’. If the new
stream 0+1 is not the last stream, the entire process starting
with step 2020 is repeated.

[0139] FIG. 21 is aflow chart describing a process of select-
ing data segments to be dequeued from a data buffer holding
segmented data bursts. One of the calendars 1630/1640 is
scanned while the other is being updated, i.e., populated
according to new time-slot allocations for at least one of the
data streams as described above with reference to FIG. 20. In
step 2110, the index of the operational calendar is initialized
at (K-1), K being the number of calendar slots, with the
calendar slots numbered 0 to (K-1). In step 2120, the index is
increased by one to produce an updated index. The index is
cyclic and, hence, the index is set equal to zero when the
updated index takes a value equal to K. In step 2130, a stream
number a is read from the operational calendar memory (M3
or M4, 1630/1640) at a location determined as a function of
INDEX (denoted MAP (INDEX)). The function is a one-to-
one mapping function that attempts to equalize the spacing of
entries corresponding to the same data stream in the opera-
tional calendar 1630 or 1640. In step 2140, the true size, P, of
a candidate burst belonging to stream o is determined. The
true size is a measure of the information bits in the data
segments of the data burst. If there is no burst waiting, the
credit of stream o'is reduced to zero, and a stream indicated at
a subsequent INDEX is considered. A data stream earns a
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credit unit every time its identifier is encountered in scanning
the operational calendar. If, in step 2142, it is determined that
there is a burst, belonging to stream o, then at step 2150 the
total credit of stream a is determined by adding a credit unit to
I'(0) and, if the determined total credit exceeds the burst size
P, the burst is considered eligible for dequeueing. Alterna-
tively, a waiting burst may be eligible for dequeueing before
it accumulates sufficient credits, i.e., if Q is less than P. A data
stream may borrow a credit of (1-®))xP, where @ is a fraction
less than 1 as described earlier, to enable a waiting burst to be
served when its credit Q is less than its size P, and the data
stream would have a negative credit after the burst is
dequeued. Thus, in step 2152, the value of Q is compared with
the product Px® and if Q is greater than or equal to Px®, the
stream number o is written in the burst-transfer buffer at step
2160, a new credit is computed as (Q-P), which can be
positive, zero, or negative, and added to the stream credit I'(o)
in step 2190. Otherwise, at step 2152 if Q is less than Pxq), the
burst has to wait until its corresponding stream number is
encountered again in scanning the operational calendar 1630
or 1640, and a subsequent INDEX is determined in step 2120.
A burst is dequeued by placing its pointer in a burst-transfer
buffer and moving the pointer to a subsequent waiting burst,
if any.

[0140] To summarize, in a data buffer receiving data seg-
ments each belonging to one of several data streams, regulat-
ing the rate of transfer of information bits for each data stream
is implemented by providing a calendar having a plurality of
calendar slots, granting each data stream a respective share of
said calendar slots, and permitting the transfer from the data
buffer of information bits of each data stream at a rate com-
mensurate with its respective share. The respective share need
not be an integer number and, therefore, an allocated number
of calendar slots per data stream may vary in successive
cycles of reading the calendar to render a mean value of the
number of allocated calendar slots approximating the granted
share. Either of two methods of populating the calendar 1630/
1640 may be used.

[0141] In one method, the allocated number of calendar
slots given to a data stream occupies consecutive calendar
slots and the calendar slots are read according to a one-to-one
mapping of a time-slot number as read from a cyclic counter
to a calendar slot.

[0142] Inanother method, the allocated number of calendar
slots given to a data stream occupies calendar slots deter-
mined by a one-to-one mapping function of consecutive time
slots numbers as read from a cyclic counter and the calendar
slots are read sequentially.

Flow-Rate-Regulation Devices in Nodes Switching Variable-
Size Bursts

[0143] A common-memory edge node relies on massive
data parallelism to enable high-speed data storage and
retrieval. Data is stored in a common-memory comprising
parallel memory devices which are identically addressed.
Portions of a data segment are stored in corresponding
addresses in the parallel memory devices constituting the
common memory. During an access cycle, each of a plurality
of input ports accesses the common memory to write a data
segment and each of a plurality of output ports accesses the
common memory to read a data segment. Writing a new data
segment would be prohibited only if the entire common-
memory storage is in use. This condition is avoided by appro-
priately selecting the storage capacity of the common-
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memory using analytical methods well known in the art. In a
common-memory edge node, there is no internal contention
and each stored data segment is guaranteed a path to its
desired output port. Rate regulation would then be applied at
each output port of the common-memory edge node. Data
release from the common memory to any output port may be
regulated by the high-speed rate regulator described earlier
with reference to FIG. 17 or FIG. 18.

[0144] Prior-art common-memory switching devices use
fixed size data blocks, such as ATM (asynchronous transfer
mode) cells or S™™ (synchronous transfer mode) data blocks.
For example, U.S. Pat. No. 5,144,619 titled “Common
Memory Switch for Routing Data Signals Comprising ATM
and STM Cells”, issued to Munter on Sep. 1, 1992, describes
a common memory switch that handles data segments of a
fixed size. U.S. Pat. No. 6,118,792 titled “Method and Appa-
ratus for a Flexible-Access Rate Common-Memory Packet
Switch”, issued on Sep. 12, 2000 to Beshai, describes a com-
mon-memory switch having a plurality of input ports and a
plurality of output ports where the sum ofthe capacities of the
input ports exceeds the internal capacity of the switch as
determined by the speed of the common memory, and the sum
of the capacities of the output ports may also exceed the
internal capacity of the switch. An implicit concentration
stage is realized by adaptively allocating permissible access
rates for each input port. Each input port transfers data seg-
ments of equal size to the common memory at specified time
slots and the allocated access rate of each port is based on the
fixed data-segment size. The allocated access rate for an input
port applies to the total traffic received at the input port and no
mechanism is provided to account for the actual content of
each data segment. The flexible access rate yields an efficient
switch. The flexible common-memory switch can further be
enhanced by sorting data segments waiting the common
memory according to predefined data streams and imple-
menting a rate-controlled data-segment release rate based on
the actual data content of each data segment waiting in the
common memory.

[0145] Both U.S. Pat. No. 5,144,619 and U.S. Pat. No.
6,118,792 deal strictly with fixed-size packets. U.S. Pat. No.
6,118,792 offers the added feature of rate regulation at the
input ports and efficient sharing of the switch core. The
present disclosure uses the device of FIG. 17 or FIG. 18 in
conjunction with prior-art common-memory switch struc-
tures to create a common-memory edge node that handles
variable-size packets and provide rate regulation based on
actual information content instead of total data-block sizes.

Data Organization

[0146] To facilitate switching, time is preferably organized
into time frames each comprising a number J of time slots of
A seconds duration each. A data stream having a flow rate of
R bits per second may be divided into data segments each data
segment containing RxA bits, or into data frames each data
frame containing S data segments, hence RxAxJ bits. A data
stream organized in data segments may be assigned desig-
nated time slots in a time frame at input and switched to
designated time slots at output. The number of designated
time slots at output may exceed the number of designated
time slots at input in a multicast switching node. Tradition-
ally, a data stream assigned a designated time slot in a pre-
defined time frame has been referenced as a time-division-
multiplexed (TDM) frame. A data stream organized in data
segments may also be assigned time slots that do not neces-
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sarily bear any specific relationship to a time frame or any
time reference. A stream of packets, generally of different
sizes, and arriving at random may be segmented into data
segments of equal size and switched as such within a switch-
ing node where, at output, the switched data segments are
reassembled into their original packet format. The familiar
Asynchronous Transfer Mode (ATM) segments packets of
generally variable sizes into data segments called ‘cells’ and
switches the cells within a switching node. In ATM, however,
cells are reassembled into packets at the receiving end and not
necessarily at the output of the switching node that receives
the original packets. ATM cells are not required to follow a
strict time reference. An ATM switching node, however, must
attempt to reduce the cell delay variation to reduce packet-
transfer jitter. When a data stream is organized in a TDM
format, the TDM format is also referenced as a synchronous
transfer mode (STM). Data segments that are aperiodically
switched preferably carry an identifying header. In contrast,
data segments that are periodically switched need not carry
identifiers and are recognized in each switching node they
traverse by the time slots they occupy in a recognizable data
frame.

[0147] FIG. 22 illustrates a prior-art common-memory
switch. Several switch modules 2210 cyclically access a bus
2216 to write a data segment in a shared memory 2230 and
read another data segment from the shared memory 2240.
During a memory-access cycle, each switch module accesses
the shared memory 2240 during a respective designated time
slot. A switch module 2210 may continuously receive data
from subtending data sources (not illustrated) and continu-
ously transmit data to subtending data sinks (not illustrated).
However, the switch module accesses the bus to transfer data
to, and receive data from, the shared memory 2240 during a
designated time slot in each memory-access cycle. The
switch module stores data to be written in shared memory
2240 and data read from shared memory 2240 in registers as
indicated in FIG. 22. A controller 2220 may be used to regu-
late the rate of data transfer from the switch modules 2210 to
the shared memory 2240.

[0148] FIG. 23 illustrates a common-memory edge node
2300 in accordance with the present invention. The node
comprises M>1 input ports 2310, N>1 output ports 2320, and
a common-memory 2330 that comprises a plurality of paral-
lel memory devices (not illustrated in FIG. 23). In general the
number M of input ports need not be equal to the number N of
output ports. Each input port is preferably paired with an
output port with which it shares memory and control, thus
forming a dual port. The input ports and the output ports (i.e.,
the dual ports) exchange control messages with edge control-
ler 2340. Each input port 2310 receives data packets from
traffic sources and aggregates packets of the same destination
sink node into data segments of equal width (size). The width
of a data segment is dictated by the width of the common
memory 2330. For example, a data segment may be 512 bytes
wide if the combined width of the parallel memory devices
constituting the common memory 2330 is at leastequal to 512
bytes. Preferably, each data segment also contains a few bytes
for enqueueing and dequeueing control. An incomplete data
segment, having less than 512 bytes in the above example,
still occupies the same storage in the common memory 2330.
[0149] The input ports 2310 and output ports 2320 access
the common memory 2330 cyclically and is, therefore, con-
tention free. The cyclic period, T*, is determined by the
number of input ports and memory access time. With input
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and output ports operated at the same speed (bit rate), and
with a write-access duration approximately equal to a read-
access duration, each port, input or output, can access the
common memory 2330 once every cyclic period of 2xN
access durations, 2xN being the combined number of input
ports 2310 and output ports 2320. With N>1 input ports and N
output ports, and with each input port 2310 and each output
port 2320 given an access duration of 10 nanoseconds for
example, the cyclic period T* equal 20xN nanoseconds. With
N=16, for example, the cyclic period is 320 nanoseconds, the
total capacity is 160 Gb/s, and minimum width of the com-
mon memory is then 160x20=3200 bits (400 bytes).

[0150] The input ports 2310 may have different access
rates. For example, in a node having 16 dual ports, an access
cycle may have 32 access intervals with four ports assigned
one access interval each, eight ports assigned two access
intervals each, four ports assigned three access intervals each.
Likewise, the output ports 2320 may be assigned different
access-intervals, independent of the input-port assignment;
the number of access intervals for an input port 2310 and an
associated output port 2320 need not be equal.

[0151] As depicted in FIG. 23, a rate regulator 2350, under
control of edge-node controller 2340, determines the instants
of release of the data segments in the common memory 2330
based on flow-rate allocations for each data stream. The flow-
rate allocations are normally based on actual information
content and the rate regulator 2350 differs from conventional
rate regulators in that it commands the release of data seg-
ments based on their actual information content rather than
the sizes of the data segments. Such a rate regulator must
operate at a high speed. In the above example of 160 Gb/s
switch, using data blocks of 400 bytes each, the rate of release
of data segments is 50 million data blocks per second. Rate
regulator 2350 may be based on the rate-regulation apparatus
of FIG. 17.

[0152] The capacity of a common-memory switch 2300
with a memory width of W bits and memory access time (read
plus write) of 6 seconds is W/6. If the switch has N input ports
and N output ports, with each input port receiving data at a
rate of R bits per second and each output port transmitting
data at the same rate of R bits per second, then the capacity C
ofthe switch is C=W/3ZNxR. In a common-memory switch
2300, the input ports 2310 and output ports 2320 access the
common memory 2330 in a cyclic manner and there is no
internal contention. However, segmenting input packets
results in segmentation waste, as described earlier, and an
internal expansion (also called dilation) is required to offset
the segmentation waste. An internal expansion can be real-
ized with a wider memory, having W bits, so that W>NxRxd
as some segments would be partially populated with infor-
mation bits and padded with null bits. The ratio W/(NxRxd)
is decided by the segmentation method.

[0153] An internal expansion is preferably provided by
increasing the width of the common memory. Increasing the
width from 512 bits to 640 bits, for example, provides each
input port with an inner capacity that is 1.25 times the outer
capacity to offset the waste of incomplete data segments. At
the output ports, the data segments are converted into a serial
bit stream and any null padding is removed. Several tech-
niques, known in the art, may be used to reduce the overhead
of mull padding.

[0154] If packets are sorted at each input port 2310 accord-
ing to their designated output ports 2320, and if packets
directed to the same output port are concatenated and parsed
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at output, then the worst-case packet-segmentation waste
occurs when the packets at an input port 2310 are predomi-
nantly directed to a single output port 2320, with a negligible,
but positive, packet flow directed to each other output port
2320. The packets received at each input port 2310 are
delayed for a time interval D to accumulate sufficient data to
form a data segment.

[0155] The capacity R of an input port 2310 that is less than
the ratio W/T, where W is the width of the common-memory
edge node 2300 and T is the common-memory period, which
is the time required for each input port and each output port to
access the common-memory during each common-memory
cycle, so that an internal expansion is realized:

(RxD)W=1-(N-1)xT/D,

where N is the number of output ports 2320. The value of T is
determined as:

T=Mxd+Nx0,,

M being the number of input ports, N the number of output
ports, §, the write-access duration, and d, the read-access
duration

[0156] With M=N=64, and 8=9,+0,=20 nanoseconds, the
required expansion ratio to handle a worst-case queueing
delay of 1 millisecond (D=1 millisecond), is approximately
1.088.

Temporal Burst Switching

[0157] A burst is a data block that contains at least one
packet. A burst may contain numerous packets, possibly from
different users, that have a common destination and belong to
a common data stream. Consider an ingress module in a
centralized or distributed switching node. The ingress module
has a single input channel and a single output channel. The
ingress module receives a signal from an input channel and
transmits a signal over an output channel. A high-capacity
channel can be time shared by a large number of data streams,
each data stream having bursts directed to the same destina-
tion. Successive data bursts received from an input channel
may then belong to different data streams and may be directed
to different output channels. The data bursts may have differ-
ent sizes. One way to provide reliable communications in a
network of signal switches is to regulate the rate at which each
data stream flows. The flow rate is preferably measured in
terms of bits per second rather than bursts per second because
bursts may have different sizes.

[0158] The bursts of different data streams are not neces-
sarily dequeued from an ingress module in the same order in
which they formed at the ingress module. Rather, the bursts
may be dequeued atinstants of time required to satisfy certain
constraints. Such constraints include a requirement to regu-
late the flow rate of each data stream. A burst may also have to
wait for a free output port in a subsequent switching stage. To
facilitate the process of dequeueing the bursts of each stream,
the received bursts are sorted according to the data streams to
which they belong. In order to regulate the flow rate of each
data stream an output rate controller is required to determine
the time instants at which the bursts of each stream should be
dequeued. To comply with scheduling requirements, the data
switch may be provided with means for receiving and inter-
preting a burst transmission schedule from a subsequent
switching stage. The process of dequeueing bursts at arbitrary
instants of time is hereinafter referenced as temporal switch-
ing.
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[0159] In order to facilitate switching bursts within a data
switch, each burst may be segmented into data segments of a
predefined size; W bits. A last data segment in each seg-
mented burst may contain less than W bits and is then padded
with null bits. Each data segment, then, contains a number of
information bits not exceeding a predefined upper bound W.
The data segments of bursts received from each input channel
may be stored in a memory device.

[0160] The segments of a burst may be stored at arbitrary
addresses in a memory device. The memory addresses need
not be consecutive. However, the segments of each burst must
be dequeued consecutively. To manage the enqueueing and
dequeueing of bursts, the bursts of each data stream are linked
in a manner well known in the art so that they can be accessed
in a predetermined order. Therefore, when a burst contains
more than one data segment, the data segments of the burst
may be chained so that they can be read consecutively. Thus,
the data segments are stored in a memory device according to
the linking and chaining order, as described above with ref-
erence to FIGS. 5 to 10. The addresses of data streams in
memory are indexed. Data bursts are retrieved from the
memory device in an order determined according to the pre-
assigned stream flow rate of each of the data streams. The
order is determined by a rate-regulation device associated
with the memory device. At output, the null bits are removed
from each data segment in the process of retrieving the bursts
from the memory device.

[0161] Temporal switching of variable-size bursts under
flow-rate control must take into account the effect of null-
padding. The allocated flow-rate for a burst stream excludes
null bits and applies only to the information bits of a seg-
mented burst. This requires that the number of information
bits in each data segment be recorded and flow rate be com-
puted according to the information bits only. The access
capacity of the memory devices storing the segmented bursts
must exceed the combined flow-rate allocation of the multi-
plicity of data streams by a factor determined by the propor-
tion of the null bits in the data segments. The access capacity
being the maximum segment width W divided by the mini-
mum time required to write and read a data segment.

Spatial Burst Switching

[0162] The ingress module described above has a single
input channel and a single output channel. A general signal
switch receives signals from a plurality of input channels and
selectively directs each received signal to one of a plurality of
output channels. A common-memory switch having multiple
input channels and multiple output channels can be viewed as
an extension of the ingress module described above, which
has a single input and a single output. Each of the multiple
input channels cyclically access the memory device to write a
predefined number of data segments and each of the output
channels cyclically access the memory device to read a pre-
defined number of data segments. This process constitutes
spatial switching. A combination of temporal switching and
spatial switching enables the realization of fine-granularity
switching. Temporal switching enables time-sharing of a
channel by several data streams. Without temporal switching,
an entire channel must be assigned to a data stream. The use
of high-capacity time-shared input and output channels
enables the realization of an economical high-capacity net-
work.

[0163] In the common-memory switch, the succession of
bursts is received from at least two input channels, each of
which having a corresponding input-channel capacity. The
input channels access the memory device in an arbitrary
input-access order, such as a cyclic order. Bursts are retrieved
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by at least two output channels, each of which having a
corresponding output-channel capacity. The output channels
may access the memory device in an arbitrary output-access
order, such as a cyclic order.

Internal-Expansion of the Common-Memory Switch

[0164] During a common-memory access cycle, each input
ports gains write-access and each output port gains read-
access to the common memory. With input ports and output
ports operated at the same speed, and with a write-access
interval of §, and read-access interval of §,, the period T of a
common-memory access cycle is determined as: TZ(Mxd, +
Nx9,), where M is the number of input ports and N is the
number of output ports. Consider an input port that receives,
from data sources, data packets at a flow rate close to the
capacity of the input port with a high proportion of the data
destined to a specific output port and an insignificant, but
non-zero, proportion of the data destined to the remaining
(N-1) output ports. Consider also a delay constraint where no
data packet can be delayed at the input port for a period
exceeding D, time units. Under such constraint, at least one
data packet is sent to each of the (N-1) output port each D,
time units, i.e., the input port transmits (N-1) under-utilized
data segments occupying (N-1)xT time units during the D,
interval. To compensate for this waste, resulting from the
permissible-delay constraint, the common memory speed
must exceed the combined input speed by the ratio: D/(D-
(N-1)xT). With M=N, which would typically be the case,
T=Nx(9, +9,)=Nx9, d being the memory access time required
to write and read a data segment.

Capacity of the Common-Memory Switch

[0165] Referring again to FIG. 23, a common-memory
edge node 2300 adapted for flow-rate regulation is illustrated.
The edge node 2300 comprises M>1 input ports 2310, N=1
output ports 2320, a memory device 2330, of width W, storing
data segments each having a segment size of W bits, and a
controller 2340 that is associated with an output flow-rate
regulation device 2350. Each of the data segments is associ-
ated with one of a plurality of predefined data streams. The
controller 2340 is adapted to assign a nominal flow-rate for
each of the plurality of predefined data streams. The flow-rate
regulation device 2350 is adapted to use the number of infor-
mation bits in each data segment and the nominal flow rate of
a data stream to which each data segment belongs to select
data segments for dequeueing. The controller 2340 may have
a single flow-rate-regulation device to govern the dequeueing
from all output ports 2320. The controller 2340 may also use
two or more flow-rate-regulation devices each covering a
subset of the output ports 2320; perhaps one for each output
port 2320. An output port 2320 collates information bits from
different data segments to form bursts containing only infor-
mation bits so that only the information bits in each data
segment are transmitted by an output port 2320. It is noted
that the term ‘information bits’ refers to both payload data and
any required headers but excludes any null padding that may
be inserted to facilitate switching within a node.

[0166] To form data segments, each input port 2310
receives data bursts, associates each received data burst with
one of the predefined data streams and delays the received
data packets of each of the predefined data streams for a time
interval not exceeding an upper bound D to accumulate suf-
ficient data to form a data segment.
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[0167] Theplurality of input ports 2310 transfers data to the
memory device at a rate that is less than the ratio W/6 so that

M
er < (W/O)x(1=(N-1)xT/D),
=

where D>(N-1)xT is a permissible segment queueing delay
at any of the M input ports 2310, and r;, 1=j=N, is the rate at
which an input port 2310 transfers data to the common
memory 2330. The period T of the common-memory-switch
is determined as: T=Mxd,+Nxd,, where 9§, is the write-ac-
cess time and d, is the read-access time of the common
memory. With M=N, and 8§,=8,, T=Nxd, where 8=0,+9, is
the time required to access the common memory 2330 to
write and read a data segment. Thus, the width W of the
common-memory is determined as:

M
Wzéerj/(l—(N—l)xNxé/D).
=

[0168] With input ports 2310 and output ports 2320 of the
same speed (bit rate) R, each of the input ports 2310 prefer-
ably has an inner capacity to the common memory 2330 that
exceeds R to offset the effect of segmentation waste under
extreme spatial traffic imbalance. The required width W of the
common memory 2330 is then determined as:

WZ(RxMx0)/(1-(N-1)xNxd/D).

With M=64, =20 nanoseconds, D=1 millisecond, an expan-
sion of 1.0877 would be required.

[0169] In an additional embodiment, at least two of the M
input ports 2310 have different bit-rate capacities, and at least
two of the N output ports 2320 have different bit-rate capaci-
ties. Each input port 2310 may be operable to write at most a
first constrained number of data segments in the common
memory 2330 during a predefined time frame, the first con-
strained number being specific to each input port 2310. Like-
wise, each output port 2320 may be operable to read at most
a second constrained number of selected data segments from
the common memory 2330 during the predefined time frame,
the second constrained number being specific to each output
port 2320. However, the sum, over the M input ports 2310, of
the first constrained number of data segments does not exceed
apredefined upper bound and the sum, over the N output ports
2320, of the second constrained number of selected data
segments does not exceed the predefined upper bound.

Burst-Switching Edge Node Comprising a Space Switch

[0170] FIG. 24 illustrates an edge node 2400 comprising
input ports 2410 and output ports 2420 that interconnect
through a space switch 2430 and communicate with an edge
node controller 2440 that also controls the connectivity of the
space switch 2430. Each input port 2410 receives variable
size packets, as in the case of an input port 2310 (FI1G. 23), and
forms data segments that may also include null bits. The main
difference in the data segment formation at an input port 2310
(FIG. 23) and a input port 2410 is that the size of the data
segment in the former would be much larger than the size of
a data segment in the latter. In the common-memory edge
node 2300 of FIG. 23, a wide data memory is used and the
data of a given data stream is organized in wide data segments
to realize a capacity that is much higher than the capacity of
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a single port. In the edge node 2400, each of the individual N
ports stores its data in an input buffer. Each input port 2410
has a controller (not illustrated) and a rate regulator 2452. In
the common-memory edge node 2300 of FIG. 23, data is
transferred from input to output in a cyclic manner and the
switch 2330 is internally contention free. Unlike common
memory edge node 2300, edge node 2400 requires a sched-
uling process for the transfer of data from input to output due
to potential contention for an output port. The rate regulator
2452 determines the instants at which each segment of each
data stream becomes eligible for transfer to a respective out-
put. The input-port controller (not illustrated) transfers
descriptors of the eligible data segments to the edge-node
controller 2440 which computes schedules for the segments
and sends the resulting schedules to respective input ports
2410. An input port may accumulate packets to form bursts,
resulting in burst-formation delay. The formed bursts are then
scheduled for transfer across the space switch 2430. To ensure
an acceptable scheduling delay, an internal expansion is pro-
vided in the space switch 2330 in a manner well known in the
art.

[0171] In an edge node having a multi-stage space switch,
the packet transfer regulator is preferably provided at each
input port of the edge node. Packet transfer across the space
switch requires scheduling and, therefore, the transfer of
packet pointers and descriptors to the packet transmitter is
effected only after successful scheduling.

[0172] FIG. 25 illustrates an edge node 2500 having a simi-
lar structure to that of FIG. 24. The process of burst formation
in edge node 2500 is, however, different from that of edge
node 2400. Each input port 2510 transfers descriptors of all
the packets it receives to an edge node controller 2540, which
directs the requests to a common rate regular 2550. Rate
regulator 2550 authorizes the scheduling of data segments,
resulting from internal packet segmentation, based on actual
information content. The rate regulator 2550 may comprise
several modules, each module handling a subset of input ports
2510.

[0173] The edge nodes 2300, 2400 and 2500 depicted in
FIGS. 23 through 25 preferably have an internal expansion
sufficient to offset rounding waste and to avoid internal con-
tention as described earlier. Internal expansion in a common-
memory node 2300 implies that the rate of data transfer from
the input ports to the common memory is higher than the rate
of receiving data from data sources at the input ports. Internal
expansion in edge nodes 2400 or 2500 implies that the space
switch 2430 operate at a rate higher than that of an input port
or an output port.

[0174] Inreview, an edge node receives packets of variable
lengths each belonging to a data stream and places them in
input buffers. Packets are aggregated into bursts and the edge
node includes a scheduler to schedule the transfer of bursts
from input ports to output ports. In one configuration, each
input port includes a rate regulator which determines which of
the waiting bursts is eligible for scheduling. Descriptors of
the selected bursts, each descriptor including an output port
and a burst length, are sent to the edge-node controller, and
thence the edge-node scheduler. In another configuration,
each input port sends descriptors of all its waiting bursts to the
edge-node controller which determines the instants of time at
which each packet is eligible for scheduling. In either con-
figuration, the packet-transfer schedules are communicated
to the input ports through internal signaling paths.

[0175] Inthe edge node 2400 and 2500 of FIGS. 24 and 25,
bursts are sorted at each input port according to their desig-
nated output ports, and bursts directed to the same output port
are concatenated and parsed at output. The required internal
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expansion to offset extreme segmentation waste is deter-
mined as

E=D/AD,~(Ny-1)xd},

where N, is the number of output ports, 3 is the time required
to write and read a data segment in an input buffer, and D, is
a permissible waiting time at an input buffer. Thus, an input
buffer at each input port receives data from traffic sources at
arate R, and transmits data to space switch 2430 at a rate not
exceeding Q, such that the ratio Q,/R; equals or exceeds
1/{1-(N,-1)x&/D, }.

[0176] In an edge node 2400 (FIG. 24) or 2500 (FIG. 25),
packets are sorted at each output port according to their origi-
nating input ports. An output buffer at each of the output ports
receives data from space switch 2430 at a rate not exceeding
Q, and transmits data to traffic sinks at a rate not exceeding
R,. To offset the segmentation waste under extreme spatial
traffic distribution imbalance, the ratio Q,/R, equals or
exceeds 1/(1-(N,-1)xd*/D,), where N is the number of said
input ports, 8* is the time required to write and read a data
segment in an output buffer, and D, is the permissible waiting
time in the output buffer. Normally, 8 and 6* are equal in the
same switching node.

[0177] The required internal expansion is the larger of the
ratio Q,/R; and Q,/R,. With N;=N, and D =D,, the ratio
Q,/R, equals the ratio Q,/R;.

[0178] With N=512, and =64 nanoseconds, for example,
the required expansion to offset a worst-case queueing delay
of 1 millisecond (D=1 millisecond), is approximately 0.033,
and with a more stringent delay tolerance of 250 microsec-
onds, the required expansion is about 0.13. Unlike the edge
node 2300 of FIG. 23, the edge-nodes 2400 of FIGS. 24 and
2500 of FIG. 25 further require an additional expansion to
offset the mismatch waste, and a total expansion of approxi-
mately 0.25 would be adequate.

[0179] The width W, ofthe input buffer is then determined
as:

W, 2(R x8)/(1-(Ny=1)xd/D)),

where 9 is the time required to access the input buffer to write
and read a data segment.
[0180] The width W, of the output buffer is determined as:

WoZ Ry 1-(N1=1)xd/D5),

where 9 is the time required to access the output buffer to
write and read a data segment.

[0181] The common-memory switch 2300 of FIG. 23 has
no internal contention. This valuable feature is realized at the
expense of using large data segments which, in turn, results in
a high segmentation waste. Switches 2400 and 2500 are based
on time-shared space switches and may use data segments of
relatively small sizes; hence the segmentation waste is rela-
tively low. However, the contention loss (also called matching
loss) can be relatively high. Thus, both the common-memory
switch 2300 and the switch 2400 or 2500 based on time-
shared space-switching fabrics may require a substantial
internal expansion where the ratio of the capacity of an inter-
nal channel (not illustrated) between each port and the space-
switching fabric to the capacity of an external channel 2408 or
2428 may be in the order of 1.2 or so.

Burst Transmission from Edge Nodes

[0182] Any of the switching nodes 2300, 2400, or 2500 of
FIGS. 23, 24, and 25 may serve as an edge node of a burst-
switching network. Ifa burstis transmitted from an edge node
through an output port connecting to an external node having
a receiving buffer, then the burst can be transmitted at any
time after its formation at the output port of the edge node.
However, if the output port connects to a bufferless external
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node, the timing of burst transmission from the output port of
the edge node must be precisely selected so that the burst
arrives at the bufferless external node exactly at an instant of
time determined by a controller of the external node. The
bufferless external node may receive bursts from several edge
nodes and the received bursts must be switched across the
switching fabric of the bufferless external node without col-
lision.

[0183] Timing burst transmission is enabled by time lock-
ing an output port connecting to an external node by provid-
ing a time counter at the output port and a time counter at the
external node and exchanging time-counter readings. A tech-
nique for time locking is described in applicant’s U.S. appli-
cation Ser. No. 09/286,431 titled “Self-Configuring Distrib-
uted Switch”, filed on Apr. 6, 1999. The technique realizes
time locking regardless of the propagation delay between the
edge node and the external node.

[0184] Time locking may be desirable even if the external
node has a receiving buffer.

Burst-Switching Network

[0185] A burst may be a packet of a large number of bits,
4000 bytes for example, or an aggregation of a large number
of packets, with the latter being more likely. If the channel-
switching cross-connectors, implicit in FIG. 2, are replaced
by fast optical switches 312, as illustrated in FIG. 3, a finer
granularity of the paths among the edge nodes 208 can be
realized and the need for tandem switching at the electronic
edge nodes 208 can be significantly reduced. Transferring
individual packets of relatively small sizes through the fast
switching core, however, may require an extensive schedul-
ing effort. A practical alternative is to aggregate packets at a
source edge node that are destined to the same sink edge node
to form data bursts. Prior art burst-switching includes two
techniques, illustrated in F1G. 26-A and FIG. 26-B. In the first
technique, depicted in FIG. 26-A, an edge node 208 sends a
request to a core node 312 for permission to transfer a data
burst and waits until the permission is received. A reserved
path remains idle until the edge node starts transmitting the
burst. In the second technique, depicted in FIG. 26-B, an edge
node 208 sends a burst descriptor to a core node 312, waits for
a period of time to allow a controller of the core node 312 to
schedule the transfer of the requested burst, then sends the
data burst itself. Each edge node 208 would continually send
such requests, and when the core node 312 fails to accommo-
date a forthcoming burst because of other requests competing
for the same output port of the optical switch core node 312,
the burst is simply dropped. Neither of the two techniques is
suitable because the first technique may result in excessive
delay and excessive idle time, and the second technique can
result in excessive data loss.

[0186] FIG. 27 illustrates an underlying principle of the
burst-switching method of the present invention where burst
sizes are determined according to flow-rate allocations for
each stream. In one approach, data bursts of time-varying
lengths are generated at equally spaced instants of time in a
given data stream. The burst-width variation, as illustrated by
the indicated envelope of burst-width variation with time,
reflects time-varying flow-rate allocations. In another
approach, for a given stream, bursts of equal width are spaced
at time-varying intervals according to time-varying flow-rate
allocations. The two approaches are depicted in FIG. 28-A
and FIG. 28-B. In FIG. 28-A a core node 312 that receives
flow-rate allocations for a given stream transmits burst-trans-
fer permits to the corresponding edge node 208 at equal
intervals. The burst widths of successive permits may vary as
illustrated. In FI1G. 28-B, permits are granted at time-varying
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periods but the permitted burst sizes are equal. The two
approaches are preferably combined in order to realize low
delay.

Preferred Optical Core Node

[0187] FIG. 29 illustrates a network 2900 of edge nodes
2910 interconnected by fast optical switches 2920. An edge
node 2910 may transmit a stream of data bursts to another
edge node 2910 through a selected one of the optical switches
2920. The data bursts are rate regulated so that, for each
stream, the flow-rate allocation multiplied by the time interval
between any two successive burst transmission instants
equals the length of the second of the two successive bursts. In
general, this condition can not be exactly realized for all
streams and a small timing jitter may be tolerated.

[0188] Flow-rate control may be exercised at an inner port
2912 of an edge node 2910 or at a core controller 2930
depending on whether bursts are generated autonomously at
the edge node or generated under control of the core control-
ler. Recall that an inner port 2912 comprises an inbound port
and an outbound port. A port controller (not illustrated)
handles burst formation and communication with the core
nodes 2920 or possibly with other edge nodes.

[0189] Two modes of burst-transfer control which avoid
burst loss can be used. These are described in Applicant’s U.S.
patent application Ser. No. 09/750,071, filed on Dec. 29, 2000
and titled “Burst Switching in a High Capacity Network”, and
10/054,509, filed on Nov. 13, 2001 and titled “Rate Regulated
Burst Switching”. In the first mode of burst-transfer control,
packets are aggregated into data bursts at the output ports of
the edge node 2910, a request to transfer each burst is sent to
a selected optical switch 2920, and a burst is released at an
instant of time determined by the selected optical switch
2920. In the second mode of burst-transfer control, a required
flow-rate allocation for each data stream is determined by a
source edge node 2910 and communicated to a selected opti-
cal switch 2920. If the required rate is accepted by a selected
optical switch 2920, the selected optical switch 2920 com-
putes a nominal burst length, schedules a stream of nominal
bursts, and communicates the schedule to the source edge
node 2910. At the source edge node 2910, the output ports
leading to the selected optical switch 2920 aggregates packets
into data bursts so that the length of each burst does not
exceed the nominal burst size determined by the optical
switch 2920. The assembled bursts are then transmitted at the
instants of time indicated in the received schedule. The length
of'the assembled packets may be less than the nominal burst
length and the difference is wasted. In either mode, packets
received at the ingress ports of a source edge node 2910 are
switched to outbound ports of the source edge node 2910
under rate regulation with rate regulators provided either at
the input ports or at an inner-port controller of the source edge
node 2910.

[0190] According to the first mode, burst-transfer requests
are sent continually from a source edge node 2910 to an
optical switch 2920, each request specifying a burst length
and a desired destination. A controller 2930 of the core node
2920 schedules the transfer of bursts and communicates
schedules to edge nodes 2910. A burst-transfer request may
be scheduled for transfer from its source edge node 2910 at
any future time. A request may specify a scheduling-delay
tolerance beyond which the source edge node 2910 would
cancel the request. For example, a request may indicate that a
delay tolerance of 16 milliseconds is acceptable. A burst-
transfer request is blocked only if the request specifies a delay
limit.
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[0191] According to the second mode, a source edge node
2910 only specifies flow-rates for each data stream defined
according to a destination edge node 2910 and, possibly, a
specific path to destination. The flow-rates may be adapted
continuously to changing traffic condition at the source edge
node 2910. The core node 2920 produces burst-transfer per-
mits that are adapted to the changing flow-rate-allocation
requests and sends the permits to respective source edge
nodes 2910. Thus, the core node 2920 does not process indi-
vidual burst-transfer requests.

[0192] The advantage of the first mode is that only bursts
that are already received at edge nodes 2910 are scheduled,
thus resulting in a negligible capacity waste. The disadvan-
tage is that each burst is transferred after an overhead delay at
least equal to the round-trip propagation delay between a
source edge node 2910 and the selected core node 2910. The
first mode is preferred when a source edge node 2910 is close
to the core node 2920, for example within a round-trip propa-
gation delay of less than one millisecond, corresponding to a
one-way distance of about 100 kilometers, which covers most
metropolitan areas.

[0193] The advantage of the second mode is a low delay,
realized by the steady granting of burst-transfer permits. The
disadvantage is that each permits specifies a nominal burst
size and the source edge node 2910 may not have already
received enough data to form a burst of the granted size. Thus,
there may be a slight waste due to underutilized bursts. The
second mode is preferred when the source edge node 2910 is
distant from a core node 2920, incurring a round trip delay
exceeding 1 millisecond, for example.

Burst Formation

[0194] If the edge node 2910 belongs to a network 2900
operating, at least partly, in a burst-switching mode, then at
least one outbound port of edge node 2910 includes a burst-
formation device wherein packets of the same stream can be
aggregated into bursts that are transmitted without inter-
packet gaps.

[0195] The burst-formation device in an outbound port
aggregates a number of packets into an assembled burst hav-
ing a size not exceeding a nominal burst size for a correspond-
ing stream. In the first mode of burst transfer, the burst-
formation device includes a burst-size calculator operable to
compute a nominal burst size for each of said streams. In the
second mode of burst transfer, the burst-formation device
receives from a core node controller 2930 a nominal burst-
size and a corresponding transmission schedule for each of
said streams.

[0196] Packetsreceivedat eachingress port ofanedge node
are segmented into equal-size segments and some segments
may be null-padded where necessary. Segments of packets
that are destined to an egress port of the same edge node are
switched directly to their egress ports and assembled into
packets where any null-padding is removed. Segments of
packets that are destined to other edge nodes are assembled at
outbound ports into data bursts, where a data burst may con-
tain several packets having the same destination sink node
and are directed to inbound ports of other edge nodes. Thus,
the inbound ports of an edge node receive data bursts. If the
inbound port is required to transfer a burst to an outbound port
towards a core node or another edge node, the burst is pref-
erably transferred in its entirety to the outbound port. The
burst may still be segmented to facilitate switching within the
switching fabric of the edge node. A burst received at an
inbound port may contain packets that are destined to several
egress ports. Thus, when a burst received at an inbound port is
directed to egress ports of the same edge node, the burst is
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disassembled into packets at the inbound port, then each
packet is segmented and switched to its designated egress
port.

[0197] FIG. 30 is a flow chart illustrating the main steps of
packet formation at an outbound port of an edge node. An
outbound port receives data segments from ingress ports and
from inbound ports through the switching fabric (step 3012).
Atthe outbound port, data segments are assembled into bursts
after removing any null padding (step 3016). Burst-transfer
requests are then sent to a core-node controller (step 3018).
The outbound port, receives burst-transfer schedules from the
core node through either an associated inbound port or
through an edge-node controller (step 3020). Subsequently,
the outbound port, which is time-locked to the core node,
transmits bursts according to schedule (3022).

[0198] In a first mode of burst switching (FIG. 31), an
outbound port receives data segments from ingress ports
through the switching fabric (step 3112). The outbound port
associates each data segment with a data stream (step 3114).
At the outbound port, data segments are sorted according to
their data-stream affiliation (step 3120), and the data bursts
are assembled into data bursts that exclude null padding (step
3130). A nominal burst size is determined according to the
flow-rate allocation for each data stream. The burst size cor-
responding to the flow rate may be read from a look-up table
that is updated only when a flow-rate allocation changes.
Assembled bursts are held in a burst buffer at the outbound
port and, for each assembled burst, the outbound port sends a
burst-transfer request to the core node to which it is connected
(step 3134). The burst-transfer request includes the actual
size of the burst assembled and its destination; an assembled
burst of a given data stream may not equal the corresponding
nominal burst size. Responsive to the burst-transfer request,
the core node controller returns a burst-transfer schedule. The
outbound port receives a burst transfer schedule, indicating a
scheduled transfer time for each assembled burst for which a
burst-transfer request was sent (step 3136) and transmits
bursts according to schedule (step 3138). The outbound port
may receive signals from a core node either through an
inbound port associated with the outbound port, or through
the controller of the edge node. Thus, the outbound port may
transmit a continuous flow of burst-transfer requests and
receive a continuous flow of scheduled transfer times from the
core node. Each transfer time corresponds to the instant of
time at which the core node must receive a corresponding
burst. When the outbound port is time-locked to the core
node, a signal transmitted at an instant of the local time of the
outbound port, determined by a reading of a time counter
located at the outbound port, arrives at the core node at the
same instant of its local time, i.e., the reading of an identical
time counter at the core node is equal to the reading of time
counter of the outbound port. The process of acquiring and
maintaining time locking is described in applicant’s U.S.
patent application Ser. No. 09/286,431, filed on Apr. 6, 1999,
and 10/054,509, filed on Nov. 13, 2001.

[0199] In a second mode of burst switching (FIG. 32), an
outbound port receives data segments from ingress ports
through the switching fabric (step 3212). Each data segment
may have an identifier of a data stream to which it belongs. At
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the outbound port, each data segment is associated with a data
stream (step 3214) and the data segments are sorted according
to their data-stream affiliation (step 3220). The outbound port
receives, from the core node to which it is connected, burst-
transfer permits for each data stream having non-zero flow-
rate allocation (step 3234). A burst-transfer permit contains a
nominal burst size and an instant of time, specified as a
reading of a time-counter located at the core node, at which a
burst having a size not exceeding the specified nominal burst
size, should be received at the core node. The data segments
held in the data buffer are then assembled into bursts accord-
ing to the burst-transfer permits received (step 3236) and
transmits the assembled bursts according to the received
schedule (step 3238). The burst size is determined by the core
node according to the flow-rate allocation for the data stream.
The burst size corresponding to the flow rate may be read
from a look-up table that is updated only when a flow-rate
allocation changes. Thus, the outbound port may transmit a
flow-rate-allocation request for a data stream and receive a
continuous flow of burst-transfer permits from the core node.
[0200] Itis noted that schedules computed at the core-node
controller correspond to the nominal burst sizes and not the
actual burst sizes. An actual burst size may be less than the
nominal burst size.

[0201] The invention thus provides methods and apparatus
for controlling the transfer of data bursts of variable sizes so
that data bursts traversing a network path from a source node
to a sink node are constrained by an allocated flow rate. While
data bursts are segmented and, where necessary, null-padded
to facilitate switching at edge nodes, the data bursts are trans-
ferred across a network in their native form and rate regulated
as such. The methods and apparatus further enable the con-
struction of a flow-rate-regulated burst-switching node based
ona common-memory or a time-shared space switch that can
serve as an edge node in an optical-core burst-switching net-
work.

[0202] Other modifications will be apparent to those skilled
in the art and, therefore, the invention is defined in the claims.

What is claimed is:

1. A method of temporal switching of a succession of data
bursts of variable sizes each of said data bursts containing
information bits and belonging to one of a multiplicity of data
streams and each of said data streams is granted an allocated
flow rate, the method comprising steps of:

segmenting each of said data bursts into data segments,

each of said data segments containing a number of said
information bits not exceeding a predefined fixed seg-
ment size of W bits;

complementing each of said data segments having a num-

ber of information bits less than W with null bits;
recording the number of said information bits in each of
said data segments;

writing said resulting succession of data segments in at

least one memory device;

reading, from said at least one memory device, data bursts

according to said allocated flow rate granted to each data
stream.
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