US 20090240664A1

a2y Patent Application Publication (o) Pub. No.: US 2009/0240664 A1

a9 United States

Dinker et al.

43) Pub. Date: Sep. 24, 2009

(54) SCALABLE DATABASE MANAGEMENT
SOFTWARE ON A CLUSTER OF NODES
USING A SHARED-DISTRIBUTED FLASH

MEMORY
(75) Inventors: Darpan Dinker, Union City, CA
(US); Andrew David Eckhardt,
Menlo Park, CA (US); Darryl
Manabu Ouye, Aptos, CA (US);
Brian Walter O’Krafka, Austin,
TX (US); Earl T. Cohen, Oakland,
CA (US); Thomas M.
McWilliams, Oakland, CA (US)
Correspondence Address:
STUART T AUVINEN
429 26TH AVENUE
SANTA CRUZ, CA 95062-5319 (US)
(73) Assignee: Schooner Information
Technology, Inc., Menlo Park, CA
(US)
(21) Appl. No.: 12/276,540
(22) Filed: Novw. 24, 2008
Related U.S. Application Data
(63) Continuation-in-part of application No. 12/130,661,

filed on May 30, 2008, Continuation-in-part of appli-
cation No. 12/197,899, filed on Aug. 25, 2008.

USER
A
v

DBMS QUERY 260

PCM 0 | PROCESS

[TBLRD 976 I
STORAGE | —
MGT TBLWR p77 |

70 |

(60) Provisional application No. 61/038,336, filed on Mar.
20, 2008.

30) Foreign Application Priority Data

May 29,2008 (US) PCT/US08/65167

Publication Classification

Int. Cl1.
GO6F 7/06 (2006.01)
GO6F 17/30 (2006.01)

US.CL 707/3; 707/E17.005; 707/E17.014;
707/E17.044

D

(52)

(57) ABSTRACT

A distributed database system has multiple compute nodes
each running an instance of a database management system
(DBMS) program that accesses database records in a local
buffer cache. Records are persistently stored in distributed
flash memory on multiple storage nodes. A Sharing Data
Fabric (SDF) is a middleware layer between the DBMS pro-
grams and the storage nodes and has API functions called by
the DBMS programs when a requested record is not present in
the local buffer cache. The SDF fetches the requested record
from flash memory and loads a copy into the local buffer
cache. The SDF has threads on a home storage node that
locate database records using a node map. A global cache
directory locks and pins records to local buffer caches for
updating by a node’s DBMS program. DBMS operations are
grouped into transactions that are committed or aborted
together as a unit.

LOCAL
BFR 23| ...

~ [LOGWR 575
|

CACHE

SHARING DATA FABRIC (SDF) 59

LOCAL
MAP 262

DB TBLS 7g4

DB INDICES ygg

LOGFILES p7p

CHECKPOINTS
274

NODE A 242

LOCAL
MAP 262

DB TBLS g4

DB INDICES 545

LOGFILES 57,

CHECKPOINTS
274

NODE N 244

Patent Application Publication Sep. 24, 2009 Sheet 1 of 21 US 2009/0240664 A1

SVR
12
BOTTLENECK
PROBLEM
0B .,
SVR = PRIOR ART
LOAD-
BALANCE
DB PROBLEM
syr 14 .
FIG. 2
=9
5 €-oomee > POWER
2 PROBLEM
COHERENCY

PROBLEM

Patent Application Publication

Sep. 24, 2009 Sheet 2 of 21

US 2009/0240664 A1

DBMS

PGM

200

SHARED ADDRESS SPACE
280
DBMS
PGM 200 coe
NODE_A - NODE_B
ADDR ADDR
SPACE SPACE
DB TBLS DB TBLS
FLASH FLASH
MEM o4 MEM o4
NODEA 242 NODEB 243

NODE_N
ADDR
SPACE

DB TBLS

FLASH
MEM 24

NODEN 244

Patent Application Publication

Sep. 24,2009 Sheet 3 of 21

US 2009/0240664 A1

SHARED ADDRESS SPACE 280
DBMS DBMS
PGM 200 e PGM 200
SHARING DATA FABRIC (SDF) 50
NODE_A NODE_B NODE_N
ADDR ADDR ADDR
SPACE SPACE SPACE
DB TBLS DB TBLS * DB TBLS
FLASH FLASH FLASH
MEM 2% MEM 2% MEM 2
NODEA 242 NODEB 243 NODEN 244

Patent Application Publication Sep. 24, 2009 Sheet 4 of 21 US 2009/0240664 A1

cPU cPU cPU

(SVR) 18 SRy B e Jisri®

DRAM . [DrRAM ... [DrAM

CACHE 2 CACHE 22 CACHEZZ

SHARING DATA FABRIC (SDF)
20

PRIttt i mi alrrimimrimrm i m i m i m i mrmrm e rmrmemrme .
: FLASH FLASH FLASH 2
i MEM MEM *** | MEM ;
; 2 2 2
: 26 GLOBAL, SHARED FLASH MEMORY

R R IR IR I I I B I R I R I A I SIS ID IR I B I B IS I IR I I IEINIGI@GIEImIMIMemImIam*

Patent Application Publication Sep. 24, 2009 Sheet 5 of 21 US 2009/0240664 A1

1
| I
1
DRAM
22
100
CPU ‘)
18
PCIE SWITCH
30
FLASH 34 [
= NIC
MODULES _I | 3
(|
ETHERNET
OR INFINIBAND
vVVvyeY
FIG. 6 TO OTHER NODES
AND EXTERNAL L/B

Patent Application Publication

Sep. 24,2009 Sheet 6 of 21

APPLICATION PROGRAM(S) 122

DBMS DATABASE PROGRAM 119

SHARING DATA FABRIC SERVICES
(API'S) 116

COMPUTE
NODES
11

SHARING DATA FABRIC 11

US 2009/0240664 A1

(UNIFIED SHARED DATA ACCESS
ACROSS NODES, ATTRIBUTES,
POLICIES, USER-CONTROL)

(TRANSPARENT LOCATION,
REPLICATION, CONSISTENCY,
MIGRATION, VERSION LOGS,
CACHING IN DRAM)

INTERCONNECT 110 (PCIE SWITCHES, GB ETHERNET)
FLASH MGT 108 (WEAR-LEVEL, CACHING,
— — LOGS, WRITE BUFFER)
FLASH INTERFACE 106
FLASH FLASH| |FLASH FLASH A~
CTLR CTLR CTLR CTLR 104
FLASH FLASH| |FLASH FLASH| A,
MEM MEM MEM MEM 102

FIG. 7 -

Patent Application Publication

Sep. 24,2009 Sheet 7 of 21

US 2009/0240664 A1

DBMS DATABASE PROGRAM

A 4

i SOF_GET
i SOF_PUT
tSDF_LOCK

SDF_START
SDF_ABORT
SDF_COMMIT
ESDF_UNLOCK SDF_SAVEPOINT SDF_DELETE()!

SHARING DATAFABRIC !
SERVICES (APIS) 44¢ ;

SDF_CREATE()"
SDF_OPEN()

SHARING DATA FABRIC

11

LOCK
TBL

NODE

MAP

CACHE
MAP

SHARING
DIR

i PUT() 128

! LOCK()

START()
ABORT()

SEND()

y

NETWORK INTERFACE

120

RECEIVE()

L

FLASH MGT 108

READ()
WRITE()

FLASH INTERFACE 106

FIG. 8

US 2009/0240664 A1

Sep. 24,2009 Sheet 8 of 21

Patent Application Publication

.. .v IO.—-_>>w O_mm<m <._r<o ..-.-.-..-...-.-:........-....-.
m.. .‘ ... u.
2410 | |
> OIN JIN 9N 3IN N “OIN
| rdo . | rgo !l 1 N ~ —
ve 4 ve |rg0 7 rgo
HSY14 s HSV14 HSV14
rgo
Ndd ¢c WYNG Ndo ¢c NY§a Ndo 77 YA
s O 300N zs 8 300N 5e v 300N

Patent Application Publication

USER

A
K 7

DBMS QUERY 260
PCM 00 | PROCESS

Sep. 24,2009 Sheet 9 of 21 US 2009/0240664 A1

—

| TBL RD 27
STORAGE — *ee
MGT TBLWR 277
270 —
LOGWR o7
|
SHARING DATA FABRIC (SDF) 99
LOCAL LOCAL
DB TBLS 94 DB TBLS 264

DB INDICES 966

LOG FILES 272

CHECKPOINTS
274

NODE A 242

—

DB INDICES 9g5

LOGFILES 977

CHECKPOINTS
| 274
NODE N 244

Patent Application Publication

202

DATA ITEM MISS
IN LOCAL BUFFER
CACHE

' DBMS PGM CALLS
SDF_GET
204 OPERATION

Sep. 24, 2009 Sheet 10 of 21

SDF OPTIONALLY EXECUTES

FIG. 11

US 2009/0240664 A1

205 -] GLOBALLOCK & VERSION
OPERATION ON DATA ITEM
l DBMS PGM
FROM REMOTE NODE (FLASH OR OPTIONALLY
208 CALLS SDF TO .
DRAM) UNPINDATA | > 219
l ITEM
SDF LOADS DATA ITEM INTO
210 /1 LOCAL BUFFER CACHE DBMS PGM
ISSUES FLUSH [~__
l TO SDF 224
P SDF OPTIONALLY PERFORMS SDF DURABLY
212 CACHE PIN OPERATION STORES
MODIFIED DATA
l TEM ATHOME | “~ 226
NODE
SDF RETURNS SUCCESS CODE
214 TO DBMS PGM _
DBMS PGM
l SENDS SYNG | _ 220
TO SDF
DBMS PGM STORAGE MGR :
216 -~ MAY WRITE TO DATA ITEM ¢
l SDF MAKES
MODIFIED DATA
»1g | DBMS PGM CALLS SDF TO ITEM AVAILABLE [™_ 228

TO OTHER NODES

UNLOCK DATA ITEM

END

Patent Application Publication Sep. 24, 2009 Sheet 11 of 21 US 2009/0240664 A1

DBMS
PGM

N
o
o

MULTI-PROCESSING I/F

FIG. 12A

(SDFSYNCOP'S) SHARING DATA FABRIC (SDF) 20
BFR 222 BFR 222 BFR 222
CACHE CACHE CACHE
FLASH FLASH FLASH
MEM 24 MEM 24 MEM 24
NODEA 242 NODEB 243 NODEN 244

Patent Application Publication

Sep. 24,2009 Sheet 12 of 21 US 2009/0240664 A1

DBMS
PGM
A 200
USING
FILE SYS
DEV PARTITIONS
API

SHARING DATA FABRIC (SDF) 9g

DATA

CONTAINER
252

NODE A 242

DATA

CONTAINER
253

NODE B 243

FIG. 12B

DATA
CONTAINER

254

NODEN 244

Patent Application Publication

Sep. 24,2009 Sheet 13 of 21

US 2009/0240664 A1

DBMS 200
PGM
N

' D\B/” | SDF

7 _ N ¥

SHARING DATA FABRIC (SDF) o

BFR 222
CACHE

FLASH
MEM 24

NODEA 242

BFR 222
CACHE

FLASH
MEM 24

NODEB 243

BFR 222
CACHE

FLASH
MEM 24

NODEN 244

FIG. 12C

Patent Application Publication

Sep. 24,2009 Sheet 14 of 21

FIG. 12D

US 2009/0240664 A1
SHARED CONTAINER
— T
— ™
DBMS SDF SYNC
PGM PRIMITIVES
TST & SET
200 240 COMPARE
& SWAP
- SHARING DATA FABRIC (SDF) 20
BFR 222 BFR 222 BFR 222
CACHE CACHE CACHE
FLASH FLASH FLASH
MEM 24 MEM 24 MEM 24
NODEA 242 NODEB 243 NODEN 244

Patent Application Publication Sep. 24, 2009 Sheet 15 of 21 US 2009/0240664 A1

PUT RECORD
—— T —
— R
RECORD LOG FILE
\\\\\‘ CONTAINER
» LSN | RECORD
LOGICAL 246 LSN " '
SEQUENCE
NUMBER -
GENERATOR
250

FIG. 13

US 2009/0240664 A1

Sep. 24, 2009 Sheet 16 of 21

Patent Application Publication

€daLS ... o q . HOLIMS Oldgvd viva . A -
9¢ 9¢ 9€ 9¢ 9¢ 9¢ :
OIN OIN | OIN OIN OIN QIN | ;
9y o T
rgo rdo SE i 180}
77 a3141a0W ERTE 3 = . AdOD
— 74 pure —
HSV1 ¢v 18l HSY1d | |.- ATl HSV'1d ¢y 14l
snval [| — . rgo SNVYL
— ¢dals — —
8l 77 8l 77 8l 77
Ndd [1% wyug Ndd | |¢ wvaa Ndd | | wyag
¥G JAON ONI¥VYHS 79 300N JNOH 05 '3AON NOILOY

US 2009/0240664 A1

Sep. 24,2009 Sheet 17 of 21

Patent Application Publication

Gl "Old

]
¥6

/

Qoz ¥3IHLO OL ONIOVSSIN

/$103r80
08 HSY14
... [av3shHL ..o [avanL 8l
88 z6 4GS 06 ddV Ndo
VLVQVLIW
7 T
W3 HSY14 " m ; = !
b [z am | P | o :
; rgo | 1 | S403M€80 [jaL3aLvis |
; v | 98 wvaa | ! !
- " HSY 14 : : INJISNVYL "
| Louwa| i _mow| i |
oot " 3HOVO | ;| 78 M80 | i ST
X 300N L veod | y 07 "
[}] " - "
' 31¥1S JAON JNOH B + 31Y1S JAON NOILOY !
L N | NN lecocssccasancanames 1
WYda

US 2009/0240664 A1

Sep. 24,2009 Sheet 18 of 21

Patent Application Publication

rd0
HSY 13
av3d S .. I,
H 78 dviN
dVW HSYT3 ONISN | HSY
[40 3IV00 1% =
__ilvEo19 _
AR e » | TEOHSVS
30ON JNO NENTERES

dId TvE01O NI SSIN €

3JHOVO M40 NI

r40 HSY14 LINd L

JNOH NO¥4
rgo 03y ¢

3JHOVYO a0

NI SSIA ‘)

181 'SNVHL NI T80
404 AYINT aav -8

NOILOVYSNVYL V 3AISNI
HSY14 IWOH NOY4 SSIN 139

91 'OI4

300N NOILOV

US 2009/0240664 A1

Sep. 24, 2009 Sheet 19 of 21

Patent Application Publication

&
sS40
HSY T % TTNWOD ISYAJ-Z ONISN
ENRES P A, S W3 HSV 14 300N JWOH 01
=5 o] \[= ovo] | JHOVO r80 WOY3 5,180
dVW HSY 14 ONISN | “wsvid|)|78 reo] G3HIGOW TV ASNTH £
Srg03LvooT v = o !
| 82 " -
__ ilwaow]| Z Wvea 318v1
3§ s NOILOVSNVIL WOEA
3GON JNOH S0 GIHONOL
§ TvE0TO 31Vadn 9 01511139
JHOVO TAO NI J131dN0D O1
S.T80 00NN Z 8L INJISNVYL N
O34 ONIANYISINO
TV 904 LIVA 1}
NOILOVSNVYL LINWOD 791 SNVHL
NI AJINT
JARE ETERE[CES

300N NOILOV

US 2009/0240664 A1

Sep. 24, 2009 Sheet 20 of 21

Patent Application Publication

(3LVAITVANI ¥0) 31V1S
1YNIDIYO HI3HL OL S.r80
Q31410 11V JH0LS3Y €

J1avl
NOILOVSNYHL NO¥A
Srgo d3HoONO1

40 1SIM139+¢

3HOVD 90 NI
S.rd0 MOOINN ¥

3131dWN0D OL

181 INJISNVHL NI
SO ONIGNVLISLNO
TV H04 LIVM -}

08 rgo
HSV 14
i 28 dvw
| HSY4
]
i 82 Mg
__ ilveod
Nm teceererreerccer e e e -----
300N 3NO
NOILOVSNVYL 1908V
81 DI
781 SNVHL
NI AYLNS
ETERE[EY

aul

26 2397 06
= ovo| |5 8L 3dvis |s
8 taol| 1% InaisnbraL [}
f
¢ wvya v 8L |;
SNYaL i

JAON NOILOY

US 2009/0240664 A1

Sep. 24,2009 Sheet 21 of 21

Patent Application Publication

SWOH OL D39
VST _\ |\ PoTaesT
v IVAV o7 8y MO
TINN LIVM £ IS
300N INO
dNY00TdId 1vg01O T . 3131dNOJ OL
8L INJSNVIL NI S0 39
SNIGNYISINO J0iad
| TIV 904 LIVM -DNAS
IS3ND3IINO0T %
Tavis zo_6<mw_uwm B 10 QoL
HSY14 26 39506

61 ‘Old iz avni [ovo] [5; eLadvis]:

' OHSYS r4o INFISNIYL [?

" m........................" — — “

781 SNVIL NI i g7 dlQ: (47 ¥Z gL |t

E : NYHa .

AINTMINILVILD | . 1:.vE019: SNYAL |3

THVISNOILOVSNVEL | 05 temmmmomommomo oo o .

300N NOILOY

US 2009/0240664 Al

SCALABLE DATABASE MANAGEMENT
SOFTWARE ON A CLUSTER OF NODES
USING A SHARED-DISTRIBUTED FLASH
MEMORY

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 61/038,336 filed Mar. 20, 2008. This
application is a Continuation-In-Part (CIP) of the co-pending
U.S. application for “System Including a Fine-Grained
Memory and a Less-Fine-Grained Memory”, U.S. Ser. No.
12/130,661, filed May 30, 2008, and the co-pending PCT
application for “System Including a Less-Fine-Grained
Memory and a Fine-Grained Memory with a Write Bufter for
the Less-Fine-Grained Memory”, U.S. Ser. No. PCT/US08/
65167, filed May 29, 2008, and the co-pending U.S. applica-
tion for “Sharing Data Fabric for Coherent-Distributed Cach-
ing of Multi-Node Shared-Distributed Flash Memory”, U.S.
Ser.No. 12/197,899, filed Aug. 25, 2008, hereby incorporated
by reference.

FIELD OF THE INVENTION

[0002] This invention relates to database systems, and more
particularly to distributed database programs running on mul-
tiple nodes with distributed flash memory.

BACKGROUND OF THE INVENTION

[0003] Database programs are one of the most widely used
and useful applications of computers. Data records may be
stored in database tables that are linked to one another in a
relational database. Queries from users allow database pro-
grams to locate matching records and display them to users
for modification. Often a large number of users access difter-
ent records in a database simultaneously.

[0004] Database records are typically stored on rotating
hard disks. Computer hard-disk technology and the resulting
storage densities have grown rapidly. Despite a substantial
increase in storage requirements, disk-drive storage densities
have been able to keep up. Disk performance, however, has
not been able to keep up. Access time and rotational speed of
disks, key performance parameters in database applications,
have only improved incrementally in the last 10 years.
[0005] Web sites onthe Internet may link to vast amounts of
data in a database, and large web server farms may host many
web sites. Storage Area Networks (SANs) are widely used as
a centralized data store. Another widespread storage technol-
ogy is Network Attached Storage (NAS). These disk-based
technologies are now widely deployed but consume substan-
tial amounts of power and can become a central-resource
bottleneck. The recent rise in energy costs makes further
expansion of these disk-based server farms undesirable.
Newer, lower-power technologies are desirable.

[0006] FIG. 1 highlights a prior-art bottleneck problem
with a distributed web-based database server. A large number
of'users access data in database 16 through servers 12 via web
10. Web 10 can be the Internet, a local Intranet, or other
network. As the number of users accessing database 16
increases, additional servers 12 may be added to handle the
increased workload. However, database 16 is accessible only
through database server 14. The many requests to read or
write data in database 16 must funnel through database server
14, creating a bottleneck that can limit performance.

Sep. 24, 2009

[0007] FIG. 2 highlights a coherency problem when a data-
base is replicated to reduce bottlenecks. Replicating database
16 by creating a second database 16' that is accessible through
second database server 14' can reduce the bottleneck problem
by servicing read queries. However, a new coherency prob-
lem is created with any updates to the database. One user may
write a data record on database 16, while a second user reads
a copy of that same record on second database 16'. Does the
second user read the old record or the new record? How does
the copy of the record on second database 16' get updated?
Complex distributed database software or a sophisticated
scalable clustered hardware platform is needed to ensure
coherency of replicated data accessible by multiple servers.
[0008] Adding second database 16' increases the power
consumption, since a second set of disks must be rotated and
cooled. Operating the motors to physically spin the hard disks
and run fans and air conditioners to cool them requires a
substantially large amount of power.

[0009] It has been estimated (by J. Koomey of Stanford
University) that aggregate electricity use for servers doubled
from 2000 to 2005 both in the U.S. and worldwide. Total
power for servers and the required auxiliary infrastructure
represented about 1.2% of total US electricity consumption in
2005. As the Internet and its data storage requirements seem
to increase exponentially, these power costs will ominously
increase.

[0010] Flash memory has replaced floppy disks for per-
sonal data transport. Many small key-chain flash devices are
available that can each store a few GB of data. Flash storage
may also be used for data backup and some other specialized
applications. Flash memory uses much less power than rotat-
ing hard disks, but the different interfacing requirements of
flash have limited its use in large server farms. Flash memo-
ry’s random-access bandwidth and latency are orders of mag-
nitude better than rotating disks, but the slow write time of
flash memory relative to its read time complicates the coher-
ency problem of distributed databases.

[0011] Balancing workloads among the servers is also
problematic. Database server 14 may become busy process-
ing a particularly slow or difficult user query. Incoming user
queries could be assigned in a round-robin fashion among
database servers 14, 14', but then half of the incoming queries
would back up behind the slow query in database server 14.
[0012] What is desired is a large database management
system that stores database records in flash memory rather
than in hard disks to reduce power consumption. A flash
memory system with many nodes that acts as a global shared
address space on which multiple instances of the database
management system execute is desirable. A distributed data-
base stored on a global, shared flash memory spread across
many nodes that can be accessed by many instances of a
database management system is desirable due to its scalabil-

1ty.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 highlights a prior-art bottleneck problem
with a distributed web-based database server.

[0014] FIG. 2 highlights a coherency problem when a data-
base is replicated to reduce bottlenecks.

[0015] FIG. 3 shows a database management system that
has multiple instances running in a shared memory space
accessing a database that is distributed across flash memory in
many nodes.

US 2009/0240664 Al

[0016] FIG. 4 shows a Sharing Data Fabric (SDF) that
enables multiple instances of a DBMS program to access a
partitioned database stored in flash memory on multiple
nodes.

[0017] FIG. 5 shows a global, shared flash memory that
appears to be a single global address space to multiple servers
connected to a sharing data fabric.

[0018] FIG. 6 shows a hardware node in a global, shared
flash memory system.

[0019] FIG. 7 is a layer diagram of software and hardware
layers in a flash memory system using a shared data fabric to
enable global sharing of database records in a distributed flash
memory.

[0020] FIG. 8 is atransaction diagram of services and inter-
faces to a shared data fabric.

[0021] FIG. 9 shows permanent objects in flash memory
being copied to DRAM caches on multiple nodes.

[0022] FIG.10 shows components of a DBMS that access a
database stored in a distributed shared global flash memory.
[0023] FIG. 11 is a flowchart of the SDF processing a
database record miss in the local buffer cache.

[0024] FIGS. 12A-D show several alternate interfaces to
the SDF.
[0025] FIG. 13 shows a put record operation that puts a

record in the log file for error recovery.

[0026] FIG. 14 shows an action node requesting a database
object from a home node that fetches a modified object on a
sharing node using transaction tables and an object directory.
[0027] FIG. 15 is a snapshot state diagram of a compute
node that can act as an action, home, or sharing node for a
distributed database program.

[0028] FIG. 16 shows a get operation inside a transaction
that misses in the object cache of the action node, and fetches
the object from flash memory of the home node.

[0029] FIG. 17 shows a commit transaction operation.
[0030] FIG. 18 shows an abort transaction operation.
[0031] FIG. 19 shows sync, transaction start, and lock
operations.

DETAILED DESCRIPTION
[0032] The present invention relates to an improvement in

distributed database management systems. The following
description is presented to enable one of ordinary skill in the
art to make and use the invention as provided in the context of
a particular application and its requirements. Various modi-
fications to the preferred embodiment will be apparent to
those with skill in the art, and the general principles defined
herein may be applied to other embodiments. Therefore, the
present invention is not intended to be limited to the particular
embodiments shown and described, but is to be accorded the
widest scope consistent with the principles and novel features
herein disclosed.

[0033] FIG. 3 shows a database management system that
has multiple instances running in a shard memory space
accessing a database that is distributed across flash memory in
many nodes. Rather than storing the database on a single
compute node, the database is partitioned so that different
tables are stored on different nodes 242, 243, 244. Reliability
is improved since database tables may be replicated and kept
updated on several nodes, allowing for backup nodes to
replace nodes that fail.

[0034] Database tables are stored in flash memory 24 in
each node 242, 243, 244, with each node typically storing a
different set of database tables. Shared address space 280

Sep. 24, 2009

(also called a node address space) is used to access flash
memory of one or more of the nodes. The nodes provide one
or more partitions (also called shards) of the shared address
space.

[0035] Multiple instances of DataBase Management Sys-
tem (DBMS) program 200, 200' are executing within shared
address space 280 and are able to access data items in the
distributed database that are physically stored in flash
memory 24 on nodes 242, 243, 244. Having multiple
instances of database management system (DBMS) program
200, 200" also improves reliability and reduces bottleneck
problems, since user queries may be dispatched to different
executing instances of DBMS program 200, 200".

[0036] Having DBMS program 200 execute in shared
address space 280 allows the program to see just one address
space, simpliftying DBMS program 200. Ideally, it would be
desirable for multiple executing instances of DBMS program
200, 200" running on different physical nodes to observe
shared address space 280 so that each could operate as if it is
the only executing instance of DBMS program 200. Thus
major modifications and re-writes of the program code of
DBMS program 200 could be avoided using shared address
space 280. A DBMS program written for execution on a
single address space is preferred since code does not have to
be re-written. However, without other facilities, the multiple
executing instances of DBMS program 200, 200" would con-
tend with each other for the same resources, causing failures.
[0037] FIG. 4 shows a Sharing Data Fabric (SDF) that
enables multiple instances of a DBMS program to access a
partitioned database stored in flash memory on multiple
nodes. The SDF is a middleware layer that fits between
executing instances of DBMS program 200, 200" and nodes
242,243, 244.

[0038] SDF 20 includes an interface for communications
between high-level programs such as executing instances of
DBMS program 200, 200" and lower-level hardware control-
lers and their software and firmware drivers. SDF 20 is acces-
sible by high-level instances of DBMS program 200, 200'
using an applications-programming interface (API). Com-
munication between nodes to ensure coherency of database
tables stored in flash memory 24 on the multiple nodes is
performed by SDF 20.

[0039] Normally, adding nodes provides a less-than-linear
performance improvement, since bottlenecks may occur to
data stored in just one location on a node, such as shown on
FIG. 1. However, using SDF 20, data records stored in flash
memory 24 may be cached near executing instances of
DBMS program 200, 200' on one or more nodes, allowing
multiple processors to access the same data. Coherency of the
cached database records is important to prevent data corrup-
tion.

[0040] FIG. 5 shows a global, shared flash memory that is
accessible as a single global address space to multiple servers
connected to a sharing data fabric (SDF). Central Processing
Units (CPUs) or processors 18, 18' can execute programs
such as executing instances of a DBMS program to process
requests such as user queries of a database that arrive over a
network such as the Internet. Each of processors 18 has a
cache of DRAM 22 that contain local copies of objects such
as records in a database. These local copies in DRAM 22 are
local to the node containing processors 18 and are accessed by
processors 18 in response to requests from external users.
[0041] While DRAM 22, 22' stores transient copies of
objects, the objects are more permanently stored in flash

US 2009/0240664 Al

memory 24, 24'. Objects remain in flash memory 24, 24' and
are copied to caches in DRAM 22, 22' in response to access
requests by programs running on processors 18, 18'.

[0042] Sharing data fabric (SDF) 20 is a middleware layer
that includes SDF threads running on processors 18, 18', and
APIs and tables of data. A physical interconnect, such as an
Ethernet or InfiniBand® fabric, connects physical nodes
together. Object copies are transferred across the physical
interconnect by SDF 20 from flash memory 24, 24' to caches
in DRAM 22, 22', and among DRAM 22, 22' caches as
needed to ensure coherency of object copies.

[0043] Flash memory 24, 24' can be physically located on
many nodes, such as having one flash memory 24 for each
processor 18, or in other arrangements. SDF 20 makes all the
objects stored in flash memory 24, 24' appear to be stored in
a global address space, even though the global address spaced
is shared among many processors 18, 18'. Thus flash memory
24, 24' together appear to be one global, shared flash memory
26 via SDF 20. The database is partitioned into many objects,
which are stored in a distributed fashion on many nodes
within the global shared flash memory.

[0044] FIG. 6 shows a hardware node in a global, shared
flash memory system. A flash memory system has multiple
nodes such as shown in FIG. 6. The multiple nodes are con-
nected together by a high-speed interconnect such as an Eth-
ernet or InfiniBand. One or more links in this high-speed
interconnect connect to Network Interface Controller (NIC)
36 on the node shown in FIG. 6.

[0045] Processor 18 executes an instance of a DBMS pro-
gram, threads, and other routines and accesses a local
memory that stores program code and data, such as DRAM
22. DRAM 22 also acts as a cache of objects such as database
records in the global, shared flash memory.

[0046] Processor 18 also connects to PCle switch 30. PCle
switch 30 allows processor 18 to communicate with other
nodes through NIC 36 to send and receive object copies and
coherency commands. Flash modules 34 contain arrays of
flash memory that store permanent objects including database
records and tables. Flash modules 34 are accessed by proces-
sor 18 through PCle switch 30.

[0047] FIG. 7 is a layer diagram of software and hardware
layers in a flash memory system using a shared data fabric to
enable global sharing of database records in a distributed flash
memory. Sharing data fabric services 116 include API’s that
application programs 122 or DBMS database program 119
can use to access objects such as database records and control
attributes of the objects. Sharing data fabric services 116 are
the API’s that communicate with routines and threads in
sharing data fabric 112 that provide a unified shared data
access of objects including database tables that are perma-
nently stored in flash memory 102, and may maintain cached
copies in DRAM in compute nodes 114.

[0048] Compute nodes 114 are compute nodes, such as
node 100 shown in FIG. 6, with processors, DRAM caches of
objects, and interconnect. These compute nodes may be con-
structed from commodity parts, such as commodity proces-
sors, interconnect switches and controllers, and DRAM
memory modules.

[0049] Sharing data fabric services 116 allow application
programs 122 and DBMS database program 119 to control
policies and attributes of objects by executing routines and
launching threads of sharing data fabric 112 that are executed
on compute nodes 114. The exact location of objects and
database records within flash memory 102 is transparent to

Sep. 24, 2009

application programs 122 and DBMS database program 119
since sharing data fabric 112 copies objects from flash
memory 102 to DRAM caches in compute nodes 114 and may
obtain a copy from any location in flash memory 102 that has
avalid copy of the object. Objects such as database tables may
be replicated to make back-up copies in flash memory 102.

[0050] Sharing data fabric 112 performs consistency and
coherency operations such as flushing modified objects in a
DRAM cache to copy back and update the permanent object
in flash memory 102. Sharing data fabric 112 may also
migrate flash objects to new flash pages for wear-leveling or
other purposes, and update version logs and transaction logs.

[0051] Interconnect 110 includes the PCle switches in each
of compute nodes 114, and the high-speed interconnect
between nodes, such as Ethernet or InfiniBand links. Sharing
data fabric 112 sends objects and coherency commands
across interconnect 110 or directly within the compute node,
such as directly to flash management 108.

[0052] Flash management 108 is activated to migrate flash
blocks for wear-leveling and replication. Wear-leveling
schemes assign flash blocks for writing in a rotating, least-
written, or other fashion to even out usage of flash blocks and
prevent early wear-out and failure. Write bufters of flash
blocks, logs, and caches may be kept by flash management
108.

[0053] Flash interface 106 is an interface between flash
management 108 and hardware flash controllers 104, which
control low-level access of flash memory 102. While flash
memory 102 may have separate modules on different nodes
of' compute nodes 114, sharing data fabric 112 uses intercon-
nect 110, flash management 108, and flash interface 106 to
transparently move objects to and from flash memory 102 on
different nodes. Flash memory 102 in aggregate appears to be
a single, unified flash memory that is transparently shared
among many instances of DBMS database program 119 run-
ning on many compute nodes 114.

[0054] FIG. 8 is a diagram of services and interfaces to a
shared data fabric. DBMS database program 119 could com-
municate directly with other database nodes using network
interface 120, but then the location of objects such as database
records in flash memory is not transparent to DBMS database
program 119. DBMS database program 119 would then need
detailed location information on database records. Send and
receive commands to network interface 120 may include
commands 128 such as get, put, lock, unlock, start, and abort,
which need detailed information on the object’s location,
such as a file handle or address Detailed information may
include context, thread, container ID, object ID. Location
information may be calculated by using a combination of the
container ID and the object ID. DBMS database program 119
would have to be re-written to provide this detailed location
information, which is undesirable.

[0055] Instead, standard, substantially unmodified DBMS
database program 119 is used, but instead of using network
interface 120 directly, DBMS database program 119 accesses
sharing data fabric 112 using API’s 116. API’s 116 include
SDF_GET, SDF_PUT, SDF_LOCK, and other SDF-specific
versions of start, abort, commit, savepoint, create, delete,
open, and close commands. For example, lock and unlock
commands lock and unlock an object using a lock table in
sharing data fabric 112 to prevent another user from accessing
that object while locked. A node map in sharing data fabric
112 maps objects to address locations in flash memory, allow-

US 2009/0240664 Al

ing sharing data fabric 112 to read and write objects in flash
memory through flash management 108 and flash interface
106.

[0056] Objects that reside in flash memory on a first node
may be accessed over sharing data fabric 112 by sending and
receiving messages, and sending object data from a second
node over network interface 120. These messages may
include commands 128 such as get, put, lock, unlock, start,
and abort. These commands 128 are executed by SDF 112
using detailed information on the object’s location, such as a
file handle or address, that are obtained from a node map, a
sharing directory, or a cache map in sharing data fabric 112.
Commands 128 and messages are received by a sharing data
fabric 112 on the first node, which may access its flash
memory to obtain the object. On a read access, sharing data
fabric 112 on the first node can then send the object data back
through network interface 120 to the second node’s sharing
data fabric 112.

[0057] FIG. 9 shows permanent objects in flash memory
being copied to DRAM caches on multiple nodes. Objects
may be database records being accessed by auser query. Data
fabric switch 40 connects to NIC 36 on three compute nodes.
Each node has two NICs 36 to allow for a higher interconnect
bandwidth and for redundancy. Each of nodes 50, 52, 54 has
a processor 18, flash memory 24, and an object cache in
DRAM 22. An Ethernet or other switch (not shown) may also
be used, or may be included in data fabric switch 40.

[0058] Inresponse toauserdatabase query, athread execut-
ing on processor 18 on node 52 requests access to object 46,
which is present in flash memory 24 on node 52. The SDF on
node 52 reads object 46 from flash memory 24 and copies the
object into its object cache in DRAM 22 as object copy 46'.
The DBMS program running on node 52 can then read object
copy 46' from its DRAM 22. In this example transfer over
data fabric switch 40 was not needed.

[0059] Ina second example, a thread executing on proces-
sor 18 on node 50 requests access to object 47, which is not
present in flash memory 24 on node 50, nor in DRAM 22 on
node 50. The SDF on node 50 determines that node 54 is the
home node for object 47. Node 50 may perform a lookup in a
directory to locate the object’s home node. The directory may
have several parts or levels and may reside partially on local
node 50 and partially on other nodes.

[0060] An SDF thread on node 50 sends a message to the
home node, node 54, requesting a copy of object 47. In
response, another SDF thread on home node 54 reads object
47 from flash memory 24 and sends object 47 over data fabric
switch 40 to local node 50. The SDF thread on local node 50
copies the object data into its object cache in DRAM 22 as
object copy 47'. The DBMS program running on local node
50 can then read object copy 47' from its object cache in
DRAM 22.

[0061] Object 47 may have already been copied into
DRAM 22 on node 54 as object copy 47". Rather than read
object 47 from flash memory 24, when object copy 47" is
present, object copy 47" may be read from DRAM 22 and
then sent over data fabric switch 40 to node 50 to load object
copy 47 into DRAM 22 on node 50.

[0062] FIG. 10 shows components of a DBMS in more
detail that access a database stored in a distributed shared
global flash memory. DBMS program 200 is executing on a
local compute node that has database records cached in local
DRAM as cached objects in local buffer cache 23. There may

Sep. 24, 2009

be multiple executing instances of DBMS program 200 run-
ning on different compute nodes, each with its own local
cache buffer.

[0063] DBMS program 200 has two primary software com-
ponents that cooperate with each other. Query process 260
receives requests from users that contain a database query.
Storage management 270 performs access of database
records that are cached in local buffer cache 23. Storage
management 270 includes table reader 276 that reads records
from portions of a database table cached in local buffer cache
23, table writer 277 that writes or modifies portions of a
database table cached in local buffer cache 23, and log writer
278 that logs modifications of records cached in local buffer
cache 23. While query process 260 performs query logical
operations, query process 260 does not access database
records, but instead calls storage management 270 to read or
write a record. Separating query and access functions an
improve software reliability.

[0064] SDF 20 is called by storage management 270 when
arequested database record is not cached in local buffer cache
23, or during flushes when modified records are copied back
to the more persistent storage in flash memory. SDF 20 per-
forms the multi-node operations needed to access data at one
of nodes 242, 244 and copy that data into local buffer cache
23or update that data in flash memory at the node.

[0065] The database record may be stored in flash memory
at any of nodes 242, 244. Each node 242, 244 has local map
262 that locates the requested data item stored in flash
memory at that node. The requested data may be a database
record stored in database tables 264, or a database index in
database indices 266. Other data stored at a node may include
log files 272 or checkpoints 274 that are useful for error
recovery.

[0066] An example of a Database Management System
(DBMS) is a system of one or more software programs, which
are written to enable the storage and management of user
information in a highly structured and well-defined way. The
DBMS enables certain storage properties such as Atomicity,
Consistency, Isolation, and Durability, the so-called ACID
properties.

[0067] Information may be stored as data records organized
in n-tuples (also termed simply tuples) of closely related
information called rows. A field of a row stores one of the
records. Collections of rows are called tables. One or more of
aparticular field within a table is called a column. A collection
of related tables is called a database, and the structure of the
related tables is called a schema. Data records may also be
referred to as data attributes or data items or objects.

[0068] A relational database is a database where informa-
tion is stored, accessed, and indexed according to specified
values of the respective fields, known as a relation. The speci-
fied values include specified functions of values, such as
ranges of values.

[0069] For example, a query is constructed for a relational
database which is intended to retrieve only those tuples from
the relational database that have a first item record conform-
ing to a first specification in the query AND a second data item
conforming to a second specification in the query, where the
logical operator AND is also part of the query. Continuing the
example, all ofthe field specifications and the logical operator
AND comprise an entity called a relational query specifica-
tion. In general, a relation refers to the relationship of data
items or attributes within a table, or even to the table itself.

US 2009/0240664 Al

[0070] The DBMS may be transactional, allowing user
operations to be performed as transactions that have well-
defined properties. The properties may include an isolation
property that ensures that multiple concurrent and distinct
transactions operating on the database do not interfere with
each other. The transaction each perceive the state of the
system as if each of the multiple transactions is the sole
transaction executing in the database management system.
[0071] Another transaction property is atomicity, meaning
that the transaction can be aborted prior to committing any
changes to the database management system. The result of
aborting the transaction is no change to any record in the
database.

[0072] The durability property indicates that once a trans-
action is committed to permanent storage, any database
record changes due to the transaction remain stable even if the
system restarts or a power failure or other kind of defined
failure occurs.

[0073] These properties of transactions may be ensured for
a database by a log file in log files 272. A log file is a data
structure in which the database management system main-
tains a sequential record of all data modifications. A log file is
used, for example, to record committed transactions and to
record abort operations on uncommitted transactions.

[0074] When there are multiple users, there may be mul-
tiple local butfer caches 23 on multiple nodes. There may be
several instances of query process 260 operating on one com-
pute node, using a shared local buffer cache 23, for processing
queries by different users.

[0075] Alllocal buffer caches 23 and the permanent storage
in flash memory of nodes 242, 244 must be kept logically
consistent with one another. Periodic checkpoints to flush
modified contents of the buffer cache to the permanent stor-
age as checkpoints 274 may be used as one way of maintain-
ing consistency.

[0076] FIG. 11 is a flowchart of the SDF processing a
database record miss in the local buffer cache. SDF 20 (FIG.
10) is called by storage management 270 when a database
record or other data item is not present in local buffer cache
23, step 202. Storage management 270 in the executing
instance of DBMS program 200 uses a SDF_GET function in
the SDF API to activate a SDF thread that executes on the
local compute node’s processor, step 204.

[0077] The SDF optionally performs a global data lock
operation, step 206, in order to ensure that there is a single
modifiable copy of the particular data item. The SDF_GET
operation may retrieve a modified copy of the particular data
item from flash memory or from a local buffer cache on
another one of the nodes. A data versioning operation may
also be performed to identify the most recent version of the
data item, and to save a copy of the most recent version, in
case subsequent modifications to the data item need to be
rolled back, or un-done. Lock and version operations may not
need to be performed in some instances, such as database
reads, but may be needed for transactions, such as when
writing to database records.

[0078] The SDF reads the requested data item from the
node, such as from flash memory at a home node for a data-
base record, or from a local buffer cache of a sharing node that
has earlier cached the database record, step 208. The
requested data item is then loaded into local buffer cache 23
by the SDF, step 210. The SDF may also return a pointer to the
data in the local buffer cache so that DBMS program 200 has
the pointer.

Sep. 24, 2009

[0079] A cache pin operation may be performed by the
SDF, step 212. A cache pin operation ensures that the particu-
lar data item remains (is pinned) in the local buffer cache. This
guards against another request from this or another thread
causing replacement of the data item in cache.

[0080] SDF returns a success code to the calling program,
such as storage management 270 in DBMS program 200, step
214. Storage management 270 may then access the data item,
step 216. Writes to the data item may be allowed.

[0081] After DBMS program 200 has finished accessing
the data item, step 216, DBMS program 200 calls the SDF to
unlock the data item, step 218, if that data item was previously
locked in step 206. When the data item was pinned by a cache
pin operation in step 212, then DBMS program 200 calls the
SDF to perform a cache unpin operation, step 219.

[0082] When the data item was written in step 216, the
DBMS program optionally calls the SDF to flush the modi-
fied data item back to the flash memory at its home node, step
224. The SDF then stores the modified data item at its home
node, step 226. Various logs may need to be written by the
DBMS program or by the SDF to ensure that this write back
is durable. The DBMS program optionally calls the SDF to
perform a SYNC operation, step 220, so that the modified
data item is made visible to other nodes, step 228. The SDF_
SYNC operation makes the results of selected previous
operations including the modified data item visible to other
instances of DBMS program 200' that are executing on the
local node or on other compute node in the system. A global
cache directory at the home node may be updated to make the
modified data item visible to other nodes.

[0083] Other database operations, such as row insertions,
row deletions, and index updates, are performed in a similar
manner using the SDF API.

[0084] FIGS. 12A-D show several alternate interfaces to
the SDF. In FIG. 12A, SDF 20 has an API that uses multi-
processing interfaces such as SDF synchronization opera-
tions in place of synchronization primitives typically pro-
vided by a multi-processing system. The SDF API has
software libraries with interfaces that are compatible with
existing multi-processing interfaces, such as Symmetric-
Multi-Processing SMP interfaces. Since the SDF API has
functions with interfaces matching the SMP interface, pro-
grams written for the SMP interfaces require little or no
modification to operate with SDF 20. The SDF synchroniza-
tion operations are enabled to operate transparently across
multiple nodes in a cluster. Data items stored in flash memory
24 or in buffer caches 222 of nodes 242, 243, 244 can be
accessed by DBMS program 200 using these SMP-compat-
ible interfaces that cause SDF 20 to copy the data items into
local buffer cache 23, and flush modified data items back.
[0085] FIG. 12B shows a SDF interface that uses a file
system interface. DBMS program 200 uses data containers
rather than files or magnetic disk partitions. Database tables,
records, or other data items are stored in data containers 252,
253, 254 on nodes 242, 243, 244, but appear to be local to
DBMS program 200. DBMS program 200 is written to
advantageously use functions of SDF 20 that mimic file-
system functions for magnetic disk partitions, such as a Iseek(
) function.

[0086] DBMS program 200 accesses data items stores in
data containers 252, 253, 254 using SDF 20’s API, which is
compatible with existing DBMS access methods using file
systems and/or device partitions. Durability and consistency

US 2009/0240664 Al

of data stored in data containers may be automatically and
transparently maintained by SDF 20.

[0087] FIG. 12C shows a SDF interface using SDF
MUTEX operations. Software compatibility libraries 248
that DBMS program 200 is written for include a symmetric
multi-processing (SMP) mutual-exclusion (MUTEX) opera-
tion. When DBMS program 200 calls the SMP MUTEX
operation in compatibility libraries 248, a SDF_MUTEX
operation is called in its place. The SDF_MUTEX operation
has the same list of parameters and variables in its interface,
and thus is transparent to DBMS program 200.

[0088] SDF 20 allows direct substitution of data fabric
primitives such as SDF_MUTEX for similar primitives such
as SMP_MUTEX provided by platforms supporting a single
address space. For example, SDF 20 provides a test-and-set
operation which is used to create a MUTEX operation that is
a direct replacement for an SMP-based MUTEX operation.
[0089] Programs written for the SMP interfaces require
little or no modification to operate with SDF 20. The MUTEX
synchronization operations are the enabled to operate trans-
parently across multiple nodes in a cluster.

[0090] FIG.12D shows aSDF interface using a container of
synchronization primitives. DBMS program 200 is written to
use synchronization primitives such as test-and-set, and com-
pare-and-swap, which consist of multiple operations per-
formed atomically on one or more program variables. These
variables are enabled to be shared among multiple instances
of DBMS program 200 by placing them into primitive opera-
tion container 240, which is shared among the multiple
instances. SDF 20 allows DBMS program 200' (not shown)
executing on other nodes to access primitive operation con-
tainer 240.

[0091] Special synchronization operations such as test-
and-set, and compare-and-swap, are implemented efficiently
within SDF 20 and provided to DBMS program 200 through
the SDF API, which has special compatible functions for
these operations.

[0092] Since the SDF API has functions with interfaces
matching the interface of these primitive operations, pro-
grams written for the primitive-operation interfaces require
little or no modification to operate with SDF 20. The existing
calls to the synchronization operations are redirected to use
objects in the new synchronization container. The SDF syn-
chronization operations may be enabled to operate transpar-
ently across multiple nodes in a cluster.

[0093] FIG. 13 shows a put record operation that puts a
record in the log file for error recovery. SDF 20 may support
distributed log file operations through log file containers. A
log file container may use a special node address space for
performing functions of a distributed log file. A log file con-
tainer may maintain certain attributes important to log files,
such as n-way replication. The log file container may allow
multiple instances of DBMS program 200, 200' to commit
database updates in a global order.

[0094] For example, a DBMS storage manager instance
inserts a record into log file container 250. In response to a
request from a transaction executing in any DBMS program
instance, the DBMS storage manager instance performs a
data fabric PUT RECORD operation to add alog record to log
file container 250. The SDF performs the operation, updating
the contents of log file container 250 and updating internal
pointers. This operation may be done atomically by the SDF
and be recoverable by the SDF when failures occur in the
hardware or software.

Sep. 24, 2009

[0095] The SDF may perform replication operations to rep-
licate the updated record, and wait for the log record to be
permanently stored before returning a success code to the
DBMS storage manager instance. Each PUT RECORD
operation may be associated with a Logical Sequence Num-
ber (LSN) from LSN generator 246. DBMS program 200,
200" is able to subsequently use the LSN to retrieve the
respective log record should a database recovery or rollback
operation be necessary. Various techniques for logging and
recovery may use the log file container 250.

[0096] FIG. 14 shows an action node requesting a database
object from a home node that fetches a modified object on a
sharing node using transaction tables and an object directory.
A node may operate as one or more of a home node, an action
node, or a sharing node for any particular object. Objects
include database records or other data items associated with a
database.

[0097] Home node 52 is the permanent location of object
46 in flash memory 24. Action node 50 is executing an appli-
cation program that requests an object. Sharing node 54 has a
copy of the object in its object cache in DRAM 22.

[0098] A program executing on action node 50, such as
executing instances of DBMS program 200 (FIG. 10),
requests access of object 46. Object 46 is not yet present in
DRAM 22 of action node 50, so the SDF determines the
object’s home node, such as by hashing the object’s name or
identifier or looking up the object in a table.

[0099] Transaction table 42 is stored in DRAM 22 of action
node 50 and eventually contains information to identify home
node 52. In response to a request from action node 50 to
access object 46, the SDF on home node 52 looks up the
object in its object directory 44. Object directory 44 indicates
that although object 46 is present in flash memory 24 ofhome
node 52, this object 46 is stale. A modified object 46' is
present in DRAM 22 of sharing node 54 in this example.

[0100] Since modified object 46' is more current than stale
object 46 in flash memory 24, SDF on home node 52 sends a
message to SDF on sharing node 54. This message causes
transaction table 42 on sharing node 54 to be checked to make
sure that modified object 46' is not locked for use by a pro-
gram executing on sharing node 54. If modified object 46' is
locked, action node 50 waits until the lock is released. Release
of'the lock causes an update of transaction table 42 on sharing
node 54.

[0101] When transaction table 42 indicates that modified
object 46' is unlocked, SDF on sharing node 54 sends the
object data of modified object 46' over data fabric switch 40 to
action node 50. Object copy 46" is created in DRAM 22 on
actionnode 50. The requesting program on action node 50 can
now access object copy 46".

[0102] Other steps may be performed to update object
directory 44 and stale object 46 in flash memory 24 on home
node 52, although this may be delayed to allow home node 50
to update object copy 46" to reduce the number of writes and
operations to flash memory 24.

[0103] FIG. 15 is a snapshot state diagram of a compute
node that can act as an action, home, or sharing node for a
distributed database program. Node 100 is one of compute
nodes 114 of FIG. 7, with hardware such as detailed in FIG. 6.
[0104] Node 100 has threads running on processor 18,
including application thread 90 and/or SDF thread 92. Appli-
cation thread 90 can be an executing instance of DBMS
program 200 on local node 100.

US 2009/0240664 Al

[0105] Messaging 94 allows SDF thread 92 to send and
receive messages from other nodes. Messaging 94 may use
software and hardware such as interconnect 110 of FIG. 7,
NIC’s 36 of FIGS. 6, 9, and other hardware such as switches.
[0106] Node100 includes DRAM 22 and flash memory 24.
The DRAM state shown is a snapshot of the contents of
DRAM 22 ata particular point in time, while the flash state is
a snapshot of the contents of flash memory 24 at approxi-
mately that same time.

[0107] Flash memory 24 at each node stores flash objects
80, which may be grouped into containers. A flash object may
be uniquely addressable in the SDF using a container-identi-
fication and an object identifier. Metadata 88 stored in flash
memory 24 may include container metadata and global meta-
data. Container metadata describes the attributes or properties
of'objects in a container (such as a number of replicas for the
container). Global metadata may include virtual-to-physical
node-identification mappings and/or hash functions. The
hash function is performed on the object’s name to generate
an identifier that can be used in further table lookups to locate
the object using a global map.

[0108] Object cache 84 in DRAM 22 stores copies of
objects that are also stored in flash memory 24 of the home
node, which may be node 100 or may be another node.
DRAM objects 86 are objects that have node 100 as their
home node, but the object’s attributes specify that the object
primarily resides in DRAM 22 rather than in flash memory
24. For example, frequently-accessed objects such as data-
base indices 266 of FIG. 10 may be selectively enabled to
remain in DRAM 22 rather than the flash memory to improve
look-up performance.

[0109] DRAM 22 also stores state information for particu-
lar classes of nodes. Action node state 70 stores state infor-
mation for objects using node 100 as the action node, while
home node state 72 stores state information for objects using
node 100 as their home node, such as DRAM objects 86 and
flash objects 80.

[0110] A home node is a well known, an authoritative
source of the object, which resides in DRAM, flash memory,
or another component in the storage sub-system. While an
object may be cached and/or replicated in DRAM and/or flash
memory at several nodes, only one of these nodes (at any one
time) is considered to be the home node for that object. An
action node stores a transient copy of an object. The action
node usually obtains a copy of the object from the home node.
Node 100 can operate as the home node for some objects, and
as the action node for other objects.

[0111] Transaction table 74 in action node state 70 stored in
DRAM 22 has entries to track transactions. Transaction table
74 keeps a list of all objects accessed (touched) during a
transaction, and may keep a copy of the object’s initial state
when the object is modified, or a pointer to a log of changes
from an initial state that is archived. The initial state pointed
to by transaction table 74 aids in object recovery if an abort
occurs. Transaction table 74 provides recoverability for
threads of applications and SDF services that execute on the
node’s processor. There may be links between tables, such as
links in entries in transaction table 74 to entries in transient
protocol state table 76.

[0112] A transaction is a series of operations. The transac-
tion as a whole succeeds as a unit or the transaction and all
operations in the transaction are aborted. This may also be
referred to as an atomic set of operations. In a transactional
system that maintains isolation among concurrent transac-

Sep. 24, 2009

tions, there are no unexpected effects from an aborted trans-
action since either all operations in the transaction are
executed completely, or any partially-executed operations of
the transaction are aborted without visible side effects. Trans-
actions are extremely useful for distributed database pro-
grams, since a database record may be updated as a transac-
tion, preventing a partial update of that database record.
[0113] Transient protocol state table 76 in action node state
70 stored in DRAM 22 has entries to track outstanding
requests. The requesting thread, type of request, request sta-
tus, and order of requests from each thread are stored in this
table, which is shared by all threads at node 100.

[0114] Home node state 72 stores information for objects
that have node 100 as their home node, and are thus stored
(homed) in DRAM 22 (as DRAM objects 86) or flash
memory 24 (as flash objects 80) ofnode 100. Home node state
72 in DRAM 22 stores a sharing list within global cache
directory 78, and flash object map 82. Global cache directory
78 stores the state of all objects that have node 100 as their
home node and have been cached in one or more nodes in the
system. The state of the object in global cache directory 78 is
one of shared, modified, invalid, and either locked or
unlocked. An indication of whether the object is being
accessed within a transaction may also be stored in global
cache directory 78. The locations of cached copies at other
nodes, and the state and progress of any coherency operations
for the objects are also kept in global cache directory 78.
[0115] Flash object map 82 maintains a map between an
object identifier and its location in flash memory 24. Flash
object map 82 may store an address, a partial address, or an
identification of the location of the object in flash memory 24.
Flash object map 82 maps at least a portion of a respective
identifier of a particular one of the objects to a physical
location in flash memory 24. Flash object map 82 has entries
for all flash objects 80 that belong to this home node, regard-
less of whether that object is cached at any node. Flash object
map 82 may be ahomed object map that also has entries for all
DRAM objects 86 at this home node.

[0116] Database Transaction Flows Using SDF—FIGS.
16-19
[0117] Snapshots of the states and movements of database

objects and SDF messages among two nodes in a multi-node
shared flash memory system are shown in the examples of
FIGS. 16-19. Snapshot diagrams, similar to that of FIG. 15,
are shown for action node 50 and home node 52.

[0118] Extensions of these flows could involve sharing
node 54 (FIG. 14) when sharing node 54 contains a modified
copy of the requested object. Then the requested object is sent
from sharing node 54 rather than from home node 52, since
the flash object at home node 52 is stale. Messages passed
among these nodes, including the database object being cop-
ied, are shown by the arrows.

[0119] These examples are for operations that are part of
transactions. To provide ACID properties to executing
instances of DBMS program 200, 200", operations that access
database records are organized as transactions. Transactions
allow the operations of a transaction to be committed together
as an atomic unit, preventing partial updates of database
records that can corrupt the database. Operations that are not
part of transactions could also be used for less important
accesses, such as status inquiries or database reads. When a
requested object is already present in object cache 84 of
action node 50 (a hit), application thread 90 may simply read
the object from object cache 84.

US 2009/0240664 Al

[0120] FIG. 16 shows a get operation of a transaction that
misses in the object cache of the action node, and fetches a
requested object from flash memory of the home node. A miss
occurs when application thread 90 checks its local DRAM
object cache 84. The node that application thread 90 is run-
ning on is referred to as action node 50 since actions are being
performed at this node. A request is sent from the action node
to the home node for the requested object. The location of
home node 52 is determined by action node 50, such as by
hashing the name of the object being requested and using the
hash as an address in lookup tables. The lookup tables may be
a global map from identifiers of the objects to home nodes of
the objects.

[0121] Application thread 90 uses the address or identifier
for home node 52 to send a message to home node 52. This
message requests the object from home node 52. At home
node 52, the message received from action node 50 activates
SDF thread 92, which looks up the object identifier in global
cache directory 78 at home node 52. In this example, no
copies of the object have been cached by any other nodes, so
a directory miss occurs.

[0122] SDF thread 92 running on home node 52 then looks
up the object identifier in flash object map 82 to find the
address of the object in flash memory 24 of home node 52.
Flash memory 24 is read to copy flash object 80 stored in the
flash memory of home node 52. A copy of flash object 80 is
sent from SDF thread 92 at home node 52 to application
thread 90 ataction node 50 via an interconnect between home
node 52 and action node 50. Application thread 90 (or a SDF
miss-handling thread such as SDF thread 92 on action node
50 invoked by application thread 90) then loads the copy of
the object into object cache 84 at action node 50.

[0123] Transaction table 74 is updated to include an entry
for the copy of the object that was just loaded into object
cache 84. This entry identifies the current transaction that
requested the object. At the start of a new transaction, appli-
cation thread 90 can create a new entry in transaction table 74,
and this entry is updated with a list of objects touched by the
transaction as the transaction is processed, or with pointers to
sub-entries for each object in that transaction. Application
thread 90 can resume processing the transaction and read the
object copy in its object cache 84.

[0124] FIG. 17 shows a commit transaction operation.
Once all of the operations in a transaction have been started
and are nearing completion, the transaction ends using a
commit transaction operation as shown in FIG. 17. The com-
mit transaction operation ensures that all operations of that
transaction have been successfully completed before any
modified objects such as updated database records are com-
mitted to persistent memory. Thus the transaction is commit-
ted as a whole, all-or-nothing. All objects modified by the
transaction are updated, or none are updated.

[0125] When application thread 90 reaches a commit trans-
action operation, application thread 90 reads transient proto-
col state table 76. Transient protocol state table 76 contains a
list of all outstanding requests for all prior threads at action
node 50, the status of all requests, and the order of requests for
each thread. Application thread 90 waits until completion of
all outstanding requests for the current transaction for appli-
cation thread 90. If there are any dependencies among
threads, application thread 90 must wait for completion of
dependent requests at other threads, according to any order-
ing rules.

Sep. 24, 2009

[0126] Once all dependent outstanding requests have com-
pleted, as indicated by transient protocol state table 76, appli-
cation thread 90 reads the transaction’s entry in transaction
table 74. A list of all objects touched by that transaction is read
from transaction table 74. Objects that were only read do not
need to be copied back to the home node, but modified (dirty)
objects do need to be copied back.

[0127] Each of the modified objects for this transaction are
sent back to their respective home nodes, or flushed. A flush
operation causes a cached object to be sent to home node 52
in order to synchronize the most up-to-date state of the object
with the source. A flush to the object source in flash-memory
provides persistence and a level of durability to the object
state.

[0128] A flush may not require that flash memory is imme-
diately written with the modified object. Instead, the modified
object may be stored in DRAM or a write buffer on home
node 52 when the flush is completed. Later, home node 52
may perform the actual writing of the modified object to flash
memory.

[0129] A two-phase commit may be used to avoid conten-
tions with other nodes that may also be accessing one of these
objects at about the same time. Action node 50 may in a first
phase indicate a desire to write a modified object back to the
home node, and receive a timestamp, and then in a second
phase actually write the modified object if there are no objec-
tions from other nodes. If another node objects, such as by
also indicating a desire to access the same object, the times-
tamps can be compared, and the node with the earlier times-
tamp wins.

[0130] After the two-phase commit process has succeeded,
SDF thread 92 on home node 52 locates the homed object
inside flash memory using flash object map 82, and the modi-
fied object from action node 50 is written into flash memory
as one of flash objects 80. Global cache directory 78 may first
be consulted to verify that no other nodes have this object, and
invalidations may be sent to any sharing nodes.

[0131] Global cache directory 78 is updated to indicate that
action node 50 no longer has this object locked. SDF thread
92 on home node 52 sends a message to action node 50 to
unlock the modified object that was just updated at home node
52, and application thread 90 on action node 50 unlocks the
object in object cache 84. The object could be deleted from
object cache 84, or changed from modified to shared, and
changed to the unlocked state to indicate that this object
cannot be written until a new lock is obtained form home node
52.

[0132] The transaction’s entry in transaction table 74 is
deleted once all modified objects have been successfully
flushed to their home nodes, and unlocked in object cache 84.
The transaction in finished and has been committed.

[0133] If any modified object cannot be written back to its
home node, such as if the home node crashed, then the trans-
action being committed must be aborted. Any modified
objects that have already been written back to their home
nodes must be restored to their initial conditions. Log files
may be used to recover from this rare situation.

[0134] FIG. 18 shows an abort transaction operation.
Sometimes, one of the operations inside a transaction cannot
be completed, or has an unsuccessful return code, perhaps
after several retries. A requested object may be locked by
another node and unavailable, and that other node may have

US 2009/0240664 Al

crashed or locked up, preventing release of the requested
object. An abort transaction operation may then be per-
formed.

[0135] Application thread 90 reads transient protocol state
table 76 and waits for all outstanding dependent requests that
are ordered before this transaction to complete. Then trans-
action table 74 is read to obtain a list of all objects touched by
the transaction being aborted. Transaction table 74 contains
the initial states of all objects in the transaction, or pointers to
these states, or other information that allows the initial states
to be obtained or generated. For example, the initial state of an
object may be stored on the home node of that object.
[0136] Alltouched objects in this transaction are restored to
their initial state at the beginning of this transaction, such as
by restoring objects in object cache 84 using the initial states
from transaction table 74. Alternately, each of the touched
objects may simply be invalidated in object cache 84.
[0137] Restored objects in object cache 84 that were locked
by the aborting transaction are unlocked, with an unlock
message being sent to the home node for each object being
unlocked. Home node 52 updates global cache directory 78 to
indicate that the object is unlocked. Other nodes may now
access the object. Once all restored objects have been suc-
cessfully unlocked, the entry for the aborting transaction can
be removed from transaction table 74.

[0138] FIG. 19 shows sync, transaction start, and lock
operations. A transaction start operation creates a new entry
in transaction table 74 at action node 50. A copy of all objects
that will be touched by the new transaction are stored in
transaction table 74 or otherwise archived to allow rollback to
this initial state should the new transaction later be aborted.
[0139] A sync operation, such as an SDF_SYNC, is per-
formed to synchronize application thread 90 with other
threads on action node 50 or on other nodes. Application
thread 90 (or SDF thread 92 if called by application thread 90
to perform the sync) reads transient protocol state table 76,
which has an ordered list of all outstanding requests for all
threads at action node 50, and the status of those requests.
Application thread 90 waits until all outstanding dependent
requests have completed.

[0140] The sync operation uses a set of ordering rules to
determine which outstanding requests must be completed
prior to the sync operation completing. In some embodi-
ments, each sync operation is enabled to select the ordering
rules it uses. In a first example, a sync operation executed by
an application does not complete until all outstanding opera-
tions of the application have completed. In a second example,
a sync operation does not complete until all outstanding write
operations of a particular transaction have completed. In a
third example, a sync operation does not complete until all
outstanding operations of the action node performing the
sync operation have completed.

[0141] Once all outstanding requests, as determined by the
ordering rules in use, have completed, the sync operation is
completed. Application thread 90 can resume having synched
to other threads.

[0142] A lock is requested before application thread 90
writes to an object that has already been loaded into object
cache 84 on action node 50. Once locked, other nodes cannot
write that object.

[0143] Application thread 90 sends a lock request message
to home node 52. SDF thread 92 on home node 52 looks up
the object’s entry in global cache directory 78 and waits until
the object is available and not locked by any other thread on

Sep. 24, 2009

any node. Once the object is free, SDF thread 92 on home
node 52 returns the lock to action node 50.

[0144] An ordered queue may be used to process lock
requests at home node 52. In addition to basic mutex-like
single state locks, read-write, and upgrade locks, various
complex sets of locks may also be implemented (e.g. multi-
granularity and hierarchical locks).

Alternate Embodiments

[0145] Several other embodiments are contemplated by the
inventors. For example, while PCle switch 30 has been
described, other local buses could be used, and switch 30
could be a HyperTransport switch rather than a PCle switch.
Multi-protocol switches or multiple switches or hubs could
be used, such as for supporting HyperTransport and PCle on
the same node. Data fabric switch 40, PCle switch 30, and
interconnect 110 may have overlapping hardware or software
and operate to allow messages to pass for SDF.

[0146] Rather than using a local-bus switch, other network
topographies could be used, including rings, chains, hubs,
and links. Although flash memory has been described, other
solid-state memories could be used for storing the objects at
the home node (homed objects), such as phase-change
memory, ferroelectric random-access memory (FRAM),
Magnetoresistive RAM (MRAM), Memristor, Phase-Change
Memory (PCM), Silicon-Oxide-Nitride-Oxide-Silicon
(SONOS) memory, Resistive RAM (RRAM), Racetrack
memory, nano RAM (NRAM), and other non-mechanical
non-volatile memories. Flash memory uses electrically-eras-
able programmable read-only memory (EEPROM), although
other technologies such as Phase-change-memory (PCM)
may be substituted. NAND flash memory may be used to
provide advantages in performance, such as write bandwidth,
compared to other non-volatile, electronic memory types.
Additional levels of storage hierarchy could be added, such as
hourly, daily, or weekly backups to disk, tape, or optical
media. There could be many flash modules or only one flash
module.

[0147] While the description above described the global,
shared flash memory as being accessible in one global shared
address space, in other embodiments, the global, shared flash
memory is accessible in a plurality of global address spaces.
For example, in some embodiments, each container is acces-
sible by a respective address space.

[0148] The Sharing Data Fabric (SDF) is a unified user-
space mechanism to access and store data into hierarchical
DRAM, flash memory and the storage sub-system of a clus-
tered or distributed set of compute nodes. SDF uses user-
defined attributes to control access, consistency, duplication,
and durability of objects in storage. To each application
executing on any compute node, the distributed data and
storage appears to be logically one big device with integrated
cache, memory and storage.

[0149] The layers of software and hardware in FIG. 5 may
use various combinations of hardware, firmware, middle-
ware, drivers, software, etc. and the layers may be modified in
various ways. The connections and interfaces between layers
and components may also vary from the simplified diagrams
of FIGS. 5, 6. Executing instances of DBMS program 200,
200' may operate on multiple nodes, with one instance per
node, or many instances per node. Several query processors
could share a common storage management 270, or each
query processor could have its own storage management 270.
Many other arrangements and partitionings of blocks are

US 2009/0240664 Al

possible. DBMS 200 may be substantially unmodified, yet be
relinked or use a different library, or may change some routine
names, and may changing how locking is done.

[0150] When transactions are not supported or used, trans-
action table 74 and (optionally) transient protocol state table
76 may be omitted. Other tables, lists, or data structures may
be used to track SDF operations at the action and home nodes.
Tables may contain entries in table format, or as linked lists,
or in other formats, and can be flat, hierarchal, multi-level, or
in a variety of other formats. Global cache directory 78 may
contain sharing lists with or without other information.
[0151] Transient protocol state table 76 in action node state
70 stored in DRAM 22 has entries to track outstanding
requests. Rather than storing information on threads, infor-
mation on contexts may be stored in state table 76. The
requesting context, type of request, request status, and order
of requests from each context are stored in this table, which is
shared by all contexts and their threads at node 100. An
indirection of “context™ is used to link a sequence of activity
of gets, puts, etc. An application thread can use multiple
contexts, or multiple threads can use one context. Application
threads cannot see any SDF related tables, only SDF protocol
threads can. By using contexts, monitoring of what applica-
tion thread is calling which SDF calls is not needed. This
makes the API more flexible.

[0152] For FIGS. 16-19, an asynchronous messaging
model could be enabled by activating a receiving SDF thread
92 at action node 50 when a message returning an object copy
is received from home node 52. Then the return arrow would
go to SDF thread 92 rather than to application thread 90 at
action node 50.

[0153] Inthis variation, receiving SDF thread 92 then loads
the object copy into object cache 84 of action node 50 and
application thread 90 can use the object copy. This handoff
using the receiving SDF thread isolates application thread 90
from the details of MPI messaging and may improve robust
multi-threaded execution.

[0154] While a database program requesting an object has
been described, other kinds of programs such as networked
services, applets, proxies, clients, servers, etc. may request
objects and operate in a manner similar to that described for
application programs 122. Each node could run one applica-
tion program such as a server application, or multiple pro-
grams of the same or differing types. These programs may
themselves perform some caching of data. Some applications
ornetworked services may bypass SDF and reach the network
interface directly, or may do so for somekinds of accesses that
do not require SDF. Other kinds of API calls and network
procedures or calls may be used than those listed in FIG. 8,
and additional API functions may be added. Different kinds
of messaging between nodes may be employed other than
MPI or MPI-like messaging.

[0155] While computing nodes have been described as
each having a processor, DRAM cache, flash memory, and a
NIC, some nodes could be compute-only nodes without any
flash memory. Other nodes may be storage-only and have
flash memory but do not execute application programs 122.
Nodes may have more than one processor, and may have
additional memories, such as a read-only memory for pro-
gram code, static random-access memory (SRAM), or other
DRAM. Several levels of processor cache may be present that
may keep even more transient copies of objects in DRAM 22.
The processor may include one or more processor chips,
which each may have one or more processor cores. For

Sep. 24, 2009

example, in some embodiments the processor includes two,
quad-core AMD Opteron™ processor chips.

[0156] A computing node may have a processor that
executes both a web server and a database server application,
or a combined application or applet. The compute node may
be able to execute several such applications simultaneously,
or several threads that can each handle one or more remote
user requests. Software may be partitioned or combined in
many different ways. In a first example, some or all of the
SDF APT’s are statically linked into an application program.
In a second example, some or all of the SDF API’s are in a
library that is dynamically linked into an application pro-
gram. In a third example, some or all of the SDF API’s are
integrated with an operating system. In a fourth example, a
stub library is used to replace at least some operating system
calls (such as for file operations) with calls to API’s in an SDF
library.

[0157] The NIC may connect to an Ethernet, an InfiniBand,
or some other kind of network, or even multiple network
types. While two NIC’s 36 are shown per node in FIG. 14, one
NIC 36 may be used per node, or more than two. Nodes may
be asymmetric and have different hardware rather than all be
identical. In FIGS. 16-17, the homed object may be stale, and
amore recent modified object from a third-party sharing node
may be fetched instead. An acknowledgement to home node
52 then may come from the sharing node rather than from
action node 50. Other flow modifications are possible.

[0158] Insome systems, compute nodes may have multiple
processors that have separate DRAM caches but share flash
memory. Groups of logical compute nodes may use the same
physical hardware. One compute node could act as both
action node 50 and home node 52 for one object in some of
these variations. SDF could send messages between proces-
sors on the same compute node that are acting as action node
50 and home node 52. These intra-node messages may or may
not use NIC 36.

[0159] Direct-memory access (DMA) may be used to trans-
fer blocks of data, rather than using I/O or other instructions
by processor 18 (FIG. 6). The terms permanent and transient
are relative to each other rather than absolute. Transient
objects in DRAM caches may be flushed or copied back to
flash periodically, or after a period of no accesses. DRAM
caches may be organized per node, per application, per
thread, per container, and various other organizations. A per-
manent object in flash may still be moved from one node to
another, or from one flash block location to another at the
same node, such as for wear-leveling, data migration, or de-
fragmenting purposes. Permanent is meant to imply durabil-
ity, or retention of data upon power loss, rather than an unlim-
ited life-time of the object.

[0160] A particular object may be replicated, so that several
copies of the object are located in flash memory of several
different nodes. This replication improves reliability since the
home node can fail and one of the back-up replica copies may
then be used as the home object. At any given time, only one
of'the replicas may be designated as the permanent object in
flash, while the others are kept as backups. The replica copies
may provide additional read-only access to the object.

[0161] The node chosen as the home node could change
over time to spread the wear of the replicas. Multiple replicas
could be used as home objects, but for different groups of
nodes, so that each group of nodes has only one of the replicas

US 2009/0240664 Al

as its home for the object. In some embodiments, replicas
provide read-only access, and write access is performed at the
home node.

[0162] While the permanent object has been described as
residing in flash memory of the home node, and transient
copies of the object have been described as residing in DRAM
cache on any node, some classes of object may have varying
properties. For example, some objects may be stored prima-
rily in DRAM rather than in flash memory, such as DRAM
objects 86 of FIG. 15. Some objects may be DRAM-only
objects that are never stored in flash memory. Instead, the
permanent object is in DRAM at the home node. Alternately,
some objects may not be allowed to be present in DRAM
caches, but only in flash memory at the home node. These
flash-only objects may be copied to DRAM for a specified
short period of time only. Some objects may have time limits
for residing in DRAM, or may specify how often they must be
copied back to flash memory. The maximum number of
shared copies allowed may be specified as an attribute.
[0163] Objects are a type of element that can be stored in a
container. Elements can be fixed-sized or variable-sized.
Variable-sized elements may be termed objects. The descrip-
tion above applies similarly to objects that are fixed-size
elements, with some differences such as an ability to access
fixed-size elements using, for example, a table look-up (based
on an address of the element) rather than a hash (based on a
key of the object’s name).

[0164] To aid consistent distribution and location of data
through the clustered or distributed flash-memory system,
metadata 88 (FIG. 15) may include an indication of a hash
function to be performed on the object identifier to generate
an identifier of a unit of storage known as a shard, and an
indication of a hash function on the container name to gener-
ate a node name. A shard-mapping table maps shard identi-
fiers to nodes (for example, via virtual node names), and
another table may be used to map virtual node names to
physical node addresses to provide a level of indirection in
order to enable dynamic configuration of the distributed
flash-memory system. Flash object map 82 may be a node
map or a local map. Metadata 88 may be stored in flash
memory 24 or may be stored in another memory such as a
non-volatile write buffer or a battery-backed memory.
[0165] Inaddition to the threading model described where
each request is handled by a thread, an event based model
could also be used where contexts (with state and progress
indicators) are maintained for each request utilizing a handful
of'threads. Application thread 90 in FIG. 16 uses the address
oridentifier forhome node 52 to send a message to home node
52. Alternatively, at any time during processing of an outgo-
ing request, the application thread may hand off the request to
the SDF thread, which performs any of the determining or
messaging functions on behalf of the application thread.
[0166] The word “may” indicates optionally and/or selec-
tively. An object name may be an object identifier, and an
identifier can be a name, key or address. The term thread is
sometimes used generically to refer to a locus of execution,
and may refer to one or more threads, processes, programs,
applications, applets, objects, executing contexts, etc.
[0167] In addition to storing all tables in DRAM, tables
could also be stored in a DRAM and flash-memory based
hierarchy. Tables could be backed up to flash periodically.
Backing up tables to flash memory could be specific to a local
node or global. In addition to application thread 90 executing
SDF protocols on the action node, SDF may process the

Sep. 24, 2009

protocol on a thread that may process more efficiently and act
as a proxy for application thread 90. Such a thread may reside
in the application process or in an SDF daemon on the same
node. Various arrangements, partitionings, and levels of
threads, programs, routines, and applications are possible.
[0168] The techniques described herein are applicable to
various types of databases, such as row-oriented databases,
column-oriented databases, relational databases, transac-
tional databases, and databases with and/or without some
and/or all of the ACID properties. While specific examples of
SDF commands have been given, there are, of course, many
possible ways of arranging and/or constructing and/or pro-
viding one or more data fabric commands and/or other ways
of controlling and/or managing a data fabric to achieve simi-
lar effect. Transactions may include lightweight transactions
such as for locks, and persistent transactions.

[0169] The specific API functions provided by the data
fabric vary according to different embodiments. Standard
APIs used by applications executing in a single address space
are replaced with data fabric APIs that transparently enable
the application to execute in a distributed fashion as shown in
FIGS. 12A-D.

[0170] Flash interface 106 and flash management 108
(FIGS. 7-8) may be software, firmware, hardware, or various
combinations. Hardware flash controllers 104 may include
firmware. Primitive operation container 240 (FIG. 12D) may
also contain log files, database indices, and database tables.
[0171] A global ordering of operations on the database may
be implemented with a ordering protocol. A protocol for
coordinating operations from multiple nodes to the same
database in order to provide a global ordering, is two-phase
commit. In two-phase commit, there are two communication
phases between a particular set of nodes for every database
update, the first phase to “prepare” the set of nodes and agree
on the update, the second phase to perform the update. A
logged 2-phase commit process may be used to facilitate
failure recovery. Recoverable decision and update schemes
for a clustered or a distributed system such as 3-phase com-
mit, voting or consensus may be used in place of 2-phase
commits.

[0172] Flash memory based log file containers are enabled
to store log records in non-volatile memory, such as battery-
backed DRAM, accessible via a flash memory controller, and
return the success code with DRAM latency vs. flash memory
write latency. For example, the latency to store a 256-byte
record to non-volatile DRAM memory is less than 10 micro-
seconds. By comparison, storing 256 bytes to some flash
memory takes at least 200 microseconds, and could take
longer, if small writes such as 256-byte writes are not directly
supported by the flash memory. Other kinds of files, records,
or containers could also be stored in a similar manner.
[0173] The SDF data fabric further enables efficient check-
point operations. One or more buffer caches, such as one
buffer cache per node, are managed by the data fabric for
application programs to use. As data items, such as attributes,
database records and rows, are modified, the data items are
optionally and/or selectively kept in one of the buffer caches
rather than being flushed back to permanent storage. The data
fabric may be enabled to provide a copy of a modified data
item in the buffer cache of one of the nodes to a program, such
as a DBMS storage manager instance executing on another of
the nodes and performing a data fabric access operation, such
as GET, in lieu of fetching a (stale) copy of the data item from
permanent storage.

US 2009/0240664 Al

[0174] Periodically, a DBMS program may flush some or
all of its modified items back to permanent storage, such as
flash memory, to keep the permanent storage contents rela-
tively current. The data fabric may be enabled to accelerate
the flushing by automatically copying all of the modified data
items back to permanent storage. For example, the DBMS
software may use a data fabric GLOBAL FLLUSH command
to initiate this operation.

[0175] DBMS program 200, 200' are scalable, since addi-
tional compute nodes may be added, each with a DBMS
program 200, to improve the number of user queries that can
be processed simultaneously. All compute nodes are able to
access the same partitioned database that is stored persis-
tently in flash memory on the storage nodes. The SDF allows
all compute nodes to access the same database on the storage
nodes in a scalable fashion, since SDF caches portions of the
database being accessed in each compute node’s local buffer
cache. The performance and query throughput is a linear (or
nearly linear) function of system cost and/or size (number of
nodes). The system can be more cost effective and/or scale to
larger sizes than symmetric multiprocessor (SMP) systems. A
DBMS which has been written to execute in a single address
space can execute as DBMS program 200 on the scalable
hardware and software platform shown in FIGS. 5-8 with
minimal or no modifications of software of the DBMS. Cer-
tain centralized functions of a DBMS, such as the logging and
the checkpointing, are efficiently scalable (and thus efficient
for larger systems) without extensive modifications to the
DBMS software.

[0176] The background of the invention section may con-
tain background information about the problem or environ-
ment of the invention rather than describe prior art by others.
Thus inclusion of material in the background section is not an
admission of prior art by the Applicant.

[0177] Any methods or processes described herein are
machine-implemented or computer-implemented and are
intended to be performed by machine, computer, or other
device and are not intended to be performed solely by humans
without such machine assistance. Tangible results generated
may include reports or other machine-generated displays on
display devices such as computer monitors, projection
devices, audio-generating devices, and related media devices,
and may include hardcopy printouts that are also machine-
generated. Computer control of other machines is another
tangible result. Processes and programs may be tangibly
embodied on computer-readable storage such as computer
disks, flash memory, main memory, optical disks, magnetic
disks, etc.

[0178] Any advantages and benefits described may not
apply to all embodiments of the invention. When the word
“means” is recited in a claim element, Applicant intends for
the claim element to fall under 35 USC Sect. 112, paragraph
6. Often a label of one or more words precedes the word
“means”. The word or words preceding the word “means™ is
a label intended to ease referencing of claim elements and is
not intended to convey a structural limitation. Such means-
plus-function claims are intended to cover not only the struc-
tures described herein for performing the function and their
structural equivalents, but also equivalent structures. For
example, although a nail and a screw have different struc-
tures, they are equivalent structures since they both perform
the function of fastening. Claims that do not use the word
“means” are not intended to fall under 35 USC Sect. 112,

Sep. 24, 2009

paragraph 6. Signals are typically electronic signals, but may
be optical signals such as can be carried over a fiber optic line.
[0179] The foregoing description of the embodiments of
the invention has been presented for the purposes of illustra-
tion and description. It is not intended to be exhaustive or to
limit the invention to the precise form disclosed. Many modi-
fications and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

We claim:

1. A distributed multi-node database comprising:

a plurality of compute nodes, each compute node compris-

ing:

a compute processor for executing threads and pro-
grams;

a database management system (DBMS) program
executing on the compute processor, the DBMS pro-
gram receiving a database query from a user, the data-
base query specifying a target database record;

a Sharing Data Fabric (SDF) thread executing on the
compute processor;

alocal buffer cache accessed by the DBMS program, the
local buffer cache storing a cached database record of
the target database record that is accessed by the
DBMS program;

a plurality of storage nodes, each storage node comprising:

anon-volatile memory for storing a portion of a database
comprising persistent database records;

a storage processor executing a storage thread;

wherein the non-volatile memory is a solid-state
memory that retains data when power is discon-
nected; and

a physical interconnect that connects the plurality of com-

pute nodes to the plurality of storage nodes;

wherein the SDF thread is activated by the DBMS program

when the target database record is not present in the local

buffer cache;

wherein the SDF thread further is enabled to identify a

target storage node in the plurality of storage nodes, the

target storage node storing the target database record in
the portion of the database stored on the target storage
node;

wherein the storage thread further is enabled to read the

target database record from the non-volatile memory of
the target storage node and send the target database
record over the physical interconnect to the SDF thread
on the compute node for storage in the local buffer cache
as the cached database record,

whereby the DBMS program on the compute node pro-

cesses the database query using the SDF thread to fetch

the target database record from the target storage node
using the storage thread.

2. The distributed multi-node database of claim 1 wherein
the DBMS program executing on the compute processor
accesses the database stored on the plurality of storage nodes
using the SDF thread executing on the compute processor, the
SDF thread communicating with the storage thread executing
on the storage processor to load the cached database record
into the local buffer cache;

wherein the DBMS program is enabled to execute in an

address space on a single node;

wherein the SDF thread makes the database visible within

the address space to the DBMS program;

US 2009/0240664 Al

wherein the database appears to the DBMS program to be
stored on the compute node of the DBMS program,
wherein the SDF thread communicating with the storage
thread transparently access the database stored on the
plurality of storage nodes,

whereby the DBMS program transparently accesses the
database stored on the plurality of storage nodes using
the SDF thread.

3. The distributed multi-node database of claim 2 wherein

a plurality of the DBMS program executing on the compute
processor on the plurality of compute nodes simultaneously
access the database stored on the plurality of storage nodes in
the address space,

whereby multiple DBMS programs access the database in
the address space.

4. The distributed multi-node database of claim 1 wherein
each compute node is also a storage node, wherein the com-
pute processor and the storage processor are a shared proces-
sor that executes the DBMS program and the SDF thread;

wherein the target database record is read for the SDF
thread from the non-volatile memory when the target
storage node is the compute node of the DBMS program
processing the database query,

whereby the SDF thread directly reads the non-volatile
memory when the target storage node is a local node of
the DBMS program.

5. The distributed multi-node database of claim 1 wherein

the DBMS program further comprises:

a query process, executing on the compute processor, for
processing the database query to identify the target data-
base record; and

astorage manager, executing on the compute processor, for
identifying the cached database record from the local
buffer cache when the cached database record is a copy
of' the target database record;

wherein the storage manager activates the SDF thread to
retrieve the target database record and load a copy of the
target database record into the local buffer cache when
the target database record misses in the local buffer
cache.

6. The distributed multi-node database of claim 5 wherein

the DBMS program further comprises:

a log writer that sends a log message to a log storage node
in the plurality of storage nodes;

wherein a logical sequence number is associated with the
log message stored in the log file,

whereby operations performed by the DBMS program are
logged at the log storage node.

7. The distributed multi-node database of claim 5 wherein
the database stored on the plurality of storage nodes com-
prises:

database tables that comprise a plurality of database
records including the target database record;

database indices that index the database tables; and

log files that log operations performed on the database.

8. The distributed multi-node database of claim 1 wherein
the compute node further comprises:

a transaction table that stores a list of database records
modified by a transaction and an initial state for database
records touched by the transaction;

transaction recovery means for aborting the transaction by
restoring the database records modified by the transac-
tion to their initial state stored in the transaction table;

Sep. 24, 2009

wherein the transaction is a series of operations performed
by the DBMS program that are all committed together or
all aborted together,

whereby transactions are aborted using the transaction
table.

9. The distributed multi-node database of claim 8 wherein

the compute node further comprises:

transaction-commit means for updating a database record,
activated when all operations in the transaction are suc-
cessfully completed and all outstanding requests for
database records modified by the transaction are com-
pleted;

persistent-update means, activated by the transaction-com-
mit means, for sending the database records modified by
the transaction to home nodes in the plurality of storage
nodes, the home nodes updating persistent database
records in the non-volatile memory using the modified
database records with changes from the transaction,

whereby transactions are committed by updating persistent
database records at home nodes once all outstanding
requests have successfully completed for all database
records modified by the transaction.

10. The distributed multi-node database of claim 1 further

comprising:

an applications-programming interface (API) to the SDF
thread, the API being called by the DBMS program to
get the target database record that is not present in the
local buffer cache, the SDF thread communicating with
the storage thread on the target storage node to copy the
target database record into the local buffer cache as the
cached database record read by the DBMS program,

wherein the DBMS program is not aware that the target
database record is located at the target storage node;

whereby the DBMS program uses the API to activate the
SDF thread to transparently copy the target database
record from the target storage node.

11. The distributed multi-node database of claim 10
wherein the API to the SDF thread comprises a multiprocess-
ing interface, a mutual-exclusion MUTEX library routine, or
a shared container of synchronization primitives including
test-and-set or compare-and-swap.

12. The distributed multi-node database of claim 1 wherein
the storage node further comprises:

a global cache directory having a sharing list, the sharing

list being a list of sharing nodes in the plurality of com-
pute nodes that store the cached database record that is a
copy of the target database record stored in the non-
volatile memory of the storage node;

a database record map that is used by the storage thread to
locate the target database record within the non-volatile
memory in response to a request for the target database
record from the compute node,

whereby the target database record is located with the
database record map and compute nodes storing copies
of the target database record are located using the global
cache directory.

13. The distributed multi-node database of claim 1 wherein
the non-volatile memory stores database records in electri-
cally-erasable programmable read-only memory (EEPROM)
memory cells or in phase-change memory (PCM) cells.

14. The distributed multi-node database of claim 1 wherein
the non-volatile memory consumes less power than a rotating
disk when accessing the database,

whereby power consumption is reduced.

US 2009/0240664 Al

15. A computer-program product comprising:

a computer-readable storage medium having computer-
executable program code means tangibly embodied
therein, which when executed on a computing device
manages a distributed database stored across multiple
nodes of flash memory, the computer-executable storage
program code means in the computer-program product
comprising:

query processing means for processing a database query
received from a user, the database query specifying a
target database record in a database;

local buffer cache means for storing cached database
records in a volatile memory;

table reader means for reading the target database record
from the local buffer cache means when a hit occurs;

table writer means for writing to the target database record
in the local buffer cache means when a hit occurs and the
target database record is in the local buffer cache means;

Sharing Data Fabric (SDF) thread means, activated by a
GET command from the table reader means when the hit
does not occur in the local buffer cache means, for send-
ing a request message over an interconnect from a first
node to a target storage node in a plurality of nodes, and
for identifying the target storage node using an identifier
of' the target database record;

storage thread means, executing on the target storage node,
for reading the target database record from the flash
memory at the target storage node that stores a portion of
the database, and for sending the target database record
over the interconnect to the SDF thread means on the
first node; and

miss loader means, in the SDF thread means, for receiving
the target database record from the target storage node
over the interconnect, and for writing the target database
record into the local buffer cache means, and for activat-
ing the table reader means to read the target database
record as a hit,

whereby the target database record is retrieved from the
target storage node using the SDF thread means trans-
parently to the table reader means.

16. The computer-program product of claim 15 wherein
the computer-executable program code means further com-
prises:

flush means, in the SDF means, for sending a flush message
to the target storage node, the flush message communi-
cating the target database record modified by the table
writer means;

persistent store means, in the storage thread means, for
writing the target database record to the flash memory at
the target storage node in response to the flush message,

whereby the target database record modified by the table
writer means is flushed to flash memory at the target
storage node.

17. The computer-program product of claim 15 wherein
the computer-executable program code means further com-
prises:

lock request means, in the SDF thread means, for sending
a lock message to the target storage node in response to
the table writer means attempting to write to the target
database record in the local buffer cache means;

directory means, on the target storage node, for indicating
that the target database record is locked by the first node

Sep. 24, 2009

in response to the lock message, the directory means
preventing other nodes from writing to the target data-
base record when locked;

unlock means, in the SDF thread means, for sending an
unlock message to the target storage node in response to
the table writer means finishing writing to the target
database record in the local buffer cache means;

wherein the directory means, on the target storage node,
indicates that the target database record is not locked by
the first node in response to the unlock message,

whereby database records are locked for writing.

18. The computer-program product of claim 17 wherein
the computer-executable program code means further com-
prises:

sync means, in the SDF means, for sending a sync message
to the target storage node;

wherein the storage thread means further comprises sync
update means for allowing other nodes in the plurality of
nodes to access the target database record modified by
the table writer means by updating the directory means
on the target storage node;

cache pin means, in the SDF means, for marking for reten-
tion the target database record in the local buffer cache
means during a current transaction.

19. A transactional distributed database comprising:

a plurality of database management system (DBMS) pro-
grams executing on a plurality of processors on a plu-
rality of compute nodes, each DBMS program receiving
database queries from clients that identify target data
items in a database;

a plurality of storage nodes each having a non-volatile
memory that stores a portion of the database, wherein
the database is partitioned across the plurality of storage
nodes;

wherein the non-volatile memory is a solid-state memory
that retains data when power is disconnected;

an interconnect that passes messages between the plurality
of compute nodes and the plurality of storage nodes; and

aplurality of Sharing Data Fabric (SDF) threads executing
on the plurality of processors on the plurality of compute
nodes, a SDF thread being activated by the DBMS pro-
gram when the target data items are not present in a local
buffer cache, the SDF thread identifying a target storage
node in the plurality of storage nodes, the target storage
node being a home node that persistently stores the
target data items, the SDF thread sending a request mes-
sage to the target storage node;

wherein each storage node further comprises a processor
executing a storage thread, the storage thread reading the
target data items from the non-volatile memory in
response to the request message received over the inter-
connect, the storage thread sending the target data items
over the interconnect in a reply message sent in response
to the request message;

wherein each of the plurality of DBMS programs operates
in a shared address space that includes the database
stored on the plurality of storage nodes, the plurality of
SDF threads transparently accessing data items stored
on the plurality of storage nodes.

20. The transactional distributed database of claim 19

wherein an action node in the plurality of nodes comprises:

a transaction table, wherein operations performed by the
DBMS program are grouped into a transaction having a
transaction entry in the transaction table,

US 2009/0240664 Al

wherein a first operation in a new transaction causes the
SDF thread to create a new entry in the transaction table
for the new transaction;

wherein the SDF thread adds a list of touched data items to
the new entry in the transaction table when subsequent
operations in the transaction access the touched data
items in the database;

wherein a final commit operation in the new transaction
causes the SDF thread to flush modified data items in the
list of touched data items in the new entry, wherein
modified data items are sent over the interconnect to the

Sep. 24, 2009

plurality of storage nodes for storage in the non-volatile
memory of storage nodes storing the modified data
items;

wherein when an error occurs during processing of the new
transaction, an abort operation is processed instead of
the final commit operation, the abort operation prevent-
ing any of the modified data items from updating the
non-volatile memory in the plurality of storage nodes,

whereby operations in the new transaction are committed
together or aborted together as an atomic transaction.

sk sk sk sk sk

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Drawings
	Page 17 - Drawings
	Page 18 - Drawings
	Page 19 - Drawings
	Page 20 - Drawings
	Page 21 - Drawings
	Page 22 - Drawings
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Description
	Page 31 - Description
	Page 32 - Description
	Page 33 - Description
	Page 34 - Description/Claims
	Page 35 - Claims
	Page 36 - Claims
	Page 37 - Claims

