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METHOD AND APPARATUS FOR
DISSEMINATING TOPOLOGY
INFORMATION AND FOR DISCOVERING
NEW NEIGHBORING NODES

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/334,141 filed on Nov. 28, 2001, which
is herein incorporated by reference.

This application is a continuation-in-part of U.S. appli-
cation Ser. No. 09/728,211, filed on Dec. 1, 2000, now U.S.
Pat. No. 6,845,091 which claims the benefit of U.S. Provi-
sional Applications, Ser. No. 60/190,358, filed Mar. 16,
2000, Ser. No. 60/232,047, filed Sep. 12, 2000, Ser. No.
60/232,046, filed Sep. 12, 2000, and Ser. No. 60/248,455,
filed Nov. 14, 2000, the entirety of these applications are
also incorporated by reference herein.

GOVERNMENT SUPPORT

This invention was funded with government support
under Contract No. DAAB07-96-D-H002, awarded by the
U.S. Army Communications and Electronics Command. The
United States government has certain rights to this inven-
tion.

BACKGROUND

A network is a collection of communications entities (e.g.,
hosts, routers, and gateways) that are in communication with
each other over communication links. Organizing commu-
nications entities into networks increases the capabilities of
the communication entities beyond that which each com-
munications entity alone is capable by enabling such entities
to share resources. A network that interconnects communi-
cations entities within a common geographical area (for
example, the personal computers in an office) is called a
local area network (LAN). Some LANs employ one or more
network servers that direct the flow of data within the
network and control access to certain network functions
such as storing data in a central file repository, printing,
accessing other networks. In other LANs, computers com-
municate with each other without the use of servers.

A wide area network (WAN), of which the Internet is an
example, is a collection of geographically distributed [LANs
joined by long-range communication links. The Internet is a
publicly accessible, worldwide network of networks based
upon a transmission protocol known as TCP/IP (Transmis-
sion Control Protocol/Internet Protocol). Communications
on the Internet is packet-switched; that is, the information
that is to pass from one communications entity to another is
broken into packets that are individually passed from router
to router until the packets arrive at their destination. The
TCP divides the data into segments and provides reliable
delivery of bytes in the segments to the destination, which
reconstructs the data. The IP further subdivides the TCP
segments into packets and routes the packets to their final
destination. The route taken by packets may pass through
one or more networks, depending upon the Internet Protocol
(IP) address of the destination.

A rapidly growing part of the Internet is the World Wide
Web (“Web”), which operates according to a client-server
model. Client software, commonly referred to as a Web
browser, runs on a computer system. After establishing an
Internet connection, the client user launches the Web
browser to communicate with a Web server on the Internet.
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Using TCP/IP, the Web browser sends HTTP (Hypertext
Transport Protocol) requests to the Web server. The request
traverses the Internet’s TCP/IP infrastructure to Web host
server as HTTP packets.

A private network based on Internet technology and
consisting of a collection of LAN and WAN components is
called an Intranet. Accordingly, communications entities
that are part of an intranet can use a Web browser to access
Web servers that are within the intranet or on the Internet.

Today, most of the communication links between the
various communications entities in a networks are wire-line;
that is, client systems are typically connected to a server and
to other client systems by wires, such as twisted-pair wires,
coaxial cables, fiber optic cables, and the like. Wireless
communication links, such as microwave links, radio fre-
quency (RF) links, infrared (IR) links, and satellite links, are
becoming more prevalent in networks.

A characteristic of wireless networks is that the commu-
nication entities in the network are mobile. Such mobility
creates frequent, dynamic changes to the network topology
and state of the communication links between the commu-
nication entities. Mobility is less of a concern for those
communication entities connected to the Internet by wire-
line, however, the topology of the Internet is perpetually
changing, with communication entities joining and leaving
the Internet often. Also, the state of communication links
between communication entities on the Internet may change
for various reasons, such as increased packet traffic.

To effectively route messages through such dynamically
changing networks, routers need to remain informed of
topology and link-state changes. Existing methods based on
flooding are inefficient and consume too much network
bandwidth. The inefficiency of flooding is the result, in part,
of the following redundancies: (1) link-state and topology
updates are sent over multiple paths to each router; and (2)
every router forwards every update to all neighboring rout-
ers, even if only a small subset of the neighboring routers
need to receive it.

The routing of update information and of data packets is
further complicated by the heterogeneous infrastructure of
the Internet. Currently, most communications entities on the
Internet exchange messages using the Internet Protocol
Version 4 (or IPv4), but an increasing number of commu-
nications entities that communicate using the Internet Pro-
tocol Version 6 (or IPv6) are being deployed. IPv6 is a
second generation Internet Protocol designed to supplant
1Pv4, but is expected to coexist with IPv4 until the transition
to IPv6 is complete. In general, the IP versions are incom-
patible: IPv4 routers cannot route IPv6 messages, nor can
IPv6 routers route IPv4 messages. Instead, special routers
that implement both the IPv4 and IPv6 protocols in a
“dual-stack” configuration are required to support the coex-
istence and transition phase.

Another difficulty presented by the mobility of the com-
munications entities is that the movement of one commu-
nication entity can interrupt on-going communications with
another entity. For example, a portable laptop computer with
a wireless link by which it is communicating with a Web
server on the Internet may be moved so that the link to
network, and thus to the Web server, is broken. In general,
the loss of the link irretrievably causes the loss of any
information being transmitted to the computer, although the
laptop computer may later regain the link or establish a new
link to the network. After reconnecting to the network, the
laptop computer must reestablish communications with the
Web server. The on-going communications are lost.
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Thus, there remains a need for a mobile wireless network
that can perform reliably and efficiently despite the afore-
mentioned difficulties associated with the mobility of the
communication entities in the network.

SUMMARY OF THE INVENTION

In one embodiment of the present invention, a proactive
link-state routing protocol designed for mobile ad-hoc net-
works is disclosed, which provides hop-by-hop routing
along shortest paths to each destination. Each node running
the present protocol will compute a source tree (providing
paths to all reachable nodes) based on partial topology
information stored in its topology table, using a modification
of Dijkstra’s algorithm. To minimize overhead, each node
reports only “part” of its source tree to neighbors. This is in
contrast to other protocols in which each node reports its
“entire” source tree to neighbors. The present invention
employs a combination of periodic and differential updates
to keep all neighbors informed of the reportable part of its
source tree. Each node also has the option to report addi-
tional topology information (up to the full topology), to
provide improved robustness in highly mobile networks.
The present invention performs neighbor discovery using
“differential” HELLO messages that report only “changes”
in the status of neighbors. This results in HELLO messages
that are much smaller than those of other link-state routing
protocols such as OSPF.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is pointed out with particularity in the
appended claims. The objectives advantages of the invention
described above, as well as further objectives and advan-
tages of the invention, may be better understood by refer-
ence to the following description taken in conjunction with
the accompanying drawings, in which:

FIG. 1 is a block diagram of an embodiment of a mobile
internetworking system including a plurality of subnets in
communication with the Internet;

FIG. 2 is a block diagram of a portion of an embodiment
of protocol stack that can be implemented by each of the
routing nodes in each subnet to communicate in accordance
with the principles of the invention;

FIG. 3 is a flow diagram illustrating an embodiment of a
process by which each routing node selects a parent neigh-
bor node and children neighbor node(s) for each potential
source node in the subnet to define a minimum-hop-path tree
for each potential source node along which routing nodes
receive and forward link-state updates originating from that
source node;

FIG. 4 is a diagram illustrating an embodiment of an
exemplary minimum-hop-path tree for the nodes in the
subnet of FIG. 1;

FIG. 5 is a block diagram illustrating the operation of a
partial topology version of the TBRPF protocol;

FIG. 6 is a diagram of an embodiment of a format of a
message header for an atomic TBRPF protocol message;

FIG. 7 is a diagram of an embodiment of a format of a
compound TBRPF message;

FIGS. 8A and 8B are diagrams of embodiments of a
format of a NEW PARENT protocol message;

FIG. 9 is a diagram of an embodiment of a format for a
CANCEL PARENT message;

FIGS. 10A and 10B are diagrams of embodiments of
exemplary formats for link-state update messages;
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FIG. 11 is a diagram of an embodiment of an exemplary
format of a RETRANSMISSION_OF_BROADCAST mes-
sage;

FIG. 12 is a flow diagram of an embodiment of a process
performed by the nodes of the subnet to achieve neighbor
discovery;

FIG. 13 is a diagram of a packet format for the protocol
messages used for neighbor discovery;

FIG. 14 is a flow diagram of another embodiment of a
process for performing neighbor discovery;

FIG. 15A is a diagram of a format for an IPv6 address
including a prefix and an interface identifier;

FIG. 15B is a diagram of an embodiment of the interface
identifier including a 24-bit company identifier concatenated
with a 40-bit extension identifier;

FIG. 15C is a diagram of an embodiment of the interface
identifier including a 24-bit company identifier concatenated
with the 40-bit extension identifier;

FIG. 15D is a diagram of an IPv6-IPv4 compatibility
address;

FIG. 15E is a diagram of an embodiment of a message
format for tunneling an IPv6-IPv4 compatibility address
through IPv4 infrastructure;

FIG. 16 is a flow diagram of an embodiment of a process
by which a router tests an IPv6-IPv4 compatibility address;

FIG. 17 is a flow diagram of an embodiment of a process
by which a mobile node and a server exchange messages;

FIGS. 18A and 18B are diagrams illustrating an example
of the operation of a message queue;

FIG. 19 illustrates a node of the present invention as
implemented using a general processing device;

FIG. 20 illustrates a diagram of a packet header format of
the present invention;

FIG. 21 illustrates a diagram of a format for simple-mode
packet headers of the present invention;

FIG. 22 illustrates a diagram of a format for extended-
mode packet headers of the present invention;

FIG. 23 illustrates a diagram of a format for packet body
of the present invention;

FIG. 24 illustrates a diagram of a format for padding
options within packet body of the present invention;

FIG. 25 illustrates a diagram of a second format for
padding options within packet body of the present invention;

FIG. 26 is a flowchart diagram of a neighbor discovery
method of the present invention;

FIG. 27 illustrates a flowchart of a method for dissemi-
nating topology information by a node;

FIG. 28 is a detailed flowchart diagram of a neighbor
discovery method of the present invention;

FIG. 29 illustrates a flowchart of a method for processing
a topology update message;

FIG. 30 illustrates a diagram of a format for a HELLO
subtype of a message of the present invention;

FIG. 31 illustrates a diagram of a Topology Update
Message format of the present invention;

FIG. 32 illustrates a diagram of an Association Message
format of the present invention; and

FIG. 33 illustrates a diagram of a second Association
Message format of the present invention.

DESCRIPTION OF THE INVENTION

FIG. 1 shows an embodiment of an internetworking
system 2 including communication sub-networks (“sub-
nets”) 10, 20 that are components of a worldwide network
of networks 30 (i.e., the “Internet”). The Internet 30 includes
communications entities, (e.g., hosts and routers), that
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exchange messages according to an Internet Protocol (IP)
such as IPv4 (version 4) and IPv6 (version 6). On the
Internet 30, entities implementing [Pv6 may coexist with
IPv4 entities. In general, the IPv4 and IPv6 versions are
incompatible. The incompatibility is due, in part, to the
difference in addressing format: the IPv4 specifies a 32-bit
address format, whereas the IPv6 specifies a 128-bit address
format.

A server 40 is connected to the Internet 30 by a wire-line
or wireless connection. The server 40 can be internal or
external to the subnet 10. For purposes such as hosting
application programs, delivering information or Web pages,
hosting databases, handling electronic mail (“e-mail”), or
controlling access to other portions of the Internet 30, the
server 40 is a computer system that typically handles mul-
tiple connections to other entities (e.g., client systems)
simultaneously. Although represented as a single server 40,
other embodiments can have a group of interconnected
servers. The data on the server 40 are replicated on one or
more of these interconnected servers to provide redundancy
in the event that a connection to the server 40 cannot be
established.

Each subnet 10, 20 includes one or more networks that
can include both local area network (LAN) and wide area
network (WAN) components. Each subnet 10, 20 may be a
freely accessible component of the public Internet 30, or a
private Intranet. The subnet 10 includes IP hosts 12, routers
14, and a gateway 16 (collectively referred to as nodes 18).
As used hereafter, a router 14 is any node 18 that forwards
IP packets not explicitly addressed to itself, and an IP host
12 is any node 18 that is not a router 14. Examples of devices
that can participate as a node 18 in the subnet 10 include
laptop computers, desktop computers, wireless telephones,
and personal digital assistants (PDAs), network computers,
television sets with a service such as Web TV, client com-
puter systems, server computer systems. The gateway 16 is
a particular type of routing node 14 that connects the subnet
10 to the Internet 30. The subnet 20 is similarly configured
with nodes 18' (i.e., hosts 12', routers 14', and gateways 16').

The subnet 10 can be associated with one organization or
administrative domain, such as an Internet service provider
(ISP), which associates each node 18 with an assigned IPv6
or IPv4 network address. Each IPv6 address is globally
unique, whereas each IPv4 address is locally unique at least
within the subnet 10, and may be globally unique. Presum-
ably, the assigned IP address has some topological relevance
to the “home” subnet 10 of the node 18 so that the nodes 18
of the subnet 10 can be collectively identified by a common
address prefix for routing purposes (called address aggre-
gation). In one embodiment, the gateway 16 is a dual-stack
node; that is, the gateway 16 has two IP addresses, an IPv6
address and an IPv4 address, and can route packets to IPv4
and IPv6 nodes.

Although it is conceivable that all nodes 18 in subnet 10
are initially assigned network addresses that follow a com-
mon address convention and have a common network prefix,
dynamic topology changes may result in nodes 18 leaving
their home subnet 10 to join a “foreign” subnet (e.g., subnet
20) and new nodes joining the home subnet 10. Because the
nodes 18 maintain the same IP address irrespective of
whether the node 18 changes its location within the subnet
10 or moves to the foreign subnet 20, mobility may result in
a heterogeneous conglomerate of IPv6 and IPv4 addresses,
having various network prefixes, within the single subnet 10
unless some form of dynamic address assignment or other
address-renumbering scheme is used. Further, the gradual
transition from the use of IPv4 network addresses to IPv6
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network addresses within the subnet 10 increases the like-
lihood of such a heterogeneous conglomeration. Thus, like
the Internet 30, the infrastructure of the subnet 10 can
become heterogeneous; some nodes 18 can be IPv4 nodes,
while others are IPv6 nodes.

In the subnet 10, each node 18 can establish connectivity
with one or more other nodes 18 through broadcast or
point-to-point links. In general, each link is a communica-
tion facility or medium over which nodes 18 can commu-
nicate at the link layer (i.e., the protocol layer immediately
below the Internet Protocol layer.) Such communication
links can be wire-line (e.g., telephone lines) or wireless;
thus, nodes 18 are referred to as wireless or wire-line
depending upon the type of communication link that the
node 18 has to the subnet 10. Examples of wireless com-
munication links are microwave links, radio frequency (RF)
links, infrared (IR) links, and satellite links. Protocols for
establishing link layer links include Ethernet, PPP (Point-
to-Point Protocol) links, X.25, Frame Relay, or ATM (asyn-
chronous transfer mode). Each wireless node 18, e.g., IP host
A 12, has a range 22 of communication within which that
node 18 can establish a connection to the subnet 10. When
beyond the range 22 of communication, the IP host A 12
cannot communicate with the server 40 on the Internet 30 or
with other nodes 18 in the subnet 10.

Each broadcast link connecting multiple nodes 18 is
mapped into multiple point-to-point bi-directional links. For
example, a pair of nodes 18 is considered to have established
a bi-directional link 18, if each node 18 can reliably receive
messages from the other. For example, IP host A 12 and node
B 14 have established a bi-directional link 24 if and only if
IP host A 12 can receive messages sent from node B 14 and
node B 14 can receive messages sent from IP host A 12 at
a given instant in time. Nodes 18 that have established a
bi-directional link are considered to be adjacent (i.e., neigh-
boring nodes). Such a bi-directional link 24 between the two
nodes A and B is represented by a pair of unidirectional links
(A, B) and (B, A). Each link has at least one positive cost (or
metric) that can vary in time, and for any given cost, such
cost for the link (A, B) may be different from that for the link
(B, A). Any technique for assigning costs to links can be
used to practice the invention. For example, the cost of a link
can be one, for minimum-hop routing, or the link delay plus
a constant bias.

In one embodiment, the subnet 10 is a mobile “ad hoc”
network (“MANET”) in that the topology of the subnet 10
and the state of the links (i.e., link state) between the nodes
18 in the subnet 10 can change frequently because several of
the nodes 18 are mobile. That is, each mobile node 18 may
move from one location to another location within the same
subnet 10 or to another subnet 20, dynamically breaking
existing links and establishing new links with other nodes
18, 18' as a result. Such movement by one node 18 does not
necessarily result in breaking a link, but may diminish the
quality of the communications with another node 18 over
that link. In this case, a cost of that link has increased.
Movement that breaks a link may interrupt any on-going
communications with other nodes 18 in the subnet 10 or in
the foreign subnet 20, or with servers (e.g., server 40)
connected to the Internet 30. In another embodiment, the
position of every node 18 in the subnet 10 is fixed (i.e., a
static network configuration in which no link state changes
occur due to node mobility). As the principles of the
invention apply to both static and dynamic network con-
figurations, a reference to the subnet 10 contemplates both
types of network environments.
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The following example illustrates the operation of the
subnet 10. Consider, for example, that node A is communi-
cating with the server 40 over a route through subnet 10 that
includes the link (A, B) to node B 14, when node A 12 moves
from its present location. This movement breaks the com-
munication link with node B 14 and, as a result, interrupts
communications with the server 40. The relocation of node
A 12 may break a link with one or more other nodes 18 as
well. As one example, the movement by node A 12 may
temporarily take node A 12 out of communication range
with node B 14, and upon returning within range, node A 12
can reestablish the broken link 24 with node B 14. In this
example, the link 24 is intermittent. As another example,
node A 12 may move to a different location within the subnet
10 altogether and reestablish a bi-directional link 26 with a
different node, (e.g., here node H). In yet another example,
node A 12 may move to the foreign subnet 20 and establish
a bi-directional link 28 with a node 14' in the subnet 20 (e.g.,
node M 14").

Each router 14 in the subnet 10 is responsible for detect-
ing, updating, and reporting changes in cost and up-or-down
status of each outgoing communication link to neighbor
nodes. Thus, each router 14 in the subnet 10 runs a link-
state-routing protocol for disseminating subnet topology and
link-state information to the other routers 14 in the subnet
10. Each router 14 also executes a neighbor discovery
protocol for detecting the arrival of new neighbor nodes and
the loss of existing neighbor nodes. To achieve discovery, IP
hosts 12 connected to the subnet 10 also run the neighbor
discovery protocol. IP hosts 12 can also operate as routers by
running the link-state-routing protocol (in the description,
such routing IP hosts are categorically referred to as routers
14). The link-state-routing protocol, referred to as a topol-
ogy broadcast based on reverse-path forwarding (TBRPF)
protocol, seeks to substantially minimize the amount of
update and control traffic required to maintain shortest (or
nearly shortest) paths to all destinations in the subnet 10.

In brief, the TBRPF protocol performed by each of the
routers 14 in the subnet 10 operates to inform a subset of the
neighboring routers 14 in the subnet 10 of the current
network topology and corresponding link-state information.
Thus, for the examples above, each router 14 in the subnet
10 that detects a change in a link to node A 12, (e.g., node
B 14 in the cost of the link (B, A)), operates as the source
(i.e., source node) of an update. Each source node sends a
message to a neighbor of that source node, informing the
neighbor of the update to that link. Each router 14 receiving
the update may subsequently forward the update to zero or
more neighbor nodes, until the change in the topology of the
subnet 10 disseminates to the appropriate routers 14 in the
subnet 10.

To transmit update messages, the TBRPF protocol sup-
ports unicast transmissions (e.g., point-to-point or receiver
directed), in which a packet reaches only a single neighbor,
and broadcast transmissions, in which a single packet is
transmitted simultaneously to all neighbor nodes. In particu-
lar, the TBRPF protocol allows an update to be sent either
on a common broadcast channel or on one or more unicast
channels, depending on the number of neighbors that need
to receive the update.

Upon recovering the same link to node B 14, or upon
reestablishing a new link to another node 18 in the same
subnet 10 or in the foreign subnet 20, the node A 12 can
resume the interrupted communications with server 40. In
effect, one of the nodes 18, 18' in the subnet 10, 20,
respectively, using the neighbor discovery protocol, discov-
ers node A 12 and, using the TBRPF protocol, initiates
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dissemination of topology and link-state information asso-
ciated with the link to node A 12. The routers 14 also use the
TBRPF protocol to disseminate this information to the other
routers in the respective subnet 10 so that one or more routes
to the node A 12 become available for communication with
the server 40.

In one embodiment, such communications resume at their
point of interruption. In brief, node A 12 maintains, in local
cache, copies of objects that are located on the server 40.
When node A 12 and the server 40 are in communication,
node A 12 updates the objects as necessary, thereby main-
taining substantially up-to-date copies of the objects. Thus,
when node A 12 moves out of the communication range 22
with the subnet 10, the node A 12 initially has up-to-date
information. Then when node A 12 reconnects to the subnet
10, the server 40 forwards previously undelivered updates to
the objects locally stored at node A 12, along a route
determined by information stored at each of the routing
nodes 14. In the event node A 12 reconnects to the foreign
subnet 20, a hand-off protocol, such as MobilelP, is used to
achieve the redirection of the messages between the server
40 and the node A 12.

The route taken by the object updates may traverse a
heterogeneous IPv6/IPv4 infrastructure. Normally, IPv6
nodes are unable to route packets to other IPv6 nodes 18
over routes that pass through IPv4 infrastructure. In one
embodiment, described in more detail below, the nodes 18
use an [Pv6-IPv4 compatible aggregatable global unicast
address format to achieve such routing. This IPv6-IPv4
compatibility address format also enables incremental
deployment of IPv6 nodes 18 that do not share a common
multiple access data-link with another IPv6 node 18.

Accordingly, the internetworking system 2 provides vari-
ous mobile ad hoc extensions to the Internet 30 that are
particularly suited to the dynamic environment of mobile ad
hoc networks. Such extensions, which are described further
below, include techniques for (1) disseminating update
information to nodes 18 in the subnet 10 using the TBRPF
protocol; (2) detecting the appearance and disappearance of
new neighbor nodes using a neighbor discovery protocol; (3)
establishing an address format that facilitates deployment of
IPv6 nodes in a predominantly IPv4 network infrastructure;
(4) updating information upon resuming communications
between nodes; and (5) adaptively using network bandwidth
to establish and maintain connections between nodes 18 and
the server 40.

FIG. 2 shows a portion of an embodiment of protocol
stack 50 that can be used by each of the routing nodes 14,
14' to communicate with other routing nodes 14 in the
subnet 10, 20 and on the Internet 30, and thereby implement
the various extensions to the Internet 30 described herein.
The protocol stack 50 includes a data-link layer 54, a
network layer 62, and a transport layer 70.

The data link layer 54 can implemented by any conven-
tional data link protocol (e.g., IEEE 802.11) with an address-
ing scheme that supports broadcast, multicast and unicast
addressing with best-effort (not guaranteed) message deliv-
ery services between nodes 18 having instantaneous bi-
directional links. For such implementations, each node 18 in
the subnet 10 has a unique data link layer unicast address
assignment.

The network layer 62 is the protocol layer responsible for
assuring that packets arrive at their proper destination. Some
of'the mobile ad hoc extensions for the Internet 30 described
herein operate at the network layer 62, such as the TBRPF
protocol 58 and the IPv6-1Pv4 compatibility address format,
described in more detail below. Embodiments that redirect
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communications from foreign subnets to home subnets also
use hand-off mechanisms such as Mobile IP, which operate
at the network layer 62. At the transport layer 70, other
mobile ad hoc extensions to the Internet 30 are implemented,
such as techniques for updating communications upon
restoring connections between nodes and for adaptively
using the network bandwidth.

1. Topology Broadcast Based on Reverse-Path Forwarding
(TBRPF) Protocol

In brief, the TBRPF protocol uses the concept of reverse-
path forwarding to broadcast each link-state update in the
reverse direction along a tree formed by the minimum-hop
paths from all routing nodes 14 to the source of the update.
That is, each link-state update is broadcast along the mini-
mum-hop-path tree rooted at the source (i.e., source node
“src”) of the update. The minimum-hop-path trees (one tree
per source) are updated dynamically using the topology and
link-state information that are received along the minimum-
hop-path trees themselves. In one embodiment, minimum-
hop-path trees are used because they change less frequently
than shortest-path trees that are determined based on a
metric, such as delay. Other embodiments of the TBRPF
protocol can use other types of trees, such as shortest path
trees, to practice the principles of the invention.

Based on the information received along the minimum-
hop-path trees, each node 18 in the subnet 10 computes a
parent node and children nodes, if any, for the minimum-
hop-path tree rooted at each source node src. Each routing
node 14 may receive and forward updates originating from
a source node src along the minimum-hop-path tree rooted
at that source node src. Each routing node 14 in the subnet
10 also engages in neighbor discovery to detect new neigh-
bor nodes and the loss of existing neighbor nodes. Conse-
quently, the routing node 14 may become the source of an
update and thus may generate an update message. When
forwarding data packets to a destination node, each routing
node 14 selects the next node on a route to the destination.

To communicate according to the TBRPF protocol, each
routing node 14 (or node i, when referred to generally) in the
subnet 10 stores the following information:

1. A topology table, denoted TT_i, consisting of all
link-states stored at node i. The entry for link (u, v) in
this table is denoted TT_i(u, v) and includes the most
recent update (u, v, ¢, sn) received for link (u, v). The
component ¢ represents the cost associated with the
link, and the component sn is a serial number for
identifying the most recent update affecting link (u, v)
received by the node i. The components ¢ and sn of the
entry for the link (u, v) is denoted TT_i(u, v).c and
TT_i(u, v).sn. Optionally, the dissemination of multiple
link metrics is attainable by replacing the single cost ¢
with a vector of multiple metrics.

2. A list of neighbor nodes, denoted N_i.

3. For each node u other than node i, the following is
maintained:

a. The parent, denoted p_i(u), which is the neighbor
node (“nbr”) of node i that is the next node on a
minimum-hop path from node i to node u, as
obtained from the topology table TT_i.

b. A list of children nodes of node i, denoted children_i
(w.

c. The sequence number of the most recent link-state
update originating from node u received by node i,
denoted sn_i(u). The sequence number is included in
the link-state update message. The use of sequence
numbers helps achieve reliability despite topology
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changes, because node i avoids sending another node
information that the other node already has. Each
node i maintains a counter (i.e., the sequence num-
ber) for each link that the node i monitors. That
counter is incremented each time the status of the
link changes.

d. The routing table entry for node u, consisting of the
next node on a preferred path to node u. The routing
table entry for node u can be equal to the parent
p_i(w) if minimum-hop routing is used for data
packets. However, in general, the routing table entry
for node u is not p_i(u), because the selection of
routes for data traffic can be based on any objective.

One embodiment of the TBRPF protocol uses the follow-

ing message types:

LINK-STATE UPDATE: A message containing one or
more link-state updates (u, v, c, sn).

NEW PARENT: A message informing a neighbor node
that the node has selected that neighbor node to be a
parent with respect to one or more sources of updates.

CANCEL PARENT: A message informing a neighbor that
it is no longer a parent with respect to one or more
sources of updates.

HELLO: A message sent periodically by each node i for
neighbor discovery.

NEIGHBOR: A message sent in response to a HELLO
message.

NEIGHBOR ACK: A message sent in response to a
NEIGHBOR message.

ACK: A link-level acknowledgment to a unicast trans-
mission.

NACK: A link-level negative acknowledgment reporting
that one or more update messages sent on the broadcast
channel were not received.

RETRANSMISSION OF BROADCAST: A retransmis-
sion, on a unicast channel, of link-state updates belong-
ing to an update message for which a NACK message
was received.

HEARTBEAT: A message sent periodically on the broad-
cast channel when there are no updates to be sent on
this channel, used to achieve reliable link-level broad-
cast of update messages based on NACKs.

END OF BROADCAST: A message sent to a neighbor
over a unicast channel, to report that updates originat-
ing from one or more sources are now being sent on the
unicast channel instead of the broadcast channel.

The formats for the various types of TBRPF protocol

messages are described below.

Building the Minimum-Hop-Path Tree for a Source

FIG. 3 shows an embodiment of a process by which each
routing node 14 selects a parent neighbor node and children
neighbor node(s) for each potential source node src in the
subnet 10. The selection of the parent and children neighbor
nodes for each potential source node src define a minimum-
hop-path tree for that potential source node along which the
routing nodes 14 receive and forward link-state updates
originating from that source node src. Pseudo-code describ-
ing the network-level procedures performed by each routing
node 14 is in Appendix A.

Node i receives (step 90) a message over a communica-
tion link. The received message can represent a link-state
update, the discovery of a new neighbor node, the loss of a
neighbor node, a change in the cost of a link to a neighbor
node, a selection of a new parent neighbor node, or a
cancellation of a parent neighbor node. Pseudo-code for
processing these types of received messages is provided in
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Appendix A; the corresponding procedures are called Pro-
cess_Update, Link_Up, Link Down, Link_Change, Pro-
cess_New_Parent, and Process_Cancel Parent, respec-
tively. The general procedure followed in response to all of
these events, and the specific procedure followed by a node
that has just started and has no topology information are
described below.

If node i receives a message representing a link-state
update, the discovery of a new neighbor node, the loss of a
neighbor node, or a change in the cost of a link to a neighbor
node, node i enters (step 100) the new link-state information,
if any into the topology table, TT_i, and forwards (step 102)
the link-state information in a link-state update to the
neighbor nodes in children_i(src), where src is the source
node at which the update originated. Node i then computes
(step 104) the parent nodes p_i(u) for all potential source
nodes src by running a shortest-path algorithm such as
Dijkstra’s algorithm. If this computation results in a change
to the parent node p_i(u) for any source u, node i then sends
a NEW PARENT(u, sn) message, where sn=sn_i(u), to the
new parent node p_i(u) and a CANCEL PARENT message
to the old parent node (step 106).

If node i receives (step 90) a NEW PARENT(u, sn)
message from a sending node with source u and sequence
number sn, node i adds(step 108) the sending node to node
i’s list of children nodes children_i(u) for that source u, and
then sends (step 110) the sending node a LINK-STATE
UPDATE message containing all updates in node i’s topol-
ogy table, TT_i, originating from source u and having a
sequence number greater than sn. If node i receives (step 90)
a CANCEL PARENT(u) message from a sending node with
source U, node i removes (step 112) the sending node from
node 1’s list of children nodes children_i(u) for that source
u.

Consider, for example, the case in which node i initially
has no topology information. Accordingly, node i has no
links to neighbor nodes, and its topology table TT_ i is
empty. Also the parent node is p_i(src)>NULL (i.e., not
defined), the children_i(src) is the empty set, and sn_i(src)=0
for each source node src. Upon receiving (step 90) messages
representing the discovery of neighbor nodes, node i
executes the Link_Up procedure to process each link estab-
lished with each neighbor node nbr. Because each neighbor
node nbr of node i is (trivially) the next node on the
minimum-hop path from node i to neighbor node nbr, node
i selects (step 104) each of its neighbor nodes nbr as the new
parent node p_i(nbr) for source node nbr. Execution of the
Link-Up procedure results in node i sending (step 106) a
NEW PARENT message to each neighbor node nbr. There-
fore, the NEW PARENT message sent to a new neighbor
node nbr contains the neighbor node nbr (and possibly other
sources) in its source list.

In response to the NEW PARENT message, then each
neighbor node nbr informs (step 110) node i of the outgoing
links of neighbor node nbr. Information about the outgoing
links of neighbor node nbr allows node i to compute
minimum-hop paths to the nodes at the other end of the
outgoing links, and thus to compute (step 104) new parents
p_i(src), for all source nodes src that are two hops away.
Node i sends (step 106) a NEW PARENT message to each
of these computed new parents. Then each parent p_i(src)
for each such source node src informs (step 110) node i of
the outgoing links for source node src, which allows node i
to compute (step 104) new parents for all source nodes that
are three hops away. This process continues until node i has
computed parent nodes for all sources nodes src in the
subnet 10. As a result, for a given source node src, the
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parents p_i(src) for all nodes i other than source node src
define a minimum-hop-path tree rooted at source node src
(after the protocol has converged).

Node i cancels an existing parent p_i(src) by sending a
CANCEL PARENT((src) message containing the identity of
the source node src. Consequently, the set of children,
children_i(src), at node i1 with respect to source node src is
the set of neighbor nodes from which node i has received a
NEW PARENT message containing the identity of source
node src without receiving a subsequent CANCEL PARENT
message for that source node src. Node i can also simulta-
neously select a neighbor node as the parent for multiple
sources, so that the node i sends a NEW PARENT (src_list,
sn_list) message to the new parent, where src_list is the list
of source nodes and sn_list is the corresponding list of
sequence numbers. Similarly, a CANCEL PARENT mes-
sage can contain a list of sources.

In one embodiment, the TBRPF does not use NEW
PARENT and CANCEL PARENT messages in the genera-
tion the minimum-hop-path tree. Instead, each node i com-
putes the minimum-hop paths from each neighbor node nbr
to all destinations (e.g., by using breadth-first search or
Dijkstra’s shortest-path algorithm). Consequently, each
node i computes the parents p_nbr(src) for each neighbor
node nbr and source node src, from which node 1 determines
which neighbor nodes nbr are its children for the given
source node src. Although this process eliminates NEW
PARENT and CANCEL PARENT messages, the process
also requires that each node i (1) sends all updates originat-
ing from the source node src to any child node in children_i
(src), or (2) periodically sends updates along the minimum-
hop-path tree, because node i does not know the sequence
number sn_nbr(src) from the neighbor node nbr and thus
does not know what updates the neighbor node nbr already
has. Either of these actions ensures that each neighbor node
nbr receives the most recent information for each link.

FIG. 4 shows an embodiment of an exemplary minimum-
hop-path tree 120 for the nodes 18 in the subnet 10 of FIG.
1. For the sake of illustration, assume that node D is the
source of an update. The parent 122 for nodes C, G, and H
with respect to the source node D is node D; the parent 124
for node F with respect to source node D is node H; the
parent 126 for nodes A and B with respect to source node D
is node F; the parent 128 for node E is node B; and the parent
130 for node L is node A. (In this example, node A is a
routing node 14, and thus runs the TBRPF protocol.)

Conversely, the children 132 of node D are nodes C, G,
and H; the child 134 of node H is node F; the children 136
ofnode F are nodes A and B; the child 138 of node B is node
E, and the child 140 of node A is node L. As shown, nodes
C, E, G, and L are leaf nodes, which, in accordance with the
TBRPF protocol, do not have to forward updates originating
from the source node D.

Updating the Minimum-Hop-Path Tree

In brief, the TBRPF protocol disseminates link-state
updates generated by a source node src along the minimum-
hop-path tree rooted at node src and dynamically updates the
minimum-hop-path tree based on the topology and link-state
information received along the minimum-hop-path tree.
More specifically, whenever the topology table TT_i of node
i changes, the node i computes its parent p_i(src) with
respect to every source node src (see the procedure Update_
Parents in Appendix A). The node i computes parents by (1)
computing minimum-hop paths to all other nodes using, for
example, Dijkstra’s algorithm, and (2) selecting the next
node on the minimum-hop path to each source node src to
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be the parent for that source node src (see the procedure
Compute_New_Parents in Appendix A). The computation of
parents occurs when the node i receives a topology update,
establishes a link to a new neighbor node, or detects a failure
or change in cost of a link to an existing neighbor node.

In one embodiment, node i computes a new parent p_i
(sre) for a given source node src even though the path to the
source node src through the new parent has the same number
of hops as the path to the source node src through the old
parent. In another embodiment, the node keeps the old
parent node in this event, thus reducing the overhead of the
TBRPF protocol. This embodiment can be implemented, for
example, by using the procedure Compute_New_Parents2
(given in Appendix A) instead of the procedure Compute_
New_Parents.

If the parent p_i(src) changes, node i sends the message
CANCEL PARENT(src) to the current (i.e., old) parent, if
the old parent exists. Upon receiving the CANCEL PAR-
ENT(src) message, the old parent (“k”) removes node i from
the list children_k(src).

Node i also sends the message NEW PARENT(src, sn) to
the newly computed parent if the new parent exists, where
sn=sn_i(src) is the sequence number of the most recent
link-state update originating from source node src received
by node i. This sequence number indicates the “position” up
to which node i has received updates from the old parent,
and indicates to the new parent that it should send only those
updates that occurred subsequently (i.e., after that sequence
number).

Upon receiving the NEW PARENT(src, sn) message, the
new parent “j” for p_i(src) adds node i to the list children_j
(src) and sends to node i a link-state update message
consisting of all the link states originating from source node
src in its topology table that have a sequence number greater
than sn (see the procedure Process_New_Parent in Appendix
A). Thus, only updates not yet known to node i are sent to
node i.

Generally, the range of sequence numbers is large enough
so that wraparound does not occur. However, if a small
sequence number range is used, wraparound can be handled
by employing infrequent periodic updates with a period that
is less than half the minimum wraparound period, and by
using a cyclic comparison of sequence numbers. That is, sn
is considered less than sn' if either sn is less than sn' and the
difference between sn and sn' (sn'-sn') is less than half the
largest possible sequence number, or sn' is less than sn and
the difference, sn—sn', is greater than half the largest possible
sequence number.

When a node i detects the existence of a new neighbor
nbr, it executes Link Up(i, nbr) to process this newly
established link. The link cost and sequence number fields
for this link in the topology table at node i are updated. Then,
the corresponding link-state message is sent to all neighbors
in children_i(i). As noted above, node i also recomputes its
parent node p_i(src) for every node src, in response to this
topological change. In a similar manner, when node i detects
the loss of connectivity to an existing neighbor node nbr,
node i executes Link_Down(i, nbr). Link_Change(i, nbr) is
likewise executed at node i in response to a change in the
cost to an existing neighbor node nbr. However, this proce-
dure does not recompute parents.

In one embodiment, if a path between the node i and a
given source node src ceases to exist, the node i computes
a new parent p_i(src) that is set to NULL (i.e., parent does
not exist). In another embodiment, although the path
between the node i and the given source node src ceases to
exist, the node i keeps the current parent, if the current
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parent is still a neighbor node of the node i. Thus, the
overhead of the TBRPF protocol is reduced because it is
unnecessary to send a CANCEL PARENT and a subsequent
NEW PARENT messages if the old path to the source
becomes operational later because of a link recovery. This
embodiment can be implemented by replacing the fifth line
of the procedure Update_Parents in Appendix A, “If
(new_p_i(src)!=p_i(src)){”, with the line “If (new_p_i(src)
p_i(src) and new_p_i(src)!=NULL){".

The TBRPF protocol does not use an age field in link-state
update messages. However, failed links (represented by an
infinite cost) and links that are unreachable (i.e., links (u, v)
such that p_i(u)=NULL) are deleted from the topology table
TT_i after MAX_AGE seconds (e.g., 1 hour) in order to
conserve memory. Failed links (u, v) are maintained for
some time in the topology table TT_i, rather than deleted
immediately, to ensure that the node i that changes its parent
p_i(u) near the time of failure (or had no parent p_i(u) during
the failure) is informed of the failure by the new parent.

Unreachable links, (i.e., links (u, v) such that node i and
node u are on different sides of a network partition), are
maintained for a period of time to avoid having to rebroad-
cast the old link state for (u, v) throughout node i’s side of
the partition, if the network partition soon recovers, which
can often happen if the network partition is caused by a
marginal link that oscillates between the up and down states.
If a link recovers resulting in the reconnection of two
network components that were disconnected (i.e., parti-
tioned) prior to the link recovery, the routing nodes 14 in one
partition my temporarily have invalid routes to nodes 18 in
the other partition. This occurs because the routing nodes 14
may receive an update message for the link recovery before
receiving update messages for links in the other partition.
Consequently, the link-information for those links in the
other partition may be outdated temporarily.

To correct this situation, in one embodiment, a header
field is added to each link-state update message, which
indicates whether the update message is sent in response to
a NEW PARENT message. The header field also identifies
the corresponding NEW PARENT message using a
sequence number. For example, if a given node i1 sends a
NEW PARENT message (for multiple sources) to node j
following the recovery of the link (i, j), the node i waits for
a response from node j to the NEW PARENT message
before sending to node i’s neighbor nodes an update mes-
sage corresponding to the link recovery. The response from
node j includes the link-state information of the other nodes
18 in the previously disconnected partition. Then node i
forwards this link-state information to node i’s neighbor
nodes. Consequently, the nodes 18 in the same partition as
node i receives updates for the links in the other partition at
the same time that the nodes 18 receive the update for the
link recovery. Thus, the link-state information for those links
in the other partition is not outdated temporarily.

A node 1 that is turned off (or goes to sleep) operates as
if the links to all neighbors have gone down. Thus, the node
i remembers the link-state information that it had when
turned off. Since all such links are either down or unreach-
able, these link states are deleted from the topology table
TT_i if the node i1 awakens after being in sleep mode for
more than MAX_AGE seconds.

Infrequent periodic updates occur to correct errors that
may appear in table entries or update messages. (See Send_
Periodic_Updates in Appendix A.) As discussed above,
periodic updates are also useful if the sequence number
range is not large enough to avoid wraparound.
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Initiating an Update Message

When a given routing node 14 detects a change in the state
of a neighbor node, that routing node 14 becomes the source
(i.e., source node src) of a link-state update message with
respect to corresponding link to that neighbor node. As
described above, the source node src then broadcasts each
link-state update along the minimum-hop-path tree rooted at
the source of the update.

A link-state update message reports the state of the link
(src, nbr) as a tuple (src, nbr, ¢, sn), where ¢ and sn are the
cost and the sequence number associated with the update. A
cost of infinity represents a failed link. The source node src
is the head node of link (src, nbr), and is the only node that
can report changes to parameters of link (src, nbr). There-
fore, any node 18 receiving the link-state update (src, nbr, c,
sn) can determine that the update originated from the source
node src.

The source node src maintains a counter sn_src, which is
incremented by at least one each time the cost of one or more
outgoing links (src, nbr) changes value. For example, the
counter sn_src can be a time stamp that represents the
number of seconds (or other units of time) elapsed from
some fixed time. When the source node src generates a
link-state update (src, nbr, ¢, sn), the sequence number sn is
set to the current value of sn_src.

Receiving an Update Message

In brief, each routing node 14 that receives a link-state
update message receives that update message along a single
path. That is, any link-state update originating from source
node src is accepted by node i if (1) the link-state update is
received from the parent node p_i(src), and (2) the link-state
update has a larger sequence number than the corresponding
link-state entry in the topology table TT_i at node i. If the
link-state update is accepted, node i enters the link-state
update into the topology table TT_i. Node i may then
forward the link-state update to zero or more children nodes
in children_i(src). In one embodiment, the link-state update
passes to every child node in children_i(src). (See the
procedures Update_Topology_Table and Process_Update in
the Appendix A.)

Forwarding Update Messages

In most link-state routing protocols, e.g., OSPF (Opens
Shortest Path First), each routing node 18 forwards the same
link-state information to all neighbor nodes. In contrast, in
one embodiment of the TBRPF protocol, each routing node
14 sends each link-state update only to neighbor nodes that
are children on the minimum-hop-path tree rooted at the
source of the update. Each routing node 14 having no
children for the source node src of the link-state update is a
leaf in the minimum-hop-path tree and therefore does not
forward updates originating from the source node src. In
typical networks, most nodes 18 are leaves, thus the TBRPF
protocol makes efficient use of the bandwidth of the subnet
10. In addition, those nodes having only one child node for
the source node src can send updates generated by the source
node src to that child node only, instead of broadcasting the
updates to all neighbor nodes.

The TBRPF protocol may utilize bandwidth more effi-
ciently by using unicast transmissions if those routing nodes
14 have only one child, or a few children, for the source of
the update, and broadcast transmissions when several chil-
dren exist for the update. Therefore, in one embodiment, the
TBRPF protocol determines whether to use unicast or broad-
cast transmissions, depending on the number of children
nodes and the total number of neighbor nodes.
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In general, each routing node 14 uses unicast transmis-
sions for updates with only one intended receiver (e.g., only
one child), and broadcast transmissions for updates with
several intended receivers, to avoid transmitting the update
message several times. Therefore, each routing node 14 uses
unicast transmission if k=1 and use broadcast if k>1, where
k is the number of intended receivers. A possible drawback
can occur if the number of children nodes exceeds one and
there are a many more neighbors. For example, if there are
two children nodes and twenty neighbor nodes, (i.e., k=2
and n=20, where k is the number of children nodes and n is
the number of neighbors), then 18 neighbor nodes are
listening to a message not intended for them. Such neighbor
nodes could instead be sending or receiving other messages.

To avoid this possible drawback, one option is to use
broadcast transmission if k>(n+1)/2 and unicast transmis-
sion in all other cases. In general, a rule of the form k>g(n)
can be used. For update messages, the number of children k
may be different for different update sources. Therefore, it is
possible to use unicast transmissions for some sources and
broadcast transmissions for other sources, and the transmis-
sion mode for a given source u, denoted mode_i(u), can
change dynamically between unicast and broadcast as the
number of children changes.

While LINK-STATE-UPDATE messages can be transmit-
ted in either unicast or broadcast mode, HELLO messages
and HEARTBEAT messages (discussed below) are always
transmitted on the broadcast channel, and the following
messages are always transmitted on the unicast channel (to
a single neighbor): NEIGHBOR, NEIGHBOR ACK, ACK,
NACK, NEW PARENT, CANCEL PARENT, RETRANS-
MISSION OF BROADCAST, END OF BROADCAST, and
LINK-STATE-UPDATE messages sent in response to a
NEW PARENT message.

Exemplary pseudo-code for a procedure-for sending a
LINK-STATE UPDATE message (that is not a response to
a NEW PARENT message) on the broadcast or unicast
channel is as follows:

If (mode__i(src) = = BROADCAST)
Append the message update__msg to the message queue associated
with the broadcast channel.
If (mode__i(src) = = UNICAST)
For (each node k in children_i(src))
Append the message update__msg to the message queue
associated with the unicast channel to node k.

Reliable unicast transmission of control packets can be
achieved by a variety of reliable link-layer unicast transmis-
sion protocols that use sequence numbers and ACKs, and
that retransmit a packet if an ACK is not received for that
packet within a specified amount of time.

Reliable Transmission in Broadcast Mode

For reliable transmission of Link-State Update messages
in broadcast mode, each broadcast update message includes
one or more link-state updates, denoted Isu(src), originating
from sources src for which the transmission mode is
BROADCAST. Each broadcast control packet is identified
by a sequence number that is incremented each time a new
broadcast control packet is transmitted. Reliable transmis-
sion of broadcast control packets in TBRPF can be accom-
plished using either ACKs or NACKs. If ACKs are used,
then the packet is retransmitted after a specified amount of
time if an ACK has not been received from each neighbor
node that must receive the message.



US 7,327,683 B2

17

In one embodiment of TBRPF, NACKs are used instead
of ACKs for reliable transmission of broadcast control
packets, so that the amount of ACK/NACK traffic is mini-
mized if most transmissions are successful. Suppose node i
receives a NACK from a neighbor node nbr for a broadcast
update message. In one embodiment, all updates Isu(src) in
the original message, for each source node src such that
neighbor node nbr belongs to children_i(src), are retrans-
mitted (reliably) on the UNICAST channel to the neighbor
node nbr, in a RETRANSMISSION OF BROADCAST
message. This message includes the original broadcast
sequence number to allow neighbor node nbr to process the
updates in the correct order. In another embodiment, such
update messages are retransmitted on the broadcast channel.
This embodiment may improve the efficiency of the TBRPF
protocol in subnets that do not support receiver-directed
transmission, because in such subnets unicast transmission
provides no efficiency advantage over broadcast transmis-
sions.

The procedure for the reliable transmission of broadcast
update packets uses the following message types (in addition
to LINK-STATE UPDATE messages): HEARTBEAT(sn),
NACK(sn, bit_map), and RETRANSMISSION OF
BROADCAST(sn, update_msg). A NACK(sn, bit_map)
message contains the sequence number (sn) of the last
received broadcast control packet, and a 16-bit vector (bit_
map) specifying which of the 16 broadcast control packets
from sn-15 to sn have been successfully received.

A description of the procedure for the reliable transmis-
sion of broadcast update packets at node 1 uses the following
exemplary notation:

Pkt(sn) represents a control packet with sequence number
sn transmitted on the broadcast channel by node i.
MsgQ represents a message queue for new control mes-

sages to be sent on the broadcast channel from node i.
brdest_sn_i represents the sequence number of the last
packet transmitted on the broadcast channel by node i.

Heartbeat_Timer represents a timer used in the transmis-
sion of the HEARTBEAT message.

Following the transmission of the broadcast control
packet Pkt(brdest_sn_i) on the broadcast channel, node i
increments brdcst_sn_i and reinitializes Heartbeat Timer.
When Heartbeat_Timer expires at node i, the node i appends
the control message HEARTBEAT (brdest_sn_i) to the mes-
sage queue associated with the broadcast channel, and
reinitializes Heartbeat_Timer. When the node i receives
NACK(sn, bit_map) from neighbor node nbr, node i per-
forms the functions as illustrated by following exemplary
pseudo-code:

For each (sn' not received as indicated by bit_map){

Let update__msg = {(src*, v*, sn*, ¢*) in Pkt(sn’) such that the
neighbor node nbr is in children_i(src*)}.

Append the message RETRANSMISSION OF
BROADCAST(sn', update__msg) to the message queue
associated with the unicast channel to neighbor node nbr.
(Message must be sent even if update__msg is empty.)}

Upon receipt at neighbor node nbr of control packet
Pkt(sn) transmitted on the broadcast channel by node i, the
neighbor node nbr performs the following operations as
illustrated by the following pseudo-code:
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If the control packet Pkt(sn) is received in error{

Append the control message NACK(sn, bit__map) to the
message queue associated with the unicast channel to
node i.}

If the control packet Pkt(sn) is received out of order (i.e., at least
one previous sequence number is skipped){

Withhold the processing of the control packet

Pkt(sn).

Append the control message NACK(sn, bit__map')
to the message queue associated with the
unicast channel to node i.}

Else (control packet Pkt(sn) is received correctly and in order){

For each Link-State Update message update__msg
in Pkt(sn), call Process_ Update(i, nbr,
update__msg).}

When a communication link is established from node i to
a new neighbor nbr, in one embodiment the node i obtains
the current value of brdcst_sn_nbr from the NEIGHBOR
message or NEIGHBOR ACK that was received from
neighbor node nbr.

Each node i can dynamically select the transmission mode
for link-state updates originating from each source node src.
As described above, this decision uses a rule of the form
k>g(n), where k is the number of children (for src) and n is
the number of neighbors of node i. However, to ensure that
updates are received in the correct order, or that the receiver
has enough information to reorder the updates, node i sends
an END OF BROADCAST((last_seq_no, src) message on
the unicast channel to each child when the mode changes to
UNICAST, and waits for all update packets sent on unicast
channels to be ACKed on before changing to BROADCAST
mode.

To facilitate this process, each node i maintains a binary
variable unacked_i(nbr, src) for each neighbor node nbr and
source node src, indicating whether there are any unACKed
control packets sent to neighbor node nbr containing link-
state updates originating at source node src. The following
exemplary pseudo-code illustrates an embodiment of a pro-
cedure that is executed periodically at each node i.

For each (node src){
If (mode__i(src) = BROADCAST and Ichildren__i(src)l <= g(n)){
For each (node nbr in children_i(sre)){
Append the message END OF
BROADCAST (brdest_sn__i, src) to the message
queue associated with the unicast channel to node
nbr.}
Set mode__i(src) = UNICAST.}
If (mode__i(src) = UNICAST and Ichildren__i(src)l > g(n)){
Set switch__flag = YES.
For each (node nbr in children_i(sre)){
If (unacked__i(nbr, src) = YES) Set switch__flag = NO.}
If (switch_flag = YES) Set mode__i(stc) = BROADCAST. }}

Full and Partial Topology TBRPF

In one embodiment, a result of the running the TBRPF
protocol is that each router 14 in the subnet 10 obtains the
state of each link in the subnet 10 (or within a cluster if
hierarchical routing is used). Accordingly, this embodiment
of the TBRPF protocol is referred to as full-topology link-
state protocol. In some embodiments, described below, the
TBRPF protocol is a partial-topology link-state protocol in
that each router 14 maintains a subset of the communication
links in the subnet 10. In the full-topology protocol embodi-
ment, each routing node 14 is provided with the state of each
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link in the subnet 10 (or cluster, if hierarchical routing is
used). In other embodiments, the TBRPF is a partial topol-
ogy protocol in that each routing node 14 is provided with
only a subset of the links in the subnet 10.

For the full-topology link-state protocol embodiment (1)
alternate paths and disjoint paths are immediately available,
allowing faster recovery from failures and topology
changes; and (2) paths can be computed subject to any
combination of quality-of-service (QoS) constraints and
objectives. Partial-topology link-state protocols provide
each node 18 with sufficient topology information to com-
pute at least one path to each destination. Whether imple-
mented as a full-topology or as a partial-topology protocol,
the TBRPF protocol is a proactive link-state protocol in that
each node 18 dynamically reacts to link-state and topology
changes and maintains a path to each possible destination in
the subnet 10 at all times.

A Partial-Topology Embodiment

In one partial-topology embodiment, each routing node
14 decides which of its outgoing links (i, j), called “special
links,” should be disseminated to all nodes in the subnet 10.
This subset of links is maintained in a list L_i. All other
outgoing links are sent only one hop (i.e., to all neighbor
nodes of node i). Node i sends an update to its neighbor
nodes if that update is the addition or removal of a link from
the list L_i, or reflects a change in the state of a link in the
list L_i.

Various rules can be used to define the set of special links
in the list [_i. For example, one rule defines a link (i, j) to
be in L_i only if node j is the parent of node i for some
source node other than node j, or if node j belongs to the set
children_i(src) for some source node src other than node i.
This definition of special links includes enough links to
provide minimum-hop paths between any pair of nodes. As
a result, this partial-topology embodiment reduces the
amount of control traffic without reducing the quality of the
routes. In this embodiment, an update (u, v, ¢, sn, sp) is
augmented to include a, “sp” field (e.g., a single-bit field),
which indicates whether the link (u, v) is a special link.
Pseudo-code representing an exemplary implementation of
the partial-topology embodiment appears in the Appendix A,
after the “Partial-Topology 17 header. The procedure Mark_
Special_Links(i) is called upon a change to the parent
p_i(src) or to the set of children nodes children_i(src).

A Second Partial-Topology Embodiment

In another partial-topology embodiment, each routing
node 14, hereafter node i, maintains a topology table TT_i,
a source tree Ti (i.e., computed paths to all destinations), a
set of reported links Ri, and a set of neighbor nodes Ni. The
entry of TT_i for a link (u, v) is denoted TT_i(u,v) and
consists of the tuple (u, v, ¢, ¢'), where c is the cost associated
with the link and ¢' is the last cost reported to neighbor nodes
for the link. The component ¢ of the entry for link (u, v) is
denoted TT_i(u, v).c. In addition, a parent p_i (u) and set of
children nodes children_i (u) are maintained for each node
u=node i. The parent p_i (u) is the next node on a shortest
path to node u, based on the information in TT_i. The source
tree Ti, computed by a lexicographic version of Dijkstra’s
algorithm, is the set of links that belong to at least one of the
computed paths. The set of reported links Ri includes the
source tree Ti and any link in TT_i for which an update has
been sent but a delete update has not since been sent. In
addition, a binary variable pending_i(u) is maintained for
each node u=node i, which indicates that the parent p_i (u)
is pending, i.e., that a NEW PARENT(u) message has been
sent to p_i (u) but no response has yet been received. In
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general, each node i reports to neighbor nodes the current
states of only those links in its source tree Ti, but sends only
part of its source tree Ti to each neighbor node such that no
node receives the same information from more than one
neighbor node. Pseudo-code representing an exemplary
implementation of this partial-topology embodiment of the
TBRPF protocol appears in the Appendix A, after the
“Partial-Topology 2” header.

Upon receiving an update message, consisting of one or
more updates (u, v, ¢), node i executes the procedure
Update( ), which calls the procedure Update_Topolo-
gy_Table( ), then executes the procedure Lex_Dijkstra( ) to
compute the new source tree Ti and the procedure Genera-
te_Updates( ) to generate updates and modity the set of
reported links Ri based on changes in link costs and changes
to the source tree Ti. Each generated update is then sent to
the appropriate children, that is, updates for links with head
u are sent to children_i(u). The procedure Update_
Parents( ) is called, which determines any changes in the
parent assignment and sends NEW PARENT and CANCEL
PARENT messages.

The sending of updates can be accomplished in different
ways, depending on whether the subnet 10 consists of
point-to-point links, broadcast links, or a combination of
both link types. In a network of point-to-point links, each
neighbor node k would be sent a message that contains the
updates for links (u, v) such that k belongs to children_i(w).
If a broadcast capability also exists, links (u, v) for which
children_i (u) has more than one member can be broadcast
to all neighbor nodes.

The procedure Update_Topology_Table( ) does the fol-
lowing for each update (u, v, ¢) in the input message
(in_message) such that the parent p_i(u) is the neighbor
node who sent the message. (Updates received from a node
other than the parent are ignored.) If either TT_i does not
contain an entry for (u, v) or contains an entry with a
different cost than ¢, then TT_i(u, v) is updated with the new
value ¢ and link (u, v) is marked as changed. If the input
message is a PARENT RESPONSE, then in addition to
updates, the message contains the same list of sources as the
NEW PARENT message to which it is responding. For each
such source node u such that pending_i(u)=1 and for each
link (u, v) in TT_i that is outgoing from source node u but
for which the input message does not contain an update, the
cost of (u, v) is set to infinity, to indicate that the link should
be deleted. In other words, any link that was reported by the
old parent but is not reported by the new parent is deleted.
Only information from the current parent is considered
valid.

The procedure Lex_Dijkstra( ) (not included in Appendix
A) is an implementation of Dijkstra’s algorithm that com-
putes the lexicographically smallest shortest path LSP(i, u)
from node i to each node u, using as path name the sequence
of nodes in the path in the reverse direction. For example,
the next-to-last node of LSP(i, u) has the smallest node 1D
among all possible choices for the next-to-last node. Such
paths are computed using a modification of Dijkstra’s algo-
rithm in which, if there are multiple choices for the next
node to label, the one with the smallest ID is chosen.

The procedure Generate_Updates( ) decides what updates
to include in the message to be sent to neighbor nodes. A
non-delete update is included for any link (u, v) that is in the
new source tree Ti and either is marked as changed or was
not in the previous source tree (denoted old source tree Ti).
In this case, Ti(u, v).c' is set to Ti(u, v).c, and (u,v) is added
to the reported link set Ri if not already in the reported link
set Ri. A delete update is included for any link (u, v) that is
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in the reported link set Ri but is not in the source tree Ti, such
that TT_i(u, v).c>TT_i(u,v).c'. In this case, (u, v) is removed
from the reported link set Ri. Any links with infinite cost are
erased from the topology table TT_i.

The procedure Update_Parents( ) sets the new parent
p_i(w) for each source node u to be the second node on the
shortest path to node u. If there is no path to node u, p_i(u)
is null. If the new parent is different from the old parent, then
a NEW PARENT message is sent to the new parent (if it is
not null) and a CANCEL PARENT message is sent to the old
parent (if it is not null and the link to the old parent is still
up). The NEW PARENT messages for all source nodes u
having the same new parent are combined into a single
message, and CANCEL PARENT messages are similarly
combined.

The procedure Process_New_Parent( ) is executed when
a NEW PARENT message is received from some neighbor
node. For each source node u in the NEW PARENT mes-
sage, the procedure adds the neighbor node to children_i(u)
and includes in the PARENT RESPONSE message an
update for each link (u, v) in the source tree Ti whose head
is source node u, if such a link exists. (Such a link will not
exist if node u is a leaf of source tree Ti.) As described
above, the PARENT RESPONSE also includes the same list
of sources as the NEW PARENT message to which it is
responding. (This list is not necessary if the node sending the
NEW PARENT message remembers the list and can match
the PARENT RESPONSE to the NEW PARENT message.)

When the cost of a link to a neighbor node j changes, node
i sets TT_i(i, j).c to the new cost and calls the procedure
Update( ) with k=i and an empty input message. A threshold
rule can be used so that TT_i(i, j).c is updated only if the
percent difference between the new cost and the old cost is
at least some given threshold. If a link to a neighbor node j
fails, the same procedure is followed (with the cost changing
to infinity), and node j is removed from set of neighbor
nodes Ni.

When a link to a neighbor node j comes up, either initially
or upon recovering from a failure, node i executes the
procedure Link_Up(l, j), which adds neighbor node j to the
set of neighbor nodes Ni, sets TT_i(i, j).c to the link cost, and
calls the procedure Update( ) with k=i and an empty input
message. This may result in a NEW PARENT message
being sent to neighbor node j.

To correct errors that may appear in TT_i due to noisy
transmissions or memory errors, each node i can periodi-
cally generate updates for its outgoing links. Since a
received update is ignored unless it has a cost that differs
from the entry in the topology table TT_i, the cost of the
periodic update should be chosen to be slightly different
from the previous update. Alternatively, each update can
contain an additional bit b, which toggles with each periodic
update.

FIG. 5 illustrates the operation of the second partial-
topology embodiment of the TBRPF protocol when a com-
munication link 142 between nodes B and D in the subnet 10
fails. The minimum-hop-path tree for source node B before
the link failure is shown with solid arrows; the minimum-
hop-path tree for source node C is shown with dashed
arrows. As shown node A selects node B as parent for source
nodes B, D, and F, and selects node C as parent for source
nodes C, E, and F. Therefore, node B reports link-state
changes to node A only for links (B, A), (B, C), (B, D), and
(D, F), and node C reports link-state changes to node A only
for links (C, A), (C, B), (C, E), and (E, ). Neither nodes B
or C would report a link-state change affecting link (F, G) to
node A. Thus, unlike the full-topology embodiment of the
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TBRPF, in which each node 14 has link information for
every link in the subnet 10, the nodes 18 of this partial-
topology embodiment have link-state information for less
than every link in the subnet 10.

If link (B, D) fails, as shown in FIG. 5, node B reports to
nodes A and C that link (B, D) has failed (cost=infinity).
Node C reports to node A that link (E, D) 144 has been added
to node C’s minimum-hop-path source tree. After receiving
these updates, node A selects node C as its new parent for
source nodes D and F, and sends a NEW PARENT message
to node C and a CANCEL PARENT message to node B.
Node C responds by sending node A an update only for link
(D, F), because link (D, F) is the only link in node C’s
minimum hop-path source tree with node D or node F as the
head of a link. For example, node F is the head of the link
(F, G), but the link (F, G) is not in node C’s minimum-hop-
path source tree and is therefore not reported to node A.
Although the minimum-hop-path source tree of node A is
modified during the update process, node A does not gen-
erate any updates because it has no children for any source
other than itself (i.e., node A).

TBRPF Protocol Messages

To disseminate link-state updates to the appropriates
nodes in the subnet 10, neighboring router nodes 14 that
have established bidirectional links and performed data link
to [Pv4 address resolution using TBRPF neighbor discovery
(as described below) exchange TBRPF protocol messages.
The IPv4 addresses are therefore available for use as node
IDs in TBRPF protocol messages.

In one embodiment, the TBRPF protocol messages are
sent via the User Datagram Protocol (UDP), which requires
an official UDP-service port-number registration. The use of
UDP/IPv4 provides several advantages over a data link level
approach, including (1) IPv4 segmentation/reassembly
facilities, (2) UDP checksum facilities, (3) simplified appli-
cation level access for routing daemons, (4) IPv4 multicast
addressing for link state messages.

TBRPF protocol messages are sent to the IPv4 unicast
address of a current neighbor or to the “All_TBRPF_Neigh-
bors” IPv4 multicast address, presuming that an official IPv4
multicast address is assigned to “All_TBRPF_Neighbors.”
In general, a message is sent to the IPv4 unicast address of
a current neighbor node if all components of the message
pertain only to that neighbor. Similarly, a message is sent to
the All_TBRPF_Neighbors IPv4 multicast address if the
message contains components which pertain to more than
one neighbor neighbors. Nodes 14 are prepared to receive
TBRPF protocol messages sent to their own IPv4 unicast
address or the All_TBRPF_Neighbors multicast address.

Actual addressing strategies depend on the underlying
data link layer for example, for data links such as IEEE
802.11, a single, multiple access channel is available for all
unicast and broadcast/multicast messages. In such cases,
since channel occupancy for unicast and multicast messages
is identical, it is advantageous to send a single message to
the All_TBRPF_Neighbors multicast address rather than
multiple unicast messages, even if the message contains
components that pertain to only a subset of the current
neighbor nodes. In other cases, in which point-to-point
receiver directed channels are available, sending multiple
unicast messages may reduce contention on the multiple
access broadcast channel.

Atomic TBRPF Message Format

FIG. 6 shows an exemplary embodiment of an individual
(atomic) TBRPF protocol message 160 including a message
header 162 followed by a message body 164. Atomic
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messages may be transmitted either individually or as com-
ponents of a compound TBRPF protocol message having
multiple atomic messages within a single UDP/IPv4 data-
gram. TBRPF message headers 162 are either 32-bits or
64-bits in length depending on whether the atomic message
is BROADCAST or UNICAST.

The message header 162 includes a type field 166, a
version field 168, a mode field 170, a number of sources field
172, an offset field 174, a link sequence number field 176,
and a receiver identification field 178, which is used when
the mode is defined as UNICAST.

The type filed 166 (e.g., 4 bits) represents the atomic
message type. The following are examples of atomic mes-

sage types:

ACK

NACK

NEW__PARENT

CANCEL__ PARENT

HEARTBEAT

END__OF_BROADCAST
LINK__STATE_UPDATE_A
LINK__STATE_UPDATE_B
RETRANSMISSION_OF_ BROADCAST

NoNE-CEEN e N VRN N VO SR

The version field 168 (e.g., 3 bits) represents the TBRPF
protocol version and provides a transition mechanism for
future versions of the TBRPF protocol. Also, the version 168
can assist the node 18 in identifying false messages pur-
porting to be TBRPF protocol messages.

The mode field 170 (e.g., 1 bit) represents the transmis-
sion mode for the atomic TBRPF protocol message 160; the
mode is either UNICAST or BROADCAST. UNICAST
refers to an atomic message that must be processed by only
a single neighbor node. BROADCAST refers to an atomic
message that is to be processed by all neighbor nodes. (For
IPv4 subnets, UNICAST implies a specific IPv4 unicast
address, whereas BROADCAST implies the All_T-
BRPF_Neighbors 1Pv4 multicast address.) The following
exemplary mode bits are defined:

UNICAST 0
BROADCAST 1

Messages of type ACK, NACK, NEW_PARENT, CAN-
CEL_PARENT, RETRANSMISSION_OF_BROADCAST,
and END_OF _BROADCAST are sent as UNICAST. Mes-
sages of type LINK_STATE_UPDATE_A and LINK_
STATE_UPDATE_B may be sent as either UNICAST or
BROADCAST.

The number of sources field 172 (e.g., 8 bits) represents
the number of sources ‘“Num_Sources” included in the
atomic message 160. The field 172 takes a value from 1 to
255 for messages of type: NEW_PARENT, CANCEL_PAR-
ENT, LINK_STATE_UPDATE_A, and LINK_STATE_UP-
DATE_B. All other message types are set Num_Sources=0.

The offset field 174 (e.g., 18 bits) represents the offset (in
bytes) from the 0’th byte of the current atomic message
header 162 to the 0’th byte of the next atomic message
header 162 in the “compound message” (described below.)
An offset of 0 indicates that no further atomic messages
follow. The 18-bit offset field 174, for example, imposes a
4-kilobyte length restriction on individual atomic messages.
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The sequence number field 176 (e.g., 4 bits) represents the
link sequence number (“LSEQ”) for this TBRPF protocol
message 160.

The receiver identification field 178 (e.g., 32 bits) repre-
sents the IPv4 address of the receiving node which is to
process this atomic message 160. All nodes 18 other than the
node identified by the identification field 178 do not process
this atomic message 160. This field 178 is used only if the
mode field 170 is set to UNICAST.

Compound TBRPF Protocol Message Format

FIG. 7 shows the format for a compound TBRPF protocol
message 180, which includes multiple (i.e., “N”) atomic
TBRPF messages 160, 160', 160" that are concatenated to
form the compound message 180 within a single UDP/IPv4
packet. Atomic message headers 162, in one embodiment,
are aligned on 32-bit boundaries, therefore an atomic mes-
sage body 164 with a non-integral number of 32-bit words
includes 1, 2 or 3 padding bytes 182, 182' preceding a
subsequent message header 162', 162", respectively.

TBRPF Atomic Message Body Format

The format of the atomic message body 164 depends on
the value in the type field 166 in the corresponding message
header 162. The following are exemplary formats for an
atomic message body 164.

ACK
The ACK message carries a NULL message body. A 4-bit

acknowledgment sequence number (from O . .. 15) is carried
in the LSEQ field 176 of the TBRPF message header 162.

NACK:

Each NACK message is a 16-bit vector. Each bit indicates
whether each of the last 16 messages prior to the 4-bit
sequence number supplied in the LSEQ field 176 of the
TBRPF message header 162 was received or lost. As
described above, the LSEQ field 176 is set to the sequence
number of the last broadcast message received from the
neighbor node to which the NACK is being sent.

NEW PARENT:

FIG. 8A shows an embodiment of an exemplary format
186 for a NEW PARENT message. The format 186 includes
one or more source node identity fields 188, 188', 188"
(generally 188) and one or more corresponding sequence
number fields 190, 190", 190" (generally 190). Each source
node identity field 188 holds a value (e.g., 32 bits) repre-
senting the IPv4 address of that source node. Each sequence
number field 190 holds a value (e.g., 16 bits) representing a
sequence number for the corresponding source node. The
FIG. 8A shows the message format for an even number of
source nodes. FIG. 8B shows an alternative ending 192 for
the NEW PARENT message format 186 for an odd number
of source nodes.

CANCEL PARENT:

FIG. 9 shows an embodiment of an exemplary format 194
for a CANCEL PARENT message. The format 194 includes
one or more source node identity fields 196, 196', 196"
(generally 196) for including the IPv4 address of each
source node for which the CANCEL PARENT message
applies.

HEARTBEAT:

In one embodiment, the HEARTBEAT message has an
eight-bit length and holds a sequence number for the broad-
cast channel.
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END OF BROADCAST:
In one embodiment, the END_OF_BROADCAST mes-
sage has an eight-bit length and holds a sequence number for
the broadcast channel.

Link-State Update Messages:

The TBRPF protocol provides two formats for two types
of link-state update messages. One type of link-state update
message, referred to as type LINK_STATE_UPDATE_A,
includes a single sequence number for each source node, and
is therefore used only if the updates for all links coming out
of the same source have the same sequence number. (For
example, periodic updates have this property.) This is done
to reduce the message size. The second type of link-state
update message, referred to as type LINK_STATE_UP-
DATE_B, includes a separate sequence number for each
link.

FIG. 10A shows an embodiment of an exemplary format
198 for one type of link-state update message, LINK-
STATE_UPDATE_A. The format 198 includes one or more
link-state updates (“IsuA’) 200, 200', 200" (generally 200).
Each IsuA 200 represents an update message with respect to
a particular source node and includes a source node identity
field 202, 202', 202" (generally 202), a number of neighbor
nodes field 204, 204', 204" (generally 204), and one or more
neighbor node sections 206, 206', 206" (generally 206). For
each neighbor node listed in a particular IsuA 200, each
neighbor node section 206 includes a neighbor-node identity
field 208, 208', 208" (generally 208), a sequence number
field 210, 210", 210" for corresponding source nodes and
neighbor nodes, and a link metrics field 212, 212', 212"
(generally 212) for that neighbor node.

The source node identity field 202 holds a value (e.g.,
32-bits) for the IPv4 address of the corresponding source
node. The number of neighbor nodes field 204 holds a value
(e.g., 16 bits) representing the number of neighbor nodes of
the corresponding source node. The neighbor-node identity
field 208 holds the IPv4 address of a neighbor node of the
corresponding source node. The sequence number field 210
holds a value (e.g., 16 bits) representing a sequence number
for the corresponding source and neighbor node. The link
metrics field 212 holds a value (e.g., 32 bits) representing the
link metrics associated with the neighbor node of the cor-
responding source node.

FIG. 10B shows an embodiment of an exemplary format
220 for the second type of link-state update message,
LINK-STATE_UPDATE_B. The format 220 includes one or
more link-state updates (“IsuB”) 222, 222', 222" (generally
222). Each IsuB 222 represents an update message with
respect to a particular source node and includes a source
node identity field 224, 224", 224" (generally 224), a number
of neighbor nodes field 226, 226, 226" (generally 226), a
sequence number field 228, 228', 228" (generally 228), and
one or more neighbor node sections 230, 230, 230" (gen-
erally 230). For each neighbor node listed in a particular
IsuB 222, each neighbor node section 230 includes a neigh-
bor-node identity field 232, 232", 232" (generally 232), and
a link metrics field 234, 234', 234" (generally 234) for that
neighbor node.

The source node identity field 224 holds a value (e.g.,
32-bits) for the IPv4 address of the corresponding source
node. The number of neighbor nodes field 226 holds a value
(e.g., 16 bits) representing the number of neighbor nodes of
the corresponding source node. The sequence number field
228 holds a value (e.g., 16 bits) representing a sequence
number for the associated with the source and neighbor
nodes. The neighbor-node identity field 232 holds the 1Pv4
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address of a neighbor node of the source node. The link
metrics field 234 holds a value (e.g., 32 bits) representing the
link metrics associated with the neighbor node of the cor-
responding source node.

RETRANSMISSION OF BROADCAST:

In brief, a RETRANSMISSION_OF BROADCAST
message provides the retransmission of a compound update
message in response to a NACK message. This compound
message may contain one or more atomic messages of type
LINK_STATE_UPDATE_A or LINK_STATE_UPDATE_B
concatenated together. FIG. 11 shows an embodiment of an
exemplary format 240 of a RETRANSMISSION_OF_
BROADCAST message including a message header 162™
and a compound message 180'. The message header 162",
like the message header 162 of the atomic message format
160 described above, includes a type filed 166, a mode field
170", a number of sources field 172', an offset field 174', and
a link sequence number field 176'. The type field 166' is set
to RETRANSMISSION_OF_BROADCAST (e.g., =9), and
the number of sources field 172" is set to 0. The offset field
174' is the offset (in bytes) from the 0’th byte of the current
compound message header to the 0’th byte of the next
compound message header 162' in the RETRANSMIS-
SION_OF_BROADCAST message 240. A 16-bit offset
value enables concatenation of compound messages 180" up
to 64 kilobytes in length.

As described above, broadcast update messages can be
retransmitted on unicast or broadcast channels. For retrans-
mission on a unicast channel, the mode field 170" is set to
UNICAST (e.g., =0) and the atomic message header 162"
precedes the compound message 180" The LSEQ field 176’
holds the sequence number corresponding to the unicast
channel on which the message is sent. The LSEQ field 176
of'each atomic message in the compound message 180' is the
broadcast sequence number that was included in the original
(broadcast) transmission of the message. Multiple
RETRANSMISSION_OF_BROADCAST messages can be
bundled into a compound message 180" as described above.

Selecting a Routing Path for Transmitting Packets

Routing protocols can also be classified according to
whether they find optimal (shortest) routes or sub-optimal
routes. By not requiring routes to be optimal, it is possible
to reduce the amount of control traffic (including routing
updates) necessary to maintain the routes. However, optimal
routes are desirable because they minimize delay and the
amount of resources (e.g., bandwidth and power) consumed.
The TBRPF protocol computes optimal routes based on the
advertised link states; however, the advertised link states
themselves may be approximate in order to reduce the
frequency at which each link is updated.

In the full-topology embodiment of the TBRPF protocol,
each routing node 14 has complete link-state information.
Each routing node 14 then applies a path selection algorithm
to compute preferred paths to all possible destinations, and
to update these paths when link states are updated. One
exemplary path selection algorithm is to apply Dijkstra’s
algorithm to compute shortest paths (with respect to cost, ¢)
to all destinations. In other embodiments, the TBRPF pro-
tocol can employ any other path selection algorithm. Once
preferred paths are computed, the routing table entry for
node u is set to the next node on the preferred path to node
u. If minimum-hop routing is desired, then the routing table
entry for node u can be set to the parent p_i(u).

2. Neighbor Discovery
Each routing node 14 running the TBRPF protocol uses a
neighbor discovery protocol to detect the establishment of
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new links to new neighbor nodes and the loss of established
links to existing neighbor nodes. In general, the neighbor
discovery protocol dynamically establishes bi-directional
links and detects bi-directional link failures through the
periodic transmission of HELLO messages. The neighbor
discovery protocol is both automatic and continuous, and
may include a data link-to-IPv4 address resolution capabil-
ity. Because the neighbor discovery protocol is responsible
for both link state maintenance and data link-to-IPv4 address
resolution in the subnet 10, the neighbor discovery protocol
operates as a data-link-level protocol.

FIG. 12 shows an exemplary embodiment of a process
250 used by the nodes 18 to perform neighbor discovery.
The process uses the following three types of control mes-
sages: HELLO, NEIGHBOR, and NEIGHBOR ACK. This
embodiment of the neighbor discovery protocol operates as
follows. Every each node i in the subnet periodically trans-
mits (step 252) a HELLO message at predetermined (e.g.,
HELLO_INTVL=0.5 seconds) timeout intervals. (The HEL-
LO_INTVL value is common to all nodes 18 within the
subnet 10, but different subnets may use different HEL-
LO_INTVL values.) HELLO messages are sent to the data
link level broadcast address and includes the identity of
transmitting node 1i.

A node j receiving a HELLO message from a new
neighbor, node i, responds (step 254) with a NEIGHBOR
message containing the identity of node j, sending the
NEIGHBOR message to the data link unicast address of the
new neighbor node i. Then, upon receiving the NEIGHBOR
message, node i sends (step 256) a NEIGHBOR ACK to
node j using the data link unicast address of node j. The
NEIGHBOR ACK message contains the identity of node i.
The NEIGHBOR and NEIGHBOR ACK messages also
contain the current link-level sequence number for the
broadcast channel (discussed below). Thus, a link from node
i to node j is established by node i receiving a NEIGHBOR
packet from node j, and a link from node j to node i is
established by node j receiving a NEIGHBOR ACK packet
from node i. The link to an existing neighbor is declared to
be down if no traffic (including HELLO messages and
ACKs) has been received from the neighbor node within a
predetermined time interval (e.g., within the last LINK-
DOWN_INTVL=2.0 seconds).

Implementations of this embodiment of the neighbor
discovery protocol should detect the event of a data link-
to-IP address mapping change for existing links. This may
occur in one of the following instances:

1. Two or more nodes in the subnet 10 are using the same

IP address.

2. An existing node in the subnet 10 has changed its data

link layer address.

3. A new node is now using the IP address of a former

node that may have left the subnet 10.

In the first case, the implementation should print some form
of “duplicate IP address detected” message to the console. In
the second and third instances, the cached link state should
be updated to reflect the new data link-to-IPv4 address
mapping.

FIG. 13 shows an exemplary embodiment of a packet
format 260 for the HELLO, NEIGHBOR, and NEIGHBOR
ACK neighbor discovery protocol messages on the subnet
10. The data link header for each message is not shown,
since it is specific to the underlying data link layer.

The eight-bit “Type” field 262 indicates the type of
message. For example, each message can be identified by
the following examples of values in the Type field 262:
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HELLO 10
NEIGHBOR 11
NEIGHBOR__ACK 12

The eight-bit “BCAST Seq# field 264 indicates a
sequence number from 0 . . . 15 (4 bits), used in NEIGHBOR
and NEIGHBOR ACK messages as described above. The
four address fields (sender hardware address 266; sender
protocol address 268; target hardware address 270; target
protocol address 272) facilitate the address resolution pro-
cess. The fields 266, 268, 270, and 272 contain the following
examples of values, based on the type of neighbor discovery
message:

Message type is HELLO

Sender Hardware Address 266: data link address of
sender

Sender Protocol Address 268: 1Pv4 address of sender

Target Hardware Address 270: data link broadcast
address

Target Protocol Address 272: unused

Message type is NEIGHBOR

Sender Hardware Address 266: data link address of
sender

Sender Protocol Address 268: 1Pv4 address of sender

Target Hardware Address 270: sender H/W Address
from received

HELLO

Target Protocol Address 272: sender IP Address from
received HELLO

Message type is NEIGHBOR ACK

Sender Hardware Address 266: data link address of
sender

Sender Protocol Address 268: IP address of sender

Target Hardware Address 270: sender H/W address
from NEIGHBOR

Target Protocol Address 272: sender IP address from
NEIGHBOR

Usage of the other fields 274, 276, 278, and 280 in the
packet 260 are described “An Ethernet Address Resolution
Protocol: Or Converting Network Protocol Addresses To
48.Bit Ethernet Addresses For Transmission On Ethernet
Hardware,” by David C. Plummer, Request for Comments
(RFC) No. 826, November 1982.

Reduced Overhead Hello Protocol

Another embodiment of the neighbor discovery protocol,
hereafter referred to as Reduced Overhead Hello Protocol
(ROHP), is suited for MANETs. As described further below,
the ROHP is suited for MANETs because the protocol can
operate correctly although an asymmetric (unidirectional)
link may exist between any two nodes at any time, link states
may change frequently due to node mobility and interfer-
ence, and the channel may be noisy so that not all transmit-
ted packets are successfully received by all neighbor nodes.
An objective of ROHP is to allow each node 18 in the
MANET 10 to quickly detect the neighbor nodes with which
that node 18 has a direct and symmetric link, (i.e., a
bi-directional link such that the node at each end of the link
can hear the other node.) The ROHP also detects when a
symmetric link to some neighbor no longer exists.

In brief overview, the ROHP reports each change in the
state of a neighbor node (e.g., “heard”, “symmetric”, or
“lost”) in only the next K HELLO messages, where K is a
small positive integer (e.g., K=3 to 5) such that a node
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declares a neighbor to be “lost” if it does not receive any
complete HELLO message from that neighbor node within
a time period equal to K number of time intervals. Each time
interval is hereafter referred to as HELLO_INTERVAL,
which is for example 0.5 to 2 seconds. In contrast, each
HELLO message of conventional neighbor discovery pro-
tocols (e.g., as in OSPF and OLSR (Optimized Link-State
Routing Protocol)) includes the identities (or addresses) of
all neighbors.

Neighbor Table

Each node 18 maintains a neighbor table, which has an
entry for each known neighbor node and stores state infor-
mation for that neighbor node. An entry for neighbor node
B, for example, contains the following variables:

state(B): The current state of the link to neighbor node B,
which can be “heard”, “symmetric”, or “lost™.

hold_time(B): The amount of time (in seconds) remaining
before state(B) must be changed to “lost” if no further
complete HELLO message from B is received.

counter(B): The number of subsequent HELLO messages
that include the identity of the neighbor node B in the
list corresponding to state(B).

The entry for neighbor node B may be deleted from the
table if state(B) remains equal to “lost” for a period not
less than K¥*HELLO_INTERVAL.

Three possible states of a neighbor node B have the follow-
ing meaning at node A:

“Heard”: A complete HELLO message was received from
neighbor node B within the last
K*HELLO_INTERVAL seconds, but it is unknown
whether neighbor node B can hear node A.

“Symmetric”: Nodes A and B can hear each other.

“Lost”: No complete HELLO message has been received
from neighbor node B  within the last
K*HELLO_INTERVAL seconds.

Sending HELLO Messages

Each node 18 sends a HELLO message periodically every
HELLO_INTERVAL seconds, possibly with a small jitter to
avoid repeated collisions. Because of message size limita-
tions that may be imposed by the MANET 10, a HELLO
message may be too large to send within one packet, in
which case, the sending node 18 sends the HELL.O message
in multiple packets within a period equal to the HEL-
LO_INTERVAL. Depending on the implementation of the
ROHP, the receiving node may or may not be able to extract
information from a partially received HELLO message.
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A HELLO packet sent by a node includes the following
information:

1). The identity (e.g., IP address) of the sending node.

2). A list of all neighbor nodes that recently changed to the
“heard” state. More specifically, a list of identities of
neighbor nodes B such that state(B)="heard” and coun-
ter(B)>0.

3). A list of all neighbor nodes that recently changed to the
“symmetric” state. More specifically, a list of identities
of neighbor nodes B such that state(B)="symmetric”
and counter(B)>0.

4). A list of all neighbor nodes that recently changed to the
“lost” state. More specifically, a list of identities of
neighbor nodes B such that state(B)="lost” and counter
(B)=0.

Whenever a neighbor node B is included in one of the
above three lists, counter(B) decrements by 1. As a result,
each state change is included in at most K HELLO mes-
sages, and in some cases (as described below) is not
included in any HELLO message. HELLO messages can
also contain other information, as discussed below.

Receiving a HELLO Message

FIG. 14 shows an exemplary embodiment of a process by
which each node 18 operating according to the ROHP
neighbor discovery processes a received HELLO message.
In step 288, a node (referred to as receiving node A) receives
a partial or complete HELLO message. Because a HELLO
message must be transmitted within a time interval of length
HELLO_INTERVAL, the receiving node A declares the
HELLO message to be partial if not all of its parts have been
received within a time interval of this length. If the HELLO
message is complete and an entry for neighbor node B does
not exist in the table, the receiving node A creates (step 290)
such an entry with state(B)="lost”. If the HELLO message
is complete, receiving node A also sets (step 292) the
variable hold_time(B) to K*HELLO_INTERVAL. The
value of the variable hold_time(B) decreases to O (expires)
if no HELLO message from neighbor node B is subse-
quently received within K*HELLO_INTERVAL seconds.
When hold_time(B) expires, the receiving node A sets
state(B) to “lost” and counter(B) to K. This indicates that the
receiving node A is to include the identity of node B is in the
list of “lost” neighbor nodes in the transmission of the next
K HELLO messages or until state(B) changes again (which-
ever occurs first).

The receiving node A then performs (step 294) an action
based on whether the received HELLO message is complete,
whether the receiving node A appears in a list within the
received HELLO message, and if so, which list, and the
current state of the neighbor node B (i.e., state(B)). The
actions performed by the receiving node A are summarized
in Table 3 below.

TABLE 3

Action

Receiving

Receiving Receiving Receiving node A

node A is in node A is in node A is in is in “symmetric”
state(B) not in any list “lost” list “heard” list list
lost If msg is If msg is If msg is If msg is
complete, complete, complete, complete,
set state(B) to set state(B) to set state(B) to set state(B) to
“heard” and “heard” and “symmetric” “symmetric” and
counter(B) to counter(B) to and counter(B) to K
K counter(B) to

K
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TABLE 3-continued
Action
Receiving Receiving Receiving Receiving node A
node A is in node A is in node A is in is in “symmetric”
state(B) not in any list “lost” list “heard” list list

heard No action No action Set state(B) to
“symmetric”
and
counter(B) to
K
symmetric No action Set state(B) to If counter(B) =
“heard” and 0, set 0
counter(B) to counter(B) to
0

Set state(B) to
“symmetric” and
counter(B) to 0

Set counter(B) to

Accordingly, upon receiving a complete or partial
HELLO message from neighbor node B, the action per-
formed by the receiving node A is as follows.

1. If state(B)="lost” and the HELLO message is complete,
and if the message does not include node A in any list
or includes node A in the “lost” list, then set state(B) to
“heard” and counter(B) to K. If state(B)="lost” and the
HELLO message is complete, and if the message
includes node A in the “heard” or “symmetric” list, then
set state(B) to “symmetric” and counter(B) to K.

2. If state(B)="heard” and the message includes node A in
the “heard” list, then set state(B) to “symmetric” and
counter(B) to K. If state(B)="heard” and the message
includes node A in the “symmetric” list, then set
state(B) to “symmetric” and counter(B) to 0. (In this
case, the receiving node A need not include node B in
its HELL.O messages, since both nodes A, B already
know that the link is symmetric.)

3. If state(B)="symmetric” and the message includes node
A in the “heard” list and counter(B)=0, then set counter
(B) to K. If counter(B)>0, then counter(B) need not be
set to K, because the “heard” entry is just a repeat of
one that was included in a recently received HELLO
message from B. If state(B)="“symmetric” and the
message includes node A in the “symmetric” list, then
set counter(B) to 0. (Both nodes know that the link is
symmetric.) If state(B)="symmetric” and the message
includes receiving node A in the “lost” list, then set
state(B) to “heard” and counter(B) to 0. (node B cannot
hear node A, but node A can hear node B.)

Note that a complete HELLO message must be received in
order to create a new entry in the neighbor node table or to
change the state of a neighbor node from “lost” to “heard”
or to “symmetric.” This prevents the creation of a link that
has poor quality.

Variations of ROHP

In other embodiments, HELLLO messages can be aug-
mented to include enough information to inform each neigh-
bor node of the set of neighbor nodes with which the sending
node has symmetric links. This can be accomplished by
setting the counter(B) to K, rather than to 0 (see case 2
above), so that node B is included in the “symmetric” list of
the next K HELLO messages, even though nodes A and B
already know that the link between them is symmetric.

In addition, node A can inform any new neighbor node of
the set of neighbor nodes with which node A has symmetric
links. Node A can distribute this information by (a) including
the set of all neighbor nodes to which symmetric links exist
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in the next K HELLO messages, whenever the state of the
new neighbor node changes to “symmetric”; or (b) sending
this information in a separate message that is unicast reliably
to the new neighbor node.

HELLO messages can also be augmented to include other
information, such as link metrics, sequence numbers, states
of non-adjacent links, time stamps, designated routers, spe-
cial relays, and other data.

The ROHP can be used in conjunction with any routing
protocol that uses HELLO messages for neighbor discovery,
such as TBRPF (described herein), OSPF, and OLSR. An
advantage of the ROHP over existing neighbor discovery
protocols, such as those discovery protocols used within
OSPF and OLSR, is that ROHP employs HELLO messages
that on average are smaller than such neighbor discovery
protocols because each neighbor state change observed by a
node is included in at most K HELLO messages (unlike
OSPF and OLSR), resulting in reduced communications
overhead and bandwidth consumption. In addition, because
HELLO messages are smaller, they can be sent more fre-
quently, resulting in a faster detection of topology changes.

3. IPv6-1Pv4 Compatibility Address Format

Referring back to the subnet 10 in FIG. 1, assume, for
example, that the nodes 18 of subnet 10 belong to one
domain, and that the gateway 16 is the border gateway 16 for
that domain. Assume also that both the IP host A 12 and the
gateway 16 are IPv6 nodes 18, and that the other nodes 18
in the subnet 10 are IPv4 nodes, without any IPv6 routing
capability. Any route taken by packets sent by the IP host A
12 to the server 40 on the Internet 30 necessarily traverses
IPv4 infrastructure to reach the gateway 16. To communi-
cate across the subnet 10 with the heterogeneous IP infra-
structure, the IP host 12 and the gateway 16 use an aggre-
gatable, global, unicast addresses, hereafter referred to as an
“IPv6-IPv4 compatibility address.” The use of IPv6-IPv4
compatibility addresses enables IPv6 nodes (1) to forward
IPv6 packets across native IPv6 routing infrastructure or (2)
to automatically tunnel IPv6 packets over IPv4 routing
infrastructure without requiring a pre-configured tunnel
state. A routing node 14 with an IPv6-IPv4 compatibility
address can serve as a router for nodes 18 with native IPv6
addresses (i.e., IPv6 addresses that are not IPv6-IPv4 com-
patibility addresses) connected to the same link. On behalf
of such native IPv6 nodes, the IPv6-IPv4 routing node 14
can automatically tunnel messages across the IPv4 infra-
structure of the subnet 10 to reach the border gateway 16.

FIG. 15A shows an exemplary embodiment of a format
300 for IPv6-IPv4 compatibility addresses. The format 300
includes a 64-bit address prefix 302 and a 64-bit interface
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identifier 304. The address prefix 302 specifies a standard
64-bit IPv6 routing prefix, such as that described in the
Internet RFC (request for comment) #2374. The address
prefix 302 includes a 3-bit Format Prefix (FP) 303, which for
all IPv6-IPv4 compatibility addresses is set to “001”, and
aggregation identifiers 305. Consequently, the format prefix
303 and the topologically correct aggregation identifiers 305
of the IPv6-IPv4 compatibility addresses are the same as
those of IPv6 addresses assigned to IPv6 nodes, enabling
IPv6 nodes to route IPv6 packets using IPv6-1Pv4 compat-
ibility addresses across IPv6 infrastructure. The 64-bit inter-
face identifier 304 is a specially constructed 64-bit global
identifier interface identifier (i.e., 64-bit EUI-64).

FIG. 15B shows an embodiment of the interface identifier
304 including a 24-bit company identifier 306 concatenated
with a 40-bit extension identifier 308. In one embodiment,
the 24-bit company identifier 306 is a special IEEE Orga-
nizationally Unique Identifier (OUI) reserved by the Internet
Assigned Numbers Authority (IANA) for supporting the
IPv6-1Pv4 compatibility addresses. The IEEE Registration
Authority (IEEE/RAC) assigns the OUI to an organization
and the organization owning that OUI typically assigns the
40-bit extension identifier 308. In FIG. 15B, the string of ‘¢’s
represents the company-specific bits of the OUI, the bit ‘0’
represents the universal/local bit, the bit ‘g’ represents the
individual/group bit and the string of ‘m’s are the extension
identifier bits. Here, when the bit ‘u’ equals 1, the scope of
the address is global and when the bit ‘0’ equals 0, the scope
is local.

To support encapsulation of legacy IEEE EUI-48 (24-bit)
extension identifier values, the first two octets of the 40-bit
extension identifier 308 (i.e., bits 24 through 39 of the
address) are set to OXFFFE if the extension identifier 308
encapsulates an EUI-48 value. Further, the first two octets of
the extension identifier 308 are not set to OXFFFF, as this
value is reserved by the IEEE/RAC. All other 40-bit exten-
sion identifier values are available for assignment by the
addressing authority responsible for a given OUI. Thus, as
described further below, the IPv6-IPv4 compatibility
address format 300 enables embedding an IPv4 address in an
IPv6-1Pv4 compatibility address without sacrificing compli-
ance with the EUI-64 bit format.

FIG. 15C shows an embodiment of the interface identifier
304 including an OUI field 306, a type field 310, a type-
specific extension field (TSE) 312, a type-specific data field
(TSD) 314. As shown, the OUI field 306 includes the OUI
of IANA, (e.g., 00-00-5E), with ‘u” and ‘g’ bits. The type
field 310 indicates how the TSE 312 and TSD 314 fields are
interpreted; in general, the type field 310 indicates whether
the interface identifier 304 encapsulates an IPv4 address that
is suitable for automatic intra-subnet IPv6-in-IPv4 tunnel-
ing. Table 1 shows the interpretations of TSE and TSD for
various values in the type field 310:

TABLE 1
TYPE Value (TSE, TSD) Interpretation
0x00-0xFD RESERVED
OxFE (TSE, TSD) together contain an embedded
IPv4 address
OxFF: TSD is interpreted based on the value of

TSE as shown in TABLE 2
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TABLE 2
TSE Value TSD Interpretation
0x00-0xFD RESERVED for future use (e.g., by IANA)
OxFE TSD contains 24-bit EUI-48 interface
identifier
OXFF RESERVED (e.g., by IEEE/RAC)
Thus, if an IPv6-IPv4 compatibility address has

TYPE=0xFE, the TSE field 312 is treated as an extension of
the TSD field 314, which indicates that the IPv6-IPv4
compatibility address includes a valid IPv6 prefix and an
embedded IPv4 address.

If the IPv6-1Pv4 compatibility address has TYPE=0xFF,
the TSE field 312 is treated as an extension of the TYPE field
310. When TSE=0xFE, the TSD field 314 includes a 240 bit
EUI-48 interface identifier. Thus, the IPv6-IPv4 compatibil-
ity address format 300 conforms to all requirements of a
64-bit global identifier (i.e., the EUI-64 format) and supports
encapsulation of EUI-48 interface identifiers (i.e., when
TSE=0xFE). For example, an existing IANA EUI-48 format
multicast address such as:

01-00-5E-01-02-03

is written in the JANA EUI-64 format as:
01-00-5E-FF-FE-01-02-03.

Other values for TYPE and, hence, other interpretations of
the TSE and TSD fields 312, 314 are reserved for future use.
FIG. 15D shows a specific example of an IPv6-IPv4
compatibility address 316 for a node 18 with an IPv4 address
of 140.173.189.8. This IPv4 address may be assigned an
IPv6 64-bit address prefix 302 of 3FFE:1a05:510:200::/64.
Accordingly, the IPv6-IPv4 compatibility address 316 for
this IPv4 node is expressed as:
3FFE:1a05:510:200:0200:5EFE:8CAD:8108

In an alternative form, the IPv6-1Pv4 compatibility address
316 with the embedded IPv4 address is expressed as:
3FFE:1a05:510:200:0200:5EFE:140.173.189.8

Here, the least significant octet of the OUI (02-00-5E) in the
interface identifier 304 is 0x02 instead of 0x00 because the
bit ‘v’ is set to 1 for global scope.

Similarly, the IPv6-IPv4 compatibility addresses for the
link-local and site-local (i.e., within the subnet 10) variants,
respectively, of are:

FE80::0200:5EFE:140.173.189.8

FEC0::200:0200:5EFE:140.173.189.8

As previously noted, the IPv6-1Pv4 compatibility address
format 300 enables IPv6 nodes to tunnel IPv6 packets
through a one-time IPv6-in-IPv4 tunnel across IPv4 routing
infrastructure. FIG. 15E shows an embodiment of a packet
header 320 used for tunneling IPv6 packets using IPv6-1Pv4
compatibility addresses across IPv4 routing infrastructure.
In this embodiment, the header 320 includes a 20-byte [Pv4
header 322 and a 40-byte IPv6 header 324. The IPv6 header
324 includes an IPv6 address 329 of the node that is the
source of the IPv6 packet and an IPv6-IPv4 compatibility
address 316 associated with the final IPv6 destination node.
The IPv4 header 322 includes the IPv4 address 326 of the
dual-stack node that “re-routes” the IPv6 packet by tunnel-
ing the IPv6 packet through the IPv4 routing infrastructure.
The IPv4 header 322 also includes the IPv4 address 328 of
an [Pv4 destination node that typically is the same as the
IPv4 address embedded within the IPv6 destination address’
IPv6-1Pv4 compatible interface identifier 304. Alternatively,
the IPv4 address 328 can be the IPv4 address 328 of the
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next-hop IPv6 gateway that has a path to the final IPv6
destination address and, therefore, can forward the IPv6
packet towards the final IPv6 destination node.

Upon receiving the tunneled IPv6 packet, the IPv4 des-
tination node determines that the IPv6 header 324 includes
an IPv6-1Pv4 compatibility address 316 and can route the
IPv6 packet to the IPv6 destination node identified by that
IPv6-1Pv4 compatibility address.

Address Aggregation

One advantage of embedding an IPv4 address in the
interface identifier 304 of an IPv6 address is that large
numbers of IPv6-1Pv4 compatibility addresses 316 can be
assigned within a common IPv6 routing prefix 302, thus
providing aggregation at the border gateway 16. For
example, a single 64-bit IPv6 prefix 302 for the subnet 10,
such as 3FFE:1a05:510:2418::/64, can include millions of
nodes 18 with unique IPv4 addresses embedded in the
interface identifier 304 of the IPv6-IPv4 compatibility
addresses. This aggregation feature allows a “sparse mode”
deployment of IPv6 nodes throughout a large Intranet com-
prised predominantly of IPv4 nodes.

Globally and Non-Globally Unique IPv4 addresses
Another advantage is that IPv6-IPv4 compatibility
addresses 316 support subnets that use globally unique IPv4
address assignments and subnets that use non-globally
unique IPv4 addresses, such as when private address assign-
ments and/or network address translation (NAT) are used.

Non-Globally Unique IPv4 Addresses
IPv4 addresses need not be globally unique but may be
allocated through a private network-addressing scheme that
has meaning only within the context of that domain. [Pv6-
IPv4 compatibility addresses for private IPv4 addresses set
the “u’ bit to O for local scope. For example, a node with the
private, non-globally unique IPv4 address 10.0.0.1 can be
assigned the IPv6-1Pv4 compatibility address of
3FFE:1a05:510:200:0000: SEFE:10.0.0.1, which uses the
same example IPv6 64-bit prefix and IANA OUI (00-
00-5E) described above with the ‘v’ bit in the EUI-64
interface identifier indicating that this is a local address.

Routing with IPv6-IPv4 Compatibility Addresses

By embedding an IPv4 address in the interface identifier
304 of an IPv6-1Pv4 compatibility address 316, IPv6 packets
can be routed globally over the IPv6 infrastructure or
tunneled locally across portions of the IPv4 infrastructure of
the subnet 10 that have no IPv6 routing support. Thus, the
compatibility-addressing scheme supports heterogeneous
IPv6/IPv4 infrastructures in transition with incremental
deployment of IPv6 nodes within the subnet 10.

Intra-domain Routing

FIG. 16 shows an exemplary embodiment of an intra-
domain routing process 330 by which a routing node 14,
configured with IPv6 and IPv4 routing tables, routes a
packet having the IPv6-IPv4 compatibility address. Upon
receiving the packet, the routing node 14 has IPv6 node
software that checks (step 332) for the special IETF OUI 306
and the type field 310 encapsulated in the interface identifier
304. If the software finds the special OUI 306 and the value
of OxFE in the type field 310, this means that the received
packet has an IPv6 prefix and an embedded IPv4 address.

The routing node 14 then determines (step 334) if any
IPv6 routing information leads to the destination node 18;
that is, if the IPv6 routing table has an entry for ‘default’
(i.e., the default gateway) or for the IPv6 prefix of the
destination node 18. If such an entry is found, the router 14
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determines (step 336) whether there is a path through IPv6
routing infrastructure to the gateway 16 for the IPv6 prefix
of'the destination node 18. If there is such an IPv6 path, then
the router 14 sends (step 338) the packet as an IPv6 packet
to the IPv6 gateway 16 for that IPv6 prefix.

If no such IPv6 path to the gateway 16 through IPv6
routing infrastructure exists, the routing node 14 construes
(step 340) the last four bytes of the extension identifier 308
as an IPv4 address embedded in the IPv6-1Pv4 compatibility
address. The routing node 14 then determines (step 342) if
the IPv4 routing table includes an entry for a prefix of the
embedded IPv4 address of the destination.

Upon finding such an entry, the routing node 14 encap-
sulates (step 342) the IPv6 packet for tunneling through the
IPv4 routing infrastructure using the embedded IPv4 address
as the destination for the tunneled packet. (The general
format for an encapsulated packet is shown in FIG. 15E.)
One technique for automatically tunneling the IPv6 packet is
described in “Transition Mechanism for IPv6 Hosts and
Routers,” by R. Gilligan and E. Nordmark, draft-ietf-
ngtrans-mech-04.txt (work in progress). This technique can
also be applied to the IPv6-1Pv4 compatibility address. This
implies that the gateway 16 also uses IPv6-IPv4 compat-
ibility addresses.

Inter-domain Routing:

Globally Unique IPv4 Addresses without Privacy Concerns

Where nodes 18 within an heterogeneous IPv6/IPv4 sub-
net 10 use globally unique IPv4 addresses and where no
privacy concerns exist regarding exposure of internal IPv4
addresses to the public Internet, messages may be routed
across domain boundaries using the same routing process
330 described above in FIG. 16.

Globally Unique IPv4 Addresses without Privacy Concerns

One advantage of the IPv6-IPv4 compatibility address
format 300 is that the format 300 does not necessarily
expose the true identification of the sending node, if an
administrative authority for the subnet 10 wishes to enforce
a policy of not exposing internal IPv4 addresses outside of
the subnet 10. To accomplish this, the administrative author-
ity configures the border gateway 16 of the subnet 10 to
perform a type of “reverse network address translation,”
which transforms the IPv6 -1Pv4 compatibility address inter-
face identifier 304 with embedded IPv4 address of the
sending node into an anonymous ID for inter-domain rout-
ing outside the subnet 10. Within the subnet 10, the fully
qualified IPv6-IPv4 compatibility address interface identi-
fier 304 with the embedded IPv4 address of the sending node
is still used to enable automatic IPv6-in-IPv4 tunneling, and
the intra-domain routing of IPv6 packets follows the process
330 described above.

In one embodiment, the border gateway 16 advertises an
IPv6 prefix 302 of 2002::/16 and the IPv6 prefix 302 of
2002:V4ADDR/48 where ‘V4ADDR’ is the globally unique
embedded IPv4 address of the border gateway 16. [Pv6-1Pv4
compatibility addresses within the subnet 10 are constructed
as the concatenation of a 2002: V4ADDR/48 prefix, a 16-bit
SLA ID, and a 64-bit EUI64 interface identifier 304 as
described above.

For example, if the IPv4 address of the border gateway is
140.173.0.1, the IPv4 address of the IPv4 node within the
subnet 10 is 140.173.129.8 and the node resides within SLA
1D 0x001, the IPv6-1Pv4 compatibility address 316 within
the subnet is constructed as:

2002:8CAD:1:1:0200:5EFE:8CAD: 8108,
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where the ‘2002:” is a predetermined prefix associated with
the reverse network address translation; the ‘8CAD:1:” is the
IPv4 address (140.173.0.1) of the border gateway 16; the
second ‘1:” is the SLA ID; the ‘0200:5EFE’ is the IANA-
specific OUI (with the “u’ bit set to global scope and the type
field 310 indicating that the compatibility address includes
an embedded IPv4 address; and the ‘8CAD:8108” is the
embedded IPv4 address (140.173.129.8) of the internal IPv4
node.

The border gateway 16 performs “reverse network
address translation” using an identifier not vulnerable to
eavesdropping. The border gateway 16 maintains a mapping
of the identifier to the actual IPv4 address of the IPv4 node
in order to map messages from destinations back to the
actual IPv4 node within the subnet 10. For example, if the
border gateway 16 replaced the IPv4 address 140.173.129.8
with the identifier value: 0x00000001, the IPv6-1Pv4 com-
patibility address outside the subnet 10 is constructed as:

2002:8CAD:1:1:0000:5EFE:0:1

Here: again the least significant octet of the EUI-64
interface identifier 304 has the ‘u’ bit set to 0 to indicate that
the embedded IPv4 address is not globally unique.

The IPv6-in-1Pv4 tunneling for inter-domain routing then
derives the IPv4 source address from the IPv4 address of the
numerous separate tunnel transitions for an IPv6 packet
traveling from a sending node to a destination node. The
transitions include (1) intra-domain tunnels from the IPv6
sending node through routers along the path to the border
gateway for its domain, (2) inter-domain tunnels from the
sending node’s border gateway through other transit routers
along the path to a border gateway for the destination, and
(3) intra-domain tunnels from the destination node’s border
gateway through intra-domain routers along the path to the
destination node itself. Thus, IPv4 addresses within the
subnet are exposed across the public Internet 30.

Non Globally Unique IPv4 Addresses

Embodiments of the subnet 10 that use private, non-
globally unique IPv4 addresses require a border gateway 16
that implements an inter-domain routing function as
described above. For example, if the IPv4 address of the
border gateway 16 is 140.173.0.1, the IPv4 address of an
IPv4 node within the subnet 10 is 10.0.0.1, and the IPv4
node resides within SLLA 1D 0x001, the IPv6-IPv4 compat-
ibility address within the subnet 10 is constructed as:

2002:8CAD:1:1:0000:5EFE:0A00:1,

where again the least significant octet of the EUI-64 inter-
face identifier 304 has the “u’ bit set to 0 to indicate that the
embedded IPv4 address ‘0A00:1” (10.0.0.1) is not globally
unique.

The administrative authority for such embodiments of the
subnet 10 may institute a policy that permits exposing
non-globally unique IPv4 addresses to the public Internet
30. In this case, the reverse network address translation is
unnecessary, but might be used to protect against eavesdrop-
ping on the non-globally unique addresses.

Additional Routing Considerations

In a different embodiment than that described in FIG. 16,
each host 12 or router 14 that sends an IPv6 packet to an
IPv6-1Pv4 compatibility destination address follows the
following process:

If the 64-bit IPv6 prefix of the IPv6-IPv4 compatibility
destination address matches the 64-bit IPv6 prefix of
one of the network interfaces, tunnel the packet through
IPv4 . Otherwise, route the packet through IPv6.
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From the above sending process, a sending node that does
not have an interface which shares a common 64-bit routing
prefix with the packet’s IPv6 -IPv4 compatibility destination
address sends the packet to the next-hop gateway deter-
mined by an IPv6 routing table lookup. In short, when a
sending node does not have an interface which shares a
common 64-bit (site-level) routing prefix with an I[Pv6-1Pv4
compatibility destination address, the sending rule is iden-
tical to that for a native IPv6 destination address. This
decision is independent of whether the sending node has an
IPv6-1Pv4 compatibility address itself, or whether the send-
ing node even comprises a dual-stack configuration. The
sending node can be a native IPv6 node with no legacy 1Pv4
support.

When a sending node has an interface which shares a
common 64-bit routing prefix with an IPv6-IPv4 compat-
ibility destination address, the sending node must assume
that the destination is not directly reachable at the data-link
level, although the shared site-level routing prefix implies
otherwise. Instead, if the sending node comprises a dual-
stack configuration, it automatically tunnels the IPv6 packet
to the IPv4 address embedded within the IPv6-IPv4 com-
patibility destination address’ interface identifier. If the
sending node is an [Pv6-only node that does not comprise a
dual-stack configuration, however, it has no means for
automatically tunneling the packet via IPv4 . In this case:

If the sending node is the host that originates the packet,

the sending node sends the packet to a router that lists
the 64-bit prefix in its router advertisements. If no such
router exists, the sending node should drop the packet
and return a “No route to host” error indication to the
originating application. If the sending node is a router
that forwards the packet, the sending node drops the
packet and sends an ICMPv6 “Destination Unreach-
able” message to the source

By implication, the scheme breaks down if a packet with an
IPv6-1Pv4 compatibility destination address reaches an
IPv6-only router that has an interface that shares a common
64-bit routing prefix with the IPv6-IPv4 compatibility des-
tination address. Additional mechanisms to address this
issue may be possible, such as allowing dual-stack routers to
advertise 96-bit prefixes which incorporate the special 32-bit
EUI-64 interface identifier prefix: 0200:5EFE. A sending
node can then interpret such an advertisement to mean that
the advertising router comprises a dual stack and is capable
of intra-site IPv6-in-IPv4 tunneling.

Incremental IPv6Deployment Examples

When deploying an [Pv6node in a subnet that is predomi-
nantly IPv4 | the embedded IPv4 address within an IPv6-
IPv4 compatibility assigned to that IPv6 node does not need
to be globally unique. The embedded IPv4 address needs
only be topologically correct for and unique within the
context of that subnet 10. Also, when deployed in a pre-
dominantly IPv4 subnet, the deployed IPv6 node is unlikely
to share a common multiple access data-link with an IPv6
router 14 in the subnet. Because the IPv6 node does not
share a common multiple access data-link with the IPv6
router, no router advertisements are available. IPv6-1Pv4
compatibility addresses enable the IPv6 node to join the
global IPv6 network (i.e., on the Internet 30) by automati-
cally tunneling IPv6 messages through the intra-site [Pv4
routing infrastructure. For this purpose, the deployed IPv6
node requires two pieces of static configuration information:
the 64-bit IPv6 network prefix for the subnet 10 and the IPv4
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address of the dual-stack IPv6 gateway 16 servicing the
subnet 10. No other pre-configured tunnel state information
is required.

For example, consider a researcher who wishes to con-
figure IPv6 on his existing IPv4 -based workstation, but the
network administrators for the subnet 10 have not yet
configured an IPv6 router for the workstation’s LAN. The
researcher is aware of a dual-stack IPv6 router elsewhere
within the subnet 10 (which may be several IPv4 router hops
away from his workstation’s LAN) and sets the 64-bit IPv6
address prefix and IPv4 address of the router as configura-
tion information on his workstation.

This configuration information is used to construct two
IPv6-1Pv4 compatibility addresses. One is the concatenation
of the IPv6 prefix and the IPv4 address of the router to
construct the IPv6-1Pv4 compatibility address for the router.
The researcher’s workstation uses this IPv6-IPv4 compat-
ibility address of the router as its default IPv6 gateway
address. The second address is the concatenation of the IPv6
prefix and the IPv4 address of the researcher’s workstation
to construct the IPv6-IPv4 compatibility address which the
workstation uses as its own IPv6 source address. The
researcher’s workstation can now access the global IPv6
Internet 30 by first tunneling messages through the subnet-
local IPv4 routing infrastructure to the IPv6 router. The IPv6
router then routes the [Pv6 messages. No static configuration
information is needed on the IPv6 router on behalf of the
researcher’s workstation.

As another example, a network administrative authority
wishes to configure IPv6 on an existing IPv4 subnet under
their jurisdiction, but the subnet is separated from the IPv6
border gateway 16 for the subnet by other IPv4 subnets,
which are not ready for IPv6 deployment. The administrator
configures a dual-stack IPv6 router (or routers) for his
administrative domain by arranging for SLA (site-level
aggregation)-based subnet allocation(s) from the owner of
the IPv6 border gateway for the subnet. The administrator
further sets the 64-bit IPv6 address prefix and IPv4 address
of the border gateway as configuration information on his
router. The router(s) for the administrative domain can now
access the global IPv6 Internet by first tunneling messages
through the site-local IPv4 routing domain to the IPv6
border gateway for the site. Hosts and/or other IPv6 routers
which share a common multiple access data-link with the
router receive router advertisements from which they can
construct native IPv6 addresses with topologically-correct
64-bit prefixes and interface identifiers via address auto-
configuration. The IPv6 border gateway for the site need
only have routing information that points to the router(s) for
the SLA-based subnet allocations.

Automatic Deprecation

As seen in the above deployment examples, the IPv6-1Pv4
compatibility address format enables incremental IPv6
deployment for hosts and routers within sites that have
incomplete or “sparse” IPv6 coverage at the network infra-
structure level. In general, IPv6-IPv4 compatibility
addresses are intended for use by nodes 18 that do not
receive router advertisements because such nodes 18 do not
share a common multiple access data-link with an IPv6
router. When router advertisements become available, such
as when an IPv6 router is deployed on a common multiple
access data-link shared by the node 18, the node 18 can
discontinue use of its IPv6-1Pv4 compatibility address and
adopt an IPv4 unicast address using address auto-configu-
ration for a prefix discovered through router discovery. In
this way, IPv6-IPv4 compatibility addresses can gradually
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and automatically disappear as IPv6 nodes become widely
deployed within the subnet 10. The following automatic
deprecation rule for hosts and routers using IPv6-IPv4
compatible addresses can be used to transition from the use
of IPv6-1Pv4 compatibility addresses:

While no IPv6 router advertisements are received, con-
tinue to use the IPv6-IPv4 compatibility address. If
router advertisements ensue, discontinue use of the
IPv6-1Pv4 compatibility address and construct a native
IPv6 address based on prefix information carried in the
router advertisements.

Address Selection

To ensure efficient routing within the destination’s subnet
when multiple IPv6 destination addresses alternatives are
available, a “second-tier” address selection policy is used for
choosing between an IPv6-IPv4 compatibility addresses and
a native [Pv6 address. If multiple alternatives remain after
address selection has been applied on the 64-bit routing
prefixes, and if at least one of the remaining alternatives is
constructed with a native IPv6 interface identifier (one that
does not contain an embedded IPv4 address), select a native
IPv6 address. Otherwise, select an IPv6-IPv4 compatible
address.

4. Updating Information upon Resuming Interrupted Com-
munications

Referring again to FIG. 1, assume that the mobile node
12, hereafter “client 12”, and the server 40 are communi-
cating over a route or path through the subnet 10 that
includes one or more wireless links. Movement by the client
12 or by another node 14 in the subnet 10 may cause the
client 12 to move in and out of communication range of the
subnet 10. For example, the client 12 may move to a new
position in the subnet 10 (as indicated by arrow 27) or to the
foreign subnet 20 (as indicated by arrow 29). While moving,
the client 12 may break current a communication link (e.g.,
link 24) to the subnet 10 and be out of range of all routing
nodes 14 within the subnet 10. As another example, the node
B may move out of range of the client 12, placing the client
12 out of range of the subnet 10 if the client 12 is not within
range of another routing node 14 in the subnet 10. Conse-
quently, the client 12 is not communicating with the server
40 and may not access information, particularly updated
information, from the server 40. The inability to obtain
updated, timely information may cause resources associated
with the client 12 to be inefficiently used and adversely
affect the operation of the client 12.

To lessen any adverse impact of client movement, the
client 12 and the server 40 can (1) use message queues to
store communications affected by an interruption for sub-
sequent transmission if communications between the client
12 and the server 40 are resumed; and (2) use bandwidth
adaptation techniques to maintain a persistent connection
between the client 12 and the server 40 although a route
between the client 12 and the server 40 is momentarily lost.

Message Queues

The client 12 may register an interest in certain data on
server 40. In one embodiment, the data are an object.
Objects, as will be appreciated by those skilled in the art, are
generally programming units that include data and function-
ality, and are instances of classes. For example, the client 12
may be interested in updated information pertaining to
particular objects. In one embodiment, server 40 may also
include meta-objects, which are objects that have no physi-
cal representation, and are classes with methods and
attributes that serves as a factory to create new objects.
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Meta-objects may not be instantiated, (i.e., meta-objects
generally do not provide a representation of a physical
object). Instead, meta-objects may serve as templates from
which objects that represent physical objects are con-
structed.

The client 12 maintains local copies of objects on the
server 40 and updates these objects, as necessary, when
communicating with the server 40. Relevant objects asso-
ciated with the server 40 may be replicated, (i.e., databases
associated with server 40 may be replicated), on the client 12
to provide the client 12 with the local copies of objects.
Local copies provide the client 12 with access to relatively
up-to-date information should the client 12 move out of the
communications range of the subnet 10, interrupting com-
munications with the server 40. While the link 24 is broken,
the local copies of the objects, which are active entities, can
continue to run on the client 12. Then when the client 12
moves back into the communications range of subnet 10 or
the subnet 20 and reestablishes communications with the
server 40 over the same or a different route, the server 40 can
provide the client 12 with updated, or current, information.
That is, the server 40 may update the local copies of the
objects that are present on the client 12 in, for example, a
local cache.

In general, because communications between the server
40 and the client 12 are synchronous, the server 40 is aware
of all objects that are associated with the client 12. Server 40
may then be able to save state information associated with
the client 12. Therefore, server 40 may restore the current
state of the client 12 as appropriate (e.g., when lost link 24
is re-established). It should be appreciated, however, that
server 40 is generally not aware of any semantics with
regards to objects. Rather, the server 40 is only aware that
objects have been updated, and, further, that the correspond-
ing updates should be forwarded to the client 12 as appro-
priate.

Server 40 includes an object list that is a list of all objects
associated with the server 40 and which are to be updated.
In other words, the object list is a queue of object updates.
The client 12 may communicate substantially with the server
40 after the client 12 is registered with respect to server 40.
That is, client 12 may send commands to server 40. In one
embodiment, such commands include lists of topics in
which the client 12 is interested. The server 40 may send
update messages to the client 12 to indicate that certain
objects on the client 12 should be updated such that the
states of the objects on the client 12 are consistent with the
states of the corresponding objects on the server 40. The
client 12 also includes an object list, (i.e., a client object list),
that contains substantially all objects that are associated with
the client 12. In general, the new client object list contains
all objects, which are associated with the server 40 and
which the client is “interested” in.

The client 12 communicates with the server 40 over a
route (or path) through the subnet 10 or subnet 20 deter-
mined by the routing nodes 14. The client 12 may transmit
data to the server 40 directly or through a message queue.
The client 12 queues data on the message queue when, for
example, data has been modified and is to be sent to the
server 40. Specifically, when the client 12 creates or modi-
fies data, the data is sent to the server 40 through the
message queue. The communications between the client 12
and the message queue may, in the described embodiment,
be performed using a potentially unreliable communications
link (e.g., wireless link), while the communications between
the message queue and server 40 are typically more reliable,
(e.g., wired link).
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Data is placed on the message queue by the client 12, and
is removed from the message queue by the server 40 or,
more specifically, communications software associated with
server 40. Data is removed from the message queue after the
data has been successfully received by the server 40.

When the client 12 creates data (e.g., objects), the client
12 typically associates that data with a unique identifier that
is used by the client 12 and the server 40 to identify that data.
One example of a unique identifier is a timestamp. The
associated timestamp is updated each time the data are
updated or modified by the client 12. A timestamp essen-
tially prevents data conflicts from arising when more than
one client attempts to modify that data at a given time.
Specifically, timestamps are monotonically increasing such
that substantially no data conflicts between unique identifi-
ers can arise. Other embodiments use different mechanisms
to uniquely identify data, such as an authorization level that
is associated with the users of a particular client; a priority
level that is associated with the particular type of data, and
the order in which the data are received (e.g., LIFO, FIFO).

Similarly, the server 40 can communicate directly to the
client 12 or through a message queue (s), or lists, for storing
objects in which the client 12 has indicated an interest. The
message queue(s) can be part of or separate from the server
40. Hence, data may be transmitted to the client 12 from the
server 40 through such message queues. In other words, the
server 40 may use substantially the same heuristics as the
client 12 for sending data. Data is placed on the message
queue by the server 40 and removed from the message queue
by the client 12. Again, data is removed from the message
queue when the client 12 has successfully received previ-
ously removed data.

5. Adaptive Use of Network Bandwidth

In general, within the subnet 10, which includes wireless
links, a variety of different failures can interrupt or cause a
communications outage. For example, a failure may be due
to a hardware problem at either the client 12 or the server 40.
A failure may also be the result of a software problem, (e.g.,
data may be successfully received but acknowledgement of
the receipt may fail). Failures may also occur because of
problems with links, as mentioned previously. Such failures
may include a failure of any link on a route between the
client 12 and the server 40. It should be appreciated that in
some cases, more then one failure may occur at any given
time.

To adaptively handle interruptions in communications
between the client 12 and the server 40, the internetworking
system 2 may run diagnostics to determine the cause of the
interruption. After the cause is determined, the system 2
makes corrections that restore communications. Depending
upon current system parameters, such adaptive corrections
include, but are not limited to attempting (1) to reestablish
the same interrupted connection between the client 12 and
the server 40, (2) to establish a connection between the client
12 to a redundant server, or (3) to establish a new connection
between the client 12 with the server 40. Other techniques
used alone or in combination with the aforementioned
corrections include varying and/or increasing the waiting
period between unsuccessful attempts to establish a connec-
tion the client 12 and the server 40 and adjusting the length
of transmitted packets. Such techniques can be used in
response to current bandwidth conditions in the subnet 10.

When a “network dropout” occurs in the subnet 10, (e.g.,
when the client 12 or the server 40 appears to be out of
communication with the subnet 10), standard client-server
systems, such as those based upon TCP/IP, typically operate
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under the assumption that the failure is due to network
congestion. As will be understood by those skilled in the art,
although a network dropout in a low-bandwidth, wireless
subnet may indeed occur as a result of network congestion,
the network dropout may also occur for a variety of other
reasons including, but not limited to, packet loss due to
coverage problems.

Packet loss associated with a network typically involves
either the failure of transmission of a packet of data or the
loss of some of the data transmitted in a packet. Although
packet losses can occur for any number of reasons, packet
losses often occur when the client 12 is at least temporarily
out of range of the subnet 10 or when a communication link
in the route between the client 12 and the server 40 is
temporarily interrupted.

By counting the number of packets sent and the total
number of packets acknowledged, the packet loss in a
system may be determined. Measuring packet loss enables
the manner in which packets are resent or rebroadcast to be
dynamically changed such that the resending of packets is
substantially optimized with respect to the network.

The internetworking system 2 can use the measure of
packet loss to determine the length of packets that are
transmitted between the client and the server 40. For
example, if packets with lengths of 1000 bytes experience a
15% packet loss, and packets with lengths of 100 bytes
experience a 1% packet loss, then the client 12 and server 40
can tune the length of transmitted packets to minimize the
percentage of packets that fail to reach their destination. A
factor in determining the packet length is the tradeoff
between data throughput and the percentage of packet loss.
That is, the smaller the packet length, the greater the
percentage of packets that reach their destination, but the
lower the percentage of payload (i.e., data) transmitted in
each packet because each packet also carries a number of
overhead bits.

Also, the client 12 and the server 40 can dynamically
adjust the packet length based upon packet loss measure-
ments that are taken periodically. The client 12 and/or the
server 40 can make such packet length adjustments. Further,
the client 12 can use a packet length that differs from the
packet length used by the server 40; packets transmitted
from the client 12 to the server 40 may take a different route
with different bandwidth capabilities than packets transmit-
ted from the server 40 to the client 12.

When a network dropout occurs due to network conges-
tion, repeated attempts may be made to reconnect a
“dropped out” client 12 or server 40 to the subnet 10. If a
network dropout occurs due to packet loss and attempts are
made to reconnect the client 12 or the server 40 to the subnet
10, the overall performance of the subnet 10 may degrade to
a point where the overall performance of the subnet 10 is
unacceptable. That is, attempting to initiate a connection that
in fact has not been lost may preclude other connections
from being made, thereby preventing the transmission of
data which would be made across those connections.

Although a variety of different methods may be used to
actually determine if a network dropout is the result of
network congestion or of packet loss, such a determination
may be made using ongoing statistical measurements. Alter-
natively, the speed at which data is transmitted may be
changed. Typically, when a network dropout is due to packet
loss, changing the speed of data transmission often solves
the network dropout. However, when network dropout is due
to network congestion, changing the speed of data transmis-
sion may have no effect and may worsen the throughput.
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In order to enable communications to be optimized to
reflect actual network conditions, the client-server system
may measure the roundtrip time for packet transmission.
That is, the amount of time that elapses while a packet of
data is transmitted from the client 12 to the server 40, or vice
versa, may be measured. Although the measurements may
be used for substantially any purpose, the measurements are
often used to characterize the quality of a connection or
route between the client 12 and the server 40. By way of
example, for certain networks the duration of a roundtrip can
indicate whether a connection is good; short roundtrips are
associated with good connections, while long roundtrips are
associated with poor connections. The measurements of
roundtrip times for a variety of different packets may further
be used to statistically determine how long to wait between
attempts to resend an unsuccessfully sent packet.

FIG. 17 shows an embodiment of a process used by the
client 12 and the server 40 establish and maintain a persis-
tent connection in a dynamically changing network envi-
ronment using the above-described bandwidth adaptation
techniques. Although the process is described generally
from the perspective of the client 12 sending messages to the
server 40, the process also applies to when the server 40
sends messages to the client 12. The process begins (step
350) by establishing communications between the client 12
and the server 40. Attempts to establish a connection with
the server 40 can begin when the client 12 comes within
range of the subnet 10. The client 12 sends a packet and
awaits a reply from the server 40. The client 12 then waits
a specified period of time. If that period elapses without a
receiving a response, the client 12 attempts again to establish
a connection with the server 40 by sending another packet.
Again, the client 12 waits a specified period of time, but the
current waiting period is longer than the previous waiting
period. By waiting for a longer period (i.e., “backing off””) on
the subsequent connection attempt, the client 12 is accom-
modating the dynamic and intermittent quality of mobile
wireless networks by giving any response from the server 40
additional time to arrive at the client 12. If the new waiting
period also times out, the client 12 sends the packet to the
server 40 yet again and waits a still longer period for the
reply from the server 40 that establishes the connection.

Under some circumstances, numerous clients 12 (e.g.,
200), may arrive within range of the subnet 10 simulta-
neously, each attempting to establish a connection with the
server 40. For example, consider a military “invasion”
scenario in which each participant is equipped with a
portable computer capable of establishing a wireless con-
nection to the subnet 10 and thus of communicating with the
server 40. These computers are used to coordinate the
military invasion and to assist in pinpointing the position of
each individual during the operation. An onslaught of con-
nection attempts could overwhelm the subnet 10 and the
server 40 with packets such that only a portion of the
computers are able to successfully establish a connection
with the server 40. If each computer then backed off for
approximately the same period of time before attempting
again to connect to the server 40, the outcome might be the
same; namely, another onslaught of connection packets that
impedes some of the computers from establishing a connec-
tion. Thus, in one embodiment, the computers are configured
so that the back-off period is not the same for each of
computers, causing the attempts to connect to the server 40
to be staggered. That is, some computers 12 wait for longer
periods than other computers before sending another con-
nection packet to the server 40.
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After communications are established over a route
through the subnet 10 that includes one or more wireless
links, the client 12 identifies (step 354) a packet of data that
is to be sent to the server 40 as having been sent. After
identifying the packet as having been sent, the client 12
transmits (step 358) the packet through the subnet 10 over a
route determined by the routing nodes 14. The packet may
be queued in a message queue and sent to the server 40 based
on prioritization within the message queue. Similarly, in
some embodiments, if a packet is being sent from the server
40 to the client 12, the packet may also be added to a
message queue and sent to the client 12 as determined by
priorities assigned within the message queue.

When the packet that is sent includes data that is to be
updated, the data may be sent in a variety of different forms.
That is, within an object based system, when an object is
modified, either the entire object may be sent in a packet, or
substantially only the changes to the object may be sent in
a packet. By way of example, when an object has a size that
is smaller than a predetermined threshold, the entire object
is sent in a packet. Alternatively, when the object is larger
than that threshold, the updates or changes to that object
alone may be sent in a packet, although the entire object may
also be sent.

The client 12 then determines (step 362) whether it has
received an acknowledgement from the server 40 indicating
that the server 40 received the packet. The client 12 may
make the determination after a predetermined amount of
time has elapsed. Receipt of the acknowledgment indicates
that the packet has been successfully transmitted and
received. Hence, the client 12 identifies (step 366) the packet
as being successfully sent and received, and the process of
sending data is completed.

If the client 12 instead determines that no acknowledge-
ment of the packet has been received, then this is an
indication that there may have been a failure in the network
that prevented the server 40 from receiving the packet. Such
failures may include, but are not limited to, failures such as
a failure of the client 12, of the server 40, and a communi-
cation link in a route between the client 12 and the server 40.
The failures may also be due to packet loss, and not to a
physical failure of any component of the overall system.

When the packet has not been successfully received, then
a determination is made (step 370) as to whether a maximum
number of resend tries has been exceeded. The maximum
number of attempts to send a packet between the client 12
and the server 40 may generally be widely varied, and is
typically determined using statistical models based upon the
measured behavior of the overall system. The maximum
number of resend tries may be updated at any suitable time
during the operation of the overall system. By way of
example, the maximum number of resend tries may be
calculated and, if necessary, revised, whenever the accumu-
lation of statistical information reaches a certain level.

When the client 12 determines that the maximum number
of resend tries has not been exceeded, another attempt is
made (step 358) to send the packet. As mentioned above, the
amount of time to wait between resend tries may be based
upon statistical calculations based upon information that
includes the average roundtrip time for a transmitted packet.
An attempt to resend a packet can be successful when the
initial failure in sending the packet was the result of packet
loss.

On the other hand, if it is determined that the maximum
number of resend tries has been exceeded, then attempts to
send the packet over the potentially existing link are aborted.
When the maximum number of resend tries has been
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exceeded, and acknowledgement of packet receipt still has
not been received, then it is likely that there has been an
interruption of the communications link, and that the unsuc-
cessfully sending of data was likely not due to packet losses.
Accordingly, an attempt is made (step 374) to reestablish
communications between the client 12 and the server 40.

A determination is then made (step 378) as to whether
communications between the client 12 and the server 40
have been successfully reestablished. If the determination is
that communications have been successfully reestablished,
the packet is sent (step 358). Alternatively, when it is
determined that communications between the client 12 and
the server 40 have not been reestablished, then another
attempt is made (step 374) to reestablish communications.
The number of attempts to reestablish communications
between the client 12 and the server 40 may be limited in
some cases. In one embodiment, attempts to re-establish
communications may be aborted after a predetermined num-
ber of attempts have been reached. In other embodiments,
when the number of attempts to re-establish communica-
tions is limited, the number of attempts that are made may
be substantially dynamically determined based on statistical
information gathered during the course of communications
between client 12 and the server 40. In still another embodi-
ment, after the number of attempts to establish a connection
with the server 40 is reached, the attempts to establish a
connection with the client 12 can continue with a different
server upon which the data are replicated.

By limiting the number of times attempts made to send
data and, further, by not first attempting to re-establish
communications which may not actually have been inter-
rupted, the amount of available communications bandwidth
in a system may be substantially optimized. The bandwidth
may be allocated to making actual connections which are
required, rather than wasting the bandwidth by immediately
attempting to re-establish communications when such re-
establishment is not necessary.

In one embodiment, when an attempt is made to send data
from the client 12 to the server 40, the data is queued on a
message queue such that the data is prioritized for transmis-
sion to the server. Generally, a single message queue may be
shared between multiple servers.

FIGS. 18A and 18B are a diagrammatic representation of
the updating of an embodiment of a message queue 380 in
accordance with an embodiment of the invention. As men-
tioned above, when data are created or modified, a times-
tamp accompanying the data is set or modified, respectively.
A message queue 380 is shown at time t3 as including
objects that were previously modified and have not yet been
accepted by, (i.e., sent to and successfully received by), the
server 40. At time t3, at the head 382 of the message queue
380 is an object “obj 1” that was modified at time ti,
followed by an object “obj 6 that was modified at time t2,
and an object “obj 9” that was modified at time t3. In the
described embodiment, the queue 380 is prioritized in a
first-in-first-out (FIFO) manner, although priority can
instead be based on a variety of other factors.

At time t5, the queue 380 further includes an object “obj
3” that was modified at time t4. Also at time t5, object “obj
6” is being modified such that its corresponding timestamp
is updated accordingly. Further, at time t6, an object “obj 4”
is modified. In one embodiment, the object “obj 6™ that was
modified at time t2 is superceded by a version of object “obj
6” that is updated at time t5. That is, the object “obj 6 at
timestamp t2 has been replaced with the object “obj 6™ at
timestamp t5. As shown in FIG. 18B, at time t6, the message
queue 380 no longer includes the object “obj 6 that was
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modified at time t2 and, instead, includes object “obj 6 that
was modified at time t5. Within the queue 380, object “obj
6 in one embodiment does not take the priority of object
“obj6” at time t2, which has been removed. Instead, object
“obj 6” takes a chronological position within the message
queue 380, after object “obj 3” and before after the modi-
fication at time t5 of object “obj 6”. A variety of techniques
for prioritizing objects within the message queue 380 is
described in co-pending patent application entitled “Method
and Apparatus for Updating Information in a Low-Band-
width Client/Server Object-Oriented System”, U.S. Ser. No.
09/518,753, which is incorporated by reference herein in its
entirety for all purposes.

FIG. 19 illustrates a node 1900 of the present invention as
implemented using a general processing device, e.g., a
general purpose computer. The node 1900 can be a router, a
host, a network or any networked devices. Specifically, the
node 1900 comprises a processor (CPU) 1910, a memory
1930, e.g., random access memory (RAM) and/or read-only
memory (ROM), a neighbor discovery module 1940, a
topology discovery and route computation module 1950,
and various input/output devices 1920, (e.g., storage
devices, including but not limited to, a tape drive, a floppy
drive, a hard disk drive, a compact disk (CD) drive or a
digital videodisk (DVD) drive, a receiver, a transmitter, a
speaker, a display, a speech signal input device, e.g., a
microphone, a keyboard, a keypad, a mouse, an A/D con-
verter, a chipset, a controller card, a graphics card, a sound
card, and the like).

It should be understood that the neighbor discovery
module 1940 and the topology discovery and route compu-
tation module 1950 can be implemented as one or more
physical devices that are coupled to the CPU 1910 through
a communication channel. Alternatively, the neighbor dis-
covery module 1940 and the topology discovery and route
computation module 1950 can be represented by one or
more software applications (or even a combination of soft-
ware and hardware, e.g., using application specific inte-
grated circuits (ASIC)), where the software is loaded from
a storage medium, (e.g., a magnetic or optical drive or
diskette) and operated by the CPU in the memory 1930 of
the computer. As such, the neighbor discovery module 1940
and the topology discovery and route computation module
1950 (including associated methods and data structures) of
the present invention can be stored on a computer readable
medium, e.g., RAM memory, magnetic or optical drive or
diskette and the like.

In operation, the neighbor discovery module 1940 and the
topology discovery and route computation module 1950
allow each node to quickly detect neighboring nodes and to
perform topology discovery and route computation. To assist
in performing these functions, a neighbor table 1932 is
maintained by each node 1900 and its use will be further
described below.

Various terms are defined below that are used to describe
the present invention. Since some of these terms may have
previously been defined above, the definitions below should
be perceived as a supplement to those definitions or simply
providing alternate descriptions.

Node: A router that implements TBRPF.

Interface: A network device that connects a node to the
MANET. A node can have multiple interfaces. An
interface can be wireless or wired, and can be broadcast
(e.g., Ethernet) or point-to-point. Each interface is
identified by an IP address (unless the interface is to an
unnumbered point-to-point link).
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Router ID: Each node is identified by a unique 32-bit
Router ID (RID), also called a node 1D, which for IPv4
is equal to the IP address of one of its interfaces. Link:
A logical connection from one node to another, iden-
tified by a pair (u, v), where u and v represent nodes.
Nodes u and v are called the “tail” and “head” of the
link, respectively.

Bidirectional link: A link between two nodes u and v is
said to be bidirectional, or 2-way, if node u has an
interface I and node v has an interface J such that
interface I can hear interface J and vice versa.

Neighbor node: A node j is said to be a neighbor of node
i if node i can hear node j on some interface. Node j is
said to be a 2-way neighbor if there is a bidirectional
link between i and j.

MANET interface: Any wireless interface such that two
neighbor nodes on the interface need not be neighbors
of each other. MANET nodes typically have at least one
MANET interface, but this is not a requirement.

Topology: The topology of the network is described by a
graph G=(V, E), where V is the set of nodes u and E is
the set of links (u,v) in the network.

Directed tree: A subset of (directed) links (u,v) that does
not contain any loops. The root of a directed tree is the
only node u such that the tree contains no link whose
tail is u.

Source tree: The directed tree computed by each node that
provides shortest paths to all other nodes. Not the same
as a broadcast tree.

Topology update: A message or part of a message that
reports a state change for one or more links.

Parent: The parent of a node i for an update source u is the
next node on the computed shortest path to node u.

FIG. 26 is a flowchart diagram of a neighbor discovery
method 2600 of the present invention. A node that imple-
ments the present TBRPF Neighbor Discovery (TND) pro-
tocol allows each node to quickly detect the neighbor nodes
with which the node has a direct, bidirectional link, i.e., such
each node has an interface that can hear the other interface.
The method also detects when a bidirectional link to a
neighbor no longer exists.

Method 2600 starts in step 2605 and proceeds to step
2610, where a time interval or threshold (e.g., HELLO_INT-
ERVAL) is allowed to elapse before a Hello message is sent
to a neighbor node. Specifically, each node sends a HELLO
message every HELLO_INTERVAL seconds, with a small
jitter. This time duration is generally predefined for a node,
but can be adaptively changed as described below.

In step 1615, a node will send a “differential” Hello
message to its neighbor nodes. One important feature of the
Neighbor Discovery Module is that it employs “differential”
HELLO messages which report only the “changes” in the
status of neighbor nodes. This results in HELLO messages
that are much smaller than those of other link- state routing
protocols such as OSPF, in which each HELLO message
includes the IDs of all neighbors. As a result, HELLO
messages can be sent more frequently in highly mobile
networks without increasing overhead significantly.

More specifically, each HELLO message contains three
(possibly empty) lists of router IDs, formatted as the fol-
lowing three message sub-types: NEIGHBOR REQUEST,
NEIGHBOR REPLY, and NEIGHBOR LOST. Namely, a
HELLO message is the concatenation of a NEIGHBOR
REQUEST message, a NEIGHBOR REPLY message, and a
NEIGHBOR LOST message, where each of the last two
messages is omitted if its list of router IDs is empty.
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A NEIGHBOR REQUEST message is a message sent by
a “sending” node indicating to one or more neighbor nodes
of its presence and will subsequently effect one or more
“receiving” neighbor nodes who received the NEIGHBOR
REQUEST message to acknowledge the sending node’s
presence. Thus, a NEIGHBOR REQUEST message is
always included in a HELLO message, even if its list of
router IDs is empty. Thus, a HELLO message always
includes a (possibly empty) NEIGHBOR REQUEST.

A NEIGHBOR REPLY message is a message sent by a
“receiving” neighbor node to indicate receipt of a NEIGH-
BOR REQUEST message, whereas a NEIGHBOR LOST
message is a message to indicate the loss of a neighbor node.
Thus, a NEIGHBOR REPLY or NEIGHBOR LOST mes-
sage is included only if its list of router IDs is nonempty.
Each HELLO message also contains the current HELLO
sequence number (HSEQ), which is incremented with each
transmitted HELLO. For convenience, we say that “node i
sends a NEIGHBOR REQUEST message for node j” if node
i sends such a message that includes the ID of node j, and
similarly for NEIGHBOR REPLY and NEIGHBOR LOST
messages.

Each node maintains a neighbor table 1932 for each
interface, which stores the state information for neighbors
heard on that interface. The status of each node can be
“1-WAY™, “2-WAY”, or “LOST”. When node i changes the
state of a neighbor j, it sends the appropriate message
(NEIGHBOR  REQUEST/UP/LOST) in at most
NBR_HOLD_COUNT (typically 3) consecutive HELLOs.
This ensures that node j will either receive the message, or
will miss NBR_HOLD_COUNT HELLOs and thus declare
node ito be LOST. This technique also makes it unnecessary
for a node to include each 1-WAY neighbor in HELLOs
indefinitely, unlike other protocols such as OSPF. The
NEIGHBOR REQUEST message includes a list of neigh-
bors from which HELLO messages have recently been heard
but for which a 2-WAY link is not currently established.

Returning to FIG. 26, in step 2620, method 2600 queries
whether the HELLO_INTERVAL should be changed. If the
query is positively answered, then method 2600 proceeds to
step 2625 where the time interval is changed. If the query is
negatively answered, then method 2600 returns to step 2610.
It should be noted that steps 2620 and 2625 are optional
steps.

More specifically, discovery services in networks gener-
ally send periodic updates. Receivers will wait for a fixed
timing interval to obtain a new update message. If the time
elapses without receiving an update, the receiver will likely
declare the node or service lost. Update intervals are gen-
erally fixed parameters of networks at setup. To change the
update interval, all nodes have to be removed from the
network, instantiated with the new update interval time, and
rebooted to join the network again. However, pro-active
routing and other protocols for mobile ad hoc and peer-to-
peer networks with frequent and periodic messages to dis-
cover services or objects can benefit from self-adaptation to
the dynamic environment. In one embodiment of the present
invention, the present method configures and tunes perfor-
mance of the network on-the-fly (during operation) under
different situations. For example, the update interval can
depend on the current velocity of nodes (if mobile), the
application, bandwidth demand, or network traffic.

In one embodiment, the update message itself contains the
current update interval of the sending node. The update
interval can be changed any time, such that the receiving
node sets the timeout individually per message according to
the value transmitted in it. The present approach adds a small
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data entry in the update messages to hold the next interval
value. This allows nodes joining the network to advertise
their own, possibly different update interval. All nodes can
change their update intervals during operation to cope with
dynamic, varying circumstances. Thus, the network supports
devices with different update intervals and devices, which
have the ability to change their update intervals during
operation. For example, a mobile device can send updates
more frequently when it moves faster.

This novel approach to changing update interval provides
several advantages. The approach can help to avoid intruders
detecting update messages. Having a fixed update interval,
the intruders can seek after messages that occur regularly in
equidistant times, even if these messages are encrypted.
Employing a varying update interval hampers the picking of
control messages. For example, when applying mobile ad
hoc networks to battlefield situations, variable updates can
enhance the safety of networked equipment or soldiers. If
the update messages allow inference of the node’s location
or other sensitive data, the present approach can help to
protect this information.

FIG. 28 is a detailed flowchart diagram of a neighbor
discovery method 2800 of the present invention. Specifi-
cally, FIG. 28 illustrates in detail as to how a HELLO
message is processed by a receiving node. It should be noted
that each node maintains a neighbor table for each interface,
which stores state information for each neighbor that has
recently been heard on that interface. The definitions for
various variables are now provided below to assist in the
understanding of FIG. 28. The entry for neighbor node j
contains the following variables:

nbr_rid(j): The Router ID of node j.

nbr_if_addr(j): The interface IP address of node j.

nbr_status(j): The current status of the link to node j,

which can be LOST, 1-WAY, or 2-WAY.
nbr_life(j): The amount of time (in seconds) remaining
before nbr_status(j) must be changed to LOST if no
further HELLO message from node j is received. Set to
NBR_HOLD_TIME whenever a HELLO is received
from node j.

nbr_hseq(j): The last value of HSEQ received from node
j- Used to determine the number of HELLOs have been
missed.
nbr_count(j): The number of times a NEIGHBOR
REQUEST/UP/LOST message has been sent for node
j since nbr_status(j) has changed.

hello_history(j): A list of the sequence numbers of the last
HELLO_ACQUIRE_WINDOW HELLO messages
received from node j.

nbr_metric(j): An optional measure of the quality of the
link to node j.
nbr_pri(j): The relay priority of node j.
The table entry for a neighbor j may be deleted if no
HELLO message has been received from node j within the
last 2*NBR_HOLD_TIME seconds. (It is kept while the
NEIGHBOR LOST for node j is being transmitted.) The
absence of an entry for a given node j is equivalent to an
entry with nbr_status(j)=LOST and hello_history(j)=NULL.
The three possible values of nbr_status(j) at node i have the
following informal meanings:
LOST: Node i1 has not received a sufficient number of
HELLO messages recently from node j.

1-WAY: Node i has received a sufficient number of
HELLO messages recently from node j, but the link is
not 2-WAY.

2-WAY: Nodes i and j have both received a sufficient

number of HELLO messages recently from each other.
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Each node sends a HELLO message periodically every
HELLO_INTERVAL seconds, with a random jitter selected
from the interval [0, MAX_JITTER]. Each HELLO message
always includes a NEIGHBOR REQUEST message, even if
its router ID list is empty. The NEIGHBOR REQUEST
message includes the sequence number HSEQ, which is
incremented (modulo 256) each time a HELLO is sent. The
HELLO message also includes a NEIGHBOR REPLY mes-
sage if its router ID list is nonempty, and a NEIGHBOR
LOST message if its router ID list is nonempty. The contents
of these three messages are determined by the following
steps at node i:

1. For each node j such that nbr_status(j)=LOST and
nbr_count(j)>0, include node j in the NEIGHBOR LOST
message and decrement nbr_count(j).

2. For each node j such that nbr_status(j)=1-WAY and
nbr_count(j)>0, include node j in the NEIGHBOR
REQUEST message and decrement nbr_count(j).

3. For each node j such that nbr_status(j)=2-WAY and
nbr_count(j)>0, include node j in the NEIGHBOR REPLY
message and decrement nbr_count(j).

FIG. 28 illustrates the above processing of a HELLO
message in greater detail. Specifically, method 2800 starts in
step 2805 and proceeds to step 2810 where a HELLO
message with sequence number HSEQ and relay priority
PRI is received by node i from a neighbor node j. Method
2800 queries whether node j is currently in node 1’s neighbor
table. If the query is positively answered, then method 2800
proceeds to either step 2830, step 2840 or step 2850 depend-
ing on the current status of node j as recorded by node i. If
the query is negatively answered, then method 2800 pro-
ceeds to step 2820, where an entry for node j is created with
nbr_rid(j) equal to the Router ID of node j, nbr_if_addr(j)
equal to the interface address from which the message was
sent, nbr_status(j)=LOST (temporarily set so that it will be
processed by step 2830 below), nbr_count(j)=0, and
nbr_hseq(j)=HSEQ. Update hello_history(j) to reflect the
received HELLO message. If nbr_hseq(j)>HSEQ (due to
wraparound), set nbr_hseq(j)=nbr_hseq(j)-256.

In step 2830, method 2800 queries whether the status of
node j is “LOST” and whether hello_history(j) indicates that
HELLO_ACQUIRE_COUNT of the last HELLO_AC-
QUIRE_WINDOW HELLO messages from node j have
been received. If the query is positively answered, then
method 2800 queries whether node i appears in the NEIGH-
BOR REQUEST list of the HELLO message. If the query is
positively answered, then method proceeds to step 2834. If
the query is negatively answered, then method proceeds to
step 2836.

In step 2834, if node i appears in the NEIGHBOR
REQUEST list, method 2800 will set nbr_status(j)=2-WAY
and nbr_count(j)=NBR_HOLD_COUNT (a NEIGHBOR
REPLY will be sent). Call Link Up(j, I, metric). One
possibility for this scenario is that node j has been deemed
by node i as being LOST and may have received a HELLO
message from node 1 indicating j°s LOST status. In response,
node j then sends a HELL.O message to node i and lists node
i in its NEIGHBOR REQUEST list within the HELLO
message. Upon detecting the listing of node i in the NEIGH-
BOR REQUEST list, node i will now declare link with node
j as being 2-WAY.

In step 2836, if node i does not appear in the NEIGHBOR
REQUEST list, method 2800 will set nbr_status(j)=1-WAY
and nbr_count(j)=NBR_HOLD_COUNT (a NEIGHBOR
REQUEST will be sent). One possibility for this scenario is
that node j is a new node entering the network. Thus, node
i will attempt to verify 2-WAY communication with node j
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in a future HELLO message sent to node j where “node j”
will be listed in the NEIGHBOR REQUEST list of the
HELLO message.

In step 2840, method 2800 queries whether the status of
node j is “1-WAY™. If the query is positively answered, then
method 2800 queries whether node i appears in the NEIGH-
BOR REQUEST list of the HELLO message. If the query is
positively answered, then method 2800 proceeds to step
2842. If the query is negatively answered, then method 2800
proceeds to step 2843.

In step 2842, if node i appears in the NEIGHBOR
REQUEST list, method 2800 will set nbr_status(j)=2-WAY,
nbr_count(j)>NBR-HOLD_COUNT (a  NEIGHBOR
REPLY will be sent) and will call Link_Up(j, i, metric).
Since node i already deems node j as having a status of
1-WAY, receiving a message from node j will change the
status to 2-WAY. One possibility for this scenario is that
node i recently sent a HELLO message (to all neighbors)
indicating its presence and node j responded by sending a
NEIGHBOR REQUEST as in step 2836.

In step 2843, method 2800 queries whether node i appears
in the NEIGHBOR REPLY list. If the query is positively
answered, then method 2800 proceeds to step 2845. If the
query is negatively answered, then method 2800 proceeds to
step 2844.

In step 2844, if node i appears in the NEIGHBOR REPLY
list, then set nbr_status(j)=2-WAY and nbr_count(j)=0. Call
Link-Up(j, I, metric). One possibility for this scenario is that
node i recently sent a HELLO message to node j indicating
its presence and node j has now replied by placing node i in
its NEIGHBOR REPLY list.

In step 2845, method 2800 queries whether HSEQ-
nbr_hseq(j)>NBR_HOLD_COUNT. If the query is posi-
tively answered, then method 2800 proceeds to step 2846. If
the query is negatively answered, then method 2800 pro-
ceeds to step 2860.

In step 2846, if HSEQ-nbr_hseq(j)>NBR_HOLD_
COUNT, then set nbr_status(j)=LOST and nbr_count(j)=
NBR_HOLD_COUNT (a NEIGHBOR LOST will be sent).
One possibility for this scenario is that node i has waited a
long time for a response from node j and now has detected
that node i has actually missed many messages from node j
above an established or acceptable threshold. The NEIGH-
BOR LOST message will notify node j that a problem may
exist between the link with node 1.

In step 2850, method 2800 queries whether the status of
node j is “2-WAY™. If the query is positively answered, then
method 2800 queries whether node i appears in the NEIGH-
BOR LOST list of the HELLO message. If the query is
positively answered, then method 2800 proceeds to step
2852. If the query is negatively answered, then method 2800
proceeds to step 2853.

In step 2852, if node i appears in the NEIGHBOR LOST
list, method 2800 sets nbr_status(j)=L.OST and nbr_count
(7)=0. Call Link_Down(j). One possibility for this scenario
is that node j has waited a long time for a response from node
i and is now indicating that its link with node i is LOST.

In step 2853, method 2800 queries whether HSEQ-
nbr_hseq(j)>NBR_HOLD_COUNT. If the query is posi-
tively answered, then method 2800 proceeds to step 2855. If
the query is negatively answered, then method 2800 pro-
ceeds to step 2854.

In step 2855, if HSEQ-nbr_hseq(j)>NBR_HOLD_
COUNT, then method 2800 sets nbr_status(j)=LOST and
nbr_count(j)>NBR_HOLD_COUNT (a NEIGHBOR LOST
will be sent). One possibility for this scenario is that node i
has waited a long time for a response from node j and now



US 7,327,683 B2

53

has detected that node i has actually missed many messages
from node j above an established or acceptable threshold and
is now indicating that its link with node j is LOST.

In other words, if node i receives a HELLO from a 1-WAY
or 2-WAY neighbor j whose HSEQ indicates that at least
NBR_HOLD_COUNT HELLOs were missed, or if node 1
receives no HELLO from node j within NBR_HOLD_TIME
seconds, then node i changes the state of node j to LOST, and
sends a NEIGHBOR LOST message for node i in its next
NBR_HOLD_COUNT transmitted HELLO messages (un-
less the link changes state before these transmissions are
complete). Node j will either receive the message or will
miss NBR_HOLD_COUNT HELLOs; in either case it will
declare node i to be LOST. In this manner, both nodes will
agree that the link is no longer bidirectional, even if node j
can still hear HELLOs from node i.

In step 2854, method 2800 queries whether node i appears
in the NEIGHBOR REQUEST list and nbr_count(j)=0. If
the query is positively answered, then method 2800 pro-
ceeds to step 2856. If the query is negatively answered, then
method 2800 proceeds to step 2860.

In step 2856, if node i appears in the NEIGHBOR
REQUEST list and nbr_count(j)=0, then method 2800 sets
nbr_count(j)=NBR_HOLD_COUNT (a NEIGHBOR
REPLY will be sent). One possibility for this scenario is that
node j is simply sending a standard HELL.O message where
a 2-WAY link has already being declared.

Finally, in step 2860, method 2800 set nbr_life(j)=
NBR_HOLD_TIME, nbr_hseq(j)=HSEQ, and nbr_pri(j)=
PRI

It should be noted that upon expiration of the timer
nbr_life(j), node 1 will perform the following steps:

If nbr_status(j=1-WAY or 2-WAY, set nbr_status(j)=
LOST and nbr_count(j)=NBR_HOLD_COUNT (a
NEIGHBOR LOST will be sent). Call Link_Down(j).

Optionally, to avoid establishing a link that is likely to be
short lived (i.e., to employ hysteresis), a node i must receive
at least HELLO_ACQUIRE_COUNT (e.g., 2) of the last
HELLO_ACQUIRE_WINDOW (e.g., 3) HELLOs from
another node j before declaring the node to be 1-WAY. In this
case, node i sends a NEIGHBOR REQUEST message for
node j in each of its next NBR_HOLD_COUNT HELLO
messages, or until a NEIGHBOR REPLY message for node
iis received from node j. If node j receives a NEIGHBOR
REQUEST from node i, then node j declares the link to node
ito be 2-WAY (if it is not already 2-WAY), and includes a
NEIGHBOR REPLY message for node i in its next
NBR_HOLD_COUNT transmitted HELLO messages.
Upon receiving the NEIGHBOR REPLY message, node i
declares the link to node j to be 2-WAY.

Each node may optionally maintain and update one or
more link metrics to each neighbor j for each interface I,
representing the quality of the link. Such link metrics
described below can be used as additional conditions for
changing the state of a neighbor, based on the link metric
going above or below some threshold. TBRPF also allows
link metrics to be advertised in topology updates and used
for computing shortest paths.

TND 1940 is designed to be fully modular and indepen-
dent of the routing module 1950. Thus, TND performs only
neighbor sensing, i.e., it determines which nodes are (1-hop)
neighbors. In particular, it does not discover 2-hop neighbors
(which is handled by the routing module 1950). As a result,
TND can be used by other routing protocols, and TBRPF can
use another neighbor discovery protocols in place of TND,
e.g., one provided by the link layer.
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Nodes with multiple interfaces can run TND separately on
each interface, similar to OSPF. Thus, a neighbor table is
maintained for each interface, and a HELLO sent on a
particular interface contains only the RIDs of neighbors for
that interface.

FIG. 27 illustrates a flowchart of a method 2700 for
disseminating topology information by a node. Specifically,
each node of the present invention computes a source tree
(providing shortest paths to all reachable nodes) based on
partial topology information stored in its topology table,
e.g., using a modification of Dijkstra’s algorithm. To mini-
mize overhead, each node reports only part of its source tree
to neighbors. This is in contrast to other protocols such as
FTSP and STAR, in which each node reports its entire
source tree to neighbors, which is redundant since the source
trees of different neighbors often overlap considerably.

Method 2700 starts in step 2705 and proceeds to step 2710
where a node will compute a source tree (1), i.e., the
directed tree computed by each node that provides shortest
paths to all other nodes, and will update its topology graph
TG which consists of links that are believed to be up
(operational).

In step 2715, method 2700 computes a “reportable node
set” (RN). Namely, to decide which part of its source tree T
to report to neighbors, a node first computes its reportable
node set. Roughly speaking, node i includes node u in RN
if it estimates that the minimum-hop path from some neigh-
bor j (of node 1) to destination u goes through node 1. In other
words, node i includes node u in RN if it estimates that it is
the next hop (or parent) of some neighbor to destination u.
To make this determination, node i computes the shortest
paths, up to 2 hops, from each neighbor to each other
neighbor, using relay priority (included in HELLO mes-
sages) and node ID to break ties. After a node determines
which neighbors are in RN, each reachable node u is
included in RN if and only if the next hop to u (on the path
defined by T) is in RN. A node also includes itself in RN. As
a result, the reportable subtree RT includes the subtrees of T
that are rooted at neighbors in RN, and also includes all local
links to neighbors. This method avoids the need for the
NEW PARENT messages.

In step 2720, method 2700 computes a reportable substree
(RT). Namely, the part of T that a node reports to neighbor
nodes is called the “reportable subtree”. The reportable
subtree RT consists of links (u,v) of T such that u is in the
“reportable node set” RN. Each node reports RT to neigh-
bors in “periodic” topology updates (e.g., every 5 seconds),
and reports changes (additions and deletions) to RT in more
frequent “differential” updates (e.g., every 1 second). Peri-
odic updates inform new neighbors of RT, and ensure that
each neighbor eventually learns RT even if it does not
receive all updates. Differential updates ensure the fast
propagation of each topology update to all nodes that are
affected by the update. A received topology update is not
forwarded, but may result in a change to RT, which will be
reported in the next differential update.

In step 2725, the reportable subtree is reported to its
neighbor nodes. If possible, topology updates are included in
the same packet as a HELLO message as disclosed above,
to minimize the number of control packets sent. If it is time
to send a periodic update, then the entire reportable subtree
is reported in step 2725; otherwise only changes to the
reportable subtree in a “differential update™.

In step 2735, method 2700 waits or counts a time interval
and then queries whether a change has been detected in a
node’s topology table, e.g., receiving a topology update
from a neighbor node indicating some change in the network
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topology, or detecting a status change for a link to one of its
neighbors. If the query is positively answered, then method
2700 returns to step 2710 and steps 2710-2725 are repeated.
If the query is negatively answered, then method 2700
proceeds to step 2725 to again issue another topology report
to its neighbors. The time interval(s) can be selected to
implement the “periodic” topology updates and the “differ-
ential” updates as disclosed above.

In one embodiment, the TBRPF does not require reliable
or sequenced delivery of messages, and does not use ACKs
or NACKs. TBRPF supports multiple interfaces, associated
hosts, and network prefixes. Information regarding associ-
ated interfaces, hosts, and prefixes is disseminated efficiently
in periodic and differential updates, similar to the dissemi-
nation of topology updates.

TBRPF does not use sequence numbers for topology
updates, thus reducing message overhead and avoiding
wraparound problems. Instead, a technique is used in which,
for each link (u,v) reported by one or more neighbors, only
the next hop p(u) to u is believed regarding the state of the
link. However, in other protocols, such as SPTA each node
reports the full topology. Using this technique, each node
maintains a topology graph TG, consisting of “believable”
links that are reported by neighbors, and computes T as the
shortest-path tree within TG. To allow immediate rerouting,
the restriction that each link (u,v) in TG must be reported by
p(u) is relaxed temporarily if p(u) changes to a neighbor that
is not reporting the link. Each node is required to report RT,
but may report additional links, e.g., to provide increased
robustness in highly mobile networks. More specifically, a
node may maintain any subgraph H of TG that contains T,
and report the reportable subgraph RH, which consists of
links (u,v) of H such that u is in RN.

For example, H can equal TG, which would provide each
node with the full network topology if this is done by all
nodes. H can also be a biconnected subgraph that contains
T, which would provide each node with two disjoint paths to
each other node, if this is done by all nodes.

TBRPF also allows the option to include link metrics in
topology updates, and to compute paths that are shortest
with respect to the metric. This allows packets to be sent
along paths that are higher quality than minimum-hop paths.
TBRPF allows path optimality to be traded off in order to
reduce the amount of control traffic in networks with a large
diameter, where the degree of approximation is determined
by the configurable parameter NON_TREE_PENALTY.

In a MANET, some nodes, called non-relay nodes, may
choose not to forward packets received from other nodes.
Non-relay nodes are supported by TBRPF in a very simple
manner: they run TBRPF (and transmit HELLOs) but do not
transmit topology update messages. As a result, no node will
compute a path that uses a non-relay node as an intermediate
node.

FIG. 29 illustrates a flowchart of a method 2900 for
processing a topology update message. Method 2900 starts
in step 2905 and proceeds to step 2910 where a topology
update message is received.

In step 2915, method 2900 updates the node’s topology
table. Specifically, when a packet containing TOPOLOGY
UPDATE messages is received, a procedure, Process_Up-
dates( ), is called to update the topology table TT, in
particular to update TG and the reporting neighbor lists r(u)
and r(u,v).

In step 2920, method 2900 queries whether any link of the
source tree T has been deleted from TG. If the query is
affirmative answered, then method 2900 proceeds to step
2925 and the procedures Update_Source_Tree( ) and Updat-
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e_Routing_Table( ) are called to provide immediate rerout-
ing, as indicated in the procedure Process_Updates( ) below.
Otherwise, method 2900 ends in step 2930. The routing
operation will be further described below in various proce-
dures

Various data structures such as packet headers, message
formats and software procedures are now disclosed below. It
should be understood that these structures, formats and
procedures are only illustrative and should not be deemed as
limiting the scope of the present invention. Those skilled in
the art will realize that these packet headers, message
formats and software procedures can be adapted or changed
accordingly to meet specific implementation requirements.

TBRPF Packets

Nodes send TBRPF protocol data in contiguous units
known as packets. Each packet includes a header, optional
header extensions, and a body comprising one or more
“message(s)” and padding options as needed. The total
length of all packet elements should be less than the maxi-
mum length represented by an unsigned 16-bit integer, i.e.
64 KB. To facilitate efficient receiver processing, senders
should insert padding options as necessary to align multi-
octet words within the TBRPF packet on “natural” bound-
aries (i.e. modulo-8/4/2 addresses for 64/32/16-bit words,
respectively). Receivers should be capable of processing
multi-octet words. The following sections specify elements
of the TBRPF packet in more detail in one embodiment.

TBRPF Packet Header

TBRPF packet headers are variable-length (minimum one
octet), and should begin on a modulo-8 boundary to provide
a base for multi-octet word alignment. The format for the
first octet of the header is shown in FIG. 20.

Bits (4 Bits):
Interpreted based on the sense of the ‘E’ flag.
Version (3 Bits):

A 3-bit unsigned integer value that identifies the TBRPF
protocol version; the following values are defined:

TBRPFVERSION_ 1 1
TBRPFVERSION_ 2 2
TBRPFVERSION_3 3

Implementations of this protocol description should
encode the value TBRPFVERSION_ 3 in the version
field. (Implementations may provide backwards-com-
patibility for older protocol versions.)

Mode (1 Bit):
Specifies simple mode (E=0) or extended mode (E=1) for
the current TBRPF packet header as described below.

Simple-mode Packet Headers (E=0)

Senders may encode TBRPF packet headers in simple-
mode when no header extensions are required, such as when
the lower-level delivery service provides requisite fields
(e.g. length; checksum). Simple-mode packet headers are
1-octet in length and coincide with the TYPE field of the first
message in the TBRPF packet body (see below). Simple-
mode packet headers may only be used when 0<—TYPE<4
for the first message of the packet body. (This is usually the
case, since the first message is usually a HELLO message.)
Simple-mode packet headers are illustrated in FIG. 21
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TYPE (4 Bits):
A 4-bit unsigned integer with value 0-15 that encodes the
low-order 4 bits of the TYPE field in the first element
of the TBRPF packet body.

Extended-Mode Packet Headers (E=1)

Senders should encode TBRPF packet headers in
extended-mode when header extensions are required, such
as when the lower-level delivery service omits requisite
fields. Extended-mode packet headers are illustrated in FIG.
22

Flags (4 Bits):

One bit (F) specifies whether a 1-octet flag extension field
follows. Three bits (C, L, R) specify which header
extension fields (if any) follow. Any extension fields
specified by these bits should occur in canonical order
(i.e. first F, then C, then L, then R) as follows:

F—Flag extension field included:

When F=1", a 1-octet flag extension field immediately
follows the first octet of the TBRPF packet header.
Currently, all bits in the flag extension field are
RESERVED for future use; senders may set F="1"to
insert a single octet of padding for alignment pur-
poses.

C—Checksum field included:

If the underlying delivery service provides a checksum
facility the sender may set C=°0" and omit the
checksum extension field. Otherwise, the sender
should set C=1" and include a 16-bit checksum field
beginning in the first octet of the header extension.
The checksum is calculated and written into the
checksum field. The checksum is calculated across
all data bytes in the packet header and body, but does
not include a pseudo-header of the underlying deliv-
ery service. If other header extension fields are also
included (see below), the sender should fill them in
before calculating the checksum. Receivers should
examine the C bit to determine whether the check-
sum field is present. If C=1", a receiver must verity
the checksum encoded in the 16-bit message check-
sum field “regardless” of whether the underlying
delivery service also performed a checksum. Receiv-
ers should discard TBRPF packets that contain an
incorrect checksum.

L—Length field included:

If the underlying delivery service provides a length
field, the sender may set L="0" and omit the length
extension field. Otherwise, the sender should set
L=1" and include a 16-bit unsigned integer length
field immediately after any previous header fields.
The length includes all header and data bytes and is
written into the length field in network byte order.
Receivers should examine the L bit to determine
whether the length field is present. If L=1°, a
receiver should convert the length field to host byte
order to determine the length of the TBRPF packet,
including the TBRPF packet header. Receivers
should discard any TBRPF packet if neither the
underlying delivery service nor the TBRPF packet
header provide packet length.

R—Router ID (RID) included:

If the underlying delivery service encodes the sender’s
RID, the sender may set R="0" and omit the RID
field. Otherwise, the sender should set R=1" and
include a 32-bit unsigned integer RID immediately
after any previous header fields. The RID option
provides a mechanism for implicit Network-level
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Address Resolution (NARP). A receiver that detects
an RID option should create a NARP binding
between the RID and the source address that appears
in the network-level header.

TBRPF Packet Body

The TBRPF packet body consists of the concatenation of
one or more TBRPF message(s) (and padding options where
necessary) encoded using a method similar to the type-
length-value (TLV) encoding method. Messages and pad-
ding options within the TBRPF packet body are encoded
using the format shown in FIG. 23

TYPE (4 Bits):
A 4-bit identifier with value 0-15 that identifies the
element.

Value:
Variable-length field. (Format and length depend on
TYPE, as described in the following sections.)

Options:

Four option bits that depend on TYPE.

The sequence of elements should be processed strictly in
the order they appear within the TBRPF packet body; a
receiver must not, for example, scan through the packet
body looking for a particular type of element prior to
processing all preceding elements. TBRPF packet elements
include “padding options” and “messages” as described
below.

Padding Options (TYPE=0 thru 1)

Senders may insert two types of padding options where
necessary to satisfy alignment requirements for other ele-
ments. Padding options may occur anywhere within the
TBRPF packet body. The following two padding options are
illustrated in FIGS. 24 and 25.

Padl option (TYPE=0)

The Padl option inserts one octet of padding into the
TBRPF packet body; the VALUE field is omitted. If
more than one octet of padding is required, the PadN
option (described next) should be used, rather than
multiple Padl options.

PadN Option (TYPE=1)

The PadN option inserts two or more octets of padding
into the TBRPF packet body. The first octet of the
VALUE field contains an 8-bit unsigned integer length
containing a value between 0-253 which specifies the
number of zero-valued octets that immediately follow,
yielding a maximum total of 255 padding octets.

Messages (IYPE=2 thru 15)

Message are described as they occur in the TBRPF
protocol specification in the following sections, including
the message name, type code and a detailed message format
diagram. Senders should encode messages as specified by
the individual message formats. Receivers should detect
errors in message construction, such as messages with a
non-integral number of elements or with fewer elements
than indicated. In all cases, upon detecting an error receivers
should discontinue processing the current TBRPF packet
and discard any unprocessed elements.

TBRPF Neighbor Discovery

This section describes the TBRPF Neighbor Discovery
(TND) protocol, which allows each node to quickly detect
the neighboring nodes with which the node has a direct,
bidirectional (2-WAY) link, and to quickly detect the loss of
such a link. TND is run separately on each interface.
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TND is designed to be independent of the TBRPF routing
module. The interface between these two modules is defined
simply by the three functions Link_Up(j, I, metric), Link_
Down(j, 1), and Link_Change(j, I, metric), which are called
by TND to report a new neighbor, the loss of a neighbor, or
a change in the link metric on a given inter-face.

HELLO Message Format
The HELLO message has the following three subtypes:
NEIGHBOR REQUEST (TYPE=2)
NEIGHBOR REPLY (TYPE=3)
NEIGHBOR LOST (TYPE=4)

Each HELLO subtype has the format as illustrated in FIG.
30.

The message body contains N 4-octet router IDs.

HSEQ is the 8-bit HELLO sequence number.

PRI is the relay priority. A node with higher relay priority

is more likely to be selected as the next hop on a route.

A HELLO message is the concatenation of a NEIGHBOR
REQUEST message, a NEIGHBOR REPLY message, and a
NEIGHBOR LOST message, where each of the last two
messages is omitted if its list of router IDs is empty. Thus,
a HELLO message always includes a (possibly empty)
NEIGHBOR REQUEST.

Link-Layer Failure Notification
Some link-layer protocols (e.g., IEEE 802.11) provide a
notification that the link to a particular neighbor has failed,
e.g., after attempting a maximum number of retransmis-
sions. If such an notification is provided by the link layer,
then node i should perform the following step upon receipt
of a link-layer failure notification for the link to node j:
If nbr_status(j)=2-WAY, set nbr_status(j)=LOST and
nbr_count(j)=NBR_HOLD_COUNT (a NEIGHBOR
LOST will be sent). Call Link_Down(j);

Optional Link Metrics

Each node may maintain and update one or more link
metrics to each neighbor j for each interface I, representing
the quality of the link, e.g., signal strength, number of
HELLOs received over some time interval, reliability, sta-
bility, bandwidth, etc. Each node should declare a neighbor
to be LOST if either NBR_HOLD_COUNT HELLOs are
missed or if no HELLO is received within NBR_HOLD_
TIME seconds. However, a node may also declare a neigh-
bor to be LOST based on a link metric being above or below
some threshold. Each node should receive at least HELLO
ACQUIRE_COUNT of the last HELLO_ACQUIRE_WIN-
DOW HELLOs from a neighbor before declaring the neigh-
bor 1-WAY or 2-WAY.

However, a node may require an additional condition
based on a link metric being above or below some threshold,
before declaring the neighbor 1-WAY or 2-WAY. One
example of a metric is the signal strength of the packets
received from the neighbor.

If USE_METRICS=1, one of the link metrics computed
by TND, denoted nbr_metric(j,]) for neighbor j and interface
1, is reported to the routing module via the functions
Link_Up(j,I,metric) and Link_Change(j,I,metric). The latter
function is called whenever nbr_metric(j,I) changes signifi-
cantly. As described below, if USE_METRICS=1, this link
metric is advertised in topology updates and used for com-
puting shortest paths.

Configurable Parameters

This section lists the parameters used in the description of
the neighbor discovery protocol, and their proposed default
values.
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HELLO_INTERVAL (1 second)
MAX_JITTER (0.1 second)
NBR_HOLD_TIME (3 seconds)
NBR_HOLD_COUNT (3)
HELLO_ACQUIRE_COUNT (2)
HELLO_ACQUIRE_WINDOW (3)

TBRPF Routing Module

This section describes the TBRPF routing module (which
performs topology discovery and route computation). The
interface of this module with the neighbor discovery module
(TND) is defined by the three functions Link_Up( ), Link
Down( ), and Link_Change( ), which are called by TND.
Therefore, it is possible to use another neighbor discovery
mechanism in place of TND, e.g., one that is provided by the
link layer.

Data Structures

In addition to the information required by the neighbor
discovery protocol, each node running TBRPF contains a
topology table TT, which stores information for each known
link and node in the network. The following information is
stored at node 1 for each known link (u,v) and node u:

T(u,v)—Equal to 1 if (u,v) is in node i’s source tree T, and
0 otherwise. The previous source tree is also main-
tained as old_T.

RN(u)—Equal to 1 if u is in node i’s reportable node set
RN, and 0 otherwise. The previous reportable node set
is also maintained as old_RN.

RT(u,v)—Equal to 1 if (u,v) is in node i’s reportable
subtree RT, and 0 otherwise. Since RT is defined as the
set of links (u,v) in T such that u is in RN, this variable
need not be maintained explicitly.

TG(u,v)—Equal to 1 if (u,v) is in node i’s topology graph
TG, and 0 otherwise.

N_I—The set of 2-way neighbors for interface 1.

N—The set of 2-way neighbors of node i, equal to the
union of N_I for all interfaces.

r(u,v)—The list of neighbors that are reporting link (u,v)
in their reportable subtree RT. The set of links (u,v)
reported by neighbor j is denoted RT_j.

r(u)—The list of neighbors that are reporting node u in
their reportable node set RN.

p(w)—The current parent for node u, equal to the next
node on the shortest path to u.

nbr_if(j}—The ID of the preferred interface for forward-
ing packets to neighbor j.

pred(u)—The node preceding node u in node i’s source
tree T. Equal to NULL if node u is not reachable.

pred(j,u)—The node preceding node u in the subtree RT_j
reported by neighbor j.

d(u)—The length of the shortest path to node u. If
USE_METRICS=0, d(u) is the number of hops to node
u.

reported(u,v)—Equal to 1 if link (u,v) in TG is reported
by p(u).

tg_expire(u)—Expiration time for links (u,v) in TG.

rt_expire(j,u)—Expiration time for links (u,v) in RT_j.

nr_expire(u,v)—Expiration time for a link (u,v) in TG
such that reported(u,v)=0. Such non-reported links can
be used temporarily during rerouting and usually have
an earlier expiration time than tg_expire(u).

if_metric(j,1)—The metric (or cost) for reaching neighbor

j through interface 1.

metric(j,u,v)—The metric for link (u,v) reported by
neighbor j.
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metric(u,v)—The metric for link (u,v) in TG. For a
neighbor j, metric(i,j) is the minimum of if_metric(j,])
over all interfaces 1 such that j is in N_I.

cost(w,v)—The cost for link (u,v), equal to
1+METRIC_COEFF*metric(u,v). Used for computing
routes if USE_METRICS=1.

The routing table consists of a list of tuples of the form
(rt_dest, rt_next, rt_dist, rt_if id), where rt_dest is the
destination IP address or prefix, rt_next is the interface
address of the next hop of the route, rt_dist is the length of
the route, and rt_if_id is the ID of the local interface through
which the next hop can be reached.

Each node also maintains three tables that describe asso-
ciated IP addresses or prefixes: the “interface table”, which
associates interface IP addresses with router IDs, the “host
table”, which associates host IP addresses with router IDs,
and the “network prefix table”, which associates network
prefixes with router IDs.

The “interface table” consists of tuples of the form
(if_addr, if_rid, if_expire), where if_addr is an interface IP
address associated with the router with RID=if rid, and
if_expire is the time at which the tuple expires and MUST
be removed. The interface table at a node does NOT contain
an entry in which if_addr equals the node’s own RID; thus,
a node does not advertise its own RID as an associated
interface.

The “host table” consists of tuples of the form (h_addr,
h_rid, h_expire), where h_addr is a host IP address associ-
ated with the router with RID=h_rid, and h_expire is the
time at which the tuple expires and MUST be removed.

The “network prefix table” consists of tuples of the form
(net_prefix, net_length, net_rid, net_expire), where net_pre-
fix and net_length describe a network prefix associated with
the router with RID=net_rid, and net_expire is the time at
which the tuple expires and MUST be removed. A MANET
may be configured as a “stub” network, in which case one
or more gateway routers may announce a default pre-fix
such that net_prefix=net_length=0. Two copies of each table
are kept: an “old” copy that was last reported to neighbors,
and the current copy that is updated when association
messages are received.

TOPOLOGY UPDATE Message Format

The TOPOLOGY UPDATE message has the format illus-
trated in FIG. 31. The message body contains the N+1 router
IDs for nodes u, v__1, . . ., v_n, which represent the links
(wv_1),...,(u,v_n). The first NRL of the v_k are “reported
leaf nodes”, the next NRNL of the v_k are “non-reported
leaf nodes”, and the last n—-(NRL+NRNL) of the v_k are
“non-reported non-leaf nodes”. (The meanings of these
terms are defined below.)

The M bit indicates whether or not link metrics are
included in the message. If M=1, then a 1-octet metric is
included for each of the links (u,v_1), . . ., (uv_n),
following the last router ID.

The D bit indicates whether or not implicit deletion is
used, and must be set to 1 if and only if IMPLICIT_DE-
LETION=1.

The TOPOLOGY UPDATE message has the following three
subtypes:
FULL (TYPE=5)

A FULL update (FULL, n, NRL, NRNL, u,
v_1,...,v_n)reports that the links (u,v_1), ...,
(u,v_n) belong to the sending router’s reportable
subtree RT, and that RT contains no other links with
tail u.
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ADD (TYPE=6)

An ADD update (ADD, n, NRL, NRNL, w,v_1, ...,
v_n) reports that the links (u,v__1), ..., (u,v_n) have
been added to the sending router’s reportable subtree
RT.

DELETE (TYPE=7)

A DELETE update (DELETE, n, NRL, NRNL, u,
v_1,...,v_n)reports that the links (u,v_1), ...,
(u,v_n) have been deleted from the sending router’s
reportable subtree RT.

Interface, Host, and Network Prefix Association Message
Formats

The INTERFACE ASSOCIATION (TYPE=8) and HOST
ASSOCIATION (TYPE=9) messages have the format as
illustrated in FIG. 32. The message body contains the router
ID of the originating node, and N IP addresses of interfaces
(TYPE=8) or hosts (TYPE=9) that are associated with the
router ID. The ST field is defined below.

The NETWORK PREFIX ASSOCIATION message
(TYPE=10) has the format as illustrated in FIG. 32. The
message body contains the router ID of the originating node,
and N network prefixes, each specified by a 1-octet prefix
length followed immediately by the prefix, using the mini-
mum number of whole octets required. To minimize over-
head, the prefix lengths and prefixes are not aligned along
word boundaries

The INTERFACE ASSOCIATION, HOST ASSOCIA-
TION, and NETWORK PREFIX ASSOCIATION messages
each have the following three subtypes (similar to those for
the TOPOLOGY UPDATE message):

FULL (ST=0)

Indicates that this is a FULL update that includes all
interface addresses, host addresses, or network pre-
fixes associated with the given router 1D.

ADD (ST=1)

Indicates that the included IP addresses or network
prefixes are associated with the router ID, but may
not include all such IP addresses or network prefixes.

DELETE (ST=2)

Indicates that the included IP addresses or network
prefixes are no longer associated with the router 1D.

TBRPF Routing Operation

This section describes the operation of the TBRPF routing
module. The operation is divided into the following subsec-
tions: periodic processing, updating the source tree and
topology graph, updating the routing table, updating the
reportable node set, generating periodic updates, generating
differential updates, processing topology updates, optional
reporting of redundant topology information, local topology
changes, generating association messages, processing asso-
ciation messages, and non-relay operation. The operation is
described in terms of procedures (e.g., Update_All), which
may be executed periodically or in response to some event,
and may be called by other procedures. In all procedures,
node i is the node executing the procedure.

Periodic Processing

Each node executes the procedure Update_All( ) periodi-
cally, every MIN_UPDATE_INTERVAL seconds, which is
typically equal to HELLO_INTERVAL. This procedure is
defined as follows:

Update_All( )
1. For each interface I, create an empty message list
msg_list(]).
2. For each interface I, generate a HELLO message for
interface I and add it to msg_ist(]).
3. Expire_Links( ).
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4. Update_Source_Tree( ).

. Update_Routing_Table( ).

6. If REPORT_FULL_TREE=0, execute Update_ RN( );
otherwise (the full source tree is reported) Update_ RN_
Simple( ).

7. If current_time>=next_periodic:

7.1. Generate_Periodic_Update( ).
7.2. Set next_periodic=current_time+PER_UP-
DATE_INTERVAL.

8. Otherwise, Generate_Diff_Update( ).

9. Generate_Association_Messages( ).

10. For each interface I, send the msg_list(I) on interface
L

11. Set old_T=T and old_RN=RN.

Wi

Updating the Source Tree and Topology Graph

The procedure Update_Source_Tree( ) is a variant of
Dijkstra’s algorithm, which is called periodically and in
response to topology changes, to update the source tree T
and the topology graph TG. This algorithm computes short-
est paths subject to two link cost penalties. The penalty
NON_REPORT_PENALTY is added to the cost of links
(u,v) that are not currently reported by the parent p(u) so
that, whenever possible, a link (u,v) is included in T only if
it is currently reported by the parent. To allow immediate
rerouting when p(u) changes, it may be necessary to tem-
porarily use a link (u,v) that is not currently reported by the
new parent. The penalty NON_TREE_PENALTY is added
to the cost of links (u,v) that are not currently in T, to reduce
the number of changes to T. When there exist multiple paths
of equal cost to a given node, node ID is used to break ties.

The algorithm is defined as follows (where node i is the
node executing the procedure):

Update_Source_Tree( )

1. For each node v in TT, set d(v)=INFINITY, pred(v)=
NULL, old_p(v)=p(v), and p(v)=NULL.

2. Set d(i)=0, p(i)=, pred(i)=i.

3. Set S={i}. (S is the set of labeled nodes.)

4. For each node j in N, set d(j)=c(i,j), pred(j)=i, and p(G)=j.
(If USE_METRICS=0, then all link costs c(i,j) are 1.)
5. While there exists an unlabeled node u in TT such that

d(u)<INFINITY:
5.1. Let u be an unlabeled node in TT that minimizes

d(u). (A heap should be used to find u efficiently.)

5.2. Add u to S (u becomes labeled).
5.3. If p(u) is not equal to old_p(u) (the parent has
changed):
53.1. For each link (u,v) in TG with tail u, if
reported(u,v)=1, set reported(u,v)=0 and nr_ex-
pire(u,v)=current_time+PER_UPDATE_INTER-
VAL.
5.3.2. If p(u) is in r(u) (p(u) is reporting u):
5.3.2.1. Set tg_expire(u)=rt_expire(p(u),u).
5.3.2.2. If p(u)=u (u is a neighbor), remove all
links (u,v) with tail u from TG.

5.3.2.3. For each link (u,v) such that p(u) is in
r(u,v):
5.3.23.1. Add (u,v) to TG and set reported(u,
v)=1.
53.23.2. If USE_METRICS=I, set the link
metric and cost based on the metric reported by
p(w), i.e., set metric(u,v)=metric(p(u),u,v) and
c(u,v)=1+METRIC_COEFF*metric(u,v).

5.4. For each node v such that (u,v) is in TG:

5.4.1. If reported(u,v)=0, set cost=c(u,v)+NON_RE-
PORT_PENALTY. (This penalizes (u,v) if not
reported by p(u).)
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5.4.2. Otherwise, if p(u)=u AND u is not in r(v), set
cost=c(u,v)+NON_REPORT_PENALTY. (This
penalize (u,v) if u is a neighbor and is not report-
ing v.)

5.4.3. If (u,v) is not in old_T, set cost=cost+NON_
TREE_PENALTY. (This penalizes (u,v) if it is not
in the old source tree.)

5.4.4. If (d(u)+cost, RID(u)) is lexicographically less
than (d(v), RID(pred(v))), set d(v)=d(u)+c(u,v),
pred(v)=u, and p(v)=p(u).

6. Update the source tree T as follows:
6.1. Remove all links from T.
6.2. For each node u other than i such that pred(u) is not

NULL, add the link (pred(u), u) to T.

Updating the Routing Table

The routing table is updated following any change to the
source tree or the association tables (interface table, host
table, or network prefix table). The routing table is updated
according to procedure Update_Routing_Table( ), which is
defined as follows:

Update_Routing_Table( )

1. Remove all tuples from the routing table.

2. For each node u in TT (other than this node) such that
p(w) is not NULL, add the tuple (rt_dest, rt_next,
rt_dist, rt_if-id) to the routing table, where:
rt_dest=RID(w),
rt_if id=nbr_if(p(w)),
rt_next=nbr_if addr(p(u)) (obtained from the neighbor

table for rt_if_id),
rt_dist=d(w).

3. For each tuple (if_addr, if_rid, if_expire) in the inter-
face table, if there exists a routing table entry (rt_dest,
rt_next, rt_dist, rt_if_id) such that rt_dest=if rid, add
the tuple (if_addr, rt_next, rt_dist, rt_if id) to the
routing table.

4. For each tuple (h_addr, h_rid, h_expire) in the host
table, if there exists a routing table entry (rt_dest,
rt_next, rt_dist, rt_if_id) such that rt_dest=h_rid, add
the tuple (h_addr, rt_next, rt_dist, rt_if_id) to the rout-
ing table, unless an entry already exists with the same
value for h_addr and a lexicographically smaller value
for (rt_dist, rt_dest).

5. For each tuple (net_prefix, net_length, net_rid, net_ex-
pire) in the network prefix table, if there exists a routing
table entry (rt_dest, rt_next, rt_dist, rt_if__id) such that
rt_dest=net_rid, add the tuple (net_prefix/net_length,
rl_next, ri_dist, ri_i[_id) to the routing table, unless an
entry already exists with the same value for net_prefix/
net_length and a lexicographically smaller value for
(rt_dist, rt_dest).

Updating the Reportable Node Set

Recall that the reportable subtree RT is defined to be the
set of links (u,v) in T such that u is in the reportable node set
RN. Each node updates its RN immediately before gener-
ating a periodic or differential topology update. If REPORT _
FULL_TREE=I1 (so that a node reports its entire source
tree), then RN simply consists of all reachable nodes, i.e., all
nodes u such that pred(u) is not NULL. The rest of this
section describes how RN is computed assuming REPORT _
FULL_TREE=0.

A node first determines which of its neighbors belong to
RN. Node i includes a neighbor j in RN if and only if node
i determines that one of its neighbors may select i to be its
next hop on its shortest path to j. To make this determination,
node i computes the shortest paths, up to 2 hops, from each
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neighbor to each other neighbor, using relay priority (in-
cluded in HELLO messages) and node ID to break ties. If a
link metric is used, then shortest paths are computed with
respect to the link metric; otherwise min-hop paths are
computed.

After a node determines which neighbors are in RN, each
node u in the topology table is included in RN if and only
if the next hop p(u) to u is in RN. Equivalently, node u is
included in RN if and only if u is in the subtree of T rooted
at some neighbor j that is in RN. Thus, the reportable subtree
RT consists of the subtrees of T that are rooted at neighbors
in RN. The precise procedure for updating RN is defined as
follows:

Update_RN( )

1. Set RN=empty.

2. For each neighbor s in N such that s is in 1(s), i.e., such
that s is reporting itself: (Initialize to run Dijkstra for
source s, for 2 hops.)

2.1. For each node j in N+{i}, set d(j)=INFINITY and
par(j)=NULL.
2.2. Set d(s)=0 and par(s)=s.
2.3. For each node j in N+{j} such that s is in r(s,j):
2.3.1. Set d(j)=metric(s,j), par(j)—.
2.3.2. For each k in N such that j is in r(j,k):
2.3.2.1. Set cost=metric(j k).
2.3.2.2. If (d(j)+cost, nbr_pri(j), RID(j)) is lexico-
graphically less than (d(k), nbr_pri(par(k)), RID
(par(k))), set d(k)=d(j)+cost and par(k)=j.
2.4. For each neighbor j in N, add j to RN if par(j)=i.

3. Add i to RN. (Node i is always in RN.)

4. For each node u in the topology table, add u to RN if
p(u) is in RN.

Generating Periodic Updates

Every PER_UPDATE_INTERVAL seconds, each node
generates and transmits, on each interface, a set of FULL
TOPOLOGY UPDATE messages (one message for each
node in RN that is not a leaf of T), which describes the
reportable subtree RT. Whenever possible, these messages
are included in a single packet, in order to minimize the
number of control packets transmitted. These messages are
generated according to procedure Generate_Periodic_Up-
date( ), defined as follows (where node i is the node
executing the procedure):

Generate_Periodic_Update( )

For each node u in RN (including node i) that is not a leaf
of T, add the update (FULL, n, NRL, NRNL,u, v_1, ...,
v_n) to msg_list(I) for each interface I, where:

(a)v_1, ..., v_nare the nodes v such that (u,v) is in T,
the first NRL of these are nodes in RN that are leaves
of T, the next NRNL of these are nodes in RN that are
not leaves of T, and the last n-(NRL+NRNL) of these
are not in RN.

(b) If USE_METRICS=1, then the M (metrics) bit is set
to 1 and the link metrics metric(u,v__1), . . . , metric
(u,v_n) are included in the message.

Generating Differential Updates

Every MIN_UPDATE_INTERVAL seconds, if it is not
time to generate a periodic update, and if RT has changed
since the last time a topology update was generated, a set of
TOPOLOGY UPDATE messages describing the changes to
RT is generated and transmitted on all interfaces. These
messages are constructed according to procedure
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Generate_Differential_Update( ), defined as follows:

Generate_Differential_Update( )

For each node u in RN:

1. If u is not in old_RN (u was added to RN) and is not
a leaf of T, add the update (FULL, n, NRL, NRNL, u,
v_1,...,v_n)to msg list(I) for each I, where:

(a)v_1,...,v_n,NRL, and NRNL are defined as above
for periodic updates.

(b) If USE_METRICS=1, then the M (metrics) bit is set
to 1 and the link metrics metric(u,v_1), . . . , metric
(u,v_n) are included in the message.

2. Else if u is in old_RN and is not a leaf of T:
2.1.Letv_1,...,v_nbe the nodes v such that (u,v)

is in T AND [(u,v) is not in old_T] OR [v is in

old_RN but not in RN] OR [v is a leaf and is in RN
but not in old_RN].

2.2. If this set of nodes is nonempty, add the update
(ADD, n, NRL, NRNL, u, v. 1, . . ., v_n) to
msg_list(I) for each interface 1, where:

(a) NRL and NRNL are defined as above.

(b) f USE_METRICS=1, then the M (metrics) bit is
set to 1 and the link metrics metric(u,v_1), .. .,
metric(u,v_n) are included in the message.

3. If uis in old_RN:
3.1.Letv_1,...,v_nbe the nodes v such that (u,v)

is in old_T but not in TG, and either IMPLICIT_DE-

LETION=0 or pred(v) is not in RN (or is NULL). (If

IMPLICIT_DELETION=1 and pred(v) is in RN,

then the deletion of (u,v) is implied by an ADD

update for another link (w,v).)

3.2. If this set of nodes is nonempty, add the update
(DELETE, n,u, v_1, ..., v_n) to msg_list(I) for
each I.

Processing Topology Updates

When a packet containing a list (msg list) of TOPOLOGY
UPDATE messages is received from node j, the list is
processed according to the procedure Process_Updates(j,
msg_list), defined as follows. In particular, this procedure
updates TT, TG, and the reporting neighbor lists r(u) and
r(n,v). If any link in T has been deleted from TG, then
Update_Source_Tree(j) and Update_Routing_Table( ) are
called to provide immediate rerouting.

Process_Updates(j, msg_list)
1. For each update=(subtype, n, NRL, NRNL, u,
v_1,...,v_n)in msg_ list:
1.1. Create an entry for u in TT if it does not exist.
1.2. Create an entry for u in TT_j if it does not exist.
1.3. If subtype=FULL, Process_Full_Update(j,
update).
1.4. If subtype=ADD, Process_Add_Update(j, update).
1.5. If subtype=DELETE, Process_Delete_Update(j,
update).
2. If there exists any link in T that is not in TG:
2.1. Update_Source Tree( ).
2.2. Update_Routing_Table( ).

Process_Full_Update(j, update)
1. Add j to r(u).
2. Set rt_expire(j,u)=current_time+TOP_HOLD_TIME.
3. For each link (u,v) s.t. j is in r(u,v):
3.1. Remove j from r(u,v).
3.2. If pred(j,v)=u, set pred(j,v)=NULL.



US 7,327,683 B2

67
4. If j=p(u) OR p(u)=NULL:
4.1. Set tg expire(u)=current_time+TOP_HOLD_
TIME.
4.2. For each v s.t. (u,v) is in TG, If reported(u,v)=1,
remove (u,v) from TG. 5
5. Process_Add_Update(j, update).

Process_Add_Update(j, update)

For m=1, , I
((u \ m) is the mth link in update.) 0
. Let v=v_m.
2. Create an entry for v in TT if it does not exist, and
create an entry for v in TT_j if it does not exist.
3. Add j to r(uv).
4. If j=p(u) OR p(u)=NULL: s

4.1. Add (u,v) to TG.
4.2. Set reported(u,v)=1.
5. If the M (metrics) bit in update is 1:
5.1. Set metric(j,u,v) to the m-th metric in the update.
5.2. If j=p(u) OR p(w)=NULL:
5.2.1. Set metric(u,v)=metric(j,u,v).
5.2.2. Set c(u,v)=1+METRIC_COEFF*metric(u,v).
6. If the D (implicit deletion) bit in update is 1:
6.1. Set w=pred(j,v).
6.2. If w!=NULL AND w!=u):
6.2.1. Remove j from r(w,v).
6.2.2. If j=p(w), remove (w,v) from TG.
7. Set pred(j,v)=u. (Set new predecessor.)
8. If m<=NRL (v=v_m is a reported leaf):
8.1. Set leaf_update=(FULL, 0, 0, 0, u).
8.2. Process_Full_Update(j, leaf_update).
9. If m>NRL+NRNL (v=v_m is not reported by j):

9.1. Remove j from r(v).

9.2. Set rt_expire(j,v)=0.

9.3. For each node w s.t. j is in r(v,w), remove j from
r(v,w).

9.4. If j=p(v), then for each node w s.t. (v,w) is in TG,
set reported(v,w)=0 and set nr_expire(u,v)=current_
time+PER_UPDATE_INTERVAL.

Process_Delete_Update(j, update)
For m=1, , n:
((w,v_m) is the mth link in update.)
1. Let v=v_m.
2. Remove j from r(u,v).
3. If pred(j,v)=u, set pred(j,v)=NULL.
4. If j=p(u), remove (u,v) from TG.
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Optional Reporting of Redundant Topology Information

Each node is required to report its reportable subtree RT
to neighbors. However, each node (independently of the
other nodes) may report additional links, e.g., to provide
increased robustness in highly mobile networks. For
example, a node may compute any subgraph H of TG that
contains T, and may report the “reportable subgraph” RH
which consists of links (u,v) of H such that u is in RN. In this
case, each periodic update describes RH instead of RT, and
each differential update describes changes to RH. If this
option is used, then the parameter IMPLICIT_DELETION
should be set to 0, since the deletion of a link cannot be
implied by the addition of another link if redundant topology
information is reported.
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Local Topology Changes

This section describes the procedures that are followed
when the neighbor discovery module detects a new neigh-
bor, the loss of a neighbor, or a change in the metric for a
neighbor. When a link to neighbor j on interface I is
discovered (via the neighbor discovery module), the proce-
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dure Link_Up(j, I, metric) is executed, which is defined as
follows. Note that the preferred interface nbr_if(j) for a
given neighbor j is updated so that it always has the
minimum metric among all interfaces through which a link
to j exists.

Link_Up(j, I, metric)
1. If j is in N_I, return.
2. Addjto N_L
3. Ifj is not in N:
3.1. Add j to N.
3.2. Add (ij) to TG.
3.3. Set report(i,j)=1.
4. Set if_metric(j,))=metric.
5. If metric<metric(j,K) for all interfaces K not equal to I,
set nbr_if(j)=I and metric(i,j)=metric.
6. If USE_METRICS~=1,

set cost(i,j)=1+METRIC COEFF*metric(i,).

When the loss of a link to neighbor j on interface I is
detected (via the neighbor discovery module), the procedure
Link_Down(j, 1) is executed, which is defined as follows.
Note that routes are updated immediately when a link is lost,
and if the lost link is due to a link-layer failure notification,
a differential topology update is sent immediately.

Link_Down(j,I)
1. If j is not in N_I, return.
2. Remove j from N_I.
3. If j does not belong to N_K for any interface K:
3.1. Remove j from N.
3.2. Remove (i,j) from TG.
4. Ifjis in N:
4.1. Let K be an interface such that j is in N_K and
if_metric(j,K) is minimum.
4.2. Set nbr_if(j)=K and metric(i,j)=if_metric(j,K).
43. If USE_METRICS=1,set cost(i,j)=1+
METRIC_COEFF*metric(i,j).
5. Update_Source_Tree( ).
. Update_Routing_Table( ).
7.1fj is not in N and lost link is due to link-layer failure
notification:
7.1. If (REPORT_FULL_TREE=0) Update_RN( ).
7.2. Else Update_RN_Simple( ).
7.3. Set msg_list=empty.
7.4. Generate_Diff_Update( ).
7.5. Send msg_list on all interfaces.
7.6. Set old_'1=I" and old_RN=RN.

N

If the metric of a link to neighbor j on interface I changes,
the procedure Link_Change(j, I, metric) is executed, which
is defined as follows:

Link_Change(j,I,metric)

1. If j is not in N_I, return.

2. Set if_metric(j,))=metric.

3. Let K be an interface such that j is in N_K and
if_metric(j,K) is minimum.

4. Set nbr_if(j)=K and metric(i,j)=if_metric(j,K).

5. If  USE_METRICS=I, set cost(i,j)=1+
METRIC_COEFF*metric(i,j).

Generating Association Messages

This section describes the procedures used to generate
INTERFACE ASSOCIATION, HOST ASSOCIATION, and
NETWORK PREFIX ASSOCIATION messages. Addresses
or prefixes in the interface table, host table, and network
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prefix table are reported to neighbors periodically every
TIA_INTERVAL, HA_INTERVAL, and NPA_INTERVAL
seconds, respectively. In addition, differential changes to the
tables are reported every MIN_UPDATE_INTERVAL sec-
onds if it is not time for a periodic update (similar to
differential topology updates). Each node reports only
addresses or prefixes that are associated with nodes in the
reportable node set RN; this ensures the efficient broadcast
of all associated addresses and prefixes to all nodes in the
network.

The generated messages are sent on each interface. When-
ever possible, these messages are combined into the same
packet, in order to minimize the number of control packets
transmitted.

Generate_Association_Messages( )
1. Generate_Interface_Association_Messages( ).
2. Generate_Host_Association_Messages( ).
3. Generate_Network_Prefix_Association_Messages( ).

Generate_Interface_Association_Messages( )
1. If current_time>next_ia_time:

1.1. Set next_ia_time=current_time+IA_INTERVAL.

1.2. For each node u in RN:

1.2.1. Let addr__1, . . ., addr_n be the interface IP
addresses associated with RID u in the current
interface table.

1.2.2. If this list is nonempty, add the INTERFACE
ASSOCIATION  message (FULL, n, u,
addr_1, ..., addr_n) to msg_list(I) for each 1.

2. Otherwise, for each node u in RN:

2.1. Add the INTERFACE ASSOCIATION message
(ADD, n, v,addr_1, ..., addr_n) to msg_list(I) for
each I, where addr__1, . . ., addr_n are the interface
IP addresses that are associated with RID u in the
current interface table but not in the old interface
table.

2.2. Add the INTERFACE ASSOCIATION message
(DELETE, n,u,addr_1, ..., addr_n) to msg_list(I)
for each I, where addr_1, . . . , addr_n are the
interface IP addresses that are associated with RID u
in the old interface table but not in the current
interface table.

Generate_Host_Association_Messages( )
1. If current_time>next_ha_time:

1.1. Set next_ha_time=current_time+HA INTERVAL.

1.2. For each node u in RN:

1.2.1. Let addr_1, . . . , addr_n be the host IP
addresses associated with RID u in the current
host table.

1.2.2. If this list is nonempty, add the HOST ASSO-
CIATION message (FULL, n, u, addr_1, . . .,
addr_n) to msg_list(I) for each L.

2. Otherwise, for each node u in RN:

2.1. Add the HOST ASSOCIATION message (ADD, n,
u, addr_1, ..., addr_n) to msg_list(I) for each I,
where addr__1, . . ., addr_n are the host IP addresses
that are associated with RID u in the current host
table but not in the old host table.

2.2. Add the HOST ASSOCIATION message (DE-
LETE, n,u, addr_1, ..., addr_n) to msg_list(I) for
each I, where addr__1, . . ., addr_n are the host IP
addresses that are associated with RID u in the old
host table but not in the current host table.
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Generate_Network_Prefix_Association_Messages( )
1. If current_time>next_npa_time:

1.1. Set next_npa_time=current_time+NPA_INTER-
VAL.

1.2. For each node u in RN:

1.2.1. Let length 1, prefix 1, . . . , length_n,
prefix_n be the network prefix lengths and prefixes
associated with RID u in the current network
prefix table.

1.2.2. If this list is nonempty, add the NETWORK
PREFIX ASSOCIATION message (FULL, n, u,
length 1, prefix_1, ..., length_n, prefix_n) to
msg_list(I) for each I.

2. Otherwise, for each node u in RN:

2.1. Add the NETWORK PREFIX ASSOCIATION
message (ADD, n, u, prefix_1, . . ., prefix_n) to
msg_list(I) for each I, where prefix_1,.. ., prefix_n
are the network prefixes that are associated with RID
u in the current prefix table but not in the old prefix
table.

2.2. Add the NETWORK PREFIX ASSOCIATION
message (DELETE, n, u, prefix_1, ..., prefix_n) to
msg_list(I) for each I, where prefix_1,.. ., prefix_n
are the network prefixes that are associated with RID
u in the old prefix table but not in the current prefix
table.

Processing Association Messages

When an INTERFACE ASSOCIATION, HOST ASSO-
CIATION, or NETWORK PREFIX ASSOCIATION mes-
sage is received from node j, the interface table, host table,
or network prefix table, respectively, is updated as described
in the following three procedures.

Process_Interface_Association_Messages(j, msg_list)

For each message (subtype, n, u,addr_1,...,addr_n) in
msg_list:

1. If subtype=FULL, remove all entries with if_rid=u
from the interface table.

2. If subtype=FULL or ADD, then for m=1, . . ., n, add
the tuple (if_addr, if_rid, if expire) to the interface
table, where:
if_addr=addr_m,
if_rid=u,
if_expire=current_time+IA_HOLD_TIME.

3. If subtype=DELETE, then for m=1, .. ., n, remove the
tuple (if addr, if_rid, if_expire) from the interface table,
where if addr=addr_m and if rid=u.

Process_Host_Association_Messages(j, msg_list)
For each message (subtype, n, u,addr_1,...,addr_n) in
msg_list:
1. If subtype=FULL, remove all entries with h_rid=u from
the host table.

2. If subtype=FULL or ADD, then for m=1, . . ., n, add
the tuple (h_addr, h_rid, h_expire) to the host table,
where:

h_addr=addr_m,

h_rid=u,

h_expire=current_time+HA_HOLD_TIME.

3. If subtype=DELETE, then for m=1, .. ., n, remove the
tuple (h_addr, h_rid, h_expire) from the host table,
where h_addr=addr_m and h_rid=u.
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Process_Network_Prefix_Association_Messages(j,
msg_list)

For each message (subtype, n, u, length 1,

prefix_1, ..., length_n, prefix_n) in msg list:

1. If subtype=FULL, remove all entries with net_rid=u
from the prefix table.

2. If subtype=FULL or ADD, then for m=1, . . ., n, add
the tuple (net_prefix, net_length, net_rid, net_expire) to
the network prefix table, where:
net_prefix=prefix_m,
net_length=length_m,
net_rid=u,
net expire=current_time+NPA_HOLD_TIME.

3. If subtype=DELETE, then for m=1, .. ., n, remove the
tuple (net_prefix, net_length, net_rid, net_expire) from
the network prefix table, where net_prefix=prefix_m,
net_length=length_m, and net_rid=u.

Non-Relay Operation

Non-relay nodes are MANET nodes that do not forward
packets (of any type) that are received from other MANET
nodes. A non-relay node is implemented simply by not
generating or transmitting any TOPOLOGY UPDATE mes-
sages. A non-relay node may report, in association mes-
sages, addresses or prefixes that are associated with itself,
but not those associated with other nodes. HELLO messages
must be transmitted in order to establish links with neighbor
nodes. The following procedures can be omitted in non-relay
nodes: Update_RN( ), Generate_Periodic_Update( ), and
Generate_Diff__Update( ).

Configurable Parameters
This section lists the configurable parameters used in the
description of the protocol, and their proposed default val-
ues.
MIN_UPDATE_INTERVAL (1 second)
PER_UPDATE_INTERVAL (5 seconds)
TOP_HOLD_TIME (15 seconds)
NON_REPORT_PENALTY (1.01)
NON_TREE_PENALTY (0.01)
TIA_INTERVAL (10 seconds)
TIA_HOLD_TIME (3xIA_INTERVAL)
HA_INTERVAL (10 seconds)
HA_HOLD_TIME (3xHA_INTERVAL)
NPA_INTERVAL (10 seconds)
NPA_HOLD-TIME (3xNPA_INTERVAL)
USE_METRICS (0)
METRIC_COEFF (TBD)
REPORT_FULL_TREE (0)
IMPLICIT_DELETION (1)

TBRPF Flooding Mechanism

This section describes a mechanism for the efficient
best-effort flooding (or network-wide broadcast) of packets
to all nodes of a connected ad-hoc network. These may
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include TBRPF packets, non-TBRPF packets, and data
packets. This mechanism can be considered a special case of
the flooding mechanism, in which information provided by
TBRPF is used to decide whether a given received flooded
packet should be forwarded, i.e., to perform selective
retransmission. By performing selective retransmission,
each packet is transmitted by only a relatively small subset
of nodes, thus consuming much less bandwidth than full
flooding.

For the purpose of this description, the flooding address is
ALL_MANET_NODES. Every node maintains a duplicate
cache to keep track of which flooded packets have already
been received. When a node receives a packet whose des-
tination IP address is ALL._MANET_NODES, it checks its
duplicate cache for an entry that matches the packet. If such
an entry exists, the node silently discards the flooded packet
since it has already been received. Otherwise, the node
retransmits the packet on all interfaces (see the exception
below) if and only if the following conditions hold:

1. The TBRPF node associated with the source IP address
of the packet belongs to the set RN of reportable nodes
computed by TBRPE.

2. When decremented, the ‘ip_ttl> in the IPv4 packet
header (respectively, the ‘hop_count’ in the IPv6 packet
header) is greater than zero. If the packet is to be
retransmitted, it is sent after a small random time
interval in order to avoid collisions. If the interface on
which the packet was received is not a MANET inter-
face, then the packet need not be retransmitted on that
interface.

Application of TBRPF In Mobile Ad-Hoc Networks

The TBRPF routing protocols provide efficient proactive
topology discovery with dynamic adaptation to link state
changes in both fixed and mobile environments whether the
topology is relatively static or highly dynamic in nature.
TBRPF is particularly well suited to MANETSs consisting of
mobile nodes with wireless network interfaces operating in
peer-to-peer fashion over a multiple access communications
channel (e.g. the IEEE 802.11 Distributed Coordination
Function (DCF) [13].) Although applicable across a much
broader field of use, TBRPF is particularly well suited for
supporting the standard DARPA Internet protocols as per
current practices advocated by the IETF MANET working
group.

While the invention has been shown and described with
reference to specific preferred embodiments, it should be
understood by those skilled in the art that various changes in
form and detail may be made therein without departing from
the spirit and scope of the invention as defined by the
following claims. For example, although the described
embodiments illustrate the principles of the invention with
respect to wireless networks, such also apply to wire-line
networks.
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APPENDIX A

Network-Level Procedures

The notation LSU(update_list) represents a link-state-update message that
includes the updates (u, v, ¢, sn) in the update_list.
Process_Update(i, nbr, in_message){
// Called when an update message in_message is received from nbr.
Update_Topology Table(i, nbr, in_message, update_list).
Update_Parents(i).
For each node srcin TT_i {
Let update_list(src) consist of all tuples (k, |, ¢, sn) in update_list
such that k = src.
If update_list(src) is nonempty

Send message L SU(update_list(src)) to children_i(src).}}

Update_Topology_Table(i, nbr, in_message, update_list){
Set update_list to empty list.
For each ((u,v,c,sn) in in_message) {
If (p_i(u) == nbr) {
If ((u,v)isin TT iand sn> TT_i(u,v).sn) {
Add (u,v,c,sn) to update_list.
Set TT_i(u,v).sn = sn.
Set TT i(u,v).c =c.
if (sn > sn_i(u)) Set sn_i(u) = sn.}
if ((u,v)is notin TT_i) {
Add (u,v,c,sn)to TT_i.
Add (u,v,c,sn) to update_list:
If (sn > sn_i(u)) Set sn_i(u) = sn.}}}}

Link_Change(i,j){
/I Called when the cost of link (i,j) changes.
W (JTT _i(i,j).c - cost(i,))|/TT_i(i,j).c > epsilon) {
Set TT _i(i,j).c = cost(i,j).
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Set TT i(i,j).sn = current time stamp SN_i.

Set update_list = {(i, j, TT_i(i, j).c, TT_i(i, j).sn)
Send message LSU(update_list) to children_i(i).}}

Link_Down(i,j){
// Called when link (i,j) goes down.
Remove j from N_i.
Set TT _i(i,j).c = infinity.
Set TT_i(i,j).sn = current time stamp SN_.
Update Parents(i).
For each (node src in TT_i) remove j from children_i(src).
Set update_list = {(i,j, infinity, TT_i(i,j).sn)}.
Send message LSU(update_list) to children_i(i).}

Link_Up(i,j{
/[ Called when link (i,j) comes up.
Addjto N i
Set TT_i(i,j).c = cost(i,)).
Set TT i(i,j).sn = current time stamp SN_.
Update_Parents(i).
Set update_list = {(i, j, TT_i(i,j).c, TT_i(i,j)-sn)}.
Send message LSU(update_list) to children_i(i).}

Update_Parents(i){
Compute New_Parents(i)
For each (node k in N_i){
Set cancel_src_list(k), src_list(k), and sn_list(k) to empty.}
For each (node src in TT_i such that src 1= i){
If (new_p_i(src) = p_i(src)){
If (p_i(src) '= NULL)
Set k = p_i(src).
Add src to cancel_src_list(k).}
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Set p_i(src) = new_p_i(src).
If (new_p_i(src) 1= NULL)
Set k = new_p_i(src).
Add src to src_list(k).
Add sn_i(src) to sn_list(k).}}}
For each (node k in N_i){
If (src_list(k) is nonempty){
Send message NEW PARENT(src_list(k), sn_list(k)) to k.}
If (cancel_src_list(k) is nonempty{
Send message CANCEL PARENT(cancel_src_list(k)) to k.}}}

Compute_New_Parents(i){
For each (node src in TT_i such that src != i){
Set new_p_i(src) = NULL.}
Compute min-hop paths using Dijkstra.
For each (node src in TT_i such that src 1= i){
Set new _p_i(src) equal to the neighbor of node i along the

minimum-hop path from i to src.}}

Process_New Parent(i, nbr, src_list, sn_list}{
// Called when node i receives a NEW PARENT (src_list, sn_list) message
from nbr.
Set update_list to empty list.
For each (node src in src_list) {
Let sn_list.src denote the sequence number corresponding to src in
sn_list.
Add nbr to children_i(src).
Set new_updates = {(k, |, ¢, sn) in TT_i such that k = src and sn >
sn_list.src}.
Add new_updates to update_list.}
Send message LSU(update_list) to nbr.}
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Process_Cancel_Parent(i,nbr,src_list ){
// Called when node i receives a CANCEL PARENT(src_list) message
from nbr.

For each (node src in src_list) remove nbr from children_i(src).}

Send_Periodic_Updates(i){
Set update_list to empty.
For each (j in N_i such that TT_i(i,j). ¢ != infinity){
Set TT _i(i,j).sn = current time stamp SN_i.
Add (i, j, TT _i(i,j).c, TT_i(i,j).sn) to update_list. }
Send message LSU(update_list) to children_i(i).}

Compute_New_Parents2(i)}{
S«
Foreach (v e TT_i){
Set d(v) = infinity;
Set pred(v) = NULL;
Set new_p _i(v) = NULL; }

d(i) « O;

While (there exists w € TT_i — S such that d(w) < infinity){
Setu =nodew e TT_i — S that minimizes d(w),
SetS=S v {u};

For each (v such that (u, v) e TT_i) {
If (d(u) + 1 < d(v) or [d(u) + 1 = d(v) and new_p_i(u) = p_i(v)])

Setd(v) =d(u) + 1;
Set pred(v) = u;
If (u=1i) Setnew_p_i(v)=v;

Else Set new_p_i(v) = new_p_i(u); }}}}
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Trew

Partial-Topology 1

The function Mark_Special_Links() is called whenever the parent p_i(src) or the
set of children children_i(src) for any source src Changes. The notation
LSU(update_list) represents a link-state-update message that includes the updates (u,
v, ¢, sn, sp) in the update_list, where sp is a single bit that indicates whether the link is

“special’, i.e., whether it should be broadcast to all nodes.

Mark_Special_Links(i){
For all (outgoing links (i,j)) {Set TT_i(i,j)-sp = 0:}
For all (nodes src 1= i){
if (p_i(src) '= NULL and p_i(src) != src){
Set TT_i(i, p_i(src)).sp = 1;} //Link is special.
For all (nodes j in children_i(src))
Set TT _i(i,j).sp = 1;} //Link is special.

}

Update_Topology Table(i, nbr, in_message, update_list){
Set update_list to empty list.
For each ((u,v,c,sn,sp) in in_message) {
If (p_i(u) = nbr) {
If ((u,v)isin TT_iand sn> TT_i(u,v).sn) {
Set TT _i(u,v).sn = sn.
Set TT i(u,v).c=c.
Set TT _i{u,v).sp = sp.
(Only links marked as special are forwarded.)
If (sp = 1) Add (u,v,c,sn,sp) to update_list.
If (sn > sn_i(u)) Set sn_i(u) = sn.}
If {(u,v) is not in TT_i) {
Add (u,v,c,sn,sp)to TT_i.
If (sp = 1) Add (u,v,c,sn,sp) to update_list.
If (sn > sn_i(u)) Set sn_i(u) = sn.}}}}
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Process_Update(i, nbr, in_message){
// Called when an update message in_message is received from nbr.
Update_Topology_Table(i, nbr, in_message, update_list).
Update_Parents(i).
Mark_Special_Links(i).
For each node srcin TT_i {
Let update_list(src) consist of all tuples (k, I, ¢, sn, sp) in update_list
such that k = src.
If update_list(src) is nonempty
Send message LSU(update_list(src)) to children_i(src).}}

Link_Change(i,jX
{// Called when the cost of link (i,j) changes.
If (JTT_i(i,j).c - cost(i,j)yTT_i(i,j).c > epsilon) {
Set TT _i(i,j).c = cost(i,)).
Set TT_i(i,j).sn = current time stamp SN_i.
Set update_list = {(i, j, TT_i(i, j).c, TT_i(i, j).sn, TT_i(i,j)-sp)}-
Send message LSU(update_list) to children_i(i).}}

Link_Down(i,jX
// Called when link (i,j) goes down.
Remove j from N_i.
Set TT_i(i,j).c = infinity.
Set TT i(i,j).sn = current time stamp SN_i.
Update_Parents(i).
For each (node src in TT_i) remove j from children_i(src).
Mark _Special_Links(i).
Set update_list = {(i,j, infinity, TT_i(i,j).sn, TT_i(i,j).sp)}.
Send message LSU(update_list) to children_i(i).}

Link_Up(i,j){
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// Called when link (i,j) comes up.

Add jto N_i.

Set TT_i(i,j).c = cost(i,j).

Set TT _i(i,j).sn = current time stamp SN_i.
Update_Parents(i).

Mark_Special_Links(i).

Set update _list = {(i, j, TT_i(i,j).c, TT_i(i,j).sn, TT_i(i,j).sp)}.
Send message LSU(update_list) to children_i(i).}

Update_Parents(i){
Compufe_New_Parents(i).
For each (node k in N_i)
Set cancel_src_list(k), src_list(k), and sn_list(k) to empty.
For each (node src in TT_i such that src != i){
If (new_p_i(src) = p_i(src)){
If (p_i(src) = NULL)
Set k = p_i(src).
Add src to cancel_src_list(k).}
Set p_i(src) = new_p_i(src).
If (new_p_i(src) != NULL)
Set k = new_p_i(src).
Add src to src_list(k).
Add sn_i(src) to sn_list(k).}}}
For each (node k in N_i){
If (src_list(k) is nonempty){
Send message NEW PARENT (src_list(k), sn_list(k)) to k.}
If (cancel_src_list(k) is nonempty{
Send message CANCEL PARENT(cancel_src_list(k)) to k.}}}

Compute New_Parents(i){
For each (node src in TT_i such that src !=i){
Set new_p i(src) = NULL.}
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Compute min-hop paths using Dijkstra.

For each (node src in TT_i such that src = i){
Set new_p_i(src) equal to the neighbor of node i along the

minimum-hop path from i to src.}}

Process_New_Parent(i, nbr, src_list, sn_list){
//Called when node i receives a NEW PARENT(src_list, sn_list) message
from nbr.
Set update_list to empty list.
For each (node src in src_list) {
Let sn_list.src denote the sequence number corresponding to src in
sn_list.
Add nbr to children_i(src).
If (src 1= i) Set TT_i(i, nbr).sp = 1. //Link to nbris special.
If (src =i) Set new_updates = {(src, v, ¢, sn, sp) in TT_i such that
~sn > sn_list.src}.
If (src !=i) Set new_updates = {(src, v, ¢, sn, sp) in TT_i such that
sn > sn_list.src and sp = 1}. //Only special links are sent.
Add new_updates to update_list.}
Send message LSU(update_list) to nbr.}

Process_Cancel_Parent(i,nbr,src_list ){
// Called when node i receives a CANCEL PARENT(src_list) message
from nbr.

For each (node src in src_list) remove nbr from children_i(src).
Mark_Special_Links(i). }

Send_Periodic_Updates(i){
Set update _list to empty.
For each (j in N_i such that TT_i(i,j).c != infinity }{
Set TT _i(i,j).sn = current time stamp SN_i.
Add (i, j, TT_i(i,j).c, TT_i(i,j).sn, TT_i(i,j).sp) to update_list. }
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Send message LSU(update_ii;t—) to children_i(i).}

Partial-Topology 2

Update(i, k, in_message){
Update_Topology Table(i, k, in_message);
Lex_Dijkstra; // Uses lexicographic Dijkstra to compute Ti
Generate Updates(i, update_list);
if (k does not equal i and update_list is non-emptyX

Send_Updates_Children(i, update_list);

Update_Parents(i);

}

Send Updates_Children(i, update_list){

For each (node k € Ni) {out_message(k) < 0;}

For each (node src € TT_i s.t. src does not equal i){
update_list(src) « {(k, I, ¢) € update_list s.t. k = src};
for each (node k e children_i(src)){

Add update_list(src) to out_message(k);}
}
For each (node k € Ni s.t. out_message(k) is non-empty}{

Send the message out_message(k) to node k;}

}

Update_Topology_Table(i, k, in_message){
For each ((u, v, ¢) € in_message{
// Process only updates received from the parent p_i(u)
if (p_i(u) =k ork =i}
if ((u, v)g TT iorc!=TT_i{u, v).c¢{
TT i(u, v) « (u, v, c);

Mark (u, v) as changed in TT_i;}
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}
if (in_message is a PARENT_RESPONSE)

For each (u such that in_message includes source u){
if (p_i(u) = k and pending_i(u) = 1}{
pending_i(u) = 0;

For each (v such that TT_i contains an entry for (u,

if (in_message does not contain update for link
(u, VI

TT_i(u, v).C <

// indicates link should be deleted

Mark (u, v) as changed in TT_i;

}

Process_Cancel Parent(i, nbr, src_list){
For each (src e src_list)
children_i(src) « children_i(src) — {nbr};

}

Generate_Updates(i, update_list){
update_list « O;
for each (entry (u, v, ¢, ¢’) € TT_i{
if ((u, v) is in new Ti and ((u, v) is marked as changed or is not in
old Ti)}{
Add (u, v, c) to update_list;

Ti(u, v).c" « Ti(u, v).c;
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Ri « Ri U{(u, v)};

}

else if ((u, v) is in Ri but not in new Ti and ¢ > ¢'){
Add (u, v, ) to update_list; // delete update
Ti(u, v).C" « o,
Remove (u, v) from Ri;

}
if (TT_i(u, v).c = )

Remove (u, v) from TT_j;

}

Update_Parents(i){

For each (node k € Ni)Y{
cancel_src_list(k) « 0;
src_list(k) « 0;}

For each (node src e TT_i such that src =) {
new_p_i(src) < next node on shortest path to src;
if (new_p_i(src) =p_i(src))

if (new_p_i(src) = NULL) {
k « p_i(src);
cancel_src_list(k) < cancel_src_list(k) L {src};
}
if (new_p_i(src) = NULLY
k « new_p_i(src);
src_list(k) < src_list(k) L {src};
}

p_i(src) «- new_p_i(src);
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For each (node k € Ni){
if (src_list(k) = 0)
Send NEW_PARENT(src_list(k)) to node k;
if(cancel_src_list(k) = 0)
Send CANCEL_PARENT (cancel_src_list(k)) to node k;

}

Process_New_Parent(i, nbr, src_list){
update_list « 0;
for each (node u € u_list) {
children_i(u) « children i(u) v {nbr};
updates(u) < {(u, v, c) € TT_i such that (u, v) e Ti};
update_list « update_list U updates (u);

¥
Send PARENT RESPONSE(src_list, update_list) to nbr;}
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What is claimed is:

1. Method for communicating between a plurality of
nodes, said method comprising the steps of:

a) allowing a predefined time interval to elapse; and

b) sending a differential message by a sending node to at
least one neighboring node of said sending node,
wherein said differential message comprises only
changes in link state status of neighboring nodes of said
sending node with respect to link state statuses reported
in a last differential message sent by the sending node.

2. The method of claim 1, further comprising the step of:

¢) sending said differential message for a certain number
of times for ensuring that said at least one neighboring
node will either receive said differential messages or
will deem a link to said sending node is lost for failing
to receive said differential messages.

3. The method of claim 1, wherein said differential

message comprises a plurality of message subtypes.

4. The method of claim 3, wherein said plurality of
message subtypes comprise a neighbor request subtype that
indicates said sending node’s presence to a receiving neigh-
bor node.

5. The method of claim 4, wherein said plurality of
message subtypes further comprise a neighbor reply subtype
that indicates a receipt of a neighbor node’s neighbor request
message.

6. The method of claim 5, wherein said plurality of
message subtypes further comprise a neighbor lost subtype
that indicates a loss of a neighbor node by said sending node.

7. The method of claim 1, wherein said predefined time
interval defines a duration between successive differential
messages that are sent to one or more neighbor nodes and
wherein said predefined time interval is dynamically
adjusted.

8. The method of claim 7, wherein said predefined time
interval is dynamically adjusted in accordance with a current
velocity of said sending node.

9. The method of claim 7, wherein said predefined time
interval is dynamically adjusted in accordance with a band-
width demand of said sending node.

10. he method of claim 7, wherein said predefined time
interval is dynamically adjusted in accordance with a mea-
sure of network traffic of a network where said plurality of
nodes are members of said network.

11. The method of claim 1, wherein an adjustment of said
predefined time interval is communicated within said dif-
ferential message.

12. Method for communicating between a plurality of
nodes, said method comprising the steps of:

a) receiving a differential message from a sending neigh-
bor node, wherein said differential message comprises
only changes in link state status of neighboring nodes
of said sending neighbor node with resoect to link state
statuses respect in a last differential message sent by the
sending neighbor node; and

b) sending a reply message to said sending neighbor node.

13. The method of claim 12, wherein said differential
message comprises a plurality of message subtypes.

14. The method of claim 13, wherein said plurality of
message subtypes comprise a neighbor request subtype that
indicates sald sending node’s presence to a receiving neigh-
bor node.

15. The method of claim 14, wherein said plurality of
message subtypes further comprise a neighbor reply subtype
that indicates a receipt of a neighbor node’s neighbor request
message.
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16. The method of claim 15, wherein said plurality of
message subtypes further comprise a neighbor lost subtype
that indicates a loss of a neighbor node of said sending
neighbor node.

17. The method of claim 12, further comprising the step
of:

¢) waiting for a predefined time interval for a subsequent

message from said sending neighbor node.

18. The method of claim 17, wherein said predefined time
interval is dynamically adjusted.

19. The method of claim 18, wherein said predefined time
interval is dynamically adjusted in accordance with a current
velocity of said sending neighbor node.

20. The method of claim 18, wherein said predefined time
interval is dynamically adjusted in accordance with a band-
width demand of said sending neighbor node.

21. The method of claim 18, wherein said predefined time
interval is dynamically adjusted in accordance with a mea-
sure of network traffic of a network where said plurality of
nodes are members of said network.

22. The method of claim 18, wherein an adjustment of
said predefined time interval is communicated within said
differential message.

23. Apparatus for communicating with a plurality of
nodes, said apparatus comprising:

means for allowing a predefined time interval to elapse;

and

means for sending a differential message to at least one

neighboring node of said apparatus, wherein said dif-
ferential message comprises only changes in link state
status of neighboring nodes of said apparatus with
resriect to link state statuses reported in a last differ-
ential message sent by the apparatus.

24. The apparatus of claim 23, wherein said differential
message is sent for a certain number of times for ensuring
that said at least one neighboring node will either receive
said differential messages or will deem a link to said
apparatus is lost for failing to receive said differential
messages.

25. The apparatus of claim 23, wherein said differential
message comprises a plurality of message subtypes.

26. The apparatus of claim 25, wherein said plurality of
message subtypes comprise a neighbor request subtype that
indicates said apparatus presence to a receiving neighbor
node.

27. The apparatus of claim 26, wherein said plurality of
message subtypes further comprise a neighbor reply subtype
that indicates a receipt of a neighbor node’s neighbor request
message.

28. The apparatus of claim 27, wherein said plurality of
message subtypes further comprise a neighbor lost subtype
that indicates a loss of a neighbor node by said apparatus.

29. The apparatus of claim 23, wherein said predefined
time interval defines a duration between successive differ-
ential messages that are sent to one or more neighbor nodes
and wherein said predefined time interval is dynamically
adjusted.

30. The apparatus of claim 29, wherein said predefined
time interval is dynamically adjusted in accordance with a
current velocity of said apparatus.

31. The apparatus of claim 29, wherein said predefined
time interval is dynamically adjusted in accordance with a
bandwidth demand of said apparatus.

32. The apparatus of claim 29, wherein said predefined
time interval is dynamically adjusted in accordance with a
measure of network traffic of a network where said apparatus
is a member of said network.
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33. The apparatus of claim 23, wherein an adjustment of
said predefined time interval is communicated within said
differential message.

34. The apparatus of claim 23, wherein said apparatus is
a router.

35. Apparatus for communicating with a plurality of
nodes, said apparatus comprising:

means for receiving a differential message from a sending

neighbor node, wherein said differential message com-
prises only changes in link state status of neighboring
nodes of said sending neighbor node with resDect to
link state statuses reported in a last differential message
also sent by the sending neighbor node; and

means for sending a reply message to said sending

neighbor node.

36. The apparatus of claim 35, wherein said differential
message comprises a plurality of message subtypes.

37. The apparatus of claim 36, wherein said plurality of
message subtypes comprise a neighbor request subtype that
indicates said sending node’s presence to a receiving neigh-
bor node, a neighbor reply subtype that indicates a receipt of
a neighbor node’s neighbor request message and a neighbor
lost subtype that indicates a loss of a neighbor node of said
sending neighbor node.

38. The apparatus of claim 35, further comprising:

means for waiting for a predefined time interval for a

subsequent message from said sending neighbor node.

39. The apparatus of claim 38, wherein said predefined
time interval is dynamically adjusted.

40. The apparatus of claim 39, wherein said predefined
time interval is dynamically adjusted in accordance with a
current velocity of said sending neighbor node, a bandwidth
demand of said sending neighbor node or a measure of
network traffic of a network where said apparatus is a
member of said network.

41. The apparatus of claim 39, wherein an adjustment of
said predefined time interval is communicated within said
differential message.

42. A computer-readable medium having stored thereon a
plurality of instructions, the plurality of instructions includ-
ing instructions which, when executed by a computer, cause
the computer to perform the steps comprising of:

a) allowing a predefined time interval to elapse; and

b) sending a differential message by a sending node to at

least one neighboring node of said sending node,
wherein said differential message comprises only
changes in link state status of neighboring nodes of said
sending node with respect to link state statuses reported
in a last differential message sent by the sending node.

43. A computer-readable medium having stored thereon a
plurality of instructions, the plurality of instructions includ-
ing instructions which, when executed by a computer, cause
the computer to perform the steps comprising of:
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a) receiving a differential message from a sending neigh-
bor node, wherein said differential message comprises
only changes in link state status of neighboring nodes
of said sending neighbor node with respect to link state
statuses reported in a last differential message sent by
the sending neighbor node; and

b) sending a reply message to said sending neighbor node.

44. Method for a sending node in a communication
network to report topology information to one or more
neighbor nodes, said method comprising the steps of:

a) computing a source tree providing paths to all reach-
able nodes in the communication network using a
minimum-hop path tree;

b) computing a reportable node set comprising only a part
of the source tree that the sending node reports to the
one or more neighbor nodes to minimize overhead;

¢) computing a reportable subtree of said source compris-
ing one or more links in accordance with said report-
able node set; and

d) reporting said reportable subtree to said one or more
neighbor nodes, wherein said reportable subtree is
reported to said one or more neighbor nodes in a
differential update, wherein said differential update is
generated in accordance with only a change in a node’s
topology table.

45. The method of claim 44, wherein said change in a
node’s topology table is caused by receiving a topology
update from a neighbor node.

46. The method of claim 44, wherein said change in a
node’s topology table is caused by detecting a status change
for a link to one of its neighbor nodes.

47. Apparatus for a sending node in a communication
network to report topology information to one or more
neighbor nodes, said apparatus comprising:

means for computing a source tree providing paths to all
reachable nodes in the communication network using a
minimum-hop path tree;

means for computing a reportable node set comprising
only a part of the source tree that the sending node
reports to the one or more neighbor nodes to minimize
overhead;

means for computing a reportable subtree of said source
comprising one or more links in accordance with said
reportable node set; and

means for reporting said reportable subtree to said one or
more neighbor nodes, wherein said reportable subtree
is reported to said one or more neighbor nodes in a
differential update, wherein said differential update is
generated in accordance with only a change in a node’s
topology table.
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