
US 20080195819A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0195819 A1
(19) United States

Dumont (43) Pub. Date: Aug. 14, 2008

(54) SYSTEM AND PROGRAM PRODUCT FOR Publication Classi?cation
VALIDATING REMOTELY CACHED (51) Int Cl
DYNAMIC CONTENT WEB PAGES G06F 12/00 (2006.01)

Inventor: Charles E Dumonts Pepperella US. Cl- .. US

() (57) ABSTRACT
Correspondence Address: - - -
HOFFMAN W ARNI CK LLC Under the present 1nvent1on, When a request for a Web page 1s
75 STATE STREET 14TH FLOOR received from a client on a server, the Web page is built and
ALBANY NY 1220,; analyzed for cacheability. If the Web page is cacheable, an

’ entity tag is generated. The entity tag generally identi?es the
_ various sources of dynamic content in the Web page, and

(21) Appl' NO" 12/102’150 includes cacheability ?ags and time values associated With
. _ the dependencies. The entity tag is sent to the client With the

(22) Flled' Apr' 14’ 2008 Web page Where it is stored in local cache memory. If a
. . subsequent request for the same Web page is issued from the

Related U's' Apphcatlon Data client, the request is accompanied With the entity tag (e.g., in
(63) Continuation of application No. 10/635,075, ?led on a header)- The entity tag iS deCOded and analyzed by the

Aug, 6, 2003, now Pat, No, 7 392,348, server to determine Whether the cached Web page is still valid.

10

CLIENTS SERVERS

l6

14 12

Patent Application Publication Aug. 14, 2008 Sheet 1 0f 4 US 2008/0195819 A1

SERVERS 14

i
FIG. 1

CLIENTS

Patent Application Publication Aug. 14, 2008 Sheet 2 0f 4 US 2008/0195819 A1

£| wmQEmQ . 15,255

4

on EEEQ
.228

vml OR
8. moimmzmu R

05

E G l

mu mmmwi? Nm 5

H66 A _ EH6

mmmdam _

3 mwzomwmm 4 E N

\QOEmE

MN | P6

om

& mm>mmm

on

Patent Application Publication Aug. 14, 2008 Sheet 3 0f4

RESPONSE
BUILDER

ATTRIBUTE
ANALYZER

CACHEABILITY
ANALYZER

___40

CACHEABILITY
ANALYZER
INTERFACE

CACHING
STRATEGY
GENERATOR

Y

42

62

TAG
SYSTEM

TAG
GENERATOR

TAG
ANALYZER

—44

46

48

FIG. 3

US 2008/0195819 A1

Patent Application Publication

RECEIVE REQUEST

Aug. 14, 2008 Sheet 4 of4

CONTAINS
IF-NON-MATCH

HEADER?

NO

S4—

DECODE ENTITY
TAG

100 —>

COMPARE TAG
ATTRIBUTES AND
DEPENDENCIES
AGAINST
RESOURCES

RESPONSE
STILL VALID?

RETURN NOT
MODIFIED RE SPONSF

FIG.4

US 2008/0195819 A1

BUILD RESPONSE

V

GENERATE
COMPOSITE OF
ATTRIBUTES

V

ANAYLZE
COMPOSITE OF
ATTRIBUTES

V

NO

GENERATE ENTITY
TAG

V

SEND RESPONSE
AND ENTITY
TAG TO CLIENT

US 2008/0195819 A1

SYSTEM AND PROGRAM PRODUCT FOR
VALIDATING REMOTELY CACHED
DYNAMIC CONTENT WEB PAGES

[0001] The current application is a continuation application
of co-pending US. patent application Ser. No. 10/635,075,
?led on Aug. 6, 2003, Which is hereby incorporated by refer
ence.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention
[0003] The present invention generally relates to a method,
system and program product for validating cached dynamic
content Web pages in caches located remotely from the server.
Speci?cally, the present invention alloWs a cached dynamic
content Web page to be validated Without the server having to
rebuild or evaluate the Web page itself.

[0004] 2. RelatedArt
[0005] As the use of computers becomes more pervasive,
computer users are increasingly relying on computer net
Works to perform everyday functions. For example, today a
computer user can purchase goods/services or obtain infor
mation over the Internet. Typically, a computer user Will issue
a request for a certain Web page from a “client” that is
received by a “server.” The server Will analyZe the request,
build the Web page, and serve the Web page to the client. If the
same Web page is requested at a later time, the serve can
reconstruct and retransmit the Web page to the client. Unfor
tunately, retransmission of a dynamic content Web page
Wastes valuable resources When the Web page has not
changed. Accordingly, a popular technology that helps pre
vent unnecessary retransmission of Web pages is caching.
One example of hoW caching can be utiliZed to help prevent
unnecessary Web page retransmission is described in US.
Pat. No. 6,351,767 (’767), Which is commonly assigned With
the present application to International Business Machines,
Corp. of Armonk, N.Y. and is hereby incorporated by refer
ence.

[0006] Under ’767, When a Web page is originally built and
sent to a client, it is also analyZed for cacheability. If it is
determined that the Web page is cacheable, it is stored in cache
memory both on the server and on the client. When the same
Web page is later requested, the server Will ?rst attempt to
retrieve the page from its oWn cache. If the page is not in the
server’s cache, and the client has communicated to the server
that it has a cached version of the page Which requires vali
dation, the server Will attempt to validate the cached We page
through evaluation. Speci?cally, the server Will rebuild the
Web page and compare time values (i.e., “last modi?ed
dates”) of the cached Web page to the rebuilt Web page. If the
time values are the same, the cached Web page is still valid and
the client can retrieve its cached copy of the Web page for
display to the user. Conversely, if the time values have
changed, the cached Web page is stale, and the rebuilt Web
page is sent to the client. Although such a system avoids
unnecessary retransmission of the Web page, it nevertheless
can consume a large amount of resources of the server in
rebuilding the Web page to perform the validation. Speci?
cally, as knoWn, a single Web page can include content from
numerous sources. To rebuild the Web page, the server Would
have to evaluate the page to determine the sources of data and
to interface With each source to obtain the necessary content

Aug. 14, 2008

and determine dependencies on additional sources of data.
Accordingly, the processing demands on the server are not
eased by the caching.
[0007] In vieW of the foregoing, a need exists for a method,
system and program product for validating cached dynamic
content Web pages in remote caches. Speci?cally, a need
exists for a system that can validate a cached dynamic content
Web page Without having to evaluate (rebuild) the Web page.

SUMMARY OF THE INVENTION

[0008] In general, the present invention provides a method,
system and program product for validating cached dynamic
content Web pages in remote caches. Speci?cally, under the
present invention, When a request for a Web page is received
from a client on a server, the Web page is built and analyZed
for cacheablity. If the Web page is cacheable, an entity tag is
generated. The entity tag is generally based on sources of the
dynamic content in the Web page, and any dependencies on
those sources. To this extent, the entity tag not only identi?es
the various sources of dynamic content in the Web page, but it
also includes cacheability ?ags and time values associated
With the dependencies. The entity tag is sent to the client With
the Web page Where it is stored in local cache memory. If a
subsequent request for the same Web page is later issued from
the client, the request is accompanied With the entity tag (e. g.,
in a header). The entity tag is decoded and analyZed by the
server to determine Whether the Web page is still valid. Spe
ci?cally, the time values in the entity tag are compared to
corresponding time values for the sources of the dynamic
content. If the time values match, the cached Web page is still
valid. In this case, a simple status code (e.g., HTTP 304iNot
Modi?ed) can be sent to the client. Conversely, if the time
values do not match, the Web page is no longer valid. At that
point, the Web page Will be rebuilt and sent to the client.
[0009] A ?rst aspect of the present invention provides a
method for validating remotely cached dynamic content Web
pages, comprising: determining a cacheability of a response
to a client request, sources of dynamic content in the response
and a set of dependencies on the sources; generating an entity
tag based on the cacheability, the sources and the set of
dependencies; returning and caching the response and the
entity tag on the client; receiving a subsequent request from
the client With the entity tag; and analyZing the entity tag to
determine if the cached response is valid.
[0010] A second aspect of the present invention provides a
method for validating remotely cached dynamic content Web
pages, comprising: determining a cacheability of a response
to a client request for a dynamic content Web page, sources of
dynamic content in the response and a set of dependencies on
the sources; generating an entity tag, Wherein the entity tag
identi?es the sources and includes cacheability ?ags and time
values associated With the set of dependencies; returning and
caching the response and the entity tag on the client; receiving
a subsequent request for the dynamic content Web page from
the client With the entity tag; and comparing the time values in
the entity tag With corresponding time values for the sources
to determine if the cached response is valid.
[0011] A third aspect of the present invention provides a
system for validating remotely cached dynamic content Web
pages, comprising: a tag generator for generating an entity tag
for a response to a client request for a dynamic content Web
page, Wherein the entity tag identi?es sources of dynamic
content in the response and includes cacheability ?ags corre
sponding to a cacheability of the response and time values

US 2008/0195819 A1

associated With a set of dependencies on the sources, and
Wherein the response and the entity tag are cached on the
client; and a tag analyzer for analyzing the entity tag When
received from the client With a subsequent request for the
dynamic content Web page to determine if the cached
response is valid.
[0012] A fourth aspect of the present invention provides a
program product stored on a recordable medium for validat
ing remotely cached dynamic content Web pages, Which When
executed, comprises: program code for generating an entity
tag for a response to a client request for a dynamic content
Web page, Wherein the entity tag identi?es sources of
dynamic content in the response and includes cacheability
?ags corresponding to a cacheability of the response and time
values associated With a set of dependencies on the sources,
and Wherein the response and the entity tag are cached on the
client; and program code for analyzing the entity tag When
received from the client With a subsequent request for the
dynamic content Web page to determine if the cached
response is valid.
[0013] Therefore, the present invention provides a method,
system and program product for validating remotely cached
dynamic content Web pages.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] These and other features of this invention Will be
more readily understood from the folloWing detailed descrip
tion of the various aspects of the invention taken in conjunc
tion With the accompanying draWings in Which:
[0015] FIG. 1 depicts a set of clients communicating With a
set of servers over a network.

[0016] FIG. 2 depicts a system for validating cached
dynamic content Web pages, according to the present inven
tion.
[0017] FIG. 3 depicts a more detailed diagram of the
response builder, cacheability analyzer and tag system of
FIG. 2.
[0018] FIG. 4 depicts a method ?oW diagram, according to
the present invention.
[0019] The draWings are merely schematic representations,
not intended to portray speci?c parameters of the invention.
The draWings are intended to depict only typical embodi
ments of the invention, and therefore should not be consid
ered as limiting the scope of the invention. In the draWings,
like numbering represents like elements.

DETAILED DESCRIPTION OF THE INVENTION

[0020] As indicated above, the present invention provides a
method, system and program product for validating remotely
cached dynamic content Web pages. Speci?cally, under the
present invention, When a request for a Web page is received
from a client on a server, the Web page is built and analyzed
for cacheablity. If the Web page is cacheable, an entity tag is
generated. The entity tag is generally based on sources of the
dynamic content in the Web page, and any dependencies on
those sources. To this extent, the entity tag not only identi?es
the various sources of dynamic content in the Web page, but it
also includes cacheability ?ags and time values associated
With the dependencies. The entity tag is sent to the client With
the Web page Where it is stored in local cache memory. If a
subsequent request for the same Web page is later issued from
the client, the request is accompanied With the entity tag (e.g.,
in a header). The entity tag is decoded and analyzed by the

Aug. 14, 2008

server to determine Whether the Web page is still valid. Spe
ci?cally, the time values in the entity tag are compared to
corresponding time values for the sources of the dynamic
content. If the time values match, the cached Web page is still
valid. In this case, a simple status code (e.g., HTTP 304iNot
Modi?ed) can be sent to the client. Conversely, if the time
values do not match, the Web page is no longer valid. At that
point, the Web page Will be rebuilt and sent to the client.

[0021] It should be understood in advance that the present
invention alloWs the validation of cached dynamic content
Web pages to occur, in part, using the HTTP 1.1 speci?cation.
Speci?cally, under the HTTP 1.1 speci?cation, When a Web
broWser requests a Web page from a server, the server can
send the response With certain headers that contain informa
tion that can be used for subsequent cache validation. These
headers include a Last-Modi?ed header and an E-Tag header.
The Last-Modi?ed header speci?es the time and date that the
Web page Was last modi?ed, While the E-Tag header speci?es
the entity (e.g., version, revision, etc.) of the requested Web
page. The content of an E-Tag header is not de?ned by the
HTTP 1.1 speci?cation, but it can contain any data that is
meaningful to the server for cache validation. If the Web
broWser caches the Web page locally, it saves the information
from the headers along With the Web page. If the broWser later
requests the same Web page, it can do so by sending a condi
tional GET request, Which includes either an If-Modi?ed
Since With the last-modi?ed date or If-None-Match header
With the E-Tag, to the server.

[0022] Referring noW to FIG. 1, a typical implementation
10 of netWork-based communication With Which the present
invention is implemented is shoWn. As depicted, one or more
clients 12 communicate With one or more servers 14 over

netWork 16. Under the present invention, clients 12 and serv
ers 14 can represent any type of computerized systems. For
example, clients 12 and/or servers 14 could be a personal
computer, Workstation, laptop, hand held device, etc. More
over, netWork 16 can be any type of public netWork such as the
Internet, or ant type of private netWork such as a local area
netWork (LAN), Wide area netWork (WAN), a virtual private
netWork (V PN), etc. To this extent, servers 14 are typically
Web servers such as DOMINO Web servers, Which are com

mercially available from International Business Machines,
Corp. of Armonk, NY. In another embodiment, servers 14
can be portal servers that deliver portal pages to clients 12. In
any event, a user Will operate a Web broWser on a client 12 to
request a Web page from a server 14. The server 14 Will
generate the Web page by obtaining content from the corre
sponding sources. Once generated, the Web page is sent back
to the requesting client 12 Where it can be cached. As Will be
further described beloW, under the present invention, the Web
page is sent to the client 12 With an entity tag that not only
identi?es the sources of the dynamic content, but also
includes time values associated With any dependencies on the
sources. This entity tag is utilized in conjunction With the
HTTP 1.1 speci?cation to optimize the validation of the
cached dynamic content Web page.

[0023] Referring noW to FIG. 2, a more detailed diagram of
a system 20 for validating cached dynamic content Web pages
under the present invention is shoWn. As shoWn, client 22
communicates With server 26, Which obtains dynamic content
for the Web pages from sources 52. In general, server 26
comprises central processing unit (CPU) 28, memory 30, bus
32, input/ output (I/ O) interfaces 34, external devices/re
sources 36 and storage unit 38. CPU 28 may comprise a single

US 2008/0195819 A1

processing unit, or be distributed across one or more process

ing units in one or more locations, e. g., on a client and com

puter system. Memory 30 may comprise any knoWn type of
data storage and/or transmission media, including magnetic
media, optical media, random access memory (RAM), read
only memory (ROM), a data cache, a data object, etc. More
over, similar to CPU 28, memory 30 may reside at a single
physical location, comprising one or more types of data stor
age, or be distributed across a plurality of physical systems in
various forms.

[0024] U0 interfaces 34 may comprise any system for
exchanging information to/ from an external source. External
devices/resources 36 may comprise any knoWn type of exter
nal device, including speakers, a CRT, LCD screen, hand
held device, keyboard, mouse, voice recognition system,
speech output system, printer, monitor/display, facsimile,
pager, etc. Bus 32 provides a communication link betWeen
each of the components in server 26 and likeWise may com
prise any knoWn type of transmission link, including electri
cal, optical, Wireless, etc.
[0025] Storage unit 38 can be any system (e.g., a database)
capable of providing storage for information such as entity
tags under the present invention. As such, storage unit 38
could include one or more storage devices, such as a magnetic
disk drive or an optical disk drive. In another embodiment,
storage unit 38 includes data distributed across, for example,
a local area netWork (LAN), Wide area netWork (WAN) or a

storage area netWork (SAN) (not shoWn).
[0026] As indicated above, the teachings of the present
invention are implemented in a netWork environment such as

over the Internet, a Wide area netWork (WAN), a local area

netWork (LAN), a virtual private netWork (VPN), etc. To this
extent, communication betWeen client 22 and server 26 could
occur via a direct hardWired connection (e.g., serial port) or
via an addressable connection that may utiliZe any combina
tion of Wireline and/or Wireless transmission methods. Server
26 and client 22 may utiliZe conventional netWork connectiv
ity, such as Token Ring, Ethernet, WiFi or other conventional
communications standards. Moreover, connectivity could be
provided by conventional TCP/IP sockets-based protocol. In
this instance, client 22 Would utiliZe an Internet service pro
vider to establish connectivity to server 26.

[0027] As shoWn, memory 16 includes response builder 40,
cache analyZer 42, tag system 44 and communication system
50. It should be understood that response builder 40, cache
analyZer 42 and communication system 50 Will likely incor
porate one or more features disclosed in US. Pat. No. 6,351,
767, Which Was incorporated by reference above. In general,
user 24 Will operate Web broWser 25 on client 22 to generate
request 54 for a dynamic content Web page. Request 54 Will
be communicated to server 26 and received by communica
tion system 50, Which can include components not shoWn
such as a HTTP server. Upon receipt, response builder 40 Will
build the requested Web page. Building the response involves
interfacing With sources 52 to obtain the necessary dynamic
content. To this extent, it should be understood that sources 52
are intended to represent any type of system from Which
dynamic content can be retrieved. For example, sources 52
could be DOMINO databases, ?les etc. As such, similar to
storage unit 38 sources 52 could include one or more storage
devices, such as a magnetic disk drive or an optical disk drive.
In another embodiment, sources 52 could include data dis

Aug. 14, 2008

tributed across, for example, a local area netWork (LAN),
Wide area netWork (WAN) or a storage area netWork (SAN)

(not shoWn).
[0028] Referring to FIGS. 2 and 3 collectively, a more
detailed description of response builder 40, cache analyZer 42
and tag system 44 Will be given. When request 54 is received
by server 26, the URL therein is parsed by a parser (not
shoWn) into different parts. The parsed URL is then used by
response builder 40 to obtain the necessary dynamic content
from sources 52 and build the response (i.e., the requested
Web page). Once the parts of the response are determined,
attribute analyZer 58 Will analyZe the parts to identify the
attributes thereof. As a result of this analysis, additional
sources of dynamic content may be identi?ed. In general, the
attributes identify a set (e. g., one or more) of dependencies of
the content on sources 52. Speci?cally, the content Within the
response could change depending on several factors. Such
factors could include, for example, a database design, data
Within the database, data Within a particular document, the
particular user’s identity, etc. Accordingly, the folloWing
illustrative attributes could be identi?ed by attribute analyZer
58:

[0029] UserVariantiThe response is dependent on the
user’s identity.
[0030] DesignUserVariantiThe response is from a data
base that has protected elements.
[0031] DbDataiThe response uses data in the database
other than the referenced document.
[0032] UsedDocIdiThe response uses the document ID.
[0033] UsedNeWDociThe response uses a neWly-created
in-memory note. It should be understood that this list is a
non-exhaustive list given for illustrative purposes. Additional
examples are shoWn in the above-referenced ’767 patent.
[0034] In any event, after attribute analyZer 58 has devel
oped a composite of attributes for the parts of the response,
the composite Will be passed to cacheability analyZer inter
face 60 of cacheability analyZer 42. As described in ’767,
caching strategy generator 62 Will examine the composite of
attributes to determine Whether the response is cacheable, and
to generate a set (e.g., one or more) of cacheability ?ags based
thereon. The cacheability ?ags re?ect a caching strategy for
the response. Illustrative ?ags are as folloWs:

[0035] DontCacheiThe response is not cached.
[0036] Documentilnvalidate the cached response When
the document changes.
[0037] DbDesigniInvalidate the cached response When
the database design changes.
[0038] DbDataiInvalidate the cached response When any
of the data in the database changes.
[0039] Using an algorithm such as disclosed in ’767, the
cacheability ?ags are set. If the determination is that the
response is cacheable, the set cacheability ?ags are passed to
tag system 44. Under the present invention, tag generator 46
Will then generate an entity tag for the response that is gen
erally based on the sources of the content, as Well as any
dependencies of the response on those sources. Speci?cally,
the entity tag Will identify the sources of the dynamic content
in the response, and Will include a tag version number, the
cacheability ?ags, time values, and optionally, a document
identi?er and a user name (if the dependencies so require).
Accordingly, the entity tag could resemble the folloWing:

XX-YYYY-DesignTimeDate-DateTimeDate-UNID
UserNaIne

US 2008/0195819 A1

Where:
[0040] XX represents major and minor version numbers of
the tag format (eg 10)
[0041] YYYY represents ASCII hex string representation
of the 16 bit cacheability ?ags ?eld.
[0042] DesignTimeDate represents the last modi?ed time
value of the database design as a 16 digit ASCII hex string.
[0043] DateTimeDate represents a 16 digit ASCII hex
string of either the last modi?ed time value of data in the
database, or of a speci?c document in the database on Which
the response depends.
[0044] UNID represents the document identi?er in the
event DateTimeDate refers to a speci?c document in the
database.
[0045] UserName refers to the name of the speci?c user
issuing the request in the event the response is user variant.
[0046] It should be understood that in most cases, content
Within the response Will generally be dependent on either data
Within the database, or a speci?c document Within the data
base. Although a response can depend on both, since the
document resides Within the database, the database last modi
?ed date Will alWays be the same or later than the last-modi
?ed date of the most recently modi?ed document therein.
Accordingly, it is not typically necessary to record both, and
DateTimeDate can represent one or the other. In the case of
the former, if any data Within the database changes, a cached
response is no longer valid. In the case of the latter, if data
Within the document identi?ed by the UNID changes, the
cached response is no longer valid. In any event, once the
entity tag is generated it is Base64 encoded, Wrapped in
quotation marks and preceded by “W/” to indicate that the
entity tag is a Weak cache validator (as described in the HTTP
1.1 speci?cation). Identifying the entity tag as a Weak cache
validator essentially ensures that it Will only be used With
HTTP GET and HEAD requests, and that at most one entity
tag Will be associated With any given request.
[0047] The entity tag Will accompany the response in an
“E-Tag” header as communicated to client 22 via communi
cation system 50. Upon receipt, the response and entity tag 56
are cached in broWser 25. If user 24 later requests the same
Web page, a conditional get request is issued. Speci?cally, the
entity tag is sent to server 26 in an “If-Non-Match” header.
Upon receipt, communication system 50 Will forWard the
entity tag to tag analyZer 48, Which Will decode the entity tag
and determine Whether the cached response is valid. Speci?
cally, tag analyZer 48 Will compare the time values in the
entity tag to corresponding time values for the sources iden
ti?ed by the entity tag. If the time values match, the cached
response is still valid. Thereafter, a status code (e.g., HTTP
304iNot Modi?ed) Will be sent to client 22 so that the
cached response can be displayed for user 24 Conversely, if
one or more of the time values do not match, or if the entity tag
indicates that the cached response is user variant and the user
name encoded Within the entity tag does not match the
logged-in user name, the response is no longer valid (i.e., is
stale). Accordingly, response builder 40 Will build a neW
response and a neW composite set of attributes that cacheabil
ity analyZer 42 Will use to determine Whether the neW
response is cacheable and to generate a neW set of cacheabil
ity ?ags. The neW set of cacheability ?ags is then used by tag
system 44 to generate a neW entity tag that is sent to client 22
With the neW response in an “E-Tag” header. Similar to the
previous response, the neW response and entity tag are cached
in broWser 25 for possible later use. As can be seen, the

Aug. 14, 2008

present invention alloWs remotely cached dynamic content
Web pages to be validated simply by analyZing the entity tag.
That is, no evaluation or rebuilding of the Web page is
required.
[0048] Referring noW to FIG. 4, a method ?oW diagram 100
of the present invention is shoWn. As depicted, ?rst step S1 is
to receive a request. In step S2, it is determined if the response
contains an If-None-Match header. If not, a response is built
in step S3. HoWever, if the request did contain an If-None
Match header, the entity tag therein Would be decoded in step
S4. Thereafter, the tag attributes and dependencies Would be
compared against the corresponding resources in step S5.
That is, the time values in the entity tag Would be compared to
corresponding time values of the relevant dynamic content
sources. Based on the comparison, it Would be determined
Whether the response is still valid or is stale in step S6. If the
response Was still valid, a Not Modi?ed status code Would be
returned to the client in step S7. HoWever, if the response Was
deemed to be invalid in step S6, a response Would be built in
step S3. After the response is built, a composite of attributes
Would be generated in step S8. That composite Would then be
analyZed in step S9 for cacheability. Based on the analysis, an
entity tag Would be generated in step S10, and the neW
response and entity tag Would be sent to the client in step S11.
[0049] It should be understood that the present invention
can be realiZed in hardWare, softWare, or a combination of
hardWare and softWare. Any kind of computer system(s)4or
other apparatus adapted for carrying out the methods
described hereiniis suited. A typical combination of hard
Ware and softWare could be a general purpose computer sys
tem With a computer program that, When loaded and
executed, carries out the respective methods described herein.
Alternatively, a speci?c use computer, containing specialiZed
hardWare for carrying out one or more of the functional tasks
of the invention, could be utiliZed. The present invention can
also be embedded in a computer program product, Which
comprises all the respective features enabling the implemen
tation of the methods described herein, and WhIChiWheH
loaded in a computer systemiis able to carry out these meth
ods. Computer program, softWare program, program, or soft
Ware, in the present context mean any expression, in any
language, code or notation, of a set of instructions intended to
cause a system having an information processing capability
to perform a particular function either directly or after either
or both of the folloWing: (a) conversion to another language,
code or notation; and/or (b) reproduction in a different mate
rial form.
[0050] The foregoing description of the preferred embodi
ments of this invention has been presented for purposes of
illustration and description. It is not intended to be exhaustive
or to limit the invention to the precise form disclosed, and
obviously, many modi?cations and variations are possible.
Such modi?cations and variations that may be apparent to a
person skilled in the art are intended to be included Within the
scope of this invention as de?ned by the accompanying
claims.

I claim:
1. A system for validating remotely cached dynamic con

tent Web pages, comprising:
an analyZer to analyZe a plurality of parts of a response to

a client request to identify a plurality of attributes
thereof, Wherein the attributes identify a set of depen
dencies of the content on sources of dynamic content;

US 2008/0195819 A1

a cacheability deterrninator to determine a cacheability of
the response, the sources of dynamic content in the
response and the set of dependencies on the sources;

a tag generator for generating an entity tag for a response to
a client request for a dynamic content Web page, Wherein
the entity tag identi?es sources of dynamic content in the
response and includes cacheability ?ags corresponding
to a cacheability of the response and time values asso
ciated With a set of dependencies on the sources, and
Wherein the response and the entity tag are cached on the
client; and

a tag analyzer for analyZing the entity tag When received
from the client With a subsequent request for the
dynamic content Web page to determine if the cached
response is valid, Wherein the cached response is valid if
the time values Within the entity tag match correspond
ing time values for the sources, and Wherein the tag
analyZer analyZes the entity tag Without evaluating or
rebuilding the response.

2. The system of claim 1, Wherein a “Not Modi?ed” status
code is sent to the client if the cached response is valid.

3. The system of claim 1, Wherein a neW response is gen
erated and sent to the client With a neW entity tag if the cached
response is not valid.

4. The system of claim 1, further comprising:
a cacheability analyZer for determining the cacheability of

the response, and for generating the cacheability ?ags;
and

a response builder for generating the response.
5. The system of claim 1, Wherein the set of dependencies

comprise at least one of a database design, database date and
document data.

6. The system of claim 1, Wherein the time values comprise
a database design time value and a data time value.

7. The system of claim 1, Wherein the entity tag further
comprises at least one of a version number, a document iden
ti?er and a user name.

8. A program product stored on a tangible recordable
medium for validating remotely cached dynamic content Web
pages, Which When executed, comprises:

program code for analyZing a plurality of parts of a
response to a client request to identify a plurality of

Aug. 14, 2008

attributes thereof, Wherein the attributes identify a set of
dependencies of the content on sources of dynamic con

tent;
program code for determining a cacheability of the

response, the sources of dynamic content in the response
and the set of dependencies on the sources;

program code for generating an entity tag for a response to
a client request for a dynamic content Web page, Wherein
the entity tag identi?es the sources of dynamic content in
the response and includes the cacheability ?ags corre
sponding to a cacheability of the response and time
values associated With the set of dependencies on the
sources, and Wherein the response and the entity tag are
cached on the client;

program code for analyZing the entity tag When received
from the client With a subsequent request for the
dynamic content Web page to determine if the cached
response is valid and;

program code for sending a status code to the client if the
cached response is valid.

9. The program product of claim 8, Wherein the cached
response is valid if the time values Within the entity tag match
corresponding time values for the sources.

10. The program product of claim 8, Wherein a neW
response is generated and sent to the client With a neW entity
tag if the cached response is not valid.

11. The program product of claim 8, further comprising:
program code for determining the cacheability of the

response, and for generating the cacheability ?ags; and
program code for generating the response.
12. The program product of claim 8, Wherein the set of

dependencies comprise at least one of a database design,
database date and document data.

13. The program product of claim 8, Wherein the time
values comprise a database design time value and a data time
value.

14. The program product of claim 8, Wherein the entity tag
further comprises at least one of a version number, a docu
ment identi?er and a user name.

* * * * *

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Description
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description/Claims
	Page 10 - Claims

