
US 20070022155Al

(12) Patent Application Publication (10) Pub. No.: US 2007/0022155 A1
(19) United States

Owens et al. (43) Pub. Date: Jan. 25, 2007

(54) METHOD AND SYSTEM FOR
INTEGRATING ENTERPRISE SOFTWARE
APPLICATIONS WITH DESKTOP
SOFTWARE APPLICATIONS

(76) Inventors: David H. Owens, San Jose, CA (US);
Philip C. Nelson, San Jose, CA (US)

Correspondence Address:
SONNENSCHEIN NATH & ROSENTHAL LLP
P.O. BOX 061080
WACKER DRIVE STATION, SEARS TOWER
CHICAGO, IL 60606-1080 (US)

(21) Appl. No.: 10/262,810

(22) Filed: Oct. 1, 2002

Related US. Application Data

(60) Provisional application No. 60/405,434, ?led on Aug.
22, 2002.

Publication Classi?cation

(51) Int. Cl.
G06F 15/16 (2006.01)

(52) US. Cl.709/202

(57) ABSTRACT

One or more server-based constructs are projected into one
or more corresponding desktop objects. Thereafter one or
more events involving the desktop objects are processed
according to behaviors de?ned during the projection using
action handlers cached at a desktop client. The action
handlers provide a mechanism for instituting the server
de?ned behaviors at the desktop, including the playing of
locally cached Web forms that provide a user With options
for interacting With the desktop objects according to those
behaviors. Any or all interactions With the desktop objects
may be subsequently communicated to the server, Which can
accept or reject any changes and resynchroniZe an updated
vieW of the object(s) to the desktop client.

Receive XML message
from sewer. that describes
desktop object / policy/ etc.

40

V
Parse message and create

/ update / delete
appropriate desktop object.

42

l
User manipulates desktop

object.
44

V
Client recognizes

associated event and
performs action.

46

V
Changes are

communicated to enterprise
application.

48

Enterprse application
accepts / rejects changes

and updates client.
50

Patent Application Publication Jan. 25, 2007 Sheet 1 0f 5 US 2007/0022155 A1

or E26

@ @ @ @ ww 5955 no;

W‘ NP 336m 32

V

mm EmEcgEm noc?ma

SmtBE “329m

3. c9695"? 3:925

Patent Application Publication Jan. 25, 2007 Sheet 2 0f 5

Manipulate Object @
Desktop 28

Recognize an Associated
Event 30

US 2007/0022155 A1

Invoke Corresponding

XML Message via HTTP or
E-mall

Create New Object
34

Communicate wilh
Enterprise Applicalion

36

Action Handler 32

XML Message via HTTP or
E-mail

Patent Application Publication Jan. 25, 2007 Sheet 3 0f 5

Receive XML message
from server. that describes
desktop object / policy/ etc.

40

Parse message and create
/ update / delete

appropriate desktop object.
42

User manipulates desktop
object.
44

Client recognizes
associated event and

performs action.
46

Changes are
communicated to enterprise

application.
48

Enterprse application
accepts / rejects changes

and updates client.
50

Fig. 3

US 2007/0022155 A1

Patent Application Publication Jan. 25, 2007 Sheet 4 0f 5 US 2007/0022155 A1

Open managed
spreadsheet.

54

Select a menu command /
item.
56

Client recognizes
associated event and

performs action.

52 58 — i
Changes are

communicated to enterprise
application.

60

Enterprse application
accepts / rejects changes

and updates client.

Patent Application Publication Jan. 25, 2007 Sheet 5 0f 5

Open managed document.
66

Clrent recognizes
associated event and plays

web form
68

User fills in web form and
submits.

70

l
Changes are

communicated to enterprise
appllcatlon.

72

Enterprse appllcation
accepts / rejects changes

and updates client.
74

Fig. 5

US 2007/0022155 A1

US 2007/0022155 A1

METHOD AND SYSTEM FOR INTEGRATING
ENTERPRISE SOFTWARE APPLICATIONS WITH

DESKTOP SOFTWARE APPLICATIONS

RELATED APPLICATIONS

[0001] This application is related to and hereby claims the
priority bene?t of co-pending US. Provisional Application
No. 60/405,434, entitled “Method and System for Integrat
ing Enterprise Software Applications With Desktop Software
Applications”, ?led Aug. 22, 2002 by the present inventors.

FIELD OF THE INVENTION

[0002] The present invention relates to a scheme for
integrating enterprise softWare applications With traditional
single-user (i.e., desktop) softWare applications, such as the
Microsoft OfficeTM suite of softWare applications.

BACKGROUND

[0003] Desktop softWare applications are designed prima
rily for local, single-user interaction. Such applications
include many popular softWare titles designed for personal
computers. Among these applications are the Microsoft
Of?ce suite of products that includes Microsoft WordTM (a
Word processing application), OutlookTM (a personal calen
dar and e-mail tool), ExcelTM (a spreadsheet application) and
others. Because these desktop applications are resident on a
user’s personal computer, they (and the documents, spread
sheets and other objects associated therewith) are available
even When the user is not connected to a computer netWork.
That is, these applications are available When the user is
“off-line”.

[0004] Enterprise applications, on the other hand, typi
cally reside on one or more servers accessible via a computer

netWork and make use of large, often shared, databases.
Examples of enterprise applications include softWare appli
cations for customer resource management; payroll,
accounting and human resource functions; and other busi
ness processes. In general, these applications are designed
for multi-user use and include features and facilities that
alloW for common vieWs of data across an entire business
enterprise. In some cases, access to the enterprise applica
tion can occur via a private communication channel set up
across a public netWork or netWork of netWorks (e.g., the
Internet). Nevertheless, these enterprise applications have
user interfaces that are limited either to specialiZed client
programs (“fat clients”), or to online Internet broWser dis
plays (“thin clients”). The enterprise application may also
send noti?cation e-mails With links that can be folloWed
back to the server. As such, the enterprise application is
simply not available When the user is not connected to a
netWork.

[0005] More and more, softWare application users have to
alternate betWeen using enterprise applications and desktop
applications to accomplish Workday tasks. Indeed, in the
modern business environment users spend much of their
time making use of rich desktop applications, managing
multiple information sources such as mail, calendars, tasks,
Word processing documents, spreadsheets, and so on. HoW
ever, the enterprise applications that these users also must
access are not linked to this desktop. Consequently, docu
ments and spreadsheets created and/or manipulated by the
user in the desktop environment are disconnected from

Jan. 25, 2007

application server(s) hosting the enterprise application(s)
and, hence, are inaccessible to others. Further, time sensitive
matters may not be present on a user’ s calendar, action items
assigned by others may not appear on the user’ s task list, and
there is no connection betWeen the calendar items and/or
tasks and the actual documents requiring attention.

[0006] In short, because enterprise applications are not
integrated With the desktop environment, users cannot Work
productively of?ine. Even simple actions, such as updating
status or looking up a critical value, require live connection
to servers. Moreover, When utiliZing the enterprise applica
tions, users cannot leverage the rich features of their various
(and familiar) desktop tools, such as spreadsheets for data
entry, manipulation and presentation, or their personal cal
endar for scheduling.

[0007] Others have attempted to address some of these
issues by providing for netWork-based functionality Within
documents and spreadsheets that can be opened using desk
top applications. For example, US. Patent Application
2002/0065849, published May 30, 2002, (hereinafter “the
’849 application”) describes a scheme by Which desktop
applications may be augmented so that documents created
thereby can include content extracted from a netWork-based
resource. According to this patent application, as changes to
the content occur at the netWork-based resource, these
changes are re?ected in the desktop document in Which the
content link is provided. This scheme appears to have been
commercialized to some extent in the so-called “Juice
Platform” available from Juice SoftWare, Inc. of NeW York,
NY. (see, e.g., Alan C. Warren, “The Juice Platformi
Architecture and Applications”, Juice SoftWare, Inc., Octo
ber 2001).

[0008] The example cited in the ’849 application involves
the inclusion of up-to-date stock price quotations Within a
document or spreadsheet. Using the Juice technology, one
can construct a document having a ?eld that is linked to a
server con?gured to provide up-to-date stock quotes. In this
Way, as the stock price information is updated at the server
these updates are re?ected in the document, provided the
desktop environment in Which the document is open is
communicatively coupled to the server.

[0009] This type of integration is useful Where the goal is
to synchroniZe information on a server With information in
a spreadsheet in real time. HoWever, a different approach is
required if one Wishes to project a complete range of
server-based information and interactions to the desktop,
and in a Way Where a Wide range of interactions are possible
When the user is not online. In other Words, something more
than just synchronization is needed if one Wishes to apply
server-de?ned behaviors associated to doWnloaded or syn
chroniZed objects on the desktop.

SUMMARY OF THE INVENTION

[0010] In one embodiment, the present invention provides
a method and system for projecting one or more server
based constructs into one or more corresponding desktop
objects. Thereafter one or more types of interactions With the
desktop objects are processed according to behaviors
de?ned during the projection. These interactions With the
desktop objects are subsequently communicated to the
server. The interactions may include manipulation of the one
or more objects With the one or more desktop applications at

US 2007/0022155 A1

a time When the desktop applications are not communica
tively coupled to an enterprise application hosted by the
server. The interactions With the desktop objects may be
communicated to the enterprise application via extensible
markup language @(ML) messages. The XML messages
may comprise e-mail attachments, and may be sent via a
secure communication channel.

[0011] The behaviors de?ned during the projection are
processed according to action handlers cached at a desktop
client. The desktop client is itself integrated With one or
more of the desktop applications. The action handlers may
be con?gured to save, modify or create an associated object;
launch a desktop application; send a message to the enter
prise application; provide a link back to the enterprise
application; and/or present a locally cached Web form at the
desktop. Such locally cached Web forms provide a user With
options for interacting With the desktop objects according to
the behaviors de?ned by the enterprise application. Further,
in some cases the action handlers may manipulate the
desktop objects to alter the desktop environment Without
communicating such manipulation to the enterprise appli
cation.

[0012] Single ones of the constructs of the enterprise
application may be projected to multiple ones of the corre
sponding objects associated With the desktop applications.
In other cases, a single enterprise application construct is
projected to a corresponding object associated With multiple
ones of the desktop applications. In still other cases, multiple
enterprise application constructs are projected to a single
corresponding object associated With the desktop applica
tions.

[0013] Another embodiment of the present invention pro
vides a system having a client application con?gured to (i)
recogniZe events corresponding to manipulations of objects
Within one or more desktop applications Within a desktop
environment, and (ii) invoke one or more action handlers to
respond to the events according to behaviors de?ned by an
enterprise application; and a Web service instantiated at a
server remote from the desktop environment and including
a message processor that enables receipt and transfer of
messages betWeen the client application and the enterprise
application resident at the server. The Web service may be
con?gured to provide one or more Web forms to the client
application, Which Web forms can be subsequently played by
the action handlers Within the desktop environment in
response to the recogniZed events. The Web forms generally
comprise server behavior-de?ned options for managing the
objects according to the events.

[0014] One or more of the messages betWeen the client
application and the enterprise application may comprise
updates re?ecting changes to the objects made Within the
desktop environment. The enterprise application is con?g
ured to accept or reject the changes to the objects and to
communicate such acceptance or rejection to the client
application. Communication of this acceptance or rejection
may include a complete or partial description of objects
related or unrelated to a changed object.

[0015] Yet another embodiment of the present invention
involves receiving XML representations of enterprise appli
cation-based objects along With enterprise application-de
?ned behaviors for these objects Within a desktop environ
ment; projecting the XML representations of the objects as

Jan. 25, 2007

one or more desktop application objects Within the desktop
environment; recogniZing events associated With the desk
top application objects occurring Within the desktop envi
ronment; and invoking action handlers representing the
de?ned behaviors for the objects. The action handlers may
perform any or all of the above-described functions. Still
other embodiments of the present invention provide for
converting a representation of an object associated With an
enterprise application resident at a server from a native
representation of the object in the enterprise application to
an XML representation of the object; and projecting the
XML representation of the object along With enterprise
application-de?ned behaviors for the object to a desktop
environment remote from the server. The behaviors are
subsequently instantiated as action handlers Within the desk
top environment, and the action handlers may be invoked
When associated events occur Within the desktop environ
ment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The present invention is illustrated by Way of
example, and not limitation, in the ?gures of the accompa
nying draWings, in Which:

[0017] FIG. 1 illustrates the use of a client plug-in and
corresponding server-based Web service in accordance With
one embodiment of the present invention.

[0018] FIG. 2 illustrates an object manipulation4event
recognitioniaction handler response form of processing for
desktop application objects performed in accordance With an
embodiment of the present invention.

[0019] FIG. 3 illustrates an example of the basic process
How of FIG. 2 in the context of a Microsoft Outlook object
in accordance With an embodiment of the present invention.

[0020] FIG. 4 illustrates an example of the basic process
How of FIG. 2 in the context of a Microsoft Excel object in
accordance With an embodiment of the present invention.

[0021] FIG. 5 illustrates an example of the basic process
How of FIG. 2 in the context of a Microsoft Word object in
accordance With an embodiment of the present invention.

DETAILED DESCRIPTION

[0022] In one embodiment, the present invention provides
a method and system for projecting one or more server
based constructs into one or more corresponding desktop
objects. Thereafter one or more types of interactions With the
desktop objects are processed according to behaviors
de?ned during the projection. These interactions With the
desktop objects are subsequently communicated to the
server. In such an embodiment, the present invention may be
instantiated as computer softWare (i.e., one or more instruc
tions for execution by one or more computer processors)
resident on a computer-readable medium or otherWise,
Which, When executed by the computer processor(s), cause
the processor(s) to perform actions in accordance thereWith.
Utilizing the present invention, one is able to connect the
otherWise disconnected environments of server-based enter
prise applications and desktop applications.

[0023] As Will become evident from the description
beloW, the present invention leverages the best of both the
desktop application environment and the enterprise applica

US 2007/0022155 A1

tion environment. The enterprise server remains the central
point for administration and control, but users interact With
the enterprise application through familiar desktop tools.
Rather than simply presenting a scaled-doWn version of an
enterprise application (e.g., through a customized interface)
in an off-line environment, the present invention alloWs
users to employ the full poWer of the desktop applications
(for example using Excel for data presentation and entry, and
Outlook as a calendar) When manipulating objects such as
calendar items, spreadsheets and documents. Further, com
mon tasks that do not need a live server connection are

available off-line. With the present invention, information
that is normally bottled up in an enterprise application can
be projected and synchronized on to the desktop as native
tasks, folders, calendar events, spreadsheets, etc. The
present invention enhances these native objects to make
them fully actionable, even When the user is off-line, based
on behaviors speci?ed by the enterprise application.

[0024] As used in the context of the present invention, the
terms enterprise application and application server are not
meant to be limited to hardWare and softWare products
currently marketed under such names by their developers.
Instead, What is meant is a platform that hosts a softWare
application that is available to a number of (often, though
not exclusively, concurrent) users and Which includes or
makes use of a common data source. Thus, included in such

terms are softWare applications hosted by computer systems
accessible through a local area netWork, Wide area netWork,
home netWork or even a netWork of netWorks such as the

Internet.

[0025] As illustrated in FIG. 1, one embodiment of the
present softWare has tWo components: a client plug-in 10
and a Web service extension 12 to an existing enterprise
application 14. Client 10 may be regarded as a plug-in that
integrates into desktop applications such as a desktop cal
endaring application 16 (e.g., Microsoft Outlook), a Word
processing application 18 (e.g., Microsoft Word), and/or a
spreadsheet application 20 (e.g., Microsoft Excel) running
on a desktop environment 22 (e.g., Microsoft WindoWs).
The client 10 permits Web-based installation as Well as login
and authentication for user access. Operating in connection
With the client application 10 are various scripts that assist
a user in building Web forms enabling the action handlers
described beloW.

[0026] One of the main bene?ts of Web-based applications
(e.g., enterprise applications available through a broWser
based interface) is that a Web broWser 24 running on the
desktop 22 acts as a generic “player” of presentation, data,
and scripts, managed from and sent by the application server
hosting the enterprise application as Web pages. As the
enterprise application is (re)con?gured and its functionality
evolves, changes on the application server are automatically
re?ected in the client (i.e., the broWser) as it “plays” a neW
set of pages. This is true of Web broWsers and is also true of
many other “players” such as Adobe’s AcrobatTM and Mac
romedia’s FlashTM. The code of the “player” also evolves
(e.g., as neW functionality is provided to the broWser, etc.)
but much less often than the enterprise application. As Will
be seen from the description beloW, client 10 is such a
“player”, alloWing various application objects and action
handlers to be “played” on the desktop based on instructions

Jan. 25, 2007

from the enterprise application 14 and in response to events
that are recognized When objects are manipulated in the
desktop environment 22.

[0027] In order to provide such features, the client 10
performs the folloWing primary functions:

[0028] (i) Communication: Client 10 manages bi-direc
tional synchronization of objects, policy, and behaviors
betWeen the enterprise application 14 and the desktop
22. This information can be represented in various
forms including an XML description of the objects and
the policy, and behaviors speci?ed as dynamic hyper
text markup language (DHTML)-based interfaces (e. g.,
Web forms that may be locally cached at the desktop)
or in other desktop scripting languages (e.g. JavaScript
or VBScript) that can be processed on the desktop 22.

[0029] (ii) Handling of Desktop Objects: Client 10
interacts With and manipulates desktop applications
and the desktop operating system to create, modify, and
delete local objects (e.g., tasks, calendar events, menu
buttons, folders, document properties, spreadsheet cell
values and properties, and named regions of informa
tion). For example, the enterprise application 14 may
request that the client 10 create a neW menu item and
several neW calendar events, modify the contents of a
folder, and make available neW data to be loaded into
a spreadsheet. Each of these objects may also include
descriptions of the desired behavior When the user
manipulates these objects on the desktop 22.

[0030] (iii) Monitoring Events and Running Action
Handlers: Client 10 monitors and reacts to any user
interactions With the local desktop objects (e.g.,
rescheduling of an appointment, checking off a task as
it is completed, opening, closing or saving a document,
editing a spreadsheet cell, etc.) by running one or more
corresponding action handler(s) (e.g., to launch another
desktop application, save a document, send a message,
launch a broWser back to the server, create or edit
desktop objects, etc). Where so required by the action
handler(s), client 10 provides a controlled and secure
environment to interact locally With the user using a
conventional Web broWser (or other desktop script
processing engine) over presentation rules and scripts
provided by the enterprise application 14. This latter
response is referred to herein as playing or presenting
locally cached Web forms.

[0031] Thus, client 10 alloWs for interacting With desktop
objects according to behaviors de?ned by the enterprise
application 14. These behaviors are represented by action
handlers, Which are cached locally at the client 10 so they
can be utilized When the user is off-line. The action handlers
can provide for many different operations, for example, the
playing of locally cached Web forms to be completed by the
user. The forms can be “played” by client 10 in a local Web
broWser When certain events (e. g., manipulations of desktop
objects) are recognized as having occurred. The client 10
extends the broWser hosted script environment available to
the form designer to provide access to the underlying
desktop objects and any extended data attributes projected
from the enterprise application, to alloW manipulations of
those objects, to send secure messages back to the enterprise
application 14, and to access any other desktop capabilities
alloWed Within the existing security models.

US 2007/0022155 A1

[0032] Server-Side Web Service 12 may be regarded as an
extension to an enterprise application and includes a mes
sage processor that enables the receipt and transfer of
(optionally) encrypted messages (using XML, HTTP and/or
e-mail messages) betWeen the client 10 and the enterprise
application 14. In other Words, the server-side Web service
12 facilitates communication With the client 10. Operating in
connection With the server-side Web service 12 are various
server-side scripts that may be regarded as tools that assist
users in building Web forms enabling the action handlers
mentioned above.

[0033] The server-side Web service 12 may be imple
mented as an additional set of pages in the native technology
and application programming interfaces (APIs) of the appli
cation server (e.g., JSP, Servlets, NET, etc.) that hosts the
enterprise application 14. The Web service 12 manages:

[0034] (i) Security: Web service 12 handles authentica
tion of the client 10 and encryption (if used) of each
message passed betWeen the application server and the
client 10 using the underlying security model of the
enterprise application 14.

[0035] (ii) Communication: Messages may be passed
using http/mail protocols, react and respond (“pull”)
protocols, or through the initiation of neW messages
(“push” technology). For example, messages from the
server to the client can be pushed by e-mail in a
procedure in Which the application server hosting the
enterprise application 14 sends information to the client
10 as e-mail messages With an (optionally) encrypted
XML attachment. When the e-mail is received at the
client 10, the client recognizes and processes the mes
sage. Altematively, or in addition, server-to-client mes
sages may be pulled by the client With a Web request.
Messages from the client 10 to the enterprise applica
tion 14 can be sent directly With a Web post, much like
interacting With a regular Web page. This is appropriate
When the user is on-line and has access to the applica
tion server hosting the enterprise application 14. Alter
natively, or in addition, such messages can be sent as an
e-mail message With an (optionally) encrypted XML
attachment along With any supporting documents or
spreadsheets. This e-mail Will be bu?‘ered in the desk
top’s outbox like any other outgoing message until the
user synchronizes his/her e-mail. When the e-mail
message eventually arrives at the application server, it
is processed and any response is sent back to the client
10 using the mechanisms described above. Push and
pull events may occur in response to the expiration of
a timer or similar trigger.

[0036] (iii) Transformation: Web services 12 converts
server-side constructs (e.g., action items, projects, etc.)
Written in the native object model of the enterprise
application 14 into the client’s representation for desk
top objects (e.g., tasks, folders, etc.). This representa
tion is extensible based on the needs of the application.

[0037] (iv) O?line caching: Web service 12 bundles any
additional information (e.g., documents, server-gener
ated forms, Web page graphics, policy descriptions,
etc.) into the server-client messages so the client 10 can
interact With the enterprise application data When olf
line.

[0038] (v) Input processing and validation: Web service
12 receives any client-initiated inputs and passes them

Jan. 25, 2007

back to the enterprise application 14. These inputs are
transformed from desktop constructs back to their
server-side equivalents. The enterprise application 14
can accept, reject, or modify these requests, (if for
example the information that Was cached on the desk
top no longer matches the latest sever managed values)
and the neW state of the objects (as determined by the
enterprise application 14) Will be resynchronized to the
client 10.

[0039] In operation then, the client 10 and Web service 12
cooperate to pass information regarding objects (and
changes thereto) betWeen the desktop environment 22 and
the enterprise application 14. Based on information from the
enterprise application 14, the client 10 creates native objects
in the various desktop applications including tasks, calendar
items, calendars, contacts, folders, documents, and/or
spreadsheets. With these full native desktop objects, all
desktop application behavior is available (e.g., the objects
can be synchronized With a personal digital assistant (PDA),
popup reminders may be displayed, and the ability to
forWard the objects to other users is retained). Any appli
cation speci?c object extensions may be encoded as an
additional XML attachment hidden in each object. Further,
a single server (i.e., enterprise application) construct can be
managed as multiple synchronized desktop objects (e.g., a
single document revieW action item can be represented by a
task, one or more calendar items on multiple different
calendars, and in the document itself) and vice-versa. In
addition, neW menu items may be created per application,
per document, and/or per object, Which alloWs the user to
initiate neW actions.

[0040] In some cases, the enterprise application 14 may
update the state of the desktop environment 22 according to
changes that occur to the server-side objects. That is,
changes to objects that are not yet re?ected in the state of
those objects at the desktop 22 may be communicated from
the enterprise application 14 to the client 10 so that the
updated state is available. In other cases, Where the changes
have occurred at the desktop 22, the “before and after” states
of the objects (i.e., the object state as re?ected in the most
recent synchronization as Well as that re?ected by the most
recent actions at the desktop 22) are communicated to the
enterprise application 14. The enterprise application 14 may
then accept, partially accept or reject these changes and
communicate the updated state of the objects to the client 10.

[0041] Thus, the present invention involves more than just
synchronization of objects (as might be the case With
desktop and handheld applications, for example) and more
than just linking of netWork-based content into desktop
documents and spreadsheets for revieW. Instead, the present
invention provides a form of “smart synchronization” in
Which objects and their associated server-de?ned behaviors
are communicated to the desktop environment 22 and a form
of active task handling, alloWing the user to manipulate the
objects once they have been synchronized, in Which local
interactions With the objects are processed in accordance
With the server-de?ned behaviors.

[0042] The desktop environment 22 also includes a con
ventional Web broWser 24, Which in some instances may be
used as a separate interface for enterprise application 14.
Indeed, in the absence of client 10, the Web broWser 24 may
be used as the user’s primary interface for enterprise appli

US 2007/0022155 A1

cation 14, as is customary in the art. However, in the context
of the present invention, Web broWser 24 has a special
function in that it is used locally (i.e., at the desktop 22) as
a player for the Web forms discussed above. These Web
forms are one example of server-managed, client-resident
objects, policy, forms, and templates to facilitate communi
cation betWeen the enterprise application 14 and the desktop
applications (e.g., calendaring application 16, Word process
ing application 18 and/or spreadsheet application 20) that
are part of the present invention.

[0043] In addition to playing Web forms in a browser,
other server-de?ned behaviors can be played by the client
10. For example, in some applications these behaviors may
involve playing ?ash or other multimedia presentations,
launching other desktop applications, checking for security
access authorizations, installing and/or running scripts, or a
host of other behaviors (including initiating communication
With another client at another desktop). The combination of
smart synchronization and active task handling thus pro
vides for the projection of a complete range of server-based
information and interactions to the desktop, and in a Way
Where a Wide range of interactions are possible When the
user is not online

[0044] FIG. 2 illustrates the basic processes performed by
the client 10 and the server-side Web service 12. This basic
object-event-action How 26 is used regardless of the type of
object under consideration. Thus, these procedures can
apply to objects such as tasks, spreadsheets and documents
as Well as attributes of these objects such as the font used
Within a given spreadsheet cell. It is one of the features of
the present invention that any desktop object (and here the
term object is meant to include an attribute) that can be
represented in an XML format can be recognized and
managed by the client 10 and server-side Web service 12.
Managed objects, that is those for Which associated action
handlers are de?ned, (at any level) may be identi?ed by
appropriate indicators in the object’s properties.

[0045] The basic How 26 assumes that some form of
synchronization betWeen the enterprise application 12 and
the desktop environment 22 has already occurred. This
process is discussed further beloW. For noW it is suf?cient to
recognize that during the synchronization procedure, not
only are the objects themselves communicated from the
enterprise application 14 to the desktop 22, so too are the
server-de?ned behaviors (represented by the action han
dlers) associated With those objects. The objects and action
handlers (along With any corresponding Web forms that are
played by the action handlers) are cached locally at the client
10 so that true off-line interaction With the objects can occur.

[0046] The client 10 represents the information required
for off-line use in several Ways. Objects such as calendar
items and tasks may be stored as native desktop application
(e. g., Word, Excel, Outlook, etc.) objects, With the additional
extensions utilized by the client 10 and/or Web service 12
stored as a hidden object attribute. Documents associated
With an object may be stored as attachments on that object.
Spreadsheets may store client-speci?c information in a
specially named sheet in a Workbook. Word processor
documents may maintain their client-speci?c information in
hidden properties of the document. The locally cached Web
forms and their associated HTML assets (e.g., images, style
sheets, etc.) are preferably managed by the client 10 in a
reserved area of the local ?le system.

Jan. 25, 2007

[0047] Once the synchronization has occurred, manipulat
ing an object at the desktop (see step 28) Will cause an
associated event to be recognized (see step 30). The manipu
lation may be any recognizable desktop interaction. For
example, closing a document or spreadsheet may be such a
manipulation. So too may be changing the content of a
spreadsheet cell or even changing the font used in a docu
ment or spreadsheet. Indeed, any action that a user can
perform using a desktop application can be a de?ned event
that is processed according to the procedure illustrated in
FIG. 2.

[0048] When the client 10 recognizes such an event (step
30), the client 10 invokes an action handler associated With
that event (see step 32). The action handlers are local
instantiations of the server-de?ned behaviors for the objects,
according to the events being recognized. That is, the action
handlers specify the permitted actions for an object accord
ing to the type of event being recognized. Instead of alloW
ing the desktop application to complete its normal action
associated With the event (e.g., such as closing a document
When a user selects the “close” button in a Word processing
application), the client 10 captures the action and plays the
associated server-de?ned action handler for that event. Such
an action handler may specify options in addition to (or in
place of) those normally performed by a desktop application
and may include displaying one or more Web pages (forms)
in Web broWser 24 alloWing for user input/interaction.

[0049] This functionality is made possible through the
client 10, Which exploits existing APIs provided by desktop
application developers such as Microsoft Corporation.
These developers expose the desktop applications through
these APIs alloWing third-party softWare developers (such as
the assignee of the present invention) to integrate other
softWare products With the desktop applications. In the
present case, the client 10 is integrated into the event How
Within the desktop applications so that customary operations
performed by the desktop application are interrupted, dis
placed or extended by server-de?ned actions instantiated in
the form of action handlers that are communicated to the
client 10 during a synchronization process. The rules regard
ing these behaviors are those that Would otherWise be
applied by the enterprise application 14, thus the desktop
applications are alloWed to fully exploit the behavior of the
enterprise application While at the same time providing a
familiar (and poWerful) operating environment for the user.

[0050] The client 10 can implement its visual interfaces
With server-de?ned Web forms, that are cached and pre
sented locally using extensions to the desktop’ s Web broWser
24. In other embodiments, the client 10 may also play Web
forms resident at the application server. Although this does
not alloW for off-line use, the integration With the desktop
environment is preserved.

[0051] Whether cached locally at the desktop or played
from the application server, the Web forms can be de?ned
and generated on the application server With the enterprise
application’s native Web page generation tools, and Will
have the complete look, feel and branding of the enterprise
application 14. Since some or all of these forms may be
needed When the user is offline, this invention provides
extensions to the standard broWsers to enable binding the
presentation to the data attributes of the object being
manipulated locally on the desktop, and to implement busi

US 2007/0022155 A1

ness logic or extended interactions across Zero, one, or more

interaction pages, and Zero, one, or more messages back to
the server. For example, these Web forms can be used to
present information (e.g., a document’s history, a checklist
for completing a spreadsheet, etc.), gather information (e.g.,
status updates on a project, comments in a revieW, etc.), or
provide a user With additional options (e.g., save a docu
ment, ?nish a revieW, escalate an issue, etc.) Whenever the
user is interacting With a desktop menu, object, or document.
As indicated above, some implementations Will use only a
feW off-line enabled forms, With all other desktop interac
tions With objects linking back to Web pages on the appli
cation server. In such cases, the client 10 can initiate a
secure, automatic login procedure to the enterprise applica
tion 14 When the user is on-line, and display a graceful
“unavailable” message When the user is off-line. In other
cases, application developers may choose to build a sub
stantial amount of logic into these locally cached Web forms
so that the user rarely, if ever, needs to connect back to the
application server hosting enterprise application 14.

[0052] In addition to playing the locally cached Web
forms, action handlers may save attached documents (e.g.,
attached to a Microsoft Outlook Task or Calendar object),
launch another desktop application on attached documents,
send a secure message either by e-mail or over the Internet,
folloW a Web link back to the enterprise application 14 When
available, and/or perform other server-de?ned actions. In
Microsoft Excel, for example, an action handler that enables
data transfer in either direction betWeen a spreadsheet and
the enterprise application 14 may be included. In Microsoft
Outlook, for example, action handlers may further provide
the ability to synchroniZe task and calendar objects With the
enterprise application 14 and to initiate other action handlers
based on open, check-off, reschedule, and delete events on
those objects. Con?gurable menus in Outlook and Excel
may be linked to such action handlers.

[0053] As shoWn in the illustration, tWo common results
of processing an action handler are the creation of a neW
object (see step 34) and/or communication With the enter
prise application 14 (see step 36). Such communication may
occur in a variety of Ways. For example, if the user is
on-line, the communication may be immediate by Way of an
XML message transported via HTTP over an existing net
Work connection. Alternatively though, Whether the user is
on-line or off-line, the communication may take place using
an XML attachment to an e-mail message. This e-mail
message may be communicated betWeen the desktop 22 and
the enterprise application 14 using the user’s conventional
e-mail handling tools (e.g., Which may be part of a calen
daring application such as Microsoft Outlook).

[0054] The XML message informs the enterprise applica
tion 14 of the object that Was manipulated, the attributes of
that object that Were presented to the user, and any changes
to that object based on What Was done by the user. In
response, the enterprise application 14 may return an
updated vieW of that (or any other) object, including the
creation of neW objects, or some other message (including
an instruction not to so modify the object if the modi?cation
con?icts With some other change to the object that the
enterprise application 14 is aWare of). This return commu
nication (Which can be regarded as a form of synchroniZa
tion) may also occur via e-mail or other means, for example
depending upon Whether the user is on-line or off-line. In the

Jan. 25, 2007

situations Where the action handler creates one or more neW

objects (see step 34), these objects may undergo manipula
tion, and the above process repeats.

[0055] By creating local objects (e.g., tasks, spreadsheets,
etc.) With their corresponding events and actions, the present
invention alloWs an enterprise application 14 to prompt a
user to action. By creating neW menu items and their action
handlers, users are also alloWed to proactively initiate neW
objects or events. For example, a neW menu choice in a Word
processing application 18 may alloW the user to “capture” an
unmanaged document and submit it to an enterprise appli
cation 14. From a calendar/task handler application 16, the
user can initiate neW activities or tasks such as a form-based

request for assistance or a spreadsheet-based expense report.
From a spreadsheet application 20, a spreadsheet can be
enhanced With neW menu items to present a checklist of
sign-off steps, to request updated information from a server,
or to submit data from the spreadsheet to the enterprise
application 14 With an XML message. Each of these menus
is con?gured With policy de?ned by the enterprise applica
tion 14, and can be customiZed to every desktop application
and to every object type. The present invention supports the
same action handlers for menu items as it does for all other
objectsifor example launching a desktop application, fol
loWing a link to the enterprise application, sending a mes
sage, or presenting a locally cached form, Which, in turn, can
provide a vehicle for a user to perform any combination of
the listed actions.

[0056] Optional security and integrity infrastructure
enhancements provided by the present invention extend
industry-standard mechanisms to protect data, communica
tions and the script execution environment for cached forms
and behaviors. Initial key exchanges may occur over HTTPS
(secure hypertext transfer protocol). Key generation and
storage is managed by the enterprise application 14. At the
client 10, this key, Which is never shoWn to the user, may be
stored in the encrypted Outlook/MAPI store or in another
secure manner. Access to the key Would then require the user
to authenticate to Outlook or the appropriate store, but
Would not require the user to remember any additional
passWords. The user’s Web access credentials need never be
communicated to the client 10. Asynchronous SMTP
(simple message transport protocol) communication through
multipart MIME (multipurpose intemet mail extensions)
messages can encapsulate attachments encrypted With the
user’s key and other optionally encrypted assets, documents
and DHTML forms. Additionally, messages can be both
digitally signed and encrypted to ensure that each side of a
transaction (client and server) knoWs What entity sent a
particular message, and that the received message is exactly
What the sender transmitted. Of course other forms of
security infrastructure may be used.

[0057] During synchronous exchanges, HTTPS can be
used to communicate betWeen the client 10 and enterprise
application 14 to ensure delivery to only the intended end
point. XML and other sensitive data components may also
be encrypted With the user’s key. Assets that are encrypted
during transfer can remain encrypted on the client 10 to
maintain their integrity after distribution. The client 10
processes any server speci?ed behaviors in a script execu
tion environment that enforces the default desktop security
policies, protecting the user from unauthoriZed softWare and
ensuring no greater access to the user’s personal computer

US 2007/0022155 A1

than is available to any other online application. The func
tionality of the present invention does not depend on local
macros or on support for ActiveX scripting Which are the
source of security concerns. In many enterprises, these
desktop capabilities are explicitly disabled because of the
risk of viruses or other malicious code.

[0058] An additional security enhancement provided by
the present invention involves a neW client-server security
model. Consider that some desktop applications permit users
to protect an object (e.g., a document, spreadsheet, etc.) by
specifying a passWord that is necessary to open and/or
modify the object. Customarily, these passWords are
assigned by human operators, but the present invention
Would alloW for the passWord to be assigned by an enterprise
application directly. That is, no human operator may ever
knoW the object’s associated passWord.

[0059] When the object is doWnloaded to a desktop envi
ronment, it is accompanied by an action handler, or a
prede?ned policy of the client that speci?es that the appli
cation seeking to open a document must contact the enter
prise application for the correct passWord in order to do so.
This may involve transmitting a user identi?cation string or
a previously de?ned key as described above to the enterprise
application. If this identi?cation string is determined to
correspond to an authorized user, then the object passWord
is returned by the enterprise application and the action
handler completes the opening of the document. Otherwise
the user is not permitted to access the document. If the user
is off-line and attempts to open the document, such access
may be denied (and a message displayed to inform the user
that only on-line access is permitted) or the document may
be unlocked by the client in some less then fully functional
manner (e.g., con?dential portions may be redacted or no
modi?cation permitted) based on a cached passWord that
Was previously acquired from the enterprise application.

[0060] In this security model, document control is man
aged according to server-de?ned behaviors (e.g., the list of
authorized users), but document interaction still occurs
using the familiar desktop tools (e.g., a Word processing
application). In addition, immediate security upgrades and/
or modi?cations can be accomplished simply by changing
server-managed/server-based lists, Without having to
inspect/access individual user desktops.

[0061] An example of the operation of the present inven
tion involving the Microsoft Outlook application after instal
lation of the client plug-in is illustrated in FIG. 3. This
process 38 is but one example of hoW the present invention
can extend an enterprise application to a desktop environ
ment and is presented so that a reader might gain a better
understanding of the operation of the invention. It should not
be read as limiting the scope of the invention in any Way.

[0062] The client receives an XML message from the
enterprise application that describes any desktop objects,
policy, attached documents, and DHTML forms (step 40).
Each object de?nition is based on the desktop application’s
object de?nition, and can be arbitrarily extended With addi
tional attributes. At step 42, the client parses the message
and creates/updates/deletes the appropriate desktop objects
(e.g., tasks, events, folders, contacts, menus, and caches).

[0063] When the user manipulates any of these objects
(step 44), the client recognizes the action and initiates the

Jan. 25, 2007

action handler associated With that event (step 46). Each
object/event can have a different handler (e.g., speci?c
handlers for reschedule vs. open, multiple tasks each With a
different check-off handler, etc.). If no action handler is
speci?ed, the behavior defaults to the customary Outlook
action(s) as if the object Was not a managed object.

[0064] Assuming an action handler is invoked, that action
handler can launch other desktop applications, send a mes
sage, or present a locally cached DHTML form via the user’ s
Web broWser. The DHTML forms are created and con?gured
at the application server much like any other enterprise
application Web page, but are designed to execute locally by
accessing the client extensions to broWser hosted script
environment/document object model (DOM) including:

[0065] (i) Access to the underlying object, enterprise
application data pertaining to the object and the user
initiated event for contextual information about the
current interaction.

[0066] (ii) Ability to modify the object to capture user
input, With automatic support to maintain both the
“before” and “after” version for the enterprise applica
tion.

[0067] (iii) Ability to undo/commit actions, guide the
communication, and to launch other applications.

[0068] The changes requested by the user are sent to the
enterprise application (step 48), either directly or in an
e-mail message. The enterprise application has the ?nal
control over What changes are actually made to the “true”
application objects and the updated state of those objects
Will be resynchronized to the client as the cycle begins again
(step 50).
[0069] The folloWing are a summary of features of one
embodiment of the present invention in the Microsoft Out
look context:

[0070] 1. Task and calendar synchronization and action
handlers: The present invention provides for dynamic, bi
directional synchronization of tasks and calendar items
betWeen the desktop calendaring application (Outlook) 16
and the enterprise application 14. This is possible because
managed objects can de?ne all native Microsoft Outlook
object attributes and arbitrary extended properties. Thus,
Where appropriate, a single server object can be represented
by both task and calendar (and other) objects. Task objects
can have action handlers for open, check, and delete events;
While calendar objects can have action handlers for open,
reschedule, and delete events.

[0071] 2. Outlook Today as Dashboard: As is the case
When being used simply as a personal desktop application,
the native “Outlook Today” screen can be used to organize
and complete tasks. Thus, the familiar user desktop envi
ronment is maintained While at the same time the underlying
enterprise application behavior is exposed through the use of
action handlers.

[0072] 3. Con?gurable Menus: Menu in main Outlook
screen minimally supports: about, synchronize, neW, etc.;
Menu in Task and Calendar vieWer minimally supports:
about, capture; Menu can appear at top level, or as additional
buttons; Menus can be locally con?gured With standard
“customize” option in Outlook; “New” menu can be used to

US 2007/0022155 A1

launch applications based on cached templates (e.g., a neW
expense report based on a cached spreadsheet template).

[0073] 4. Direct manipulation of local objects can trigger
action handlers: Thus, calendar items can be rescheduled
simply by moving them, and managed tasks and calendar
items can be deleted in the customary fashion.

[0074] 5. Capturing unmanaged objects: By selecting a
menu item, unmanaged tasks and calendar items can be
captured (e.g., by completing a con?guration form that is
played by an action handler in response to recogniZing a
“capture” event). When the request is processed by the
enterprise application, the neW object Will be managed like
all other managed objects.

[0075] 6. Contacts and action handlers: The server can
insert/update neW contacts into the user’s contacts folder;
contacts can have action handlers for edit and delete;
unmanaged contacts can be captured.

[0076] 7. Hierarchical, Typed Folders: The enterprise
application can create additional nested folders in a user’s
Outlook hierarchy. These folders can be of any supported
type (Calendar, Tasks, Contacts, Messages, etc.). Objects
can be synchroniZed into speci?c folders and the folder
vieWs can be customiZed (e.g., to only shoW tasks for a
speci?c project, etc.).
[0077] 8. Multiple Calendars: Even though Outlook
requires that each calendar maintain independent events, the
present invention can synchronize a single logical event
across multiple calendars. This is especially useful When a
user’s personal calendar is synchroniZed With the user’s
personal events, While supporting an additional calendar per
project that contains a rollup of all events for all users Within
a single project.

[0078] 9. Folder Home Page: A folder’s default vieW can
be replaced With a locally cached Web page. The page can be
straight HTML generated by the enterprise application and
transmitted and cached by the client, or can additionally
reference the client DOM extensions and additional script
(e.g., JavaScript and/or Visual Basic) calls to dynamically
add content.

[0079] 10. PDA links: Managed objects can be synchro
niZed to a PDA in the same Way as any other unmanaged
objects.

[0080] An example of the operation of the present inven
tion involving the Microsoft Excel application is illustrated
in FIG. 4. This process 52 is but one example of hoW the
present invention can extend an enterprise application to a
desktop environment and is presented so that a reader might
gain a better understanding of the operation of the invention.
It should not be read as limiting the scope of the invention
in any Way.

[0081] After installing the client and establishing creden
tials With the enterprise application, a managed spreadsheet
can be opened at the desktop (step 54). Any spreadsheet can
be enabled (that is modi?ed to become a managed spread
sheet) by adding a neW sheet to a Workbook named With a
designated client keyWord, or through other means. This
sheet can be hidden and should contain the XML commands
that con?gure the client, along With any supporting infor
mation. The client can be con?gured to create a neW menu

items, invoke locally cached DHTML forms, manage secure

Jan. 25, 2007

communications to doWnload data into Excel, and to upload
neW data back to the enterprise application.

[0082] When a managed spreadsheet Workbook is opened,
the client can add an appropriate indicator to the title bar,
and create any speci?ed menus. When the user selects one
of these menu items (step 56), the client initiates the
corresponding action handler (step 58). For example, a
spreadsheet may include a “submit” action that Will con
struct an XML message from key data in the spreadsheet,
and send that message (optionally along With a copy of the
spreadsheet) to the enterprise application server (step 60).
The enterprise application may then resynchroniZe With the
client to re?ect these changes (if accepted) and/or other
changes that have occurred since the last synchroniZation
event. Additionally, data can be doWnloaded from the enter
prise application directly into the managed spreadsheet.

[0083] A spreadsheet can also be con?gured With event/
action behaviors tied to particular cells. For example, When
a cell is modi?ed, a form that requests the user describe the
reasons for this edit can be automatically presented, With the
reasons for the change stored in a hidden area of the
spreadsheet and appended to any data “submit” message
sent back to the enterprise application. This may help in
keeping a revision history for the spreadsheet.

[0084] The folloWing are a summary of features of one
embodiment of the present invention in the Microsoft Excel
context:

[0085] l. “Coded” Sheet: The present invention manages
any Workbook With a coded Worksheet. Cell Al (or another
cell) on the coded Worksheet should contain an XML
command to con?gure the behavior of the client for that
spreadsheet. The XML command can contain directives to
create neW menu items, to associate action handlers With
those menu items, and to guide data import and export
from/to the enterprise application. The coded Worksheet can
also be used to reference data throughout out the Workbook
and to marshal the information into XML messages to the
enterprise application.
[0086] 2. Security: No macros are necessary to leverage
the functionality of the present invention, and users can
continue to operate With the most common macro-restricting
security levels. Access to the client’s credentials need not be
attached to the spreadsheet but instead may be derived from
the user’s mail store. In that Way, if the user e-mails a
spreadsheet, the recipient Will have no credential informa
tion about the sender. When data is imported or exported
betWeen the spreadsheet and the enterprise application, the
client manages secure communication With single sign-on.

[0087] 3. Facilitated DoWnload Into Excel: Excel has a
built-in ability to fetch external data (e.g., through execution
of the menu command Data:lmport:WebQuery). The present
invention signi?cantly enhances this capability by (i) de?n
ing neW menu items to initiate and con?gure the doWnload;
(ii) presenting cached Web forms Where the user can re?ne
the doWnload request; (iii) automatically logging in to the
application server to actually fetch the data; and (iv) sup
porting Web-based forms to provide feedback or exception
information during/folloWing the doWnload.

[0088] 4. Excel as Input Tool: Excel can be a poWerful tool
to gather and prepare input to an enterprise application. The
present invention enables this capability by: (i) de?ning neW

US 2007/0022155 A1

menu items to initiate and con?gure the submission; (ii)
locally extracting and marshalling data into an XML mes
sage; (iii) presenting cached Web forms for the user to re?ne
or complete the request; (iv) automatically logging in to the
server to actually submit the data; (V) optionally sending the
message as an e-mail With an XML attachment; and (vi)
optionally including the entire spreadsheet as part of the
submission.

[0089] 5. Dynamic Button Bar: The present invention can
facilitate the creation of a dynamic button bar in a spread
sheet. Each button can be attached to any action handler.
These buttons can add a process-oriented user interface to a
data oriented spreadsheet. Exemplary buttons can include:

[0090] (i) an ability to import or export data using
enhancements provided by the present invention;

[0091] (ii) a sign-off list for What needs to be done on
the spreadsheet;

[0092] (iii) an ability to escalate issues to other users;
and

[0093] (iv) hooks to online help or further information.

[0094] 6. Standalone Excel-based Session: With the
present invention, a user does not need to login to an
application server but can conduct a complete session
entirely through Excel. In addition, unmanaged spreadsheets
can be captured to become managed spreadsheets.

[0095] An example of the operation of the present inven
tion involving the Microsoft Word application after instal
lation of the client is illustrated in FIG. 5. This process 52
is but one example of hoW the present invention can extend
an enterprise application to a desktop environment and is
presented so that a reader might gain a better understanding
of the operation of the invention. It should not be read as
limiting the scope of the invention in any Way.

[0096] After installing the client and establishing creden
tials With the enterprise application, a managed document
can be opened at the desktop (step 66). If a document is not
currently managed, the client may create a neW menu item
in Word that alloWs the user to “capture” the document and
submit it to the enterprise application. Once under manage
ment, the document Will contain additional hidden proper
ties, Which con?gure the client’s behavior. When a managed
document is opened, the client adds appropriate text to the
title bar (optional), and creates any speci?ed menus. Typical
menus alloW the user to submit an approval, create a neW

version, request additional revieWers, or vieW the document
history.
[0097] When the document is manipulated in a fashion
that involves a de?ned action handler, the action handler
may bring up one or more local Web forms (step 68), and
When completed (step 70), can send both the user input, and
the document itself back to the enterprise application (step
72). The enterprise application may then resynchroniZe With
the client to re?ect these changes (if accepted) and/or other
changes that have occurred since the last synchronization
event (step 74).

[0098] If a document is part of an action item, that fact is
recorded in the document’ s properties. Since the information
is stored (hidden) in the document, the user can save the
document, or otherWise Work on it When off-line. When

Jan. 25, 2007

ready, the user can complete the task directly from a menu
in the Word processing application rather than having to
login to the application server, ?nd the right Web page, ?nd
the locally saved document, and upload it through the
broWser.

[0099] The folloWing are a summary of features of one
embodiment of the present invention in the Microsoft Word
context:

[0100] l. Managed Documents: Managed documents may
be assigned a custom property that contains tracking infor
mation. This tracking information can be used to:

[0101] (i) associate a document With a particular task;

[0102] (ii) record each time a client submits a neW
version; and

[0103] (iii) de?ne additional buttons or actions for the
document.

Since the document “knoWs” Where it is from, it can be
saved, e-mailed, and edited off-line at the user’s dis
cretion. When a managed document is (re)opened in
Word, the client recogniZes it and alloWs the user to
complete his/her outstanding tasks.

[0104] 2. Capture a document: If a document is not
managed, a menu option and an associated cached Web form
alloW the user to capture the document and to submit it to the
application server/enterprise application.
[0105] 3. Complete Approval/Review: If a document is
associated With a task, that task can be completed at any time
directly from Word. When completed, Outlook, the enter
prise application, and the document’s managed properties
Will be updated. If the user is off-line, or the form developer
desires asynchronous behavior, the neW version of the
document can be sent to the server by e-mail.

[0106] 4. Document Tagging and History: Each time a
neW version of document is submitted, the enterprise appli
cation automatically adds a neW history record to the tracked
history of the document. The user can vieW the recorded
history of each document to ascertain Which version of the
document he/ she is Working With.

[0107] 5. Dynamic Button Bar/Menus: The present inven
tion can alloW a user to create a dynamic button bar for a
managed document. Each button can be attached to any
action handler. Exemplary buttons can include typical docu
ment Work?oW steps including:

[0108] (i) handing off a revieW to another person;

[0109] (ii) requesting an additional approval; and

[0110] (iii) linking to additional online help for that type
of document.

[0111] The folloWing example illustrates one application
of the present invention. Consider a situation in Which a
sales executive for an organization is responsible for a feW
named accounts. In addition to his customer facing respon
sibilities, he must act as a project manager across multiple
internal constituents (marketing, manufacturing, etc.) to
prosecute his opportunities. His company has installed an
advanced enterprise softWare application that can track
customer information, process steps, and Work-in-progress.

US 2007/0022155 A1

[0112] Assume further that some information in the enter
prise application database must always be kept current to
generate accurate pipeline forecasts, but the rest of the
functionality provided by this softWare suite is not really
useful since the other constituents do not Want to interact
With such a complex application. Rather than assist the
executive in pursuiing his sales opportunities, the enterprise
system becomes a data “sink” Which must be loaded With
information as an additional chore. The pipeline data is kept
up to date by a sales administrator (e.g., based on spread
sheets mailed by the sales executive), but the rest of the
enterprise application functionality is rarely used.

[0113] Using the present invention, several enhancements
to this enterprise system are possible. First, Where the
enterprise system needs pipeline data entered and updated
on a regular basis, the present invention can be used to
integrate With both Outlook and Excel on the sales execu
tive’s desktop. Every Week, for example, task and calendar
items can be created to remind the executive he must provide
updated information. When the executive selects (e.g.,
through a cursor control operation such as a mouse click) the
task in Outlook, associated action handlers may automati
cally launch a spreadsheet template. This template may
de?ne additional behaviors to doWnload the latest pipeline
data from the enterprise application database (e.g., directly
When online or via an asynchronous e-mail exchange), and
to submit any changes or additions made to the spreadsheet.
Copies of the spreadsheet can be maintained in an Outlook
folder for future reference, or automatically sent to the
executive’s administrative assistant.

[0114] Second, a regional sales manager can use the
present invention for her Weekly task of revieWing the
information submitted by each district manager and provid
ing her oWn input, Without ever leaving Excel. The associ
ated spreadsheets can be processed While traveling, refer
encing the mostly recently synchronized data. The present
invention tracks “before” and “after” values, so the fore
casting application can correctly process (or reject) any neW
data based on outdated information.

[0115] Third, for constituents Who are not regular users of
the forecasting application, the present invention can auto
matically place tasks or action items assigned to them
directly onto their familiar desktop calendars. For tasks that
involve providing basic information or approving docu
ments, the user can click on the task and be immediately
presented With a simple Web form to ?nish that task. If the
user does not respond, a variety of Outlook reminder tech
niques are available.

[0116] Fourth, tasks that require approving or editing
documents (e.g., a Statement of Work) can use the present
invention’s integration With a desktop Word processing
application. Users can complete their revieW directly from
their Word processing application, Which can automatically
update the enterprise system With the neWest version of the
document.

[0117] Fifth, for a team that is focused on a particular deal,
the present invention can be used to create and synchronize
a folder (or a hierarchy of folders) in Outlook that Will
contain the latest version of all the critical deal documents,
contacts, tasks, etc. Additionally, for individuals Who track
their time spent on each deal, a personal Outlook calendar
event can be created to represent every block of time so

Jan. 25, 2007

spent. The present invention can be used to capture this
event, With all information being sent to the server for
storage and tracking.

[0118] Sixth, spreadsheets that include valuable company
secrets such as quarterly revenue projections can be secured
With a passWord knoWn only to the enterprise application.
When a user With a valid account opens a secured spread
sheet, the client automatically unlocks that spreadsheet.
HoWever, if the user’s account is disabled or her permissions
are changed, they Will no longer be able to access the
information Within the secured spreadsheet.

[0119] With these enhancements, the poWer of the enter
prise application’s Work?oW processing can be linked
directly to hoW and Where people are doing their Work. Tasks
that require vieWing and submitting documents or spread
sheets can be done directly through familiar tools such as
Excel and Word, and most tasks are fully functional for
traveling users. The net result is that more people may use
the enterprise application, more productively.

[0120] Thus, a scheme for integrating enterprise software
applications With traditional single-user (i.e., desktop) soft
Ware applications, such as the Microsoft O?ice suite of
softWare applications, has been described. It should be
remembered, hoWever, that the examples described above
are just that, examples, and are not meant to limit the broader
scope of the present invention, Which is re?ected in the
folloWing claims.

1. A method, comprising:

projecting one or more constructs de?ned in a native
object model of an enterprise application resident at a
server into one or more corresponding objects associ
ated With one or more desktop applications;

processing one or more types of interactions With the one
or more desktop objects according to behaviors de?ned
during the projecting; and

communicating the interactions With the one or more
desktop objects to the enterprise application.

2. The method of claim 1 Wherein the behaviors are
processed according to action handlers cached at a desktop
client.

3. The method of claim 2 Wherein the action handlers are
con?gured to save, modify or create an associated object,
launch a desktop application, send a message to the enter
prise application, provide a link back to the enterprise
application, communicate With another client, and/or present
a locally cached Web form at the desktop.

4. The method of claim 3 Wherein the locally cached Web
form provides a user With options for interacting With the
one or more desktop objects according to the behaviors
de?ned by the enterprise application.

5. The method of claim 2 Wherein the action handlers
manipulate the one or more desktop objects to alter a
desktop environment Without communicating such manipu
lation to the enterprise application.

6. The method of claim 1 Wherein a single one of the
constructs of the enterprise application is projected to mul
tiple ones of the corresponding objects associated With one
or more desktop applications.

US 2007/0022155 A1

7. The method of claim 1 wherein a single one of the
constructs of the enterprise application is projected to a
corresponding object associated With multiple ones of the
desktop applications.

8. The method of claim 1 Wherein multiple ones of the
constructs of the enterprise application are projected to a
single one of the corresponding objects associated With one
or more desktop applications.

9. The method of claim 1 Wherein the interactions With the
one or more desktop objects are communicated to the
enterprise application via extensible markup language
(XML) messages.

10. The method of claim 9 Wherein the XML messages
comprise e-mail attachments.

11. The method of claim 9 Wherein the XML messages are
sent via a secure communication channel.

12. The method of claim 1 Wherein the interactions
comprise manipulation of the one or more objects With the
one or more desktop applications at a time When the desktop
applications are not communicatively coupled to the enter
prise application

13. A system, comprising: a client application con?gured
to (i) recogniZe events corresponding to manipulations of
objects Within one or more desktop applications Within a
desktop environment, said objects being projections of con
structs de?ned in a native object model of an enterprise
application resident at a server, and (ii) invoke one or more
action handlers to respond to the events according to behav
iors de?ned by the enterprise application.

14. The system of claim 13 Wherein the manipulations
comprise creation of the objects.

15. The system of claim 13 Wherein the events comprise
receipt of messages from the server, actions by a user and/or
expiration of a timer.

16. The system of claim 47 Wherein the messages com
prise extensible markup language QiML) messages.

17. The system of claim 16 Wherein the XML messages
are transmitted using e-mail.

18. The system of claim 17 Wherein the message proces
sor is further con?gured to provide one or more Web forms
to the client application, Which Web forms are played by the
action handlers in response to the events.

19. The system of claim 18 Wherein the Web forms
comprise options for managing the objects according to the
events recogniZed.

20. The system of claim 47 Wherein one or more of the
messages betWeen the client application and the enterprise
application comprise updates re?ecting changes to the
objects made Within the desktop environment.

21. The system of claim 20 Wherein the enterprise appli
cation is con?gured to accept, partially accept or reject the
changes to the objects and to communicate such acceptance
or rejection to the client application.

22. The system of claim 21 Wherein communication of the
acceptance or rejection includes a complete or partial
description of objects related or unrelated to a changed
object.

23. The system of claim 13 Wherein the action handlers
are con?gured to save, create or modify the objects, launch
one of the desktop applications Within the desktop environ
ment, send a message to the enterprise application, provide
a link to the enterprise application, communicate With

Jan. 25, 2007

another client, and/or present a locally cached Web form
Within the desktop environment Which can perform any
number of these operations.

24. The system of claim 23 Wherein the locally cached
Web forms comprise options for managing the objects
according to the events recogniZed.

25. The system of claim 47 Wherein the message proces
sor is con?gured to convert the constructs Written in the
native object model of the enterprise application into exten
sible mark-up language (XML) representations used by the
client application for desktop objects.

26. The system of claim 13 Wherein the enterprise appli
cation is con?gured to update a state of the desktop envi
ronment according to modi?cations of the objects at the
server.

27. The system of claim 26 Wherein the update is based on
a reconciliation of a server-state of the objects, a former
desktop state of the objects and a current desktop state of the
objects.

28. The system of claim 27 Wherein the former desktop
state of the objects is determined by a most recent transfer
of messages regarding the objects.

29. A method, comprising:

receiving extensible mark-up language @(ML) represen
tations of enterprise application based constructs
de?ned in a native object model of the enterprise
application along With enterprise application de?ned
behaviors therefor Within a desktop environment;

projecting the XML representations of the constructs as
one or more desktop application objects Within the
desktop environment;

recogniZing events associated With the desktop applica
tion objects occurring Within the desktop environment;
and

invoking action handlers representing the de?ned behav
iors.

30. The method of claim 29 Wherein the action handlers
are con?gured to save, create or modify the objects, launch
a desktop application Within the desktop environment, send
a message to the enterprise application, provide a link to the
enterprise application, communicate With another client,
and/or present a locally cached Web form Within the desktop
environment Which can perform any number of these opera
tions.

31. The method of claim 30 Wherein the Web forms
comprise options for managing the objects according to the
de?ned behaviors.

32. A method, comprising:

converting a representation of a construct associated With
an enterprise application resident at a server from a
native representation of the construct in the enterprise
application to an extensible mark-up language (XML)
representation thereof; and

projecting the XML representation of the enterprise appli
cation construct along With enterprise application
de?ned behaviors therefor to one or more objects
compatible With a desktop environment remote from
the server.

33. The method of claim 32 Wherein the behaviors are
instantiated as action handlers Within the desktop environ

US 2007/0022155 A1

ment, Which action handlers are invoked When events asso
ciated With the objects occur Within the desktop environ
ment.

34. The method of claim 33 Wherein the action handlers
are con?gured to save, create or modify the objects, launch
a desktop application Within the desktop environment, send
a message to the enterprise application, provide a link to the
enterprise application, and/or present a locally cached Web
form Within the desktop environment Which can perform any
number of these operations.

35. A method, comprising:

in response to a manipulation of an object Within a
desktop environment, enforcing enterprise-application
de?ned behaviors for the object to produce a modi?ed
object;

converting the modi?ed object from a representation
de?ned by the desktop environment to an enterprise
application de?ned representation of the modi?ed
object, said enterprise application resident at a server
remote from the desktop environment;

returning to the server from the desktop environment the
enterprise application de?ned representation of the
modi?ed object along With an enterprise application
de?ned representation of the object for reconciliation
by the enterprise application.

36. The method of claim 35 further comprising projecting
an updated representation of the object that accounts for the
reconciliation from the enterprise application to the desktop
environment.

37. A method, comprising:

projecting one or more constructs de?ned in an enterprise
application resident at a server along With enterprise
application-de?ned behaviors therefor into one or more
corresponding objects de?ned for a desktop environ
ment remote from the server;

recognizing one or more types of interactions With the
objects; and

executing one or more action handlers Within the desktop
environment to enforce the enterprise application-de
?ned behaviors.

38. The method of claim 37 Wherein one or more of the
action handlers is con?gured to communicate results of the
interactions to the enterprise application.

39. The method of claim 38 Wherein one or more of the
action handlers is con?gured to play one or more Web forms
to provide users options according to the interactions.

Jan. 25, 2007

40. The method of claim 39 Wherein one or more of the
Web forms are available even When the desktop environment
is not communicatively coupled to the enterprise applica
tion.

41. The method of claim 37 Wherein at least one of the
action handlers is con?gured to request a passWord from the
enterprise application in response to an attempt to open or
modify at least one of the objects.

42. The method of claim 37 Wherein the action handlers
are executed in accordance With security policies of the
desktop environment.

43. A method, comprising enforcing enterprise applica
tion-de?ned access policies regarding a representation of a
construct de?ned in a native object model of and received
from the enterprise application and noW resident as an object
Within a desktop environment remote from a server hosting
the enterprise application by playing one or more action
handlers invoked in response to a manipulation of the object
Within the desktop environment.

44. The method of claim 43 Wherein at least one of the
action handlers is con?gured to request a passWord from the
enterprise application When the manipulation is recogniZed
by a client application Within the desktop environment.

45. The method of claim 44 Wherein the passWord is not
disclosed to a user.

46. The method of claim 44 Wherein the passWord is
communicated by Way of a secure message betWeen the
enterprise application and the desktop environment.

47. The system of claim 13 further comprising a message
processor instantiated at the server remote from the desktop
environment and con?gured to receive and transfer mes
sages betWeen the client application and the enterprise
application resident at the server, said messages de?ning the
desktop environment objects in the object model of the
enterprise application.

48. A method of accessing enterprise application resident
information through a desktop environment, comprising
projecting an object de?ned in a native model of the enter
prise application into a corresponding desktop environment
de?ned object, manipulating the object Within the desktop
environment according to enterprise application de?ned
behaviors instantiated in action handlers stored in the desk
top environment to produce a modi?ed object, and commu
nicating the modi?ed object as de?ned in the native model
of the enterprise application to the enterprise application.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description/Claims
	Page 17 - Claims
	Page 18 - Claims

