US007182649B2 ## (12) United States Patent Caveney et al. ### (10) Patent No.: US 7,182,649 B2 (45) **Date of Patent:** Feb. 27, 2007 #### (54) INDUCTIVE AND CAPACITIVE COUPLING BALANCING ELECTRICAL CONNECTOR (75) Inventors: **Jack E. Caveney**, Hinsdale, IL (US); **Scott Lesniak**, Lockport, IL (US) (73) Assignee: Panduit Corp., Tinley Park, IL (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 11/014,097 (22) Filed: Dec. 15, 2004 (65) Prior Publication Data US 2005/0136747 A1 Jun. 23, 2005 #### Related U.S. Application Data - (60) Provisional application No. 60/531,756, filed on Dec. 22, 2003. - (51) **Int. Cl.** *H01R 24/00* (2006.01) - (52) **U.S. Cl.** **439/676**; 439/620.22 #### (56) References Cited #### U.S. PATENT DOCUMENTS 5,163,836 A 11/1992 Young et al. 5,186,647 A 2/1993 Denkmann et al. (Continued) #### FOREIGN PATENT DOCUMENTS EP 0 598 192 A1 5/1994 (Continued) #### OTHER PUBLICATIONS U.S. Appl. No. 11/055,344, filed Feb. 10, 2005. (Continued) Primary Examiner—James R. Harvey (74) Attorney, Agent, or Firm—Robert A. McCann; Zachary J. Smolinski #### (57) ABSTRACT A network cable jack includes a printed circuit board (PCB) for balancing both inductive and capacitive coupling. Using a PCB allows compact trace paths to be formed without significantly increasing manufacturing costs. By including on each trace path two distinct inductance zones separated by a neutral zone, significant gains in degrees of freedom are achieved for designing PCB trace patterns in which a pair of inductive coupling zones jointly offset the inductive coupling caused by a specification plug and the jack contacts, both in magnitude and phase angle. Further, using distinct inductance zones offers more freedom regarding the placement of capacitive plates for use in capacitance balancing as well as the placement of terminals and insulation displacement contacts. Although the magnitude of a capacitive coupling is determined by the length of the capacitor plates parallel to current carrying traces, the approach allows capacitive and inductive coupling to be balanced independently. #### 10 Claims, 29 Drawing Sheets # **US 7,182,649 B2**Page 2 | 5,228,872 A 7/1993 Liu 6,534,638 Bl 42004 Amett 439/676 5,299,956 A 4/1994 Brownell et al. 6,736,681 82,8204 Robbot 439/676 5,593,572 A 4/1996 White et al. 6,780,035 82,8204 Robbot 439/676 5,586,914 A 1/21996 Foster, Jr., et al. 6,802,743 82,1004 Morita et al. 2001/00/1912 Al 22002 Foster, Jr., et al. 6,802,743 82,001 Morita et al. 2001/00/1970 Al 1,2000 Forter, and al 2002/00/1970 Al 1,2000 Forter, and al 2002/00/1970 Al 1,2000 Forter, and al 2003/01/1998 Al 1,2000 Forter, and al 2003/01/1998 Al 1,2000 Forter, and al 2004/02/4848 Al 1,2000 Abriannessen et al. 2003/01/1998 Al 1,2000 Abriannessen et al. 2004/02/4848 Al 1,2000 Abriannessen et al. 2004/02/4848 Al 1,2000 Abriannessen et al. 2006/00/18420 Abriannessen et al. | U.S. PATENT | DOCUMENTS | 6,533,618 B1 3/2003 Aekins | | |--|---------------------------------------|-----------------------|---|---| | 5,299,956 A 4/1994 Brownell et al. 6,769,937 B1* 8/2004 Roberts | | | 6,554,638 B1 4/2003 Hess et al. | | | 5.538.572 A 4/1996 White et al. 5.586.914 A 12/1996 Foster, Jr., et al. 5.586.914 A 12/1996 Foster, Jr., et al. 5.786.034 A 6/1998 Block et al. 5.796.034 A 6/1998 Block et al. 5.797.903 A 7/1998 Tremblay et al. 5.799.7064 A 8/1998 Coulombe et al. 5.799.70764 A 8/1998 Coulombe et al. 5.799.7064 A 8/1998 Coulombe et al. 5.799.7064 A 8/1998 Coulombe et al. 5.799.7064 A 8/1998 Coulombe et al. 5.997.358 A 6/1999 Adriaenssens et al. 5.997.358 A 12/1999 12/ | -,, | | 6,736,681 B2 * 5/2004 Arnett | 5 | | 5,586,914 A 12/1996 Foster, Jr., et al. 5,716,237 A 2/1998 Conorich et al. 2001/0014563 A1 8/2001 Morita et al. 5,716,237 A 2/1998 Block et al. 2002/01970 A1 8/2002 Foster, Jr., et al. 2002/01970 A1 8/2002 Foste et al. 2002/01970 A1 12/2002 Hwang 5,791,943 A 8/1998 Lo et al. 2003/0171024 A1 9/2003 Mossner et al. 2003/0171024 A1 9/2003 Mossner et al. 2003/0171024 A1 9/2003 Mossner et al. 2003/0171024 A1 9/2003 Fosm et al. 2003/0171024 A1 9/2004 Adriaenssens et al. 2004/024868 A1 12/2004 Gurovich et al. 2005/0207561 A1 9/2005 Gurovich et al. 2005/0207561 A1 9/2005 Hammond, Jr. 2005/0207561 A1 9/2005 Hammond, Jr. 2005/0207561 A1 9/2005 Hammond, Jr. 2005/0208838 A1 9/2005 Horowitz, et al. 2005/0207561 A1 9/2005 Horowitz, et al. 2005/0207561 A1 9/2005 Hammond, Jr. 2005/0208838 A1 9/2006 Gaveney | | | 6,769,937 B1 * 8/2004 Roberts | 5 | | 5,716,237 A 2/1998 Conorich et al. 2001/0014563 AI 8/2001 Morita et al. 5,766,034 A 6/1998 Block et al. 2002/0019172 AI 2/2002 Forbes et al. 5,779,503 A 7/1998 Tremblay et al. 2002/00197043 AI 12/2002 Hwang 5,791,943 A 8/1998 Coulombe et al. 2003/0197049 AI 10/2003 Mossner et al. 5,797,764 A 8/1998 Coulombe et al. 2003/0194908 AI 10/2003 Brown et al. 2003/0194908 AI 10/2003 Brown et al. 2004/0248468 AI 12/2004 Gurovich et al. 2004/0248468 AI 12/2004 Gurovich et al. 2005/00144247 AI 1/2005 Quenneville et al. 2005/00144247 AI 1/2005 Quenneville et al. 2005/0207561 AI 1/2005 Horowitz, et al. 2005/0207563 AI 9/2005 Horowitz, et al. 2005/0208838 AI 9/2005 Horowitz, et al. 2005/0208838 AI 9/2005 Gaveney | , , , | | 6,780,035 B2 8/2004 Bohbot | | | 5,766,034 A 6/1998 Block et al. 5,779,503 A 7/1998 Iremblay et al. 5,779,503 A 7/1998 Iremblay et al. 5,791,943 A 8/1998 Coulombe et al. 5,791,943 A 8/1998 Coulombe et al. 5,791,943 A 8/1998 Coulombe et al. 5,885,111 A 3/1999 Yu 2003/101402 Al 10/2003 Brown et al. 5,885,111 A 3/1999 Adriaenssens et al. 5,997,358 A 12/1999 Adriaenssens et al. 6,017,229 A 1/2000 Tulley et al. 6,017,224 A 1/2000 Gwiazdowski 2005/0014420 Al 1/2005 Quenneville et al. 6,017,247 A 1/2000 Gwiazdowski 2005/0020838 Al 10/2006 Gaveney | | | 6,802,743 B2 10/2004 Aekins et al. | | | 5,779,503 A 7/1998 Tremblay et al. 2002/0197043 AI 12/2002 Hwang 5,791,943 A 8/1998 Coulombe et al. 2003/0171024 AI 9/2003 Mossner et al. 5,797,764 A 8/1998 Coulombe et al. 2003/0171024 AI 9/2003 Mossner et al. 5,885,111 A 3/1999 Yu 2004/0184247 AI 9/2004 Adriaenssens et al. 2004/0184247 AI 9/2004 Adriaenssens et al. 2004/0184247 AI 9/2004 Gurrovich et al. 2005/0207361 AI 9/2005 Quenneville et al. 2005/0207383 AI 1/2000 Gwiazdowski 2005/0207381 AI 9/2005 Hammond, Jr. 439/188 A 8/2000 Akins 333/1 2006/0014410 AI 1/2005 Caveney 439/188 FOREIGN PATENT DOCUMENTS 6,155,881 A 12/2000 Arnett et al. EP 1063 734 A2 1/2000 Gwiazdowski 5,195,881 A 1/2001 German et al. EP 1063 734 A2 1/2000 Arnett et al. EP 1063 734 A2 1/2000 Arnett et al. EP 1063 734 A2 1/2000 Foreign et al. EP 1063 734 A2 1/2000 German et al. EP 1063 734 A2 1/2000 German et al. EP 1063 734 A2 1/2000 German et al. EP 1191 646 A2 3/2002 German et al. EP 1275 177 BI 1/2003 German et al. EP 1275 177 BI 1/2000 | , , | | 2001/0014563 A1 8/2001 Morita et al. | | | 5,791,943 A 8/1998 Lo et al. 5,797,764 A 8/1998 Coulombe et al. 5,797,764 A 8/1998 Coulombe et al. 5,797,764 A 8/1999 Yu 2003/0194908 A1 10/2003 Brown et al. 5,895,111 A 3/1999 Yu 2004/0184247 A1 9/2004 Gurovich et al. 5,997,358 A 12/1999 Adriaenssens et al. 6,017,229 A 1/2000 Tulley et al. 6,017,227 A 1/2000 Gwiazdowski 6,057,743 A * 5/2000 Akekins 333/1 6,079,996 A 6/2000 Arnett 6,120,330 A 9/2000 Gwiazdowski 6,120,330 A 9/2000 Gwiazdowski 6,120,330 A 9/2000 Granan et al. 6,1676,742 B1 1/2001 German et al. 6,1676,742 B1 1/2001 Arnett et al. 6,238,235 B1 5/2001 Goodrich et al. 6,238,235 B1 5/2001 Showit et al. 6,238,235 B1 5/2001 Showit et al. EP 1 191 646 A2 3/2002 6,238,235 B1 5/2001 Showit et al. EP 1 275 177 B1 1/2003 6,238,235 B1 5/2001 Showit et al. EP 1 275 177 B1 1/2003 6,330,805 B1 10/2001 Doorhy WO WO 99/30388 6/1999 6,332,810 B1 1/2001 Gwiazdowski WO WO 99/30388 6/1999 6,332,810 B1 1/2001 Gwiazdowski WO WO 99/45611 9/1999 6,332,810 B1 1/2001 Bareel WO WO
01/80376 A1 10/2001 6,379,175 B1 4/2002 Curry et al. 6,404,549 B1 10/2002 Jensen et al. U.S. Appl. No. 11/078,816, filed Mar. 11, 2005. 1,585,111 A 3/1999 Adriaenssens et al. 2003/019408 A1 1/2080 Brown et al. 2003/0194908 A1 10/2003 Horowitz et al. 2004/0248447 A1 9/2004 Gurovich et al. 2005/02048486 A1 1/2/2004 Gurovich et al. 2005/0207861 A1 1/2006 Gurneville et al. 2005/0207863 A1 1/2006 Caveney | | | 2002/0019172 A1 2/2002 Forbes et al. | | | 5,797,764 A 8/199 Coulombe et al. 2003/0194998 A1 10/2003 Brown et al. 5,885,111 A 3/1999 Yu 2004/0184247 A1 9/2004 Adriaenssens et al. 2004/0184247 A1 19/2004 Adriaenssens et al. 2004/0248468 A1 12/2004 Gurovich et al. 1/2005 Quenneville et al. 2005/0207561 A1 9/2005 Quenneville et al. 2005/0207561 A1 9/2005 Hammond, Jr. 6,017,247 A 1/2000 Gwiazdowski 2005/0208838 A1 9/2005 Hammond, Jr. 6,017,247 A 1/2000 Gwiazdowski 2005/0208838 A1 9/2005 Hammond, Jr. 6,102,330 A 9/2000 Armett 6,120,330 A 9/2000 Gwiazdowski 2006/0014410 A1* 1/2006 Caveney | | | 2002/0197043 A1 12/2002 Hwang | | | 5,885,111 A 3/1999 Yu 2004/0184247 A1 9/2004 Adriaenssens et al. 5,915,988 A 6/1999 Adriaenssens et al. 2004/0248468 A1 12/2004 Gurrovich et al. 2005/0014420 A1 1/2005 Gurrovich et al. 2005/0207561 A1 9/2005 Hammond, Jr. 6,017,247 A 1/2000 Gwiazdowski 2005/0207561 A1 9/2005 Hammond, Jr. 6,057,743 A * 5/2000 Ackins 333/1 2006/0014410 A1 * 1/2006 Caveney | | | 2003/0171024 A1 9/2003 Mossner et al. | | | 5,915,989 A 6/1999 Adriaenssens et al. 5,997,358 A 12/1999 Adriaenssens et al. 6,017,229 A 1/2000 Tulley et al. 6,017,247 A 1/2000 Gwiazdowski 6,057,743 A * 5/2000 Aekins | 5,797,764 A 8/1998 | Coulombe et al. | 2003/0194908 A1 10/2003 Brown et al. | | | 5,997,358 A 12/1999 Adriaenssens et al. 2005/0014420 A1 1/2005 Quenneville et al. 2005/0027561 A1 9/2005 Hammond, Jr. 3005/0207561 | 5,885,111 A 3/1999 | Yu | 2004/0184247 A1 9/2004 Adriaenssens et al. | | | 5,997,358 A 12/1999 Adriaenssens et al. 2005/0014420 A1 1/2005 Quenneville et al. 6,017,229 A 1/2000 Gwiazdowski 2005/0207561 A1 9/2005 Hammond, Jr. 6,057,743 A * 5/2000 Aekins 333/1 2005/020883 A1 9/2005 Horowitz, et al. 6,079,996 A 6/2000 Armett 6,120,330 A 9/2000 Gwiazdowski FOREIGN PATENT DOCUMENTS 6,155,881 A 12/2000 Armett et al. EP 0 901 201 A1 3/1999 6,168,474 B1 1/2001 Armett et al. EP 1 1063 734 A2 12/2000 6,176,742 B1 1/2001 Armett et al. EP 1 191 646 A2 3/2002 6,196,880 B1 3/2001 Goodrich et al. EP 1 275 177 B1 1/2003 6,231,397 B1 5/2001 Shavit et al. EP 1 275 177 B1 1/2004 6,255,593 B1 7/2001 Nozick GB 2 380 334 A 4/2003 6,305,950 B1 10/2001 Doorhy WO WO 99/30388 | 5,915,989 A 6/1999 | Adriaenssens et al. | 2004/0248468 A1 12/2004 Gurovich et al. | | | 6,017,229 A 1/2000 Tulley et al. 6,017,247 A 1/2000 Gwiazdowski 333/1 6,079,996 A 6/2000 Arnett 6,120,330 A 9/2000 Gwiazdowski FOREIGN PATENT DOCUMENTS 6,155,881 A 1/2000 Arnett et al. 6,176,742 B1 1/2001 Arnett et al. 6,184,74 B1 1/2001 Goodrich et al. 6,196,880 B1 3/2001 Goodrich et al. 6,238,235 B1 5/2001 Shavit et al. 6,238,235 B1 7/2001 Reede FR 2 823 606 A1 10/2002 6,267,617 B1 7/2001 Reede FR 2 823 606 A1 10/2002 6,363,950 B1 10/2001 Doorhy WO WO 99/30388 6/1999 6,319,069 B1 11/2001 Bareel WO WO 99/45611 9/1999 6,332,810 B1 12/2001 Bareel WO WO 2004/001906 A1 12/2003 6,338,655 B1 1/2002 Masse et al. 6,379,175 B1 4/2002 Curry et al. 439/676 6,404,549 B1 6/2002 Reede 6,402,560 B1 6/2002 Reede 6,402,560 B1 6/2002 Reede 6,402,560 B1 6/2002 Reede 6,404,845 B2 6/2002 Reede 6,404,845 B2 6/2002 Reede 6,404,845 B2 6/2002 Reede 6,404,845 B2 6/2002 Jensen et al. 2005/0207561 A1 9/2005 Horowitz, et al. 2005/020838 A1 1/2005 Horowitz, et al. 2005/020838 A1 9/2005 Horowitz, et al. 2005/020838 A1 9/2005 Horowitz, et al. 2005/020838 A1 1/2006 Caveney | 5,997,358 A 12/1999 | Adriaenssens et al. | | | | 6,017,247 A 1/2000 Gwiazdowski 6,057,743 A * 5/2000 Ackins | 6,017,229 A 1/2000 | Tulley et al. | | | | 6,077,743 A * 5/2000 Aekins | 6,017,247 A 1/2000 | Gwiazdowski | | | | 6,079,996 A 6/2000 Arnett 6,120,330 A 9/2000 Gwiazdowski FOREIGN PATENT DOCUMENTS 6,155,881 A 12/2000 Arnett et al. 6,168,474 B1 1/2001 German et al. 6,176,742 B1 1/2001 Arnett et al. 6,196,880 B1 3/2001 Goodrich et al. 6,231,397 B1 5/2001 de la Borbolla et al. 6,231,397 B1 5/2001 Shavit et al. 6,255,593 B1 7/2001 Reede FR 2 823 606 10/2002 6,267,617 B1 7/2001 Nozick GB 2 380 334 A 4/2003 6,305,950 B1 10/2001 Doorhy WO WO 99/30388 6/1999 6,319,069 B1 11/2001 Gwiazdowski WO WO 99/45611 9/1999 6,332,810 B1 12/2001 Bareel WO WO 99/45611 9/1999 6,333,8655 B1 1/2002 Masse et al. 6,356,162 B1 3/2002 DeFlandre et al. 6,371,793 B1 4/2002 Doorhy et al. 6,379,175 B1 4/2002 Reede 6,402,560 B1 6/2002 Lin OTHER PUBLICATIONS 6,409,547 B1 6/2002 Reede U.S. Appl. No. 11/078,816, filed Mar. 11, 2005. 6,464,529 B1 10/2002 Jensen et al. EP 0 901 201 A1 3/1999 1 21/2000 1 3/1999 1 191 646 A2 3/2002 1 2/2000 1 191 646 A2 3/2002 1 2/2000 1 191 646 A2 3/2002 1 2/2004 1 191 646 A2 3/2002 1 191 646 A2 3/2002 1 1 10/2003 1 1/2003 1 1/2004 1 1/2003 1 1/2004 1 1/2005 1 1/2004 1 1/2005 1 1/2005 1 1/2006 1 1/2006 1 1/2005 1 1/2007 1 1/180 Appl. No. 11/078,816, filed Jul. 13 2005 | 6,057,743 A * 5/2000 | Aekins 333/1 | | 8 | | 6,155,881 A 12/2000 Arnett et al. 6,155,881 A 12/2000 Arnett et al. 6,168,474 B1 1/2001 German et al. 6,176,742 B1 1/2001 Arnett et al. 6,196,880 B1 3/2001 Goodrich et al. 6,231,397 B1 5/2001 de la Borbolla et al. 6,231,397 B1 5/2001 Reede 6,265,593 B1 7/2001 Reede 6,267,617 B1 7/2001 Nozick 6,305,950 B1 10/2001 Doorhy 6,331,9069 B1 11/2001 Gwiazdowski 6,332,810 B1 12/2001 Bareel 6,338,655 B1 1/2002 Masse et al. 6,338,655 B1 3/2002 DeFlandre et al. 6,379,175 B1 4/2002 Reede 6,402,560 B1 6/2002 Reede 6,402,560 B1 6/2002 Reede 6,402,560 B1 6/2002 Reede 6,404,549 B1 10/2002 Jensen et al. EP 1 1063 734 A2 12/2000 1275 177 B1 1/2003 EP 1 275 177 B1 1/2003 EP 1 275 177 B1 1/2003 EP 1 275 177 B1 2/2004 1/2003 EP 1 275 177 B1 1/2003 EP 1 275 177 B1 1/2003 EP 1 275 177 B1 2/2004 EP 1 275 177 B1 1/2003 17 | 6,079,996 A 6/2000 | Arnett | , | | | 6,168,474 B1 | 6,120,330 A 9/2000 | Gwiazdowski | FOREIGN PATENT DOCUMENTS | | | 6,168,474 B1 | 6,155,881 A 12/2000 | Arnett et al. | EP 0.901.201.41 3/1999 | | | 6,176,742 B1 | 6,168,474 B1 1/2001 | German et al. | | | | 6,196,880 B1 | 6,176,742 B1 1/2001 | Arnett et al. | | | | 6,231,397 B1 5/2001 de la Borbolla et al. 6,238,235 B1 5/2001 Shavit et al. 6,238,235 B1 5/2001 Reede FR 2 823 606 A1 10/2002 6,267,617 B1 7/2001 Nozick GB 2 380 334 A 4/2003 6,305,950 B1 10/2001 Doorhy WO WO 99/30388 6/1999 6,319,069 B1 11/2001 Gwiazdowski WO WO 99/45611 9/1999 6,332,810 B1 12/2001 Bareel WO WO 01/80376 A1 10/2001 6,338,655 B1 1/2002 Masse et al. 6,371,793 B1 4/2002 Doorhy et al. 6,379,157 B1 4/2002 Curry et al. WO WO 2004/001906 A1 12/2003 6,379,157 B1 4/2002 Curry et al. 439/676 6,402,560 B1 6/2002 Lin 6,402,560 B1 6/2002 Reede 6,410,845 B2 6/2002 Reede 6,464,529 B1 10/2002 Jensen et al. | 6,196,880 B1 3/2001 | Goodrich et al. | | | | 6,238,235 B1 5/2001 Shavit et al. 6,255,593 B1 7/2001 Reede FR 2 823 606 A1 10/2002 6,267,617 B1 7/2001 Nozick GB 2 380 334 A 4/2003 6,305,950 B1 10/2001 Doorhy WO WO 99/30388 6/1999 6,319,069 B1 11/2001 Gwiazdowski WO WO 99/45611 9/1999 6,332,810 B1 12/2001 Bareel WO WO 1/80376 A1 10/2001 6,338,655 B1 1/2002 Masse et al. 6,356,162 B1 3/2002 DeFlandre et al. WO WO 2004/001906 12/2003 6,371,793 B1 4/2002 Doorhy et al. WO WO 2004/001906 A1 12/2003 6,379,175 B1 4/2002 Reede 6,402,560 B1 6/2002 Lin OTHER PUBLICATIONS 6,409,547 B1 6/2002 Reede 6,410,845 B2 6/2002 Reede 6,464,529 B1 10/2002 Jensen et al. US. Appl. No. 11/078,816, filed Mar. 11, 2005. LIS Appl. No. 11/079,110, filed Apr. 5, 2005. | 6,231,397 B1 5/2001 | de la Borbolla et al. | | | | 6,255,593 B1 | 6,238,235 B1 5/2001 | Shavit et al. | | | | 6,267,617 B1 7/2001 Nozick 6,305,950 B1 10/2001 Doorhy WO WO 99/30388 6/1999 6,319,069 B1 11/2001 Gwiazdowski WO WO 99/45611 9/1999 6,332,810 B1 12/2001 Bareel WO WO 01/80376 A1 10/2001 6,338,655 B1 1/2002 Masse et al. WO WO 2004/001906 12/2003 6,356,162 B1 3/2002 DeFlandre et al. WO WO 2004/001906 A1 12/2003 6,371,793 B1 4/2002 Doorhy et al. WO WO 2004/001906 A1 12/2003 6,379,157 B1* 4/2002 Curry et al. 439/676 6,379,157 B1 4/2002 Reede 6,402,560 B1 6/2002 Lin OTHER PUBLICATIONS 6,409,547 B1 6/2002 Reede 6,410,845 B2 6/2002 Reede 6,410,845 B2 6/2002 Jensen et al. U.S. Appl. No. 11/078,816, filed Mar. 11, 2005. 6,464,529 B1 10/2002 Jensen et al. U.S. Appl. No. 11/099,110, filed Apr. 5, 2005. | 6,255,593 B1 7/2001 | Reede | | | | 6,305,950 B1 10/2001 Doorhy 6,319,069 B1 11/2001 Gwiazdowski WO WO 99/30388 6/1999 6,332,810 B1 12/2001 Bareel WO WO 01/80376 A1 10/2001 6,338,655 B1 1/2002 Masse et al. WO WO 2004/001906 12/2003 6,356,162 B1 3/2002 DeFlandre et al. WO WO 2004/001906 A1 12/2003 6,371,793 B1 4/2002 Doorhy et al. WO WO 2004/001906 A1 12/2003 6,379,157 B1 4/2002 Curry et al. 439/676 6,379,157 B1 4/2002 Reede 6,402,560 B1 6/2002 Lin OTHER PUBLICATIONS 6,409,547 B1 6/2002 Reede 6,410,845 B2 6/2002 Reede 6,410,845 B2 6/2002 Jensen et al. U.S. Appl. No. 11/078,816, filed Mar. 11, 2005. 6,464,529 B1 10/2002 Jensen et al. U.S. Appl. No. 11/099,110, filed Apr. 5, 2005. | 6,267,617 B1 7/2001 | Nozick | | | | 6,319,069 B1 11/2001 Gwiazdowski WO WO 99/45611 9/1999 6,332,810 B1 12/2001 Bareel WO WO 01/80376 A1 10/2001 6,338,655 B1 1/2002 Masse et al. WO WO 2004/001906 12/2003 6,356,162 B1 3/2002 DeFlandre et al. WO WO 2004/001906 A1 12/2003 6,371,793 B1 4/2002 Doorhy et al. WO WO 2004/086828 A1 10/2004 6,379,157 B1 4/2002 Curry et al. 439/676 6,379,157 B1 4/2002 Reede 6,402,560 B1 6/2002 Lin OTHER PUBLICATIONS 6,409,547 B1 6/2002 Reede 6,410,845 B2 6/2002 Reede 6,410,845 B2 6/2002 Jensen et al. U.S. Appl. No. 11/078,816, filed Mar. 11, 2005. 6,464,529 B1 10/2002 Jensen et al. U.S. Appl. No. 11/099,110, filed Apr. 5, 2005. | 6,305,950 B1 10/2001 | Doorhy | | | | 6,332,810 B1 12/2001 Bareel WO WO 01/80376 A1 10/2001 6,338,655 B1 1/2002 Masse et al. WO WO 2004/001906 12/2003
6,356,162 B1 3/2002 DeFlandre et al. WO WO 2004/001906 A1 12/2003 6,371,793 B1 4/2002 Doorhy et al. WO WO 2004/086828 A1 10/2004 6,379,157 B1 * 4/2002 Reede 6,402,560 B1 6/2002 Lin OTHER PUBLICATIONS 6,409,547 B1 6/2002 Reede 6,410,845 B2 6/2002 Reede 6,410,845 B2 6/2002 Jensen et al. U.S. Appl. No. 11/078,816, filed Mar. 11, 2005. 6,464,529 B1 10/2002 Jensen et al. U.S. Appl. No. 11/099,110, filed Apr. 5, 2005. | 6,319,069 B1 11/2001 | Gwiazdowski | | | | 6,338,655 B1 1/2002 Masse et al. WO WO 2004/001906 12/2003 6,356,162 B1 3/2002 DeFlandre et al. WO WO 2004/001906 A1 12/2003 6,371,793 B1 4/2002 Doorhy et al. WO WO 2004/001906 A1 12/2003 WO WO 2004/086828 A1 10/2004 WO WO 2004/086828 A1 10/2004 WO WO 2005/101579 A1 10/2005 6,379,175 B1 6/2002 Reede 6,402,560 B1 6/2002 Lin OTHER PUBLICATIONS 6,409,547 B1 6/2002 Reede 6,410,845 B2 6/2002 Reede 6,410,845 B2 6/2002 Jensen et al. U.S. Appl. No. 11/078,816, filed Mar. 11, 2005. U.S. Appl. No. 11/078,816, filed Apr. 5, 2005. U.S. Appl. No. 11/099,110, filed Apr. 5, 2005. U.S. Appl. No. 11/080,216, filed Jul. 13, 2005 | | | | | | 6,356,162 B1 3/2002 DeFlandre et al. WO WO 2004/001906 A1 12/2003 WO 2004/001906 A1 12/2003 WO 2004/086828 A1 10/2004 WO 2004/086828 A1 10/2004 WO 2005/101579 A1 10/2005 2 | 6,338,655 B1 1/2002 | Masse et al. | | | | 6,371,793 B1 | 6,356,162 B1 3/2002 | DeFlandre et al. | | | | 6,379,157 B1 * 4/2002 Curry et al | 6,371,793 B1 4/2002 | Doorhy et al. | | | | 6,379,175 B1 | | | | | | 6,402,560 B1 6/2002 Lin OTHER PUBLICATIONS 6,409,547 B1 6/2002 Reede 6,410,845 B2 6/2002 Reede 6,464,529 B1 10/2002 Jensen et al. U.S. Appl. No. 11/078,816, filed Mar. 11, 2005. U.S. Appl. No. 11/099,110, filed Apr. 5, 2005. U.S. Appl. No. 11/180 216, filed Jul. 13, 2005. | , , , , , , , , , , , , , , , , , , , | • | WO WO 2003/1013/9 AT 10/2003 | | | 6,409,547 B1 6/2002 Reede U.S. Appl. No. 11/078,816, filed Mar. 11, 2005.
6,410,845 B2 6/2002 Reede U.S. Appl. No. 11/099,110, filed Apr. 5, 2005.
6,464,529 B1 10/2002 Jensen et al. U.S. Appl. No. 11/180,216, filed Jul. 13, 2005. | | Lin | OTHER PUBLICATIONS | | | 6,410,845 B2 6/2002 Reede U.S. Appl. No. 11/0/8,816, filed Mar. 11, 2005. 6,464,529 B1 10/2002 Jensen et al. U.S. Appl. No. 11/099,110, filed Apr. 5, 2005. | , , | | | | | 6,464,529 B1 10/2002 Jensen et al. U.S. Appl. No. 11/180 216 filed Jul. 13, 2005 | , , | | ** | | | 1 S Appl No 11/1X0 /16 filed bit 13 /005 | | | | | | | , , | | U.S. Appl. No. 11/180,216, filed Jul. 13, 2005. | | | 6,524,139 B1 2/2003 Chang * cited by examiner | | | * cited by examiner | | FIG.7 FIG. 8 FIG. 10 FIG. II FIG. 13 FIG. 15a FIG. 15 b FIG. 17 Feb. 27, 2007 FIG. 18 FIG.19 FIG. 20a FIG. 20b FIG. 23 FIG. 26 FIG. 27 FIG. 29a FIG.29b Feb. 27, 2007 FIG. 34a FIG.34b #### INDUCTIVE AND CAPACITIVE COUPLING BALANCING ELECTRICAL CONNECTOR #### CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to and incorporates by reference in its entirety U.S. Provisional Application Ser. No. 60/531,756, attorney reference number LCB447, entitled "Inductive and Capacitive Coupling Balancing 10 Electrical Connector," filed on Dec. 22, 2003, as well as all materials incorporated therein by reference. Further, this application incorporates by reference in its entirety U.S. Pat. No. 5,997,358, entitled "Electrical Connector Having Time-Delayed Signal Compensation," filed on Sep. 2, 1997, as 15 across the line A—A in FIG. 3; well as all materials incorporated therein by reference. #### BACKGROUND The invention is directed generally to an electrical connector and more specifically to an electrical connector having improved inductive and capacitive coupling balancing characteristics. It has long been desired to improve the electrical performance of particular components or whole systems by mini- 25 mizing crosstalk therein. There is a reduction in both near end crosstalk (NEXT) and far end crosstalk (FEXT) when both the net inductive and capacitive crosstalk components are reduced in magnitude. Past efforts to minimize the inductive component of 30 8; crosstalk have in some cases included altering the length and orientation of the connector contacts to provide offsetting inductive coupling to preexisting inductive coupling present in the plug or elsewhere in the connector. However, the manufacturing processes required to produce contacts hav- 35 ing special lengths and orientation are expensive. In addition, such contacts have been relatively long which causes excessive phase shift at high frequency. In addition, the inductance between such contacts are subject to excess variability. In addition or instead of such contact designs, 40 past efforts to minimize crosstalk utilizing phase-offsetting coupling between pairs on a printed circuit board (PCB) have primarily utilized capacitive coupling. As such, better ways of balancing both inductive and capacitive coupling thereby minimizing crosstalk are sought. #### **SUMMARY** The inventive connector and printed circuit board (PCB) provides an inductance-balancing function with traces on the 50 PCB. It is synergistic in that it utilizes the inductive balancing traces to provide a capacitive-balancing function. This provides advantages over previous designs in terms of ability and cost to achieve a desired result with a compact connector. It also provides greater design flexibility and 55 taken across the line A-A in FIG. 16b; improved performance. In some preferred embodiments of the invention, there is provided a jack for receiving a compatibly configured standard plug that terminates four twisted wire pairs. The jack includes a PCB having eight contacts projecting from a front 60 side thereof for mating with the plug, eight insulation displacement contacts (IDC's) projecting from a rear side thereof, and eight traces embedded in the printed circuit board connecting corresponding terminals and IDC's (numbered 1-8 to facilitate reference). Four traces on the PCB are 65 selectively routed in various zones thereof to create two distinct zones of coupling separated by a relatively coupling2 free neutral zone. The introduced couplings improve the overall performance of pairs 3,6 and 4,5 of the combination of the jack and the plug. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded front upper right perspective view of a jack in accordance with an embodiment of the inven- FIG. 2 is a rear upper right perspective view of the jack of FIG. 1; FIG. 3 is a front elevational view of the jack of FIG. 1 in assembled form; FIG. 4 is a cross-sectional view of the jack of FIG. 3 taken FIG. 5 is a cross-sectional view of the jack of FIG. 3 taken across the line B—B in FIG. 3; FIG. 6 is a front elevational view of the jack of FIG. 1 with a cooperative plug inserted therein; FIG. 7 is a cross-sectional view of the jack of FIG. 6 taken across the line C—C in FIG. 6; FIG. 8 is a schematic front elevational view of the layout of the current carrying traces of a printed circuit board in accordance with an embodiment of the invention; FIG. 9a is a schematic cross-sectional view of the printed circuit board of FIG. 8 taken across the line A—A in FIG. FIG. 9b is a schematic cross-sectional view of the printed circuit board of FIG. 8 taken across the line C—C in FIG. FIG. 9c is a schematic cross-sectional view of the printed circuit board of FIG. 8 taken across the line E-E in FIG. 8 FIG. 10 is a schematic front elevational view of the printed circuit board of FIG. 8 showing inductive zone partitions and inductive vector origin locations; FIG. 11 is a schematic vector diagram showing inductive magnitudes and phase angles in accordance with a preferred embodiment of the invention; FIGS. 12a and 12b shows the addition of capacitor plates to a section of current carrying traces of the PCB shown in FIG. 8: FIG. 13 is a schematic front elevational view of the layout of the PCB shown in FIG. 8 with the addition of capacitor plates; FIGS. 14a, 14b, and 14c are schematic cross-sectional views of the PCB of FIG. 13 taken across the lines A—A, B—B and C—C in FIG. 13; FIGS. 15a and 15b are perspective views of a jack like that illustrated in FIG. 1 except the cable termination cap has been replaced with permanent punchdown blocks which are used for a punchdown cable termination method; FIGS. 16a and 16b are exploded perspective views of the jack of FIG. 14; FIG. 17 is a cross-sectional view of the jack of FIG. 16 FIG. 18 is a side view of the contacts and contact holder of the jack of FIG. 6; FIG. 19 is a perspective view of an alternate design of one of the outside contacts of FIG. 18; FIGS. 20a and 20b are schematic drawings of the contact of FIG. 19; FIG. 21 is an exploded perspective view from the rear of the rear portion of the jack of FIG. 1 including the metal pair divider: FIG. 22 is an exploded perspective view from the front of the rear portion of the jack of FIG. 1 including the metal pair FIG. 23 is a side cross-sectional view of the metal pair divider installed in the rear portion of the jack of FIG. 1; FIG. 24 is an exploded perspective view from the rear of the rear portion of a shielded version of the jack including the metal pair divider; FIG. 25 is an exploded perspective view from the front of the rear portion of a shielded version of the jack including the metal pair divider; FIG. 26 is a side cross-sectional view of the metal pair divider installed in the rear portion of a shielded version of 10 the jack of FIG. 1; FIG. 27 is a perspective view of a shielded version of the jack of FIG. 1; FIG. 28 is an exploded view of the jack of FIG. 27; FIGS. **29**a and **29**b are perspective views of an alternate 15 design of a grounding cap for the jack of FIG. 27; FIGS. 30a and 30b are end and side views of the grounding cap of FIG. 29; FIG. 31 is a front perspective view of a "shielded patch panel" for use with the shielded jack of FIG. 27; FIG. 32 is a rear perspective view of a "shielded patch panel" of FIG. 31; FIG. 33 is an exploded
perspective view of the "shielded patch panel" of FIG. 31; FIGS. 34a and 34b are side cross-sectional views of the "shielded patch panel" of FIG. 31; #### DETAILED DESCRIPTION OF EMBODIMENTS FIGS. 1-7 show a connector that may utilize a coupling balancing circuit board in accordance with the invention. From front to back in the exploded views (FIGS. 1 and 2), there are a main housing 1 and a contact carrier 2 for supporting eight contacts 3 thereon. The contacts preferably 35 engage a PCB 4 from the front in through-hole style, as do eight IDCs 5 from the rear. A rear housing 6 preferably having a pair of guide rails 7 includes passageways for the IDCs, and a wiring cap 12 may preferably include a quarindividual wire pairs therein. Unshielded twisted pairs of wires in this area typically have a variable amount of twist which is dependent on the manual installation process. Shielded twisted pairs of wires in this area typically have a variable amount of shield which is dependent on the manual 45 installation process. The divider eliminates crosstalk coupling between the wire pairs in this area. The divider 10 may include a mounting post 11 for mounting the divider within the connector, such as into a keyhole slot 9. A latch 8 may be used for assembling the rear housing 6 and the wiring cap 50 FIGS. 8 and 9 show the PCB traces between correspondingly numbered contact holes and IDC holes, wherein specific trace cross-sectional layouts are shown within the compensation zone (FIG. 9a), the neutral zone (FIG. 9b), 55 and the crosstalk zone (FIG. 9c). As a result of these cross-sectional trace designs, inductive coupling is purposefully introduced between particular wire pairs within the compensation and crosstalk zones, while the neutral zone is generally free of purposefully introduced coupling. FIG. 10 schematically shows trace-length zone partitions and/or midpoints to establish inductance vector origin points for calculating net inductive coupling (vector addition based on magnitudes and phase angles of particular inductive coupling zones). FIG. 11 is a schematic vector diagram 65 showing inductive coupling magnitudes and phase angles netting to zero for the particular jack embodiment shown. Using a PCB to provide inductance balancing is preferable to some conventional inductance balancing techniques (such as contact orientation) in that trace paths on a PCB are compact and inexpensive to attain without incurring significantly increased manufacturing costs. Additionally, using only a single compensation zone, where inductance of a certain magnitude (path length as the paths run in parallel) is purposefully introduced to offset a predetermined inductance from a plug or other portion of the connector is ineffective at high frequencies due to phase shift. The inventive connector utilizes the teachings of U.S. Pat. No. 5,997,358 to take phase shift into account. This application incorporates by reference in its entirety U.S. Pat. No. 5,997,358. By including two distinct inductance zones, however, separated by a neutral zone, one realizes significant gains in degrees of freedom for designing trace patterns on a PCB so that the pair of inductive coupling zones jointly offset the inductive coupling caused by a specification plug and the jack contacts both in magnitude and phase angle. In a preferred embodiment of the invention, an electrical path may extend from the plug through the portion of a contact between the plug contact point and the contact through-hole on the PCB, along a precompensation portion of a trace, into a compensation zone of the trace, into a neutral zone of the trace, into a crosstalk zone of the trace, and into a corresponding IDC. Particular traces are run closely together in the compensation and crosstalk zones so as to introduce inductive coupling between particular trace pairs in these zones, while the precompensation zone and neutral zone are generally devoid of any intentionally introduced inductive coupling between trace pairs. The lengths of the various trace portions are subject to design considerations but are generally chosen to provide path lengths within the various zones so that the inductive coupling provided by the compensation and crosstalk zones and their locations combine to generally offset the inductive couplings in the plug and jack contacts. Although there are several degrees of freedom in designtered electrically conductive pair divider 10 for isolating 40 ing this system, the inclusion of the neutral zone, in particular, between the two inductance zones (the compensation zone and the crosstalk zone), yields considerable freedom in designing the through-hole locations and trace paths on the PCB, and thus offers more freedom pertaining to where the terminals and IDC's may be located on the PCB. It also provides more options for the introduction of capacitance on the PCB so that it also serves a capacitance balancing function. > In a preferred embodiment as shown in FIG. 10, the printed circuit board design taught herein has three zones of inductive coupling between pairs 3,6 and 4,5. There is a compensation zone (zone b) and a crosstalk zone (zone c) and the magnitude of these couplings can be adjusted by the length of the zones. There is also a neutral zone which has minimal net coupling between pairs and its length can be adjusted. FIG. 11 is a vector simulation of this embodiment. The vectors in FIG. 11 simulate the following: Vector a: The crosstalk of the plug and the crosstalk of the jack contacts with their phase shift relative to the center (inductive coupling center) of the compensation zone. Vector b: The compensation of the printed circuit board compensation zone, the b vector, is all effectively located at the center of this zone. Vector c: The crosstalk of the printed circuit board crosstalk zone adjusted for the crosstalk of the IDC's, the c vector, is all effectively located at the center of this zone with their phase shift relative to the center of the compensation zone. The phase shift due to the distance and environment between b & c is equal to the phase shift due to distance and environment between a & b. As seen in FIG. 11, with this design, ab=bc, the length of vector a equals the length of vector c and the vertical component of vector a plus the vertical component of vector c equals the length of vector b at a Null Frequency of 500 MHz. The ideal results, as illustrated schematically by FIG. 11, can be attained by the independent adjustment of bc by adjusting the length of the Neutral Zone and by adjusting the magnitudes of vectors b & c. The objectives of the design of the jack as shown in FIG. 15 1 with a PCB as shown in FIG. 13 is to compensate for the crosstalk between pairs 3,6 and 4,5 of a specification Cat. 6 plug caused by both inductive and capacitive coupling. The current carrying traces on the PCB provide capacitive coupling in the compensation and crosstalk zones which is similar to the inductive coupling which they provide, however, additional capacitive coupling is required. This is provided by selectively adding capacitor plates above and below sections of current carrying leads as shown in FIGS. 12–14. FIGS. 12a and 12b shows the addition of capacitor plates to a section of current carrying traces of the PCB shown in FIG. 8. FIG. 13 is a schematic front elevational view of the layout of the PCB shown in FIG. 8 with the addition of capacitor plates. FIG. 14 is a schematic cross-sectional view of the PCB of FIG. 13 taken across the line A—A in FIG. 13. This design provides relatively compact PCB geometry. It utilizes current carrying traces to provide the required inductive and capacitive coupling in both the compensation and crosstalk zones. The location of each capacitive coupling is controlled by the location of the connection between a current carrying trace and the associated capacitor plates. The magnitude of each capacitive coupling is determined by the length of the capacitor plates parallel to the current carrying traces. The capacitive coupling vector origin locations are proximate the inductive coupling vector origins, however, the 45 inductive and capacitive couplings are independently balanced. The couplings of the specification plug have been calculated as follows: | Inductive Coupling: | 1.428 nH | |----------------------|----------| | Capacitive Coupling: | .936 pF | The design parameter objectives of the jack PCB design are: | Zone | Zone Length | Inductive
Coupling | Capacitive Coupling | |-------------------------|----------------|-----------------------|---------------------| | Compensation
Neutral | .297"
.250" | 3.09 nH | 1.812 pF | | Crosstalk | .176" | 1.830 nH | 0
1.046 pF | Vector Angle AB = Vector Angle BC = 32.36° 6 This design was determined by simulation and calculation and is the basis for the design of a prototype. To tune the prototype, a plot of NEXT dB vs. frequency should be run. First, the length of the neutral zone should be varied until the Null (-dB) is maximized. Assuming that the magnitude of vector a equals the magnitude of vector b, this will make ab equal to bc. Second, the magnitude of the compensation zone should be varied until the Null frequency is 500 MHz. If the length of the compensation zone is varied to vary its magnitude, the length of the neutral zone must also be varied to make <ab equal to
bc. It should be noted that the crosstalk and compensation provided by the PCB will be a combination of inductive and capacitive coupling and the ideal combination will match the combination of a standard plug and the jack contacts. The teachings taught herein can also be applied to additional pair combinations. State of the art methods would be used to obtain optimum pair impedance and balance to neutral of each pair. The same PC board will also accommodate the IDC's for a punchdown termination design as illustrated in FIGS. 15–17. FIGS. 15a and 15b are perspective views of a
jack which is similar to that shown in FIG. 1, however, the wiring cap 12 has been replaced with punchdown termination blocks 13. The main housing 1 is substantially the same as the jack shown in FIG. 1. FIGS. **16***a* and **16***b* are exploded perspective views of the jack shown in FIGS. **15***a* and **15***b*. The stems of the IDC's **14** are the same as those of the jack of FIG. **1**, however, the locations and orientations of the IDC blades **15** have been altered. In this manner, preferred IDC blade locations and orientations are attained for both a wiring cap and punchdown blocks with a common PCB. FIG. 17 is a cross-sectional view of the jack of FIG. 16 taken across the line A—A in FIG. 16b. FIG. 18 shows one embodiment of jack contacts 16 and contact holder 17. The construction of the contacts and contact holder maintains the contacts in the contact holder before and after assembly of the contact holder into the jack housing. In this embodiment, all the odd numbered jack contacts 160 have one unique shape. The even numbered jack contacts 160 have another unique shape and all contacts have unique cross-section dimensions, to provide the required contact force with a relatively short conductive path from an installed plug to the printed circuit board, without permanent deformation of contacts. In addition, the contact holder 17 incorporates a radiused 50 support 18 under each contact 16 which reduces stress concentration in each contact. The contact shape is relatively horizontal in the section 19 that contacts the plug to minimize the change in contact force due to allowable dimensional variations in specification plugs. The ratio of contact width to contact thickness is approximately 1.8:1. This ratio for typical state of the art rectangular contacts is 1.3:1. The free ends of the contacts 20 are supported. If a six contact plug were installed in a jack with the above contacts, contacts number one and eight would be damaged. To prevent this, protrusion keys 21 in FIG. 1 are included in the jack housing in the contact number one and eight locations which prevent the installation of a six contact plug. In another embodiment as shown in FIG. 19, contact 22 has an alternate design to facilitate installation of a six position plug without contact damage. A contact 22 is installed in the number 1 and 8 contact position. This contact design includes a unique "safety pin" loop 23 which electrically contacts itself where the contact is adjacent to itself at 24 to provide a short conductive path between the plug and the PCB coupled with mechanical flexibility. FIGS. 20a and 20b are schematic drawings of the contact of FIG. 19. The "safety pin" loop 23 is constrained in the contact holder 17 and twisted as shown by the arrows to insure electrical contact at 24 to provide current path 26. The contact **22** of FIG. **19** is designed to minimize the ¹⁰ length of the conductive path from the plug to the printed circuit board and in addition to survive the installation of a six contact plug in the eight contact jack. As shown in FIGS. 21–26, there is a metal pair divider 10 which is installed in the jack in the factory. In the field, the cable is installed in the cap 12 and the cap is pressed into the opening 28 in the back 6 of the jack, terminating the cable and locating the metal pair divider adjacent to the end of the cable As shown in FIG. 23, the metal pair divider 10 provides ²⁰ an electrical shield between wire pairs in the area 28 near the end of an installed cable. This portion of the cable typically lacks proper twist of the wires of each pair and/or lacks proper shielding of each pair. The metal pair divider 10 therefore decreases crosstalk ²⁵ 36 magnitude and variation. When the cap is installed, there is a space 29 between the end 30 of the metal pair divider 10 and an installed cable jacket which is sufficient to facilitate the necessary reorientation of pairs between the cable jacket and the IDCs. FIGS. 21–23 show the rear portion of the non-shielded jack of FIG. 1. FIGS. **24–26** show the rear portion of a shielded version of the jack of FIG. **1**. The difference in the shielded version is the replacement of wiring cap 12 with shielded wiring cap 31 shown on FIG. 26 which consists of a plastic portion 32 shown on FIGS. 23–26 and a metal portion 33 shown on FIG. 26. FIG. 27 is a perspective view of a shielded version 34 of $_{40}$ the jack of FIG. 1. FIG. 28 is an exploded view of the jack of FIG. 27 showing the shield 35, the main housing 1, the rear housing 6, the pair divider 10 and the shielded wiring cap 31. FIGS. **29***a* and **29***b* are perspective views of an alternate ⁴⁵ design of the metal portion **33** of the shielded wiring cap **31**. FIGS. 30a and 30b are end and side views of the metal portion 33 of cap 31. The design of the shielded versions eliminates the need to install the shield in the field. When the cable is installed in the cap, the cable shield is connected to the metal portion of the cap. When the cap is installed in the jack body, the metal portion 33 of the wiring cap 31 is connected to the jack shield. This strain relief/grounding cap assembly provides a means to secure a shielded cable to a jack and to electrically connect the shield of an installed cable to the shield of the jack. This design accommodates a large range of cable diameters. Installation of the strain relief/grounding cap assembly: 1. Cable is prepared per the following instructions: remove jacket, 1½"-2" fold back the braid over the jacket—wrap excess 65 around jacket locate pairs per cap/conductor orientation (e.g. 568B) 8 - Conductor pairs are fed through the grounding cap and oriented, foil shields are cut off where each wire will enter wire slot, wires are bent 90 degrees, inserted in wire slots, and cut off. - Cap assembly is located in the back of the jack housing and pressed in with an installation tool or pliers (not shown). - The spring clip is fully engaged with a pliers or the like to ensure good contact between the braid of the cable and the grounding cap. - 5. The ground is connected from the cable/overbraid by clip/grounding cap to spring tabs on the housing shield. FIG. 31 is a perspective front view of a "shielded patch panel" 36 for use with a shielded jack such as shown in FIG. FIG. 32 is a perspective rear view of the patch panel 36 shown in FIG. 31. FIG. 33 is an exploded perspective rear view of the patch panel 36. The components include a metal frame 37, plastic inserts 38, spring metal grounding strip 39 with grounding fingers 40 a means to ground the strip 39 to the network ground 41 (not shown). FIG. **34***a* is a side cross-sectional view of the patch panel **36**. FIG. 34b is a side cross-sectional view of the patch panel 36 with a typical shielded jack 26 installed with a grounding finger 40 pressing against the jack shield 35 at location 41. What is claimed is: - 1. A jack connector for terminating a network cable that includes at least two pairs of conductors, the first pair comprising first and second conductors and the second pair comprising third and fourth conductors, the jack connector comprising: - a printed circuit board (PCB) with a plurality of electrical traces, - wherein first, second, third, and fourth electrical traces are provided respectively for each of the first, second, third, and fourth conductors, - wherein each electrical trace passes through at least two inductive coupling zones separated by a neutral zone that is substantially void of any intentionally introduced inductive coupling between adjacent electrical traces - wherein the at least two inductive coupling zones comprise a compensation zone and a crosstalk zone, - wherein the compensation zone comprises inductive couplings between the second and third electrical traces and between the first and fourth electrical traces, and - wherein the crosstalk zone comprises inductive couplings between the second and fourth electrical traces and between the first and third electrical traces. - 2. The jack connector of claim 1, wherein the at least two inductive coupling zones along each electrical trace jointly offset in magnitude and phase an inductive coupling caused by a plug and a contact between the plug and the jack connector - 3. The jack connector of claim 1, wherein a length of the respective electrical traces within each of the respective inductive coupling zones is chosen so that inductive coupling provided by the inductive coupling zones combines to substantially offset an inductive coupling between the jack connector and a plug. - **4**. The jack connector of claim **1**, wherein an electrical path formed by a conductor within a plug inserted into the jack connector extends from the plug through a portion of a contact between the plug and the jack connector, through a 9 contact through-hole on the PCB, along a precompensation portion of a trace that is substantially void of any intentionally introduced inductive coupling between adjacent electrical traces, into the compensation zone of the trace, into the neutral zone of the trace, into the crosstalk zone of the trace and into a corresponding network cable conductor. - 5. The jack connector of claim 4, wherein traces are run closely together in the compensation and crosstalk zones so as to introduce inductive coupling between particular trace pairs. - 6. The jack connector of claim 1, wherein the PCB further comprises capacitive plates above and below a trace section that includes a plurality of trace leads. - 7. The jack connector of claim 6, wherein the capacitive plates result in capacitive couplings, magnitudes of the 15 capacitive couplings being determined by lengths of the capacitive plates parallel to the trace section. 10 - 8. The jack connector of claim 1, further comprising: an electrically conducting pair divider that separates the network cable electrical conductors to reduce crosstalk between the electrical conductors
within the jack connector. - 9. The jack connector of claim 1, further comprising: an electrically conducting cable clamp that forms an electrical connection with a shielding layer of the network cable. - 10. The jack connector of claim 9, wherein the electrically conducting cable clamp further includes a contact that forms an electrical connection with a grounding plate upon insertion of the jack connector within a grounded patch panel. * * * * *