US 20070043574A1

a2y Patent Application Publication (o) Pub. No.: US 2007/0043574 A1l

a9y United States

Coffman et al.

43) Pub. Date: Feb. 22, 2007

(54) CONVERSATIONAL COMPUTING VIA
CONVERSATIONAL VIRTUAL MACHINE

(76) Inventors: Daniel Coffman, Bethel, CT (US);
Liam D. Comerford, Carmel, NY
(US); Steven DeGennaro, Pauling, NY
(US); Edward A. Epstein, Putnam
Valley, NY (US); Ponani
Gopalakrishnan, Yorktown Heights,
NY (US); Stephan H. Maes, Danbury,
CT (US); David Nahamoo, White
Plains, NY (US)

Correspondence Address:

F. CHAU & ASSOCIATES, LLC
130 WOODBURY ROAD
WOODBURY, NY 11797 (US)

(21) Appl. No.: 11/551,901
(22) Filed: Oct. 23, 2006
Related U.S. Application Data

(62) Division of application No. 09/806,565, filed on Jul.
2, 2001, now Pat. No. 7,137,126, filed as 371 of
international application No. PCT/US99/22927, filed
on Oct. 1, 1999.

(60) Provisional application No. 60/102,957, filed on Oct.

2, 1998. Provisional application No. 60/117,595, filed
on Jan. 27, 1999.

Publication Classification

(51) Int. CL
GI0L 21/00 (2006.01)
(52) US. Cle oo 704/275

(57) ABSTRACT

A conversational computing system that provides a universal
coordinated multi-modal conversational user interface
(CUI) 10 across a plurality of conversationally aware appli-
cations (11) (i.e., applications that “speak” conversational
protocols) and conventional applications (12). The conver-
sationally aware applications (11) communicate with a con-
versational kernel (14) via conversational application APIs
(13). The conversational kernel 14 controls the dialog across
applications and devices (local and networked) on the basis
of their registered conversational capabilities and require-
ments and provides a unified conversational user interface
and conversational services and behaviors. The conversa-
tional computing system may be built on top of a conven-
tional operating system and APIs (15) and conventional
device hardware (16). The conversational kernel (14)
handles all I/O processing and controls conversational
engines (18). The conversational kernel (14) converts voice
requests into queries and converts outputs and results into
spoken messages using conversational engines (18) and
conversational arguments (17). The conversational applica-
tion API (13) conveys all the information for the conversa-
tional kernel (14) to transform queries into application calls
and conversely convert output into speech, appropriately
sorted before being provided to the user.

Hetwork services, resources
and protocals
- Distributed ok
speech applicafion P N ! P N speach appiization
{browser, dialsr, ... N > w:v:zzzﬁloml - w {orowser, didler, .} N
»s
) 200 300 F Y00a
Spontanesusly nefworked Rg;i?ﬁg’n Spontaneously nefrorked
conve!_rsuﬁcnai : s Nggof%aﬁoni o i canvz:[soihonul
clignt 5 molecal (| clien 5
[230 3ot 'y 2800
Speech Speech Speach
fransmission ~ |fest e Ironsinission | | fransmission
client L profocel N client .
7y 231 302 T 231
Compressed
speech fle
format N
303 L,
v ¥ | 304 IR ; L]
{ocal Compression Acoustic Compression Lol
oA Dacomprassion - signal Decompressian Comersafiond Endives
Comersaonal Eoghes | | pconsrcton 2370 || processing Recensiruction anvrasionl Engies -
T = 232 = 208u
208 { fudie
| hordaere hardenre =
235 1 spacificeiion specificafion (&, 23%a ~
233

235a

US 2007/0043574 Al

Patent Application Publication Feb. 22,2007 Sheet 1 of 12

8iDMPIDH

SUJUODW [DNYIA |PUOHDSIBALOY)

(ssuibus)
swiajshs—-qgns
|DUOI}DSIBALOY)

8 muumuuuuuumj

IdV WAD=IdV Aljpuoipsionuo)

sddy
[DUOIIUBAUOY

suolpoijddp aupmp A||DUOIDSIEAUOY

¢l

0j8 ‘AjjpuosJad
‘sdow
aljoquids ‘W
‘S81ip|ngpooA
‘9S4 ‘sixsjuo]

1 .
0 I

(048 IN9+INA) ,///wu
_D _Ucom._UmL®>COQ

U=

| "OlId

US 2007/0043574 Al

Patent Application Publication Feb. 22,2007 Sheet 2 of 12

4

YOS

[Uoyoopmuiog |

Sidy/saoiusag wayshs /wajshs Buyesedy Suikuepun

g |
3 Ee_sm

_mn T R o mm
| () (e _m
! sggm .ﬁ\ ““““) M / am,.amm i seubu
> UOIDULIOJU]-DJeN O < JoiAngsg [pudljpsianio]
A4 Sa—— J pup wswm__mm
fiouo Lig } uoyoajjady 6
S80Sy _ Siy J3DDUDK AR DUOLBSIAND S|y suibuz
iaypndsig %0 ‘ Ojsiy [Puojosiztod DUODSIAAUC
on [Lon || s T [mor a sty
| Jabouny 1abioupy bopoig ~ ‘ Sig s34 DiD,
bupoasun. 858““_ | “aco“ma“>_m_oo
[DUO|OSIBAUCY)] / 912 pwsy KAI
072 174
20 0z~ 602~
S1090j014 [DUOHDSIBAUY) S|dy uoypayddy jouoyosiantio] _w_.,“_o“ﬁmﬁ_ﬁ
702 802~ 107>
Joskolg §8850))
nggy ~ LLIHOHESIEAGY uoyopuna
suoljoayddy aipxy jjouoyosiaaun) [oueljosiasu0)
iz = 2 "9l

| sl

902 [pUo}D8I5AL07

US 2007/0043574 Al

Patent Application Publication Feb. 22,2007 Sheet 3 of 12

¢ "9old

68¢

uoypayoeds uofoayjoads uoypoyoeds

uipy | § - apay
_ 802

262 § Dusseoosd ORS00 . N

: L i DUGHBS S
oubis voissaiduaneg | E sy wu%wmﬁ;%um
SN0y j| ooy uoissaidiey || in20] i
El & i
J J

v0¢

puLio}
8jt} yoaeds
passaiduio)

16¢

sl .‘_82.9._ Bl
UOISSIISUDI} UOISSILISUD)] | ebmmmmmmened Uo|SS|usuDy}
yoaads yavads yoeeds
806¢ 082
juoyp sgs% fiajp
DUODSIAAL0D _“Mn”“_m_%u_ Pr— [PUOLDS34U0)
payionjau Aisnoaupjuodg noosy paxionjau Asnoaunjuodg
290 — 002
SR 030401 S —
(sojoip ‘sashoq) _S&ngo o I— (- “smjoip “sashoug)
uoyooyddo yosads pejnUysI] uoyjosiyddo yoseds

sjoaojoud pup
SBUNOSE ‘SAILNIGS YIOMBY

7 "Old 5,

IN9/840mp.oy
[DUOIDSIBALOY

Y

E 4
%

US 2007/0043574 Al

SABAlQ

IDUCHDSIBAUDY

JaBpupy yso)
|DUOILUBALOY

9JDMPIDH /S1aAL(
[DUOI{UBALOY

=
- L0 nw..auecnnnnuuuu.iusn —————
3 17 1
- _
g Sil Jsjoyuoy Boppig)ODJS JX8lU0Y) !
wnn

[
— 0i¥ _
= |
& [
o 18[0Jju0) “
F | J4aupjpdsiq ysog “
= | uoyiubooay Joxpads ! }
£ | R N
= 807~ ! Jor
S - p ! Jabpuppy
= uoljjuboosy Yyoss
= U038y (o98adS || uoypusou ojay
P L
=
2
E
=
=
<
|5
=
[~

Patent Application Publication Feb. 22,2007 Sheet 5 of 12 US 2007/0043574 A1

s
ot E* o=
[R T]
|
= R G
AR I N
= e I
~F A o QP
e
L R
o ‘:-J
= ‘
/‘G &
28| . 0
) ;:
25| = S
s i ®
o _—
Sx < .
p S LI—
[randion- S0 |
S P
1 L=
I
s By
3 gy K
i |
g T @S
7%) :y‘-.,.‘
o e | =g
s [
= 5=
D gy
(&

Task 1

US 2007/0043574 Al

Patent Application Publication Feb. 22,2007 Sheet 6 of 12

9 "9ld

1114

= T~ $991A9p
0/1 1oy
B N \\\\ 409 ’
uoynjosel -] SISAUJUAS
- 1011 /Bujjdusosd yosads
T
a7LIDWWINS
a0y
WA sajnguyjo
Layu]
L1114 W
J

S3a148p
indu; Jayjo

/ 80D L3jul

e/ | PaipUIpIOn)
@ IDSJBAI)

008

109

|Dpow-fiiny

US 2007/0043574 Al

Patent Application Publication Feb. 22,2007 Sheet 7 of 12

ssliiqodo [f19/|pUoDSIBAU0D BILOS pUD
salyiqpdoa WAD [0o0] Yk Ajgissod ssappaju]/seaikeq
0]~ L (owny/

i

St
[=
|
o
=4
e
Yy
-y
e
e
s

B 2 S B A R e

[=
[
=
B E
By
e
ey
=
k-3
sl

(yoesds pazjubods ‘yooads painjdod ‘Si|
‘ng *6ra) ssbuoyoxa aappiaju| Jasp

03P Yo0a 40
salgjiqodna jouoipsianuod
jo uolpisibay

(seomasp puo suoypoyddn usejaq
J0JDJjiGJ0 jouolDsLaaU0d ‘juswiaboupuws
/¥o0js prajuod “19jjo4uod) WAD

Jgues uolypanddp yaoa of payaoyn pup THD 40 1¥ “difdol
PaJAQUISIP 10 BJIASP Y308 Of [DO0] 8Q UDI YOIy

SWBISASQNS [DUOHDSIZAUD Of peywIsuDy (/] Jesp

(oaDj5 /1jsoR) WAD
Buown uoyoupigly

siahes Bulpoosupi] [puoijpsisaucy]

THD o 1dy ‘di/daL — — e e————————

aoiaap Jo uoyoayddo

{dyy/jwgy 6s) jousioy pupjoaojod

Jayjoun jo KAD $59000 PDPUDJS /uiojjun D juosal FOL
“ (fuo j1) swajshsgns [ouoljosiaauod -) B S ¥
S===""popioss0 puo (‘s kiojnqooo ‘N a) ,mowmahﬁ (ssaniog ouwog *6) sioniss Bupoasny)
SOUSHSJO0IDYD [DUCHDSIAU0D ‘SE|DIS __&3&

[DUGDSIBAUGY 8|GDAIBSGO SII Uik
uoypaydd Yoo jo uoyousibay

swasisqng (]
jpuoypsiaauy -~

902 SN
'sesbqojpq ‘sieaiss Qojy ‘ssjoN

sualjosyjddy Aonbat

004

suoypoyddy aioay Kjjouoijosishuo’)

NAD PeNQUISIq D Jo} aanjoejiyoly / 631

US 2007/0043574 Al

Patent Application Publication Feb. 22,2007 Sheet 8 of 12

|

408

_w

UOID2IUNLIWIO) 58100 ABojouyosy
[DUOIJUBAUO) |DUOIIDSI8AUOY)

$801A8(] SDMY
Aj|puoijpsieAlio)

108

008

|020}044

(Jloys |puoypsIAU0))
|DUOIDSIBAUOY)

AAD
(von) eoupyddy = =
[DUOIJDSIBAUOY suolypojjddo
|DSIBAIUN |DUOIDSIBAUOCY)

708

US 2007/0043574 Al

Patent Application Publication Feb. 22,2007 Sheet 9 of 12

Sy pup saaiias wejsis/o Buidpiepun

o m&%__m

/1

N
EN/WWIIMMI@.\\\UL = g = e E\} et
| | AT g e B . £z
i H : FYiy : m“
e f | w . t saubu
| 44 |
mw m_ m - m~ e
| _ i 16ouny m _ N
So0.n0say 0/ ﬁ T e m \
o o saBoup a0e
022 N-
Jayajodsig ¥so
| {smsow) Jopapay
| JaBouoy somosay sabouow Bopig ||
> <"~ 6)2 AN
- 602

sjosojesd [ouOYDSIBALO)

Sidy
uoypaddy joucyosiauo)

$1090}04
Ka

susljpayddy

[DUoyosIaA0) (0301

sjooojosd [ouoyDsiaAUC)

suojjoaijddy
[DUOHOSI8AUD)
painqUEsIo

402

0oe

6 "9ld

OWmm_

‘v_\ %2 I
ssauisng |

US 2007/0043574 Al

f

pusy #AS

Jafioupur Bojoig
N uoyoaiddy

~—~

sefouow Bojpig

sa6ouous Bojoig | uoysoyddy

¥ uogooyddy

‘ &(E ¥ aopep | 80ap
ls a,w lo ddy

Uy KAD

i xw%%om‘_&u‘
|~ 'saamep Jes)
Huoyoussojui-ojep || HQ JeisoN

LO_E*?‘
Jafiouny Bojpig

[DUOYDSIBAUD)

Jabouoy
UOIDULIOJUI-DIoK

ol "914

Patent Application Publication Feb. 22,2007 Sheet 10 of 12

w‘%o_s]
ssauisng

¥ aiboj
ssauisng

Ve

¥ pusying

US 2007/0043574 Al

fouizy KAJ

l

il

j

. |
|
0

/ saipd anjoa ejnquye

Ajuo abupyoxe ojog
0] UOIOLSa Joojeld "AUSY KG

| aaiap

o lo ddy

Jo ddy

[ouRy A

0 8|SO

\ Il "9id

Patent Application Publication Feb. 22,2007 Sheet 11 of 12

sainjoe)
pUD SRS

2l "9ld

US 2007/0043574 Al

P

mﬁuﬂmm“ W
oiop mmﬁ.m“mm vy Hmr.ummﬁw,mmm paing

S

. T @E:
xeaiop ‘dyy puo
|0 0ipn0 ‘seJnjos) 0ogi

| Jonie suibuy
[DUOHDSIBALOY

— 4093y
Buspnjou

YIOAjaN
13DIA0L] BOINISS

000+

wlilsfils
osnnG:
iy

—0

yd d

puexoDg W (fomapg)

puD Jakieg 19AISS 13SHOI “Wye0i0) ‘dyy puo | §j630j0.4 2001
uoypuasal |PuooSIaAL0) 0 0IpND ‘SaIDa | [DuojoSIeAuc)
heoay” POINGUSg
1 Buipnjou)
\1 | sainjpe)
- B pup sesjuias
| E%QZ
pagupy [P

[DUO{DSIEAUC) gS ‘

Patent Application Publication Feb. 22,2007 Sheet 12 of 12

US 2007/0043574 Al

CONVERSATIONAL COMPUTING VIA
CONVERSATIONAL VIRTUAL MACHINE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a Divisional of U.S. patent
application Ser. No. 09/806,565, filed on Jul. 2, 2001, which
is incorporated herein by reference and which is a U.S.
National Stage application under 35 U.S.C 371 of Interna-
tional Application No. PCT /US99/22927, filed on Oct. 1,
1999, which claims the benefit of Provisional Applications
U.S. Serial No. 60/102,957, filed on Oct. 2, 1998, and U.S.
Serial No. 60/117,595 filed on Jan. 27, 1999.

BACKGROUND

[0002]

[0003] The present application relates generally to sys-
tems and methods for conversational computing. More
particularly, the present invention is directed to a CVM
(conversational virtual machine) that may be implemented
as either a stand-alone OS (operating system) or as a
platform or kernel that runs on top of a conventional OS or
RTOS (real-time operating system) possibly providing back-
ward compatibility for conventional platforms and applica-
tions. A CVM as described herein exposes conversational
APIs (application program interface), conversational proto-
cols and conversational foundation classes to application
developers and provides a kernel layer that is responsible for
implementing conversational computing by managing dia-
log and context, conversational engines and resources, and
conversational protocols/communication across platforms
and devices having different conversational capabilities to
provide a universal CUI (conversational user interface).

[0004] 2. Description of Related Art

[0005] Currently, GUI (graphical user interface) based
OSs (operating systems) are dominant in the world of PCS
(personal computers) and Workstations as the leading archi-
tectures, platforms and OS are fundamentally GUI based or
built around GUI kernels. Indeed, with the exception of
telephony applications such as IVR (interactive voice
response) where the Ul is primarily voice and DTMF (dual
tone multifrequency) /O (input/output), the most common
information access and management applications are built
around the GUI paradigm. In addition, other non-GUI based
Uls are utilized in connection with older architectures such
as mainframes or very specialized systems. In general, with
the GUI paradigm, the Ul between the user and machine is
graphic (e.g., Microsoft Windows or Unix-X Windows) and
multi-tasking is provided by displaying each process as a
separate window, whereby input to each window can be via
a keyboard, a mouse, and/or other pointing devices such as
a pen (although some processes can be hidden when they are
not directly “interacting/interfacing” with the user).

[0006] GUIs have fueled and motivated the paradigm shift
from time-shared mainframes to individual machines and
other tiers such as servers and backend services and archi-
tectures. GUI based OSs have been widely implemented in
the conventional PC client/server model to access and
manage information. The information that is accessed can be
local on the device, remote over the Internet or private
intranets, personal and located on multiple personal PCS,

1. Technical Field

Feb. 22, 2007

devices and servers. Such information includes content
material, transaction management and productivity tools.
However, we are witnessing a new trend departing from the
conventional PC client/server model for accessing and man-
aging information towards billions of pervasive computing
clients (PvC clients) that are interconnected with each other
thereby allowing users to access and manage information
from anywhere, at anytime and through any device. And this
access to information is such that the interface to it is the
same independently of the device or application that is used.
This trends goes in pair with miniaturization of the devices
and dramatic increase of their capabilities and complexity.
Simultaneously, because the telephone is still the most
ubiquitous communication device for accessing informa-
tion, the same expectation of ubiquitous access and man-
agement to information through the telephone becomes even
stronger Unfortunately, access to such information is limited
by the available devices or the interface, and the underlying
logic is completely different depending on the device.
Indeed, the variety and constraints met in the embedded
world have no comparison with what is met in the other tiers,
i.e. desktop, workstations and backend servers and, thus, the
embedded world poses a real challenge to Uls. Moreover,
the increasing complexity of PvC clients coupled with
increasingly constrained input and output interface signifi-
cantly reduces the effectiveness of GUI. Indeed, PvC clients
are more often deployed in mobile environment where user
desire hand-free or eye-free interactions. Even with embed-
ded devices which provide some constrained display capa-
bilities, GUIs overload tiny displays and hog scant power
and the CPU resources. In addition, such GUIs overwhelm
and distract the user fighting the constrained interface.
Furthermore, the more recently formulated need for ubig-
uitous interfaces to access and manage information anytime
from anywhere through any device reveals the GUI limita-
tions.

[0007] Recently, voice command and control (voice C&C)
Uls are emerging everywhere computers are used. Indeed,
the recent success of speech recognition as shrink wrap retail
products and its progressive introduction as part of the
telephony IVR (interactive voice response) interface has
revealed that speech recognition will become a key user
interface element. For instance, telephone companies, call
centers and IVR have implemented speech interfaces to
automate certain tasks, reduce their operator requirements
and operating costs and speed-up call processing. At this
stage, however, IVR application developers offer their own
proprietary speech engines and APIs (application program
interface). The dialog development requires complex script-
ing and expert programmers and these proprietary applica-
tions are typically not portable from vendor to vendor (i.e.,
each application is painstakingly crafted and designed for
specific business logic).

[0008] In addition, speech interfaces for GUI based OSs
have been implemented using commercially available con-
tinuous speech recognition applications for dictation and
command and control. These speech applications, however,
are essentially add-ons to the GUI based OSs in the sense
that such applications allow for the replacement of keyboard
and mouse and allows a user to change the focus, launch new
tasks, and give voice commands to the task in focus, Indeed,
all of the current vendors and technology developers that
provide such speech interfaces rely on incorporating speech
or NLU (natural language understanding) as command line

US 2007/0043574 Al

input to directly replace keyboards or pointing devices to
focus on and select from GUI menus. In such applications,
speech is considered as a new additional I/O modality rather
than the vector of a fundamental change in the human/
machine interaction.

[0009] The implementation of speech, NLU or any other
input/output interfaces as a conversational system should not
be limited to superficial integration into the operating sys-
tem. Nor should it be limited to a ubiquitous look and feel
across embedded devices. Instead it should fundamentally
modify the design of the underlying operating system and
computing functions. Furthermore, flexibility on the input
and output media imposes that the most fundamental
changes in the operating system do not require speech
input/output but can also be implemented with more con-
ventional keyboard, mouse or pen input and display output.

[0010] Accordingly, a system that provides conversational
computing across multiple platforms, devices and applica-
tion through a universal conversational user interface, which
goes far beyond adding speech 1/O or conversational capa-
bilities to existing applications, building conventional con-
versational applications or superficially integrating “speech”
in conventional operating systems, is highly desirable.

SUMMARY OF THE INVENTION

[0011] The present invention is directed to a system and
method based on a conversational computing paradigm that
provides conversational computing through a universal con-
versational user interface (CUI). The conversational com-
puting paradigm prescribes that systems dialog with a user
to complete, disambiguate, summarize or correct queries and
the result of their executions. They abstract and handle
queries, contexts, and manipulated information based on
contexts, applications, history and user preferences and
biometrics. These core principles (do not require speech
enabled I/O interfaces, they rather deeply permeate the
underlying computing cores. Indeed, the conversational
computing paradigm according to the present invention
applies even in the absence of speech and describes the
essence of computing built around dialogs and conversa-
tions, even if such dialogs are carried over, e.g., a keyboard.
It is the conversational computing paradigm that allows a
user to seamlessly control multiple Windows applications,
for example, running in parallel, even through a dummy
terminal display such as VT 100 or a Palm Pilot screen.

[0012] In one aspect of the present invention, a system for
providing conversational computing based on the conversa-
tional paradigm is a CVM (conversational virtual machine)
that is implemented either as a stand-alone OS (operating
system) or as a platform or kernel that runs on top of a
conventional OS or RTOS (real-time operating system)
possibly providing backward compatibility for conventional
platforms and applications. The CVM exposes conversa-
tional APIs (application program interface), conversational
protocols and conversational foundation classes to applica-
tion developers and provides a kernel that is responsible for
implementing conversational computing by managing dia-
log and context, conversational engines and resources, and
conversational protocols/communication across platforms
and devices having different conversational, capabilities to
provide a universal CUI (conversational user interface). The
CVM kernel is the core layer that controls the dialog across

Feb. 22, 2007

applications and devices on the basis of their registered
conversational capabilities and requirements. It also pro-
vides a unified conversational user interface that goes far
beyond adding speech as /O modality to provide conver-
sational system behaviors. The CVM is capable of managing
tasks in a manner similar to conversations with the power of
discourses, contexts, mixed initiatives and abstraction.

[0013] In one aspect of the present invention, the CVM
utilizes conversational sub systems (which may be local or
distributed) including speech recognition, speaker recogni-
tion, text-to-speech, natural language understanding and
natural dialog generation engines to understand and generate
dialog between and user and machine. These subsystem are
accessed through the CVM. The engines are hidden to the
application through the conversational application APIs. The
CVM may control such engines through the conversational
engine APIs. In addition, the conversational application
APIs may include the conversational engine APIs. Typically,
CVM includes direct exposure of these engine APIs to the
application developer. This may be done by having the
conversational engine APIs included in the conversation
application APIs or by emulating similar calls and function-
alities at the level of the conversational application APIs.

[0014] In another aspect, a CVM kernel layer (or CVM
controller) comprises a meta-information manager, a
resource manager, a context stack, a global history, a dialog
manager and a task dispatcher, for managing the dialog and
selecting the active dialog, context, and application. The
context stack accumulates the context (fill query arguments
and state/mode—i.e. query arguments already introduced,
any I/O event, and event produced by an application) of each
active process with an activated discourse along with any
data needed for input understanding (e.g. active FSG, topic,
vocabulary or possible queries for a speech input). The
CVM kernel coordinates the different tasks and processes
that are spawned on local and networked conventional and
conversational resources. The CVM kernel layer keeps track
of these resources, transmit input to the appropriate conver-
sational subsystems and arbitrate between devices, state and
applications. The CVM kernel layer also coordinates the
output generation and prioritization according to the active
conversation and conversation history, delayed returns, del-
egation across network resources and task delegation and
memorization.

[0015] In another aspect of the invention, the CVM system
provides a high level of abstraction and abstract categories
via meta-information that is associated with elements such
as objects, data stream handles, networks, peripherals, hard-
ware and local and networked file system. An abstract
meta-information system according to one aspect of the
invention includes multiple categories defined by the owner/
developer of the resources or past user/application of the
resource. Such elements are accessible through abstract
shortcuts and mixed initiative requests. A registration pro-
tocol is provided to automatically create new categories
associated with new objects upon connection or via a
meta-information server (analogous to a DNS server or
name space manager) which updates the list of abstract
categories associated to an object or its content, and acts like
a table of abstractions to which each resource registers its
capabilities. Objects that are downloaded or forwarded can
register locally using the same protocol. The abstract meta-

US 2007/0043574 Al

information can be used to either shortcut, automatically
extract, or process elements of the network.

[0016] In another aspect, the CVM provides the capability
to have natural dialog with NLU, NLG, contexts and mixed-
initiatives sorted across multiple tasks, processes and dis-
courses (with multiple domains). A conversational input
interface is provided whereby a set of multi-mode input
streams are each transcribed into an ASCII command or
query (i.e., lists of attribute-value pairs or n-uples). Each
input entity (command, NLU query field or argument unit
(isolated letter, word, etc.) is associated with time-marks and
appended accordingly to a compounded input stream. Two
or more stream having the same time-marks are prioritized
based on when each input stream contributed previously or
the priority that each application/input stream received on
the basis of the context history. Compounded inputs are
checked against possible FSG and dictionaries and option-
ally fed back to the user. Each resource exchanges their
conversational capabilities and the input stream is tailored to
only exchange relevant information.

[0017] In still another aspect, conversational output dis-
patches and interface protocols are provided whereby the
output of multiple tasks are queued to mono-channel output
based the context stack and the task dispatcher. A mecha-
nism is provided to redirect or modify the resource assigned
to each input streams, even in multiplexed cases. Each
resource exchanges its conversational capabilities and the
output stream is tailored to only exchange relevant infor-
mation, including selection of the output Voice fonts and
formatting of conversational presentations.

[0018] In another aspect, programming/script languages
are utilized that allow the use (of any available resources as
input or output stream. Using the conversational sub-sys-
tems, each input is converted into a binary or ASCII input
(lists of attribute-value pairs or n-uples), which can be
directly processed by the programming language as built-in
objects. Calls, flags and tags are automatically included to
transmit between object and processes the conversational
meta-information required to correctly interface with the
different objects. Indeed, any input in any modality is
captured by the dialog manager of the CVM kernel layer as
an event that is added to the associated context or context
stack. For example, a mouse click or pointer/stylus pointing
action followed by the command “I would like to open this”
is disambiguated into a set of attribute value pairs: Com-
mand: open, Object: Windows or task selected by the last
mouse click. Output can be specially formatted according to
the needs of the application or user. Multi-modal discourse
processing can now be easily built using the new program-
ming tools. In addition, such programming languages and
scripts encompasses conversational API between conversa-
tional enabled applications and the CVM, as well as CML
(conversational markup language).

[0019] In yet another aspect, conventional logic statement
status and operators are expanded to handle the richness of
conversational queries that can be compared on the bases of
their ASCII/binary content or on the basis of their NLU-
converted query/list of attribute value n-uples. Logic opera-
tors are implemented to test or modify such systems.

[0020] In another aspect, conversational network connec-
tion protocols are provided which allow multiple conversa-

Feb. 22, 2007

tional devices or applications to register their conversational
capabilities, including silent partners that are only conver-
sationally aware.

[0021] Conversational protocols are provided to coordi-
nate a conversation with multiple CVMs and silent partners,
such that when multiple CVM devices are conversationally
connected and coordinated, it becomes possible to simulta-
neously control them through one single interface (e.g.,
through a single microphone). After discovering each other
and registering their identification, each system or device
exchanges information about their conversational capabili-
ties to limit data transfer to relevant information. Silent
conversational partners behave similarly and can interact
through a conversational proxy server or as conversational
client of a CVM. The coordination between multiple CVM
may involve dynamic master-slave and peer-to-peer inter-
actions to provide a coordinated uniform conversational
interface presented by multiple conversationally connected
devices/objects. In addition, other topologies may be con-
sidered, including multiple local masters (optimized or
decided upon to reduce the overall network traffic and dialog
flow delays) interacting among each other on a peer-to-peer
basis. The collection of objects present a single coordinated
interface to the user through centralized or distributed con-
text stacks.

[0022] 1In yet another aspect, development tools are pro-
vided for developer to build, simulate and debug conversa-
tional aware application for CVM. The development tools
offer direct implementation of the API calls, protocol calls,
application using these API’s and protocols, and linking
associated libraries, applications exploiting the services and
behaviors offered by CVM. These development tools allow
advanced conversational interfaces to be constructed with
multiple personalities, such as Voice fonts, which allows the
user to select the type of voice providing the output. Con-
versational formatting languages are provided which builds
conversational presentations such as Postcript and AFL
(audio formatting languages). The code implementing these
applications can be declarative or procedural. This com-
prises interpreted and compiled scripts and programs, with
library links, conversational logic, engine calls, and conver-
sational foundation classes. Conversational foundation
classes are the elementary components or conversational
gestures that characterize any dialog, independently of the
modality or combination of modalities.

[0023] In still another aspect, conversational security is
provided using meta-information about the author and/or
modifier of local or remote files, especially executables, for
preventing unauthorized access. CVM provides automatic
authentication of the user wherever a query to a restricted
resource is made, based on security meta-information asso-
ciated to the resource. The authentication is performed
directly on the request or non-expired information acquired
shortly before the query.

[0024] In another aspect, the CVM provides conversa-
tional customization. A user is automatically identified
whenever a query to a resource is made. The authentication
is performed directly on the request or non-expired infor-
mation acquired shortly before the query. Each task or
resource access can be individually customized to the
requester preferences. Tasks and contexts are prioritized
according to the sequence of active users and re-prioritized

US 2007/0043574 Al

at each user changes. Environment variables can be modi-
fied on the fly based on changes of the user identity without
requiring to reset the whole environment. Ambiguity is
resolved at the level of each context or the context stack
using the user identity.

[0025] In still another aspect, conversational search capa-
bility is provided based not only on the name, modification
or ASCII content of files but also on abstract categories
defined by the operating system, the application or the user
and topics extracted on-line or off-line by the operating
system, or obtained via conversational protocols when the
object was accessed. In addition, contextual search capa-
bilities are provided to complete active query or to extract
similar queries/context.

[0026] In another aspect, conversational selection capa-
bilities are provided at the resource manager level or within
any application relying on meta-information, abstraction and
conversational queries/mixed initiative/correction. Such
conversational selection capabilities avoid long sequences
of elementary selections and provide natural shortcuts and
correction of the selection. In addition, mechanisms are
provided to access and present immediately the skeleton of
objects with hierarchical structures.

[0027] In yet another aspect, conversational help, manuals
and support is provided through a ubiquitous coordinated
conversational interface, using local and remote resources,
usage history of a user and agents to complete request, guide
through procedure, search for information and upgrade/
install new applications. In addition, help information can be
accessed using NLU queries to access the help information
or on the basis of the meta-information associated to the
current user (history) and on the basis of the arguments that
are missing or modified using mixed initiative. The dialog
provided by each application is tuned to the preferences or
level of expertise of the user.

[0028] Other features provided by a CVM according to the
present invention include simple, intuitive and natural inter-
faces with minimum learning curves, compelling conversa-
tional applications where the use of speech greatly improve
productivity or new functions or uses, clever machines/
devices able to understand natural queries, possibilities to
conduct efficiently task in hand-free and/or eye-free mode,
compelling multi-mode productive user interfaces comple-
menting conventional user /O and replacing them when
needed (no display or small display, no keyboard, pen or
pointing device, remote computing, etc.), universal user
interface independently of the device (PC, PDA, phone, etc.)
used to access and independently of the transaction/service/
application, and a coordinated interface across multiple
conversational. devices allowing one device to control mul-
tiple other devices, backward compatibility with existing
OSs, applications, devices and services.

[0029] These and other aspects, features and advantages of
the present invention will be described and become apparent
from the following detailed description of preferred embodi-
ments, which is to be read in connection with the accom-
panying drawings

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 is a block diagram of a conversational
computing system according to an embodiment of the
present invention;

Feb. 22, 2007

[0031] FIG. 2 is a diagram illustrating abstract layers of a
conversational computing system according to an embodi-
ment of the present invention;

[0032] FIG. 3 is a block diagram illustrating conversa-
tional protocols that are implemented in a conversational
computing system according to one aspect of the present
invention;

[0033] FIG. 4 is a block diagram of components of a
conversational computing, system according to an embodi-
ment of the present invention;

[0034] FIG. 5 is a diagram illustrating task dispatching
process according to one aspect of the present invention;

[0035] FIG. 6 is a diagram illustrating a general conver-
sational user interface and input/output process according to
one aspect of the present invention;

[0036] FIG. 7 is a diagram illustrating a distributed con-
versational computing system according to one aspect of the
present invention;

[0037] FIG. 8 is a diagram of a universal conversational
appliance according to an embodiment of the present inven-
tion;

[0038] FIG. 9 is a diagram illustrating a dialog manage-
ment process according to one aspect of the present inven-
tion;

[0039] FIG. 10 is a diagram of a dialog management
process according to another aspect of the present invention;

[0040] FIG. 11 is a diagram of a dialog management
process according to another aspect of the present invention;
and

[0041] FIG. 12 is a diagram illustrating conversational
networking according to the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0042] The present invention is directed to system and
method for conversational computing which incorporates all
aspects of conversational systems and multi-modal inter-
faces. A key component for providing conversational com-
puting according to a conversational computing paradigm
described herein is a CVM (conversational virtual machine).
In one embodiment, the CVM is a conversational platform
or kernel running on top of a conventional OS or RTOS. A
CVM platform can also be implemented with PvC (perva-
sive computing) clients as well as servers. In general, the
CVM provides conversational APIs and protocols between
conversational subsystems (e.g. speech recognition engine,
text-to speech etc.) and conversational and/or conventional
applications. The CVM may also provide backward com-
patibility to existing applications, with a more limited inter-
face. As discussed in detail below, the CVM provides
conversational services and behaviors as well as conversa-
tional protocols for interaction with multiple applications
and devices also equipped with a CVM layer, or at least,
conversationally aware.

[0043] Ttisto be understood that the different elements and
protocol/APIs described herein are defined on the basis of
the function that they perform or the information that they
exchange Their actual organization or implementation can

US 2007/0043574 Al

vary, e.g., implemented by a same or different entity, being
implemented a component of a larger component or as an
independently instantiated object or a family of such objects
or classes

[0044] A CVM (or operating system) based on the con-
versational computing paradigm described herein according
to the present invention allows a computer or any other
interactive device to converse with a user. The CVM further
allows the user to run multiple tasks on a machine regardless
if the machine has no display or GUI capabilities, nor any
keyboard, pen or pointing device. Indeed, the user can
manage these tasks like a conversation and bring a task or
multiple simultaneous tasks, to closure. To manage tasks
like a conversation, the CVM in accordance with the present
invention affords the capability of relying on mixed initia-
tives, contexts and advanced levels of abstraction, to per-
form its various functions. Mixed initiative allows a user to
naturally complete, modify, or correct a request via dialog
with the system. Mixed initiative also implies that the CVM
can actively help (take the initiative to help) and coach a user
through a task, especially in speech-enable applications,
wherein the mixed initiative capability is a natural way of
compensating for a display less system or system with
limited display capabilities. In general, the CVM comple-
ments conventional interfaces and user input/output rather
than replacing them. This is the notion of “multi-modality”
whereby speech is used in parallel with mouse, keyboard,
and other input devices such as a pen. Conventional inter-
faces can be replaced when device limitations constrain the
implementation of certain interfaces. In addition, the ubig-
uity and uniformity of the resulting interface across devices,
tiers and services is an additional mandatory characteristic.
It is to be understood that CVM system can to a large extent
function with conventional input and/or output media.
Indeed, a computer with classical keyboard inputs and
pointing devices coupled with traditional monitor display
can profit significantly by utilizing the CVM according to
the present invention. One example is described in provi-
sional application U.S. Ser. No. 60/128,081, filed on Apr. 7,
1999, entitled “Multi-Modal Shell” which is commonly
assigned and incorporated herein by reference (which
describes a method for constructing a true multi-modal
application with tight synchronization between a GUI
modality and a speech modality). In other words, even users
who do not want to talk to their computer can also realize a
dramatic positive change to their interaction with the CVM
enabled machine.

[0045] Referring now to FIG. 1, a block diagram illus-
trates a conversational computing system (or CVM system)
according to an embodiment of the present invention, which
may be implemented on a client device or a server. In
general, the CVM provides a universal coordinated multi-
modal conversational user interface (CUI) 10. The “multi-
modality” aspect of the CUI implies that various I/O
resources such as voice, keyboard, pen, and pointing device
(moused, keypads, touch screens, etc can be used in con-
junction with the CVM platform. The “universality” aspect
of the CUI 10 implies that the CVM system provides the
same Ul to a user whether the CVM is implemented in
connection with a desktop computer, a PDA with limited
display capabilities, or with a phone where no display is
provided. In other words, universality implies that the CVM
system can appropriately handle the Ul of devices with
capabilities ranging from speech only to speech to multi-

Feb. 22, 2007

modal, i.e., speech+GUI, to purely GUI. Therefore, the
universal CUI provides the same Ul for all user interactions,
regardless of the access modality.

[0046] Moreover, the concept of universal CUI extends to
the concept of a coordinated CUI. In particular, assuming a
plurality of devices (within or across multiple computer
tiers) offer the same CUI, they can be managed through a
single discourse—i.e., a coordinated interface. That is, when
multiple devices are conversationally connected (i.e., aware
of each other), it is possible to simultaneously control them
through one interface (e.g., single microphone) of one of the
devices. For example, voice can automatically control via a
universal coordinated CUI smart phone, a pager, a PDA,
networked computers and IVR and a car embedded com-
puter that are conversationally connected. These CUI con-
cepts will be explained in greater detail below.

[0047] The CVM system further comprises a plurality of
applications including conversationally aware applications
11 (i.e., applications that “speak” conversational protocols)
and conventional applications 12. The conversationally
aware applications 11 are applications that are specifically
programmed for operating with a CVM core layer (or
kernel) 14 via conversational application APIs 13. In gen-
eral, the CVM kernel 14 controls the dialog across applica-
tions and devices on the basis of their registered conversa-
tional capabilities and requirements and provides a unified
conversational user interface which goes far beyond adding
speech as /O modality to provide conversational system
behaviors. The CVM system may be built on top of a
conventional OS and APIs 15 and conventional device
hardware 16 and located on a server or any client device
(PC, PDA, PvC). The conventional applications 12 are
managed by the CVM kernel layer 14 which is responsible
for accessing, via the OS APIs, GUI menus and commands
of the conventional applications as well as the underlying
OS commands. The CVM automatically handles all the
input/output issues, including the conversational subsystems
18 (i.e., conversational engines) and conventional sub-
systems (e.g., file system and conventional drivers) of the
conventional OS 15. In general, conversational sub-systems
18 are responsible for converting voice requests into queries
and converting outputs and results into spoken messages
using the appropriate data files 17 (e.g., contexts, finite state
grammars, vocabularies, language models, symbolic query
maps etc.) The conversational application API 13 conveys
all the information for the CVM 14 to transform queries into
application calls and conversely converts output into speech,
appropriately sorted before being provided to the user.

[0048] Referring now to FIG. 2, a diagram illustrates
abstract programming layers of a conversational computing
system (or CVM) according to an embodiment of the present
invention. The abstract layers of the CVM comprise con-
versationally aware applications 200 and conventional
applications 201. As discussed above, the conversationally
aware applications 200 interact with a CVM kernel layer
202 via a conversational application API layer 203. The
conversational application API layer 203 encompasses con-
versational programming languages/scripts and libraries
(conversational foundation classes) to provide the various
features (discussed below) offered the CVM kernel 202. For
example, the conversational programming languages/scripts
provide the conversational APIs that allow an application
developer to hook (or develop) conversationally aware

US 2007/0043574 Al

applications 200. They also provide the conversational API
layer 203, conversational protocols 204 and system calls that
allows a developer to build the conversational features into
an application to make it “conversationally aware.” The
code implementing the applications, API calls and protocol
calls includes interpreted and compiled scripts and pro-
grams, with library links, conversational logic (as described
below) engine call and conversational foundation classes.

[0049] More specifically, the conversational application
API layer 203 comprises a plurality of conversational foun-
dation classes 205 (or fundamental dialog components)
which are provided to the application developer through
library functions that may be used to build a CUI or
conversationally aware applications 200 according to the
present invention. The conversational foundation classes
205 are the elementary components or conversational ges-
tures (as described by T. V. Raman, in “Auditory User
Interfaces, Toward The Speaking Computer,” Kluwer Aca-
demic Publishers, Boston 1997) that characterize any dialog,
independently of the modality or combination of modalities
(which can be implemented procedurally or declaratively).
The conversational foundation classes 205 comprise CUI
building blocks and conversational platform libraries, dialog
modules and components, and dialog scripts and beans. The
conversational foundation classes 205 may be compiled
locally into conversational objects 206. More specifically,
the conversational objects 205 (or dialog components) are
compiled from the conversational foundation classes 205
(fundamental dialog components) by combining the differ-
ent individual classes in a code calling these libraries
through a programming language such as Java or C++. As
noted above, coding comprises embedding such fundamen-
tal dialog components into declarative code or liking them to
procedural code. Nesting and embedding of the conversa-
tional foundation classes 205 allows the conversational
object 206 (either reusable or not) to be constructed (either
declaratively or via compilation/interpretation) for perform-
ing specific dialog tasks or applications. For example, the
conversational objects 206 may be implemented declara-
tively such as pages of CML (conversational markup lan-
guage) (nested or not) which are processed or loaded by a
conversational browser (or viewer) (200a) as disclosed in
the patent application IBM Docket No. YO9998-392P, filed
concurrently herewith, entitled “Conversational Browser
and Conversational Systems”, which is commonly assigned
and incorporated herein by reference. The dialog objects
comprise applets or objects that may be loaded through
CML (conversational markup language) pages (via a con-
versational browser), procedural objects on top of CVM
(possible distributed on top of CVM), script tags in CML,
and servlet components.

[0050] Some example of conversational gestures that may
be implemented in accordance with the present invention are
as follows. A conversational gesture message is used by a
machine to convey informational messages to the user. The
gesture messages will typically be rendered as a displayed
string or spoken prompt. Portions of the message to be
spoken can be a function of the current state of the various
applications/dialogs running on top of the CVM. A conver-
sational gesture “select from set” is used to encapsulate
dialogues where the user is expected to pick from a set of
discrete choices. It encapsulates the prompt, the default
selection, as well as the set of legal choices. Conversational
gesture message “select from range” encapsulates dialogs

Feb. 22, 2007

where the user is allowed to pick a value from a continuous
range of values. The gesture encapsulates the valid range,
the current selection, and an informational prompt. In addi-
tion, conversational gesture input is used to obtain user input
when the input constraints are more complex (or perhaps
non-existent). The gesture encapsulates the user prompt,
application-level semantics about the item of information
being requested (TBD) and possibly a predicate to test the
validity of the input. As described above, however, the
conversational foundation classes include, yet surpass, the
concept of conversational gestures (i.e., they extend to the
level of fundamental behavior and services as well as rules
to perform conversational tasks).

[0051] As discussed below, a programming model allows
the connection between a master dialog manager and
engines through conversational APIs. Data files of the foun-
dation classes are present on CVM (loadable for embedded
platforms). Data files of objects can be expanded and loaded.
Different objects act as simultaneous dialog managers.
Examples of some conversational foundation classes are as
follows:

Low-Level Dialog Conversational Foundation Classes:
(Multi-Modal Feature Available where Appropriate)
(With CVM Handle when Distributed)

[0052] 1. Select_an_item_from_list
[0053] 2. Field_filing_with_grammar
[0054] 3. Acoustic_Enroll_speaker_
[0055] 4. Acoustic_Identify_speaker
[0056] 5. Acoustic_Verify_speaker
[0057] 6. Verify_utterance

[0058] 7. Add_to_list

[0059] 8. Enroll_utterance

[0060] 9. Get_input_from_NL
[0061] 10. Disambiguate

etc

Low-Level Specialized Dialog Conversational Foundation
Classes

(Multi-Modal Feature, Available where Appropriate)
(With CVM Handle when Distributed)
[0062] 1. Get_Yes/No

[0063] 2. Get_a_date

[0064] 3. Get_a_time

[0065] 4. Get_a_natural_number
[0066] 5. Get_a_currency

[0067] 6. Get_a_telephone_number US or international,
rules can be specified or any possibility

[0068] 7. Get_digitstring

[0069] 8. Get_alphanumeric

[0070] 9. Get_spelling

[0071] 10. Speech_biometrics_identify

US 2007/0043574 Al

[0072] 11. Open_NL
[0073] 12. Close NL
[0074] 13. Delete_NL
[0075] 14. Save_NL
[0076] 15. Select NL
[0077] 16. Mark_NL
etc.

Intermediate-Level Foundation

Classes

Dialog Conversational

(Multi-Modal Feature Available where Appropriate)
(With CVM Handle when Distributed)

[0078] 1. Form_filling

[0079] 2. Request_confirmation
[0080] 3. Identify_user by dialog
[0081] 4. Enrol_user by dialog
[0082] 5. Speech_biometrics_identify
[0083] 6. Verify_user by dialog
[0084] 7. Correct_input

[0085] 8. Speech_biometrics_identify
[0086] 9. Speech_biometrics_verify
[0087] 10. Speech_biometrics_enrol

[0088]
[0089] 12. Fill_free_field

[0090] 13. Listen_to_TTS

[0091] 14. Listen_to_playback
[0092] 15. Simultaneous_form_filling

11. Manage_table

[0093] 16. Simultaneous_classes_dialog

[0094] 17. Summarize_dialog

etc.

High-Level Application Specific Foundation Classes
(Multi-Modal Feature Available where Appropriate)
(With CVM Handle when Distributed)

[0095] 1. Manage_bank_account

[0096] 2. Manage_portfolio

[0097] 3. Request_travel_reservation
[0098] 4. Manage_e-mail

[0099] 5. Manage_calendar

[0100] 6. Manage_addressbook/director
etc.

Communication Conversational Classes
[0101] 1. Get_list_of CVM_devices
[0102] 2. Get_capability_of CVM_device
[0103] 3. Send_capability_to_CVM_device

Feb. 22, 2007

[0104] 4. Request_device_with given_capability
[0105] 5. Get_handle_from_CVM_device
[0106] 6. Mark_as_Master CVM

[0107] 7. Mark_as_active_CVM

[0108] 8. Get_context

[0109] 9. Send_context

[0110] 10. Get_result

[0111] 11. Send_result

[0112] 12. Save_on_context

etc.

Serves and Behavior Conversational Foundation Classes
(Again it Can be with CVM Handle when Distributed)

[0113]
[0114]
[0115]
[0116]

[0117]
based)

[0118] 6. Conversational_selection (dialog or abstraction-
based)

[0119] 7. Accept_result
[0120] 8. Reject_result
[0121] 9 Arbitrate_result

1. Get_meta-information
2. Set_meta-information
3. Register_category

4. Get_list_of_categories

5. Conversational_search (dialog or abstraction-

etc.

Other Services

(With Multiple Classes)
[0122]
[0123]
[0124]
[0125]
[0126]
[0127]
[0128]
[0129]
[0130] Etc.
Rules
[0131]
[0132]
[0133]
[0134]
[0135]
[0136] etc.

[0137] The development environment offered by the CVM
is referred to herein as SPOKEN AGE™. Spoken Age

Conversational security
Conversational customization
Conversational Help

Conversation prioritization
Resource management

Output formatting and presentation
1/O abstraction

Engine abstractions

How complete get a name from a first name
How to get a phone number

How to get an address

How to undo a query

How to correct a query

US 2007/0043574 Al

allows a developer to build, simulate and debug conversa-
tional aware application for CVM. Besides offering direct
implementation of the API calls, it offers also tools to build
advanced conversational interfaces with multiple personali-
ties, Voice fonts which allows the user to select the type of
voice providing the output and conversational formatting
languages which builds conversational presentations like
Postcript and AFL (audio formatting languages).

[0138] As described above, the conversational application
API layer 203 encompasses conversational programming
languages and scripts to provide universal conversational
input and output, conversational logic and conversational
meta-information exchange protocols. The conversational
programming language/scripts allow to use any available
resources as input or output stream. As explained in greater
detail below, using the conversational engines 208 and
conversational data files 209 (accessed by CVM 202 via
conversation engine APIs 207), each input is converted into
a binary or ASCII input, which can be directly processed by
the programming language as built-in objects. Calls, flags
and tags can be automatically included to transmit between
object and processes the conversational meta-information
required to correctly interface with the different objects.
Moreover, output streams can be specially formatted accord-
ing to the needs of the application or user. These program-
ming tools allow multi-modal discourse processing to be
readily built. Moreover, logic statement status and operators
are expanded to handle the richness of conversational que-
ries that can be compared on the bases of their ASCII/binary
content or on the basis of their NLU-converted query
(input/output of conventional and conversational sub-sys-
tems) or FSG-based queries (where the system used
restricted commands). Logic operators can be implemented
to test or modify such systems. Conversational logic values/
operators expand to include: true, false, incomplete, ambigu-
ous, different/equivalent for an ASCII point of view, differ-
ent/equivalent from a NLU point of view different/
equivalent from a active query field point of view, unknown,
incompatible, and incomparable.

[0139] Further more, the conversational application API
layer 203 comprises code for providing extensions of the
underlying OS features and behavior. Such extensions
include, for example, high level of abstraction and abstract
categories associated with any object, self-registration
mechanisms of abstract categories, memorization, summa-
rization, conversational search, selection, redirection, user
customization, train ability, help, multi-user and security
capabilities, as well as the, foundation class libraries, each of
which is discussed in greater detail below.

[0140] The conversational computing system of FIG. 2
further comprises a conversational engine API layer 207
which provides an interface between core engines conver-
sational engines 208 (e.g., speech recognition, NL parsing,
NLU, TTS and speech compression/decompression engines)
and the applications using them. The engine API layer 207
also provides the protocols to communicate with core
engines whether they be local or remote. An I/O API layer
210 provides an interface with conventional I/O resources
211 such as a keyboard, mouse, touch screen, keypad, etc.
(for providing a multi-modal conversational Ul) and an
audio subsystem for capturing speech I/O (audio in/audio
out). The I/O API layer 210 provides device abstractions, [/O

Feb. 22, 2007

abstractions and Ul abstractions. The 1/O resources 211 will
register with the CVM kernel layer 202 via the /O API layer
210.

[0141] The core CVM kernel layer 202 comprises pro-
gramming layers such as a conversational application &
behavior/service manager layer 215, a conversational dialog
manager (arbitrator) layer 219, a conversational resource
manager layer 220, a task/dispatcher manager 221 and a
meta information manager 220, which provide the core
functions of the CVM layer 202. The conversational appli-
cation and behavior/service manager layer 215 comprises
functions for managing the conventional and conversation-
ally aware applications 200 and 201. Such management
functions include, for example, keeping track of which
applications are registered (both local and network-distrib-
uted), what are the dialog interfaces (if any) of the applica-
tions, and what is the state of each application. In addition,
the conversational application and services/behavior man-
ager 20 initiates all the tasks associated with any specific
service or behavior provided by the CVM system. The
conversational services and behaviors are all the behaviors
and features of a conversational Ul that the user may expect
to find in the applications and interactions, as well as the
features that an application developer may expect to be able
to access via APIs (without having to implement with the
development of the application). Examples of the conver-
sational services and behavior provided by the CVM kernel
202 include, but are not limited to, conversational catego-
rization and meta-information, conversational object,
resource and file management, conversational search, con-
versational selection, conversational customization, conver-
sational security, conversational help, conversational priori-
tization, conversational resource management, output
formatting and presentation, summarization, conversational
delayed actions/agents/memorization, conversational logic,
and coordinated interfaces and devices (each of which is
explained in detail herein). Such services are provided
through API calls via the conversational application API
Layer 203. The conversational application and behavior/
services manager 215 is responsible for executing all the
different functions needed to adapt the Ul to the capabilities
and constraints of the device, application and/or user pref-
erences.

[0142] The conversational dialog manager 219 comprises
functions for managing the dialog (conversational dialog
comprising speech and multi modal I/O such as GUI key-
board, pointer, mouse, video input etc) across all registered
applications. In particular, the conversational dialog man-
ager 219 determines what information the user has, which
inputs the user presents, and which application(s) should
handle the user inputs.

[0143] The conversational resource manager 220 deter-
mines what conversational engines 208 are registered (either
local conversational 208 and/or network-distributed
resources), the capabilities of each registered resource, and
the state of each registered resource. In addition, the con-
versational resource manager 220 prioritizes the allocation
of CPU cycles or input/output priorities to maintain a
flowing dialog with the active application (e.g., the engines
engaged for recognizing or processing a current input or
output have priorities). Similarly, for distributed applica-

US 2007/0043574 Al

tions, it routes and selects the engine and network path to be
used to minimize any network delay for the active fore-
ground process.

[0144] The task dispatcher/manager 221 dispatches and
coordinates different tasks and processes that are spawned
(by the user and machine) on local and networked conven-
tional and conversational resources (explained in further
detail below). The meta information manager 222 manages
the meta-information associated with the system via a meta-
information repository 218. The meta information manager
218 and repository 218 collect all the information typically
assumed known in a conversational interaction but not
available at the level off the current conversation. Examples
are: a-priori knowledge: cultural, educational assumptions
and persistent information: past request, references, infor-
mation about the user, the application, news, etc. It is
typically the information that needs to be preserved and
persist beyond the length/life of the conversational history/
context and the information that is expected to be common
knowledge for the conversation and therefore, has never
been defined during the current and possible past conversa-
tional interactions. Also, as described below, shortcuts to
commands, resources and macros, etc. are managed by the
meta-information manager 222 and stored in the meta infor-
mation repository 218. In addition, the meta-information
repository 21 includes a user-usage log based on user
identity. It is to be appreciated that services such as conver-
sational help and assistance, as well as some dialog prompts
(introduction, questions, feedback etc) provided by the
CVM system can be tailored based on the usage history of
the user as stored in the meta-information repository 218 and
associated with the application. If a user has been previously
interacting with a given application, an explanation can be
reduced assuming that it is familiar to the user. Similarly, if
a user commits many errors, the explanations can be more
complex, as multiple errors is interpreted as user uncertainty,
unfamiliarity, or incomprehension/misunderstanding of the
application or function.

[0145] A context stack 217 is managed by the dialog
manager 219. The context stack 217 comprises all the
information associated with an application. Such informa-
tion includes all the variable, states, input, output and
queries to the backend that are performed in the context of
the dialog and any extraneous event that occurs during the
dialog. As explained in further detail below, the context
stack is associated with the organized/sorted context corre-
sponding to each active dialog (or deferred dialog-agents/
memorization). A global history 216 is included in the CVM
system includes information that is stored beyond the con-
text of each application. The global history stores, for
example, the information that is associated with all the
applications and actions taking during a conversational
session (i.e., the history of the dialog between user and
machine for a current session (or from when the machine
was activated).

[0146] The CVM kernel layer 202 further comprises a
backend abstraction layer 223 which allows access to back-
end business logic 213 via the dialog manager 219 (rather
than bypassing the dialog manager 219). This allows such
accesses to be added to the context stack 217 and global
history 216. For instance, the backend abstraction layer 223
can translate input and output to and from the dialog
manager 219 to database queries. This layer 223 will convert

Feb. 22, 2007

standardized attribute value n-uples into database queries
and translate the result of such queries into tables or sets of
attribute value n-uples back to the dialog manager 219. In
addition, a conversational transcoding layer 224 is provided
to adapt the behavior, Ul and dialog presented to the user
based on the I/0 and engine capabilities of the device which
executes the CVM system.

[0147] The CVM system further comprises a communi-
cation stack 214 (or communication engines) as part of the
underlying system services provided by the OS 212 . The
CVM system utilizes the communication stack to transmit
information via conversational protocols 204 which extend
the conventional communication services to provide con-
versational communication, It is to be understood that the
communication stack 214 may be implemented in connec-
tion with the well-known OST (open system interconnec-
tion) protocol layers according to one embodiment of the
present invention for providing conversational communica-
tion exchange between conversational devices. As is known
in the art, OSI comprises seven layers with each layer
performing a respective function to provide communication
between network distributed conversational applications of
network-connected devices. Such layers (whose functions
are well understood) comprise an application layer, a pre-
sentation layer, a session layer, a transport layer, a network
layer, a data link layer and a physical layer. The application
layer is extended to allow conversational communication via
the conversational protocols 204.

[0148] The conversational protocols 204 allow, in general,
remote applications and resources register their conversa-
tional capabilities and proxies. These conversational proto-
cols 204 are further disclosed Pin the patent application IBM
Docket No. Y0999-113P, filed concurrently herewith,
entitled “System and Method For Providing Network Coor-
dinated Conversational Services,” which is commonly
assigned and incorporated herein by reference (wherein the
conversational protocols are utilized in a system that does
not utilize a CVM system). In particular, referring addition-
ally to FIG. 3, the conversational protocols 204 (or methods)
include distributed conversational protocols 300, discovery,
registration, and negotiation protocols 301 and speech trans-
mission protocols 302. The distributed conversational pro-
tocols 300, allow network conversational applications 200,
200q and network-connected devices (local client and other
networked devices such as a server) to exchange information
register their current conversational state, arguments (data
files 209) and context with each other. The distributed
conversational protocols 300 allow the sharing of local and
distributed conversational engines 208, 2084 between net-
work connected devices (e.g., client/server). The distributed
conversational protocols 300 also include Dialog Manager
(DM) protocols (discussed below). The distributed conver-
sational protocols allow the exchange of information to
coordinate the conversation involving multiple devices or
applications including master/slave conversational network,
peer conversational network, silent partners. The informa-
tion that may be exchanged between networked devices
using the distributed conversational protocols comprise,
pointer to data files (arguments), transfer (if needed) of data
files and other conversational arguments, notification for
input, output events and recognition results, conversational
engine API calls and results, notification of state and context
changes and other system events, registration updates: hand-

US 2007/0043574 Al

shake for registration, negotiation updates: handshake for
negotiation, and discovery updates when a requested
resources is lost.

[0149] In addition, the distributed conversational proto-
cols 300 also allow the applications and devices to exchange
other information such as applets, ActiveX components, and
other executable code that allows the devices or associated
applications to coordinate a conversation between such
devices in, e.g., a master/slave or peer-to-peer conversa-
tional network configuration and networks comprising silent
partners. In other words, when multiple CVM or conversa-
tionally aware multiple devices are conversationally con-
nected and coordinated, it becomes possible to simulta-
neously control them through one single interface (i.e.
through a single microphone). For example, voice can
automatically control through a unique coordinated conver-
sational interface a smart phone, a pager, a PDA, networked
computers, a IVR and a car embedded computer. Silent
partners can be controlled via conversational interface from
another conversational device. Silent partners is a system
that is conversationally aware such that it can interact with
a network connected CVM via APIs/protocols. A silent
partner, however, does not present any 1/O to the user other
than possibly the functions for which it has been designated.
For example, a lamp in a room can be conversationally
aware by being discoverable by a CVM, being able to
register its conversational state (e.g., what its commands are:
switch lamp on, switch lamp off) and being able to execute
commands transmitted from a CVM. Under this form, a
CVM remote control referred to herein as a UCRC (univer-
sal conversational remote control) is able to download the
commands supported by all the discovered conversationally
aware appliances. The user can then control these applica-
tions by voice simply by dialoging with the CVM remote
control.

[0150] In one embodiment, the distributed conversational
protocols 300 are implemented via RMI (remote method
invocation) or RPC (remote procedure call) system calls to
implement the calls between the applications and the dif-
ferent conversational engines over the network. As is known
in the art, RPC is a protocol that allows one application to
request a service from another application across the net-
work. Similarly, RMI is a method by which objects can
interact in a distributed network. RMI allows one or more
objects to be passed along with the request.

[0151] The conversational protocols 204 further comprise
conversational discovery (detection), registration, and nego-
tiation protocols (or methods) 301. The registration proto-
cols allow each networked device or application to exchange
and register information regarding their conversational
capabilities, state/context and arguments, so as to limit data
transfer between the devices to relevant information and
negotiate the master/slave or peer networking. Silent con-
versational partners (which are only conversationally aware)
behave similarly (i.e., register their capabilities etc.) and can
interact through a conversational proxy server or as conver-
sational client of a CVM (i.e., silent partners use conversa-
tional registration with the (CVM devices).

[0152] The registration protocols allow the following
information to be exchanged: (1) capabilities and load
messages including definition and update events; (2) engine
resources (Whether a given device includes NLU, DM, NLG,

Feb. 22, 2007

TTS, speaker recognition, speech recognition compression,
coding, storage, etc.); (3) I/O capabilities; (4) CPU, memory,
and load capabilities; (5) data file types (domain specific,
dictionary, language models, languages, etc.); (6) network
addresses and features; (7) information about a user (defi-
nition and update events); (8) use preferences for the device,
application or dialog; (9) customization; (10) user experi-
ence, (11) help; (12) capability requirements per application
(and application state) (definition and update events); (13)
meta-information for CUI services and behaviors (help files,
categories, conversational priorities, etc.) (definition and
update events, typically via pointer to table); (14) protocol
handshakes; and/or (15) topology negotiation.

[0153] Registration may be performed using a traditional
communication protocol such as TCP/IP, TCP/IP 29, X-10
or CEBus, and socket communication between devices. The
devices use a distributed conversational architecture to com-
municate to their associated conversational engine and a
CVM controller, their conversational arguments (e.g., active
vocabulary, grammars and language models, parsing and
translation/tagging models, voice prints, synthesis rules,
baseforms (pronunciation rules) and voice fonts). This infor-
mation is either passed as files or streams to the CVM
controller and the conversational engines, or as URLs (or as
noted above, declarative or procedural at the level of infor-
mation exchange between devices: objects and XML struc-
tures). In one embodiment for implementing the registration
protocols, upon connection, the devices can exchange infor-
mation about their conversational capabilities with a prear-
ranged protocol (e.g., TTS English, any text, Speech recog-
nition, 500 words and FSG grammar, no speaker
recognition, etc.) by exchanging a set of flags or a device
property object. Likewise, applications can exchange engine
requirement lists. With a master/slave network configura-
tion, the master dialog manager can compile all the lists and
match the functions and needs with conversational capabili-
ties. In addition, context information may be transmitted by
indicating passing or pointing to the context stack/history of
the device or application that the controller can access and
add to its context stack. Devices also pass information about
their multi-modal I/O and UI capabilities (screen/no screen,
audio in and out capabilities, keyboard, etc.) The conversa-
tional arguments allow a dialog engine to estimate the
relevance of a new query by the NLU engine, based on the
current state and context.

[0154] The conversational discovery protocols 301 are
utilized by spontaneously networked conversational clients
230, 230a of the devices to automatically discover local or
network conversationally aware systems and dynamically
and spontaneously network-connect such conversationally
aware systems. The information that is exchanged via the
discovery protocols comprises the following: (1) broadcast
requests for handshake or listening for requests; (2)
exchange of device identifiers; (3) exchange of handles/
pointer for first registration; and (4) exchange of handles for
first negotiation

[0155] Furthermore, the negotiation protocols 301 allow
the negotiation between master/slave or peer networking so
as to provide the appropriate coordination between multiple
CVM systems in dynamic master-slave and peer-to-peer
interactions. More specifically, multiple CVM devices when
registering will add to the conversational registration capa-
bility, information pertaining to, e.g., their controlling capa-

US 2007/0043574 Al

bility, the conversational engines that they have access to,
and applications and devices that have registered with them
and that they control, Based on their UL, 1/O capabilities and
active I/0, one CVM controller becomes the master and the
other CVM controllers act as slaves, which is equivalent
relatively to the master as being registered applications until
a new negotiation occurs. The role of master and slave can
be dynamically switched based on the active /O modality or
device or based on the active application.

[0156] The speech transmission protocols 302 (or conver-
sational coding protocols) are used by speech transmission
clients 38, 38a to transmit/received compressed speech
to/from other networked devices, systems or applications for
processing. The speech transmission clients 38, 38a operates
in conjunction with compression, decompression and recon-
struction engines 234, 234a using suitable compression
hardware 235, 235a for processing the speech transmitted
over the network. The speech coders 234, 234a provide
perceptually acceptable or intelligible reconstruction of the
compressed speech and optimized conversational perfor-
mance (e.g., word error rate). The speech is captured (and
transformed into features) on the respective networked
devices using acoustic signal processing engines (audio
subsystems) 232, 232a and suitable audio hardware 233,
233a. In addition, compressed speech file formats 303 can
be transmitted and received between devices for processing
speech. More specifically, the speech transmission protocols
303 allow the devices to transmit and receive compressed
speech or local processing results to/from other devices and
applications on the network. As noted above, the conversa-
tional engines 208 (F1G. 2) preferably include compression/
decompression engines 234 for compressing speech (or
results) for transmission and decompressing compressed
speech (or results) obtained over the network from another
device or application for local processing. In one embodi-
ment, after the handshake process between a transmitting
device and a receiving device, a data stream (packet based)
is sent to the receiver. The packet headers preferably specify
the coding scheme and coding arguments (i.e. sampling
frequency, feature characteristics, vector dimensions, feature
transformation/family etc. as discussed in the above incor-
porated patent application IBM Docket No. YO999-113P)
using for encoding the speech (or results). In addition, error
correcting information can also be introduced (e.g. last
feature vector of the previous packet to correct he differen-
tial decoders if the previous packet is lost or delayed), or
appropriate messaging to recover (re-send) lost packets.

[0157] As illustrated in FIGS. 9, 10 and 11, the conver-
sational protocols 204 further include protocols for infor-
mation exchange between dialog managers (DMs) (DMs are
discussed in detail below) of networked devices. As shown
in FIG. 9, for example, in a distributed application (distrib-
uted applications 200a), dialog management protocols are
used for exchanging information to determine which dialog
manager (219 or 219a) will execute a given function.
Typically, different devices, CVMs or different applications
will have their own dialog manager, context stack 217, 217a
and global history 218, 218a. Through the dialog manager
DM protocols (which are part of the distributed protocols
300 (FIG. 3), the different dialog managers will negotiate a
topology with a master dialog manager and slave or peer
dialog managers. The active master dialog manager (illus-
trated as dialog manger 219 in FIG. 9) will be responsible for
managing the flow of /O to the different managers to decide

Feb. 22, 2007

the active dialog and appropriately execute a query and
update the context and history. For instance, the following
information can be exchanged: (1) DM architecture regis-
tration (e.g., each DM can be a collection of locals DMs); (2)
pointers to associated meta-information (user, device capa-
bilities, application needs, etc.); (3) negotiation of DM
network topology (e.g., master/slave, peer-to-peer; (4) data
files (conversational arguments) if applicable i.e., if engines
are used that are controlled by a master DM); (5) notification
of I/O events such as user input, outputs to users for transfer
to engines and/or addition to contexts; (6) notification of
recognition events; (7) transfer of processed input from
engines to a master DM; (8) transfer of responsibility of
master DM to registered DMs; (9) DM processing result
events; (10) DM exceptions; (11) transfer of confidence and
ambiguity results, proposed-feedback and output, proposed
expectation state, proposed action, proposed context
changes, proposed new dialog state; (12) decision notifica-
tion, context update, action update, state update, etc; (13)
notification of completed, failed or interrupted action; (14)
notification of context changes; and/or (15) data files, con-
text and state updates due to action. In addition, actions, I/O
events, backend accesses are information that is shared with
the conversational resource manager and task dispatcher
manager.

[0158] FIGS. 10 and 11 illustrate a system and method for
dialog management according to the present invention.
More specifically, FIG. 10 illustrates a hierarchical dialog
between multiple dialog managers (i.e., the master arbitra-
tor, and the slave dialog managers 1, k, and N) of various
devices/applications (1, k and N). FIG. 10 illustrates a typical
master slave topology. As discussed above, the topology is
formed by exchanging the relevant information via the DM
protocols. On the other hand, FIG. 11 illustrates another
master/slave configuration where only the main root (arbi-
trator) dialog manager performs the dialog manager task for
one or more applications or devices (1, k, N). In this instance,
the master dialog manager arbitrator is the only dialog
manager present and maintains the global context and his-
tory (possibly with classification of the application specific
context and history). The DM protocol involves exchanging
the attribute value n-uples between each application and
device and the core root dialog manager.

[0159] Tt is to be appreciated that even when multiple
devices/applications are involved, the actual dialog manag-
ing process as illustrated in FIG. 10 can be performed in
serial with one single dialog manager on a single device. The
difference between the two situations is that the user has the
feeling of carrying a conversation with an entity carrying
multiple tasks, as opposed to carrying multiple conversa-
tions with one conversation per entity specialized for the
given task. Each of these topologies can be negotiated via
DM protocols or imposed by user preferences, application
choice or CVM default settings.

[0160] Referring now to FIG. 4, a diagram illustrates a
detailed architecture of a conversational system and the core
functional modules of the conversational kernel of the CVM
system according to one embodiment of the present inven-
tion. It is to be understood that the system of FIG. 4 and the
accompanying description are for purposes of illustration to
provide implementation examples and that one of ordinary
skill in the art can envision other components or system
architectures for implementing a CVM according to the

US 2007/0043574 Al

spirit of the present invention. Furthermore, it is to be
appreciated that each of these elements can be introduced in
stand-alone mode within an application or as platform under
an existing operating system, or a true CVM with a core
kernel built around these different new elements. Conven-
tional calls to the underlying operating system could be
captured and implemented with CVM, which allows port-
ability. In this instance, CVM is configured as a stand-alone
platform for existing platforms.

[0161] Referring to FIG. 4, a conversational system 400
according to an embodiment of the present invention, in
general, comprises a combination of conventional sub-
systems and conversational subsystems which are executed
and managed by a CVM 401. The CVM 401 comprises a
task dispatcher/controller 402, a meta information manager
403, a dialog controller 404 (or dialog manager as referred
to above), a context stack 405, and a conversational sub-
system services manager 406. It is to be understood that the
term “CVM controller” may be used herein to refer collec-
tively to the task dispatcher/controller 402 and the dialog
controller 404. In general, the CVM 401 operates by con-
verting conversational and conventional input streams into
multiple actions and produces sorted output to a user
through conversational and/or conventional output streams.

[0162] The conversational system 400 further comprises a
plurality of conversational resource subsystems (engines)
407 including, for example, a speech recognition system
408, a speaker recognition system 409, a natural language
understanding and natural language parsing system 410 and
a text-to-speech synthesis (TTS) system 411. It is to be
understood that the conversational resources 407 may also
include other systems such as a NLG (natural language
generation) engine and an audio subsystem. As explained
above, each of these conversational subsystems 407 maybe
accessed through API calls to the CVM 401. The CVM 401
will locate the requested conversational subsystem 407 (via
the conversational subsystem services manager 406), drive
its execution and return appropriately the results. It is to be
appreciated that these conversational subsystem 407 can be
local or distributed over a network and that all conversa-
tional subsystem calls are hidden to the application
(although the engine APIs are always available to the
application if the developer wants a to implement a specific
behavior of the engines 407).

[0163] The conversational subsystem services manager
406 manages all the services, Ul and behavior (as described
herein) that are offered by the CVM 401. The conventional
subsystem services manager 412 manages all the services
and Ul offered by an underlying operating system (or
conventional /O system even in the absence of an under-
laying OS).

[0164] The core of the CVM 401 is the context stack 405
which operates and is managed under the control of the
dialog controller 404 (it is to be understood that the context
stack 405 id directly related to the global history and meta
information repository discussed above). In general, the
context stack 405 accumulates the context (i.e., full query
arguments list of attribute value n uples, and state/mode) of
each active process with an activated discourse (i.e., con-
versational interaction associated with a given task/process/
thread) along with any data files 413 (or at least identifiers
of such conversational arguments) for the different engines

Feb. 22, 2007

that may be needed for input understanding (e.g., files or
arguments that the engines use for performing their respec-
tive tasks such as active FSG, topic, vocabulary, HMM
(hidden markov models), voiceprints, language models or
possible queries for a speech input). In other words, the term
“context” refers to the state of each discourse (whether
active or nonnative), which keeps track of the past history of
the discourse, its current state, and the specific characteris-
tics and full query arguments of the corresponding task (e.g.,
vocabulary file, language model, parsing, tags, voiceprint,
TTS rules, grammar, NLU etc. of each active task/process)
along with any data needed for input understanding. It is to
be appreciated that, in a distributed CVM (as explained
below), the context stack (as well as other CVM compo-
nents) may be directly associated with networked services
(i.e., distributed over the network) (as described above with
respect to the context and global history).

[0165] More specifically, each new task, process, or thread
creates a new stack entry and is associated with a discourse.
Each application may be associated with multiple discourses
(e.g. the application management discourse and the appli-
cation content navigation discourses). Each context associ-
ated with a given discourse comprises the latest requests
made to the corresponding process/task/thread as well as the
latest output. The context of a given discourse is also
associated with, e.g., any active grammars, vocabularies and
symbolic language which maps the actual query. Again, the
latest information is stored in the history and context stacks.
Past history and context and other information is managed
by the meta information manager 403 and stored as part of
the meta information.

[0166] The dialog controller 404 manages the context
stack 405 by creating a new stack entry in the context stack
405 for each new task/process/thread that is spawned either
local or remotely from a networked device (with task
management being controlled by the task dispatcher/con-
troller 402 as discussed below). Each active application can
be associated with multiple discourses (e.g. the application
management discourse and the application content naviga-
tion discourses). As explained above, each context associ-
ated with a given discourse comprises the latest requests
made to the corresponding process/task/thread as well as the
latest output. Furthermore, the context of a given discourse
is associated with, e.g., any active grammars, vocabularies
and symbolic language (attribute value n-uple) which maps
the actual query. The context stack 405 is associated with the
machine state stack so that for any new input from a user, the
dialog controller 404 may traverse the context stack 405
until the input context can be appropriately established. This
essentially amounts to finding and selecting the active
discourse between the user and machine among the last and
past discourses.

[0167] The task dispatcher/controller 402 dispatches and
coordinates different tasks and processes that are spawned
(by the user and machine) on local and networked conven-
tional and conversational resources. The task dispatcher/
controller 402 is essentially a resource allocation mechanism
which, in general, dispatches the activated tasks (whether
they are conventional or conversational tasks) and controls
the status of each task, resource, etc. by monitoring the load
and availability of all the resources and appropriately assign
and shift the various tasks to different resources. The
resource allocation function involves determining the cur-

US 2007/0043574 Al

rent load of each resource, the needs of each service and
application, and balancing/managing the overall system by
dispatching tasks to the resources that can handle them to
optimize the overall system load and conversational flow.
The task dispatcher/controller 402 relies on conventional
system management procedures (via the conventional task
manager 417) plus any information exchanged by the dif-
ferent resources (via discovery, registration, negotiation, and
distributed conversational protocols discussed above). The
task dispatcher/controller 402 keeps track of these resources
and shares the conventional subsystems (e.g., GUI I/O and
system, video recognition engine, etc.) and conversational
subsystems 407 between the different tasks on the context
stack 405. In addition, the task dispatcher/controller 402 will
utilize the service of the underlying operating system to
manage and control conventional tasks that can be con-
trolled by the operating system at the level of the conven-
tional task manager 417. Again, as noted above, the con-
ventional operating system can perform task management
under the instruction of the conversational task dispatcher
manager/controller 402.

[0168] The task dispatcher/controller 402 feeds input from
the conventional and conversational subsystems services
412, 406 to the context stack 405 (via the dialog controller
404 which selects the active context) and feeds the output of
the different tasks to the different subsystems and prioritizes
them. The task dispatcher/controller 402 also inserts and
manages conversational assistants in the form of agents/
daemons and memorization tasks along the context stack
405. The task dispatcher/controller 402 coordinates the
output generation and prioritization according to the active
conversation and conversation history, delayed returns, del-
egation across network resources and task delegation, sum-
marization, and memorization (which functions are
explained below).

[0169] A dialog controller 404 manages the dialog (con-
versational=speech and multi-modal: GUI, keyboard,
pointer, mouse, video input, etc.) across all the conversa-
tional and conventional applications (registered with the task
dispatcher/controller 402). As explained above, applications
exchange (via API call or negotiation protocols) information
about their state, how they interpret a latest input, and the
confidence level for such interpretation. The dialog control-
ler 404 manages and determines the active context and
application. It also manages the conversational protocols by
which applications exchange information to assist the dialog
controller 404 in determining which applications are active,
or activates a small, dialog to resolve ambiguity if it can’t
make such determination.

[0170] FIG. 5 illustrates the function of the dialog man-
ager 404. As shown, different tasks (task 1, task N) and
resources (conversational subsystem A-7Z are managed by
the CVM 401. The CVM 401 decides which application is
active and how the context is to be modified (as explained
above with the dialog manager and conversational proto-
cols). In distributed applications, this function is performed
by transmitting messages as per the dialog manager proto-
cols discussed above. It is to be understood that the dialog
manager protocols are used to exchange information
between local parallel applications. The capability to man-
age the dialog and context across multiple (local or net-
worked) dialogs/applications that are unknown to the dialog

Feb. 22, 2007

manager and engines when designed is what is referred to as
generic NL processing and pluggable dialog managers and
NL applications.

[0171] Tt is to be understood that applications can make
calls to the CVM 401 directly (via the CVM APIs as
discussed above) or directly to the operating system (or
underlying system such as a JVM (java virtual machine) or
an operating system such as Microsoft Windows. When call
are made through the CVM 401, they are registered through
the task dispatcher/controller 402 and the dialog (which can
be multi modal and even without any speech input or output)
is managed by the dialog controller 404. When the call is
complete to the underlying operating system, the dialog
controller 404 will interact only indirectly with the applica-
tion, i.e., the conventional calls are managed by the con-
ventional task manager 417 and, thus, taken into account by
the task dispatcher/controller 402 when passed and or
because the task dispatcher collaborates/commands the con-
ventional task dispatcher 417. The latter will register the
application with the dialog controller 404 and update any
status changes that the task dispatcher/controller 402 is
aware of. In cases where the conventional applications are
managed with a C&C (command and control) interface (or
any other type of voice interface), the application dialog is
registered and controlled by the dialog controller 404
through registration with the dialog controller 404. It is to be
understood that these are particular cases. But, in general,
when backward compatibility or non-conversational appli-
cations are not an issue, the dialog controller 404 will
control the dialog of all applications and manage the context
through the context stack 405. It is to be appreciated that the
CVM 401 can re-implement all the conventional functions,
services and behaviors. In this case, the CVM 401 does not
execute as a platform on an conventional operating system
and acts as an operating system on its own capturing all the
conventional calls.

[0172] The CVM 401 further comprises a meta informa-
tion manager 403 which manages elements such as files (or
other similar entities adapted to the device such as records
or name spaces), directories, objects and applications that
are associated with the CVM 401, as well as any other
resource or object (local, networked, etc.) and information
about the user (preferences, security habits, biometrics,
behavior, etc.) The meta information manager 403 manages
these elements by associating such elements and system
resources with high level of conversational abstraction via
abstract categories and meta information. Object represen-
tations, for example, are expanded to encompass advance
knowledge representations like content driven meta-infor-
mation that is associated with each object (e.g. security
feature (user and author), associating of file with abstract
concepts like picture, drawing, image etc.). Each of these
elements are associated with one or more of a plurality of
meta information categories. These categories are defined
either by the operating system, the application or the user.
Each file, directory object and application can be associated
to one or more of the defined categories by pointing to the
category definition and associated functions or by register-
ing them to these classes. As explained in detail below, the
abstract meta information can be used to provide shortcut to,
or automatically extract and process elements of the file
system or any other object, resource or user

US 2007/0043574 Al

[0173] More specifically, the meta information manager
403 manages the file system using abstract meta-information
and protocol with multiple categories. These categories can
be defined the by owner/developer of the resource or by a
past user/application of the resource, Advantageously, CVM
401 relies on associative memory concepts as opposed to
conventional file management systems, wherein information
about files is captured by operating systems in three major
forms: (1) extension of the file name; (2) header of the file
name; and (3) file content type (binary versus ASCII)
(although the abstract category concept described herein can
significantly improve such conventional file system). In a
conversational system, an additional level of abstraction is
added to characterize the content or role of the file. For
example, each file can be associated with a set of abstract
classes characterizing the file (whereas conventionally, a
GIF file, for example is associated with a software applica-
tion to open or edit the file by default). In addition, multiple
directory/file system displays include or exclude by default
these extensions from the displayed information. Any other
image type of file will need to be registered at the level of
the application or preferably at the level of the operating
system, in order to take advantage of any automation pro-
cess. Conversely, incorrect or ambiguous file, extensions can
often lead to incorrect automated tasks. On the other hand,
headers convey more detailed information about the content
and the processing requirements of a given file. However,
currently, headers like MIME headers are usually designed
only for class of applications, e.g. e-mail, or protocol and
language, e.g. HT'TP and HTML.

[0174] In accordance with the present invention, files are
associated with abstract meta-information. This can be done
automatically such as with a topic or image classifier, or
explicitly by the application, user, platform etc. For
example, the concept of images, pictures, movies, drawings
can define diverse abstract categories. A file can therefore be
characterized by these different terms independently of the
format, extension, and/or usage of the file. In addition, the
CVM affords the capabilities to add categories across appli-
cations, either by application developers (with are then
registered) or by the user (customization or usage).

[0175] Tt is to be appreciated that this abstraction can also
be extended to directories, objects and applications, and not
just files. For example, concepts like links, macros, shortcuts
and even bookmarks can be associated with certain catego-
ries. These categories allow, for example, to display all the
financial applications or all the financial files, versus all the
drawing applications or all the image files.

[0176] The meta information manager 403 will associate
any object provided or built on the CVM platform to a
double linked list of categories. It is to be understood that
other implementations can be employed which implement-
ing the same functionalities. The CVM platform contains a
repository table of all defined categories, which is managed
by the meta information manger 403. Some categories can
be user or application dependent. Using CVM platform
system calls, a user or application can create new categories
and associated new objects to these categories. This is
especially true for the file system. Moreover, dynamic
information provided by the CVM platform or by the
user/application through system calls can be added to each
object: date of creation, date of use, who used it, when, how
often, who created the object, who compiled the object.

Feb. 22, 2007

[0177] The content of an object can be indexed based on
information provided by the object, application, user or
platform. These indexes are part of the dynamic information
associated to an object. Indexing and/or topic detection can
be done on the fly when possible or in batch mode.

[0178] Furthermore, just as meta-information can be asso-
ciated to available resources, it is to be appreciated that meta
information, abstraction and abstract categories can be asso-
ciated to each dispatched task and processes. Besides pro-
cess and load management, this afford very specific selection
of tasks. For example, with one conversational request, the
user can listen to the output of a task or re-claim the input
(e.g. microphone) for a task down the context stack and
direct a wave file, or an ASCII file, to append to the input
stream. Similarly, by way of example, the user can re-direct
the printer where a file is sent, by giving a single redirecting
request.

[0179] 1t is to be understood that the concept of using
abstract categories at the level of the file system is preferably
extended to any object and/or resource that is either avail-
able or accessible by the CVM operating system. As such, it
is to be appreciated that for networked and distributed
applications, the meta information manager 403 can manage
a plurality of meta information categories that are associated
with non-local objects or resources (e.g., file, directory, disk,
object, peripheral, application etc.), which are defined by the
owner/developer of resources or a past user/application of
the resource. Indeed, it is to be appreciated that the abstract
categories are independent of whether a particular resources
are local or networked, and that either through access or
connection to a resource, the resource can register to abstract
categories or can even create new abstract categories. More
particularly, new objects accessible not yet accessed must
register their meta-information, which registration process
may occur locally when a machine connects to it, or it may
be to a server similar to a DNS approach or name space
manager) where it registers its self, its content or its cat-
egories. This protocol is also used locally when an applica-
tion or object is downloaded or transferred to the machine
(e.g. via ActiveX, Javascript, Java applet, Vbscript), thereby
allowing an application to automatically register/active its
abstract categories. The registration protocol (as described
above) is utilized to automatically create new categories
associated with new non-local objects either upon connec-
tion with a remote system or via a meta information server
(analogous to a DNS server or name space manager) which
updates the list of abstract categories associated with an
object or its content. The self-registration mechanism allows
new objects that are downloaded from or forwarded to the
network to communicate its associated meta-information
and register locally using the same protocol. Double linked
lists and repository can be appended to the platform list.
Whenever a resource register new categories, the new cat-
egories are pointed as associated to that resource. When the
resource is destroyed, the corresponding categories are
eliminated.

[0180] As with the meta information associated with local
objects, the abstract meta information can be used to short-
cut, automatically extract or process non-local elements of
the network. These resources should be memorized, at least
for a while, within the set of active abstract categories or
registered resources. Each remotely accessible non-local
object or resource can be associated with these different

US 2007/0043574 Al

categories by pointing to the category definition and asso-
ciated functions or by registering them to the appropriate
classes.

[0181] For example, it becomes possible to refer to “wat-
son” resources as all the resources that are part of the
watson.ibm.com intranet or all the printer resources or all
the financial home page visited. Currently, with a conven-
tional browser (ore viewer), URL to pages or files can be
stored and then manually classified by the user. As a result
of our approach abstract categories would be automatically
created or subscribed to based on header formats or other
meta-information contained initially within the HTML (e.g.
within a specified comment field with the current HTML
specification, or within an appropriate meta tag or because
of an additional conversational protocol handshake). There-
fore, the bookmarks would be automatically categorized
when accessed or added.

[0182] The meta information manager 403 and reposito-
ries collects all the information typically assumed known in
a conversational interaction but not available at the level of
the current conversation. Examples are: a-priori knowledge:
cultural, educational assumptions and persistent informa-
tion: past request, references, information about the user, the
application, news, etc. It is typically the information that
needs to be preserved and persist beyond the length/life of
the conversational history/context and the information that is
expected to be common knowledge for the conversation and
therefore, has never been defined during the current and
possible past conversational interactions.

[0183] Uniformity of the data stream processing is an
important way to simplify the abstract categorization via
meta-information and allow categorization under a similar
abstract category, file, object, applications as well as local or
networked resources.

[0184] The interaction between the task dispatcher/con-
troller 402, dialog controller 404 and context stack 405 of
the CVM 401 in processing input and output data streams
will now be explained in greater detail. It is to be appreciated
that the present invention provides NLU interfaces with
contexts and mixed-initiatives sorted across multiple tasks
(with multiple domains). More specifically, the present
invention provides the capability to have a natural dialog
with NLU, NLG and mixed initiative across multiple appli-
cations, with multiple domains.

[0185] In this regard, each application will provide the
CVM 401 its own parsing and translation arguments. As
explained in greater detail below, the NLU engine 410 can
either tag a query sequentially (form filing) or in parallel
(e.g., procedural threads or parallel conversational objects/
procedures or parallel forms). The first task to have its dialog
completed by producing a non-ambiguous query is executed
and the corresponding query as interpreted by the other
application is stored to activate if the recognized query is
rejected by the user.

[0186] It is to be appreciated that conversational biomet-
rics can be used to collect any context and meta information
on the user not only to customize or adapt for purposes of
user preferences or to authorize a query, but also to use the
information to perform more robust recognition. Accord-
ingly, any information can be accumulated to recognize the
user. Namely, the usual phrasing of a query, the type of query

Feb. 22, 2007

phrased, command frequency (often used, not often used),
preferred applications, time or usage, etc. . Conversational
biometrics may be built using the methods disclosed in U.S.
Pat. No. 5,897,616 entitled “Apparatus and Methods for
Speaker Verification/Identification/Classification Employ-
ing Non-Acoustic and/or Acoustic Models, which is com-
monly assigned and incorporated herein by reference.

[0187] Referring now to FIG. 6, a diagram illustrates a
conversational input/output interface in accordance with one
embodiment of the present invention. As illustrated, a con-
versational input interface according to an embodiment of
the present invention can process multi-modal input, that is,
files/streams/resources, speech via a phone 600, keyboard
601, pointing devices 602, handwriting devices 603, includ-
ing natural interfaces. This means that all the input and
output events across all the modalities are caught and
transferred to the dialog manager (that also stores it appro-
priately in the context stack). Spoken input from a speech
client (e.g., telephone 600) is subject to a speech recognition
process 604 and other input (e.g., keyboard, mouse clicks
etc) are subject to NLU processing 605. Each input is subject
to attribute acquisition (401a) whereby the attribute value
n-uples are acquired from the input. A summarization pro-
cess 4015 is performed whereby the attribute value n-uples
are added to the context and then verifies with the syntax of
the back-end application 608 whether the query is complete,
incomplete, or ambiguous. The backend accesses are also
tracked by the dialog manager and the context manager. It is
sometimes possible to distribute some of the “intelligence”
to the backend by loading some disambiguation capabilities
(a feature of the dialog manager) to the backend. Individu-
ally, each input stream behaves the conventionally. The key
conversational aspect is in the input procedure wherein
commands can be entered in NLU (to provide natural
language understanding of input queries) or in FSG mode
(for constrained input according to rules: grammar and
vocabulary, as opposed to free natural input). Commands or
queries can be completed or corrected by completing miss-
ing fields or by correcting incorrect fields for the active task.
As such, the CVM introduces new issues not met with
conventional OS: simultaneous input streams to be merged
which create input ambiguity. For example, input may now
combine input keyed on the keyboard, handwritten input and
speech input, not to mention possible input from re-directed
streams. Therefore, the present invention provides a mecha-
nism to resolve any ambiguity. This may be performed as
explained in the above-incorporated application U.S. Serial
No. 60/128,081.

[0188] In accordance with the present invention, the input
problem is treated as a merge of the output of multiple
decoders, ASCII transcription or a list of attribute value
n-uples. Each input stream is converted into its ASCII
transcription and aligned with input time-marks via speech
recognition processing 604. When different input stream are
associated to the same task, the transcripts are merged as
follows. First, commands and queries are sorted based on the
tire marks and appended to a single data stream. Command
formulation can be checked against FSG rules and re-sorted
to satisfy the grammar rules. NLU queries do not necessarily
require re-sorting. For NLU queries, the symbolic fields are
filled for each stream, then compounded at the level of the
final input stream. Arguments such as spelling and alpha-
numeric code do not exploit grammar rules or NLL.U to solve
ordering ambiguity. Time-marks are used similarly to build

US 2007/0043574 Al

a unique stream. However, the input is fed back to the user
for confirmation with possible pre-filtering using a dictio-
nary or FSG rule book which is application-dependent.

[0189] For networked-based interactions, as explained
above, each machine registers with task dispatcher/control-
lers of other devices in the network and provides informa-
tion about its conversational capabilities. In other words, a
regular desktop will register full conversational capabilities,
whereas a phone will register (smart phone) or have its
server (regular phone) register as a display-less keyboard-
less, pen-less, pointer-less devices, a PDA will register as a
mono-window device etc. Only relevant input are
exchanged between the systems.

[0190] In summary, the input procedure provides a set of
multi-mode input streams, each transcribed into an ASCII
command, query, or list of attribute value n-uples. Each
input entity (command, NLU query field or argument unit
(isolated letter, word etc.) are associated to time-marks and
appended accordingly to a compounded input stream.
Should two or more stream have exactly the same time-
marks, they are prioritized based on when each input stream
contributed previously. Compounded inputs are checked
against possible FSG and dictionaries and optionally fed
back to the user. Each resource exchanges their conversa-
tional capabilities and the input stream is tailored to only
exchange relevant information.

[0191] With regard to conversational output dispatches
and interface, the CVM 401 produces output to files/
streams/resources, display (single or multi-windows, GUI,
color, images, movies), audio. Individually, each output
stream behaves conventionally. However, according to the
context stack 405 and task dispatcher/controller 402, the
output of multiple processes can simultaneously collide on
the same output stream (e.g. a same display in text mode or
the speech synthesizer). Also the output of one task can be
multiplexed between several output streams.

[0192] Each output stream can behave conventionally.
Alternatively, the output can be either the output of a task or
the generated output of the dialog process (e.g., directed
dialog or mixed initiative). Different categories of output
streams exists. For instance, with a mono-channel output
(e.g., dummy terminal (VT100 or Palm Pilot screen) or
audio only output), all the output messages using this
resource use the same channel (or sometimes share a same
channel) (e.g. speech output, unique window/screen and/or
text output). With multi-channel output, a separate channel
exists for the output of each task (e.g. Windows GUI).
Output streams of multiple tasks to mono-channel resources
are queued based on the content stack 405 and the priorities
assigned by the task dispatcher 402. When a mono-channel
output is provided to the user, the event becomes active and
it is brought to the top of the context stack. Multi-channel
outputs are not prioritized but updated asynchronously,
without having the task popped up to the top of the stack.

[0193] Tt is to be appreciated that outputs from each task
can be multiplexed to multiple output streams based on
output handle assigned by the task but modifiable by the
user. For networked-based interactions, each machine will
register with the task dispatcher/controllers of others con-
nected device in the network to provide information regard-
ing conversational capabilities. For instance, as explained
above, a regular desktop will register full conversational

Feb. 22, 2007

capabilities. A phone will register (smart phone) or have its
server (regular phone) register as a display-less keyboard-
less, pen-less, pointer-less devices, a PDA will register as a
mono-window device (e.g., Palm Pilot) etc. Only relevant
outputs are exchanged between the systems.

[0194] Tt is to be appreciated that all the output, in par-
ticular voice output, can be customized and programmed by
the user. Selection of the voice speaking the output can be
made like fonts can be selected for text display. In such case,
we speak of Voice fonts. More complex conversational
presentation are prepared using conversational formatting
languages. In summary, CVM 401 provides a mechanism to
queue the output of multiple tasks to mono-channel output
based the context stack 405 and the task dispatcher 402, as
well as a mechanism to redirect or modify the resource
assigned to each input streams, even in multiplexed cases.
Each resource exchanges their conversational capabilities
and the output stream is tailored to only exchange relevant
information, including selection of the output Voice fonts
and formatting of conversational presentations including
GUI events, and other audio content.

[0195] The input/output processing by CVM 401 will now
be explained in further detail. As explained above, various
activities must be appropriately organized by the CVM 401.
For instance, basic system calls must spawn multiple actions
involving different subsystems. Such actions include execut-
ing a task, listening for new input, and producing an output/
feedback. By way of example, the task dispatcher/controller
402 will decide on the basis of the context stack 405 the
different statistical parsers that must operate on a query for
the dialog controller 404 to identify the active context and
complete the query. These actions must be appropriately
prioritized so as to, e.g., execute completed queries and
update the context stack 405, provide feedback to the user
for incomplete or ambiguous queries/command, allow new
input to be decoded and run down the context stack 405, and
return output of executed or running processes.

[0196] The task dispatcher/controller 402 associated each
task or device with a conversational engine with conversa-
tional arguments. When there is one engine per application
or device, the NLU engine of each application or device can
be parallel (procedural threads) or serial (form filling) (as
described above). When multiple device/applications share
the same engine the NLU engine needs to be parallel with
procedural threads. Rejection or likelihood of a new query
is managed by each activated task based on the conversa-
tional arguments. Queries that are rejected or too improbable
cause the dialog controller 404 to peruse down the context
stack 405 to look for the next available context. Each action,
completed query and conversational argument of an active
task as well as each returned value/result are stored on the
context stack 405. In addition, a returned value and results
activate past contexts, when appropriate.

[0197] The task dispatcher/controller 402 divides each
command/process into multiple actions, starts the associated
threads/processes with the appropriate priority and relates/
inserts them within the context stack 405. The task dis-
patcher 402 allocates each resource and shares them
between the different spawned actions, and controls handles
and streams to and from the resources. Based on the modal-
ity (pointer, keyboard, file, speech), the task dispatcher 402
redirects the stream to the appropriate conversational sub-

US 2007/0043574 Al

systems or conventional subsystem with speech inputs being
transcribed/understood. The output of these subsystems is
run down the context stack 405 to extract the active query
and complete it. On the other hand, outputs are queued based
on the priority levels of each task and dispatched sequen-
tially to the output resource.

[0198] Each new (active) task/process/thread creates a
new stack entry in the context stack 405, with or without
activated discourse. The context stack 405 is associated with
the machine state stack so that for any new input from a user,
the context stack 405 can be traversed until the input context
can be appropriately established. This essentially amounts to
finding and selecting the active discourse between the user
and machine among the last and past discourses, possible
going back into the history. The selection process will now
be explained in greater detail. In addition, each task is
associated with a mixed initiative layer. This layer can be as
simple as the conversational equivalent to the usage infor-
mation of a command line in conventional operating sys-
tems. The dialog controller 404 will first check a user
command query for completeness or ambiguity at the level
of the syntax of the command query. Commands that are
deemed incomplete or ambiguous will be returned similarly
with priority level (top for the application under focus) to the
appropriate conversational engine 407, which will generate
a request (a prompt) for the missing or ambiguous informa-
tion and update the context (requested missing fields). It can
also simply mention that the request is incomplete ambigu-
ous when unable to better formulate the prompt (e.g. legacy
application).

[0199] On the other hand, complete and non-ambiguous
commands will result in certain results (e.g., outputs or
actions). These results are similarly returned to the appro-
priate conversational engine 407 with a priority level and
update the context, unless if re-directed by the user as in
conventional systems. However, the re-direction can be
more sophisticated as it can involve partial mixed initiative
notification while re-directing the results. As explained in
further detail below, it can be implemented, for example,
with a conversational assistant. This would be extremely
complex to achieve with a conventional system and it would
probably require redirecting the output to a specially written
script. Command may also require user confirmation before
execution based on the preferences/settings coming from the
CVM platform, application, or user preferences.

[0200] Completion/search for the active context is per-
formed from context to context down the stack. That is, new
queries or arguments are compared by the dialog engine by
going down the stack until an acceptable match is obtained
and optionally confirmation is obtained from the user. As
soon a context is found that fits the utterance at the level of
the NLU symbolic language, the context becomes active and
the corresponding process becomes active. Until the active
command is completed, or until a new command is pro-
vided, the selected context is marked active, and pushed to
the top of the context stack 405. When a message is returned
to the user, the context is updated and then pushed to the top
of the context stack 405 under the active context. The active
context is updated to inform of the existence of a returned
value. This can also be done at the level of the superseding
CVM session discourse, which can be in the stack or always
besides the stack and then searched right after the active
context, before going down the stack. Simultaneously com-

Feb. 22, 2007

pleted tasks result in contexts that are arranged under the
active context according to CVM priorities (e.g. FIFO or
FILO). Active contexts sufficiently completed to generate a
task will be pushed down the stack under the next or all the
returned contexts. Or it could become the active discourse.
This may be done automatically or when commanded by the
user. This stack structure allows to maintain non-ambiguous
conversational interactions with multiple tasks, threads or
processes.

[0201] If the request is complete, it will be executed,
pending possible request for confirmation by the user, e.g.
when it is irreversible. Otherwise, mixed initiative is used to
continue the completion or correct the query/command.
Whenever, a command/request progresses, option is opened
in the context for rejection of the discourse by the user. This
would mean, restoring the previous stack status (and pro-
gram status) and pursuing down the stack. The user would
have to explicitly request going back up the stack. If the user
rejects or immediately completes his/her input prior to
execution or notification of execution to the user, the new
input is appended to the active utterances and the search is
re-started from the top of the stack. Any other utterance
provided by the user, before the active context is established,
is stored in a buffer and considered as appended to the active
utterance (speech utterance or any other mode of input). The
context stack is updated pending on voice, keyboard, mouse
or any other input or command and or the application output.

[0202] A particularly useful feature provided by the CVM
401 in accordance with the present invention is “conversa-
tional memorization.” Conversational memorization is the
capability to delay and return to a task and context that is
assigned by either the user, the platform a specific applica-
tion. In general, instructions/commands that are initiated by
the user are explicitly sent to the background of the system.
Such commands can involve launching daemons or agents
assigned some specific task or functions. They can also
involve memorization, whereby the CVM “takes notes” of a
command or event and either reports it or execute it and
returns to the user at a particular time that is selected by the
user or by default (e.g. at the end of the session). Therefore,
an output or background task can be re-directed to present
their results at a subsequent time. Conventional agents are
activated. At the difference of conventional background
tasks and agents, when reminders or results are returned to
the user, the conversation context at the moment of the
memorization request is restored. At the time memorization
occurs, a snapshot of the context stack 405 is made and
stored as meta-information associated to the memorized
task. The context stack 405 are rearranged at the time the
memorized task interacts with the user. The current context
stack is stored and the old context stack is added on top of
the stack, with possible updates as programmed by the user
or application developer or imposed by CVM, based on
intermediate changes die to the evolution of the context and
dialogs between launching the task and its completion.
When the interaction of the user and memorized task is
complete, by returning to a previous context, the previous
context stack is added on top of the stack. When context
stacks are added, any overlap can be removed at the bottom
of the stack. The user, platform or application can decide to
only preserve save portion of the stack. Conversational
assistants perform such tasks. They can be implemented by
agents and daemons simply running on their own and
re-interact with the user only when producing output. Their

US 2007/0043574 Al

output is sent to the user according to the priority level of the
task. When becoming active the user can easily update the
task associated to the agent. Conversational memorization,
are rather tasks inserted it the bottom of the stack and
executed only when the stack is emptied at the end of the
session. Occasionally, they can be inserted higher in the
stack or pushed to the top of the stack at a pre-decided
moment. Memorization tasks are executed only when active.
The memorization feature affords the capability to memorize
past actions, preferences and instructions.

[0203] As indicated above, memorization save a snapshot
to the active context to restore the conversation associated
with the reminder. It is also important, however, to be able
to summarize the conversation and context to the user at that
moment. To perform this, the application developer of an
application (and/or the user preferences or some decision
taken by the CVM platform) can provide the fields (i.e., the
attribute items) that should be summarized and presented to
the user if they have been filled. This is stored as extra fields
in the meta information associated with each variable/
attribute of the system. Typically, the application developer
can also describe how each field should be addressed (with
a usable abstract name) instead of with its actual variable
name or attribute designation. The summarization can then
be activated upon a decision by the application (reactivation
of the application), or by query of the user, or by CVM. It
will search the active process, recover the context, and
summarize the “filling status of the attribute n-uples asso-
ciated with the query”. The summarization task is a service
of CVM similar to any other application, whereby the user
can dialog with the summarization application to obtain
more details, or move further back in time for summariza-
tion. This can be as simple as saying “go back to application
X” or by stating “you were telling me to do Y” or very
complex with more detail to trace back through the history
of the dialog.

[0204] Another feature provided by the CVM 401 is
conversational re-directions. As it is easy to re-direct input
and output of Unix processes, for example, conversational
re-direction performs the same functions. However, the
re-direction can be more sophisticated as it can involve
partial mixed initiative notification while re-directing the
streams. Using conversational calls, it is possible to dis-
criminate the output between process results and notifica-
tions to the user with levels of priority.

[0205] Again, as explained above, meta-information,
abstraction and abstract categories can be associated to each
dispatched task and processes, which provides specific
selection of tasks. For example, with one conversational
request (or by pressing a button on a keyboard or clicking a
mouse or providing a key), the user can listen to the output
of a task or re-claim the input (e.g. microphone) for a task
down the context stack and direct a wave file, or an ASCII
file, to append to the input stream. Similarly, the user can
re-direct the printer where a file is sent, by giving a single
redirecting request.

[0206] Based on the configuration of the option/prefer-
ences, on the load on the system or on the capabilities of the
system, the task dispatcher/controller 402 can decide to
execute task on networked processors or to defer some task
until another processor can be used to understand the input,
activate and be able to understand the input, or a when a

Feb. 22, 2007

device which is capable of performing such task is available
on the network. Typically, deferred dictation on a low-end
hand-held device would follow this model. Again tasks are
memorized on the task and memorized from session to
session until the server side is active and able to perform the
transcription. Similarly, shared interfaces between a local
machine an a server machine can be managed by the task
dispatcher/controller 402. For example, a name dialer appli-
cation car be added to a conversational smart phone. The
names that are often used are stored locally and recognized.
On the other hand, unknown names or names that were
never used before are sent to a more powerful networked
machine for recognition and then download the updated
information (phone number to dial etc.). Similarly, all the
information that is locally stored can be periodically syn-
chronized to update the phone number information. This
process of local vs. server based recognition is hidden by the
task dispatcher 402. The networked shared tasks are man-
aged by the users as several discourses, independently of the
machine where the task is executed. This is one illustration
of'the usefulness of a uniform CVM API across all platforms
for all transactions. This is similar to the method and systems
described in the above-incorporated IBM Docket No.
Y0999-113P for providing coordination of conversational
services between networked devices using conversational
protocols. In addition, a distributed architecture and distrib-
uted processing between client and server leads to new
requirements of conversational networking. Such require-
ments involve management of traffic flow and resources
distributed across the network to guarantee appropriated
dialog flow for each of the users engaged in a conversational
interaction across the network. The elements described in
IBM to Docket No. YO999-113P can be employed herein for
conversational interaction across the network (e.g., server
load management to maintain dialog flow, engine server
selection based on the task, features, and capability require-
ments and conversational argument availability (data files),
conversational protocols, audio RecoVC (recognition com-
patible VoCoder) providing a coding protocol with pitch that
allows reconstruction for play back etc.

[0207] 1t is to be understood that the task dispatcher/
controller 402 presents radically new dispatching behavior,
relative to a conventional OS, which does not share the
conversational and conventional subsystems in the manner
described herein by a CVM does. Indeed, with a conven-
tional system, text-input is always sequential within a win-
dow and associated to one and only task. The capability to
handle multiple simultaneous tasks with a keyboard and text
displayed in a unique window would require to use most of
the principle of conversational dispatching as described
herein. The task dispatcher handles the issue of maintaining
the dialog flow and, therefore, minimizes any delay die to
the network and CPU load. It will prioritize the CPU cycles
and available network route and resources to guarantee that
delays on the dialog are minimized to acceptable levels.
When an engine becomes a bottleneck, it receives more CPU
cycles (higher priority, until the backing is reabsorbed).
Again, this is related to conversational computing. When a
network route becomes too slow, it will fine another route or
another resource to minimize the delay. Otherwise, it will
warn the user of possible delays in the response. Dialog flow
for the active dialog is a priority of CVM. Dialog flow and
minimized delays for the active dialogs of all connected

US 2007/0043574 Al

users is the function to optimize by the CVM on router
gateways and servers in the network.

[0208] Another feature provided by a conversational
CVM system is “conversational security,” whereby meta-
information relating to the author and/or modifier of local or
remote files, especially executable files, can be used for
security purposes. In particular, with speech-based conver-
sational systems, since each command conveys not only the
formulation of the query but also enough information for
authentication of the user using, text-independent speaker
verification can be used to identify and verity a user. In this
manner, the automatic (and transparent) authentication of
the user can be made whenever a query to a restricted
resource is made, based on security meta-information asso-
ciated to the resource. As noted above, all the information
collected about the user queries and history can be used to
contribute to the recognition (ID or verification) of the user.

[0209] The authentication an be performed either directly
on the request or using non-expired information acquired
shortly before the query. In particular, authorization for
access to files or application can on a query by query basis.
For instance, if a user requests a restricted service, the
request may be verified with respect to the set of users that
are pre-authorize to access that specific service. The authen-
tication can be performed via open-set speaker identification
performed on the request (e.g., file access, directory access,
application opening, executables, connections, encryption/
decryption, digital certification/signature). Resources hav-
ing different passwords or a user ID associated with a similar
user can be seamlessly accessed with no explicit login or
password authentication. In any event, non-obtrusive user
authentication can be continuously and transparently per-
formed through user dialog.

[0210] In accordance with the idea that a conversational
VM can be implemented even with no speech input, the
stack of contexts should contain the identity of the user as
the most recently authenticated identity. In addition, each
resource should contain the list of authorized users as well
as some security requirements (e.g. in a non-speech case the
expiration date of the latest authentication). Of course key-
strokes or pen based authentication can also be considered,
but it is not at all mandatory.

[0211] Each resource can also log/cache the identity of
each user attempting to access it. These logs could then be
encrypted and subsequently used to recognize access
requests to previously accessed resources. In particular, the
operating system can intercept password requests from an
external source and complete the request using the log
transparently to the user. New resources can transfer a login
request while registering their meta-information so that even
the login process can become completely transparent to the
user. This is an extension of the concept of single sign-on or
password vault.

[0212] Another feature that is provided by the CVM is
“conversational customization,” whereby access to each task
or resource can be individually customized to preferences of
the user requester. For instance, the personality/behavior of
the CVM (e.g. synthesized voice—Voice Fonts) can be
automatically customized to an identified user’s preferences.
Until the user explicitly logs out of the CVM instantiation
(i.e., terminates the session), the customization and prefer-

Feb. 22, 2007

ences are frozen. Such systems or applications are multi-
users, but one user at a time once and for all until the next
log-in.

[0213] As explained above with respect to conversational
security, automatic identification of the user can be per-
formed whenever a query to a resource is made. The
authentication can be performed either directly on the
request or on non-expired information acquired shortly
before the query. Tasks and context are prioritized according
to the sequence of active users and re-prioritized at each user
changes. Environment variables and preferences can be
modified “on the fly” based on changes of the user identity
without requiring the reset of the whole environment. Ambi-
guity can be resolved at the level of each context or the
context stack using the user identity. In distributed cases,
with either user or server changes, the context should be
update whether it be loading the context from the client to
the server or recovering a context maintained on the server,
or transferring the context between servers.

[0214] Conversational VM can adapt dynamically to the
preferences of multiple users and to the active context. It
allows multiple users while actively running. In a speech-
based system, each command can be used to perform
text-independent speaker identification. Any change of user
automatically implies the creation of a new active context
which pushes the previous context down the context stack,
unless the new active context is waived explicitly by the new
user or the active application. User changes automatically
change the priority along the context stack to first handle a
task associated to the active user.

[0215] Since user identity can be associated in the context
of each discourse, command ambiguity can be immediately
and transparently resolved (e-mail from my mother is cor-
rectly understood, independently of the user). The process of
traversing the context stack 405 is advantageously enhanced
by associated discourses to a same user, except if waived by
the owner of the discourse, the associated application or by
some options. Exceptions to this rule while traversing the
context stack may automatically imply that the discourse
becomes flagged as multi-users. As discussed above for the
conversational security, the user identity could be obtained
through alternative procedures such as manual selection or
input by the user of his or her identity. Changes of the active
user identity also have an impact on the conversational
security subsystem. Each resource can log the identity of the
user accessing it.

[0216] In summary, with respect to conversational multi-
users and conversational security, it is to be appreciated that
dialogs, categories, meta-information, and access to
resources can be a function of the identity of the user and its
associated meta-information history. And conversely, the
conversational information collected on a query can be used
to recognize the user. The meta-information associated with
each object can be consulted and updated before and after
each action or access. When an object is created, modified
or consulted, information about the user is added to its
meta-information so that the meta-information comprises
security and preference fields associated to each object.
Access 1o an object is based on its content, date of creation,
history of access and modification and other meta-informa-
tion. Access is controlled or configured not only based on the
identity of the user but on additional meta-information like

US 2007/0043574 Al

the date, the usage history, the opened applications etc. In
other words, it is possible to allow a person to access a file
provided that the file is opened to display on the screen or
play back or execution. However, the person is denied
access to open the file to copy its content to another object.
In addition, meta-information can be tagged in an un-
erasable fashion to an object.

[0217] Another feature offered by the CVM is “Conver-
sational search,” whereby search capability is based not only
on the name, modification or ASCII content of files, but also
on abstract categories defined by the operating system, the
application or the user, as well as topics that may be
extracted on-line or off-line by the operating system, or
obtained via protocol when the object was accessed. In
addition, contextual search capabilities may be used to
complete active query or to extract similar queries/context.

[0218] In particular, resources can be searched based on
the abstract categories that associated with each of the
resources. These categories may be either defined as previ-
ously described in the context of the meta-information
concepts or based on contextual associations. While a search
of all images in a directory as described above is relatively
straightforward, a search of “similar image” relies on con-
textual associations: among all the images in the directory,
which images have been used in a similar context (e.g.
opened, edited or included, etc., by a resource categorized
similarly to the application used to edit the present image).
This can be performed by contextual logging/caching of
each resource/object access. Categories now can also con-
tain meta-information about themselves. In addition, it is
possible not only to search by category or contextual cat-
egory, but also by user access (and not just by the identity
of user modifying it as with conventional operating sys-
tems).

[0219] Eventually, ASCII, audio and any other sets of
transcribable media can be searched based on word parts,
words, word topic or context. Topics involve capabilities to
identify the topic text. Contextual search involves the capa-
bility to search a text for similar contexts as the active
context or candidates to complete of the current active
query/context. For example, it is possible to extract all the
files referring to a given Tuesday, while explicitly searching
for the keyword “Tuesday” or for the actual date: calendar
entries on Monday mentioning “Tommorrow” will also
return these items.

[0220] Topic determination of a file can be done off-line
when the computer is not intensively used. Only new or
recently modified files should be examined. Topics are
automatically added to the meta-information associated to
each resource. Contextual information will by definition
always be a very CPU expensive task, to be done only at the
explicit request of the user, For external objects, the topic
can be automatically registered when the resource is
accessed (as described above). This does not prevent the
local machine to also search the object for it own internal
abstractions (defined through meta-information about them-
selves).

[0221] The feature of “conversational selection” is also
provided. Conversational selection capabilities are provided
at the resource manager level or within any application by
relying on meta-information, abstraction and conversational
queries/mixed initiative/correction which avoid long

Feb. 22, 2007

sequences of elementary selections and provide natural
shortcuts and correction of the selection. Various mecha-
nisms are provided to access and present immediately the
skeleton of objects with hierarchical structures.

[0222] In particular, it is to be appreciated that conversa-
tional selection can be performed in accordance with the
present invention using a combination of hierarchical
searching (abstraction based selection) as well as complex
query capabilities (dialog based selection) from within an
active task or application. Conversational selection provides
a significant improvement over conventional selection meth-
ods. Indeed, even in a GUI environment, displaying the
available resources for a given application or query is
greatly improved by using meta-information and abstract
categories. More specifically, with abstraction based con-
versational selection (using abstractions and shortcuts) an
individual can by-pass menus and hierarchical selection in a
manner similar to the way in which speech queries (in IVR)
bypass pages of menus via DTMF interfaces. This is one of
the major advantages provided by a conversational interface
in terms of increased productivity. It also illustrates the
uniformity of the interface in that the same interface is used
independent of the modality used to access a service (e.g.,
through a desktop, a PDA or the phone) (e.g., CML such as
discussed in the above-incorporated IBM Docket No.
Y0998-392P).

[0223] For example, consider a backend server that
retrieves information from a database and provides the
information in HTML format for web browsing, as well as
with a conversational header that is built using JSAPI and
conversational extensions. When the server is accessed
through a conventional browser modality, a person can
display the information and select desired information by
either pointing or by speaking. If the person accesses the
server via phone modality, user selection can be performed
through a navigation menu comprising URLs and anchors.
These navigation menus are generated from the meta-infor-
mation that the web-pages transmit via the conversational
HTML to the browser.

[0224] 1In all these cases, the menu used for navigation by
selection through the web pages or the file system, or
whatever other hierarchical structure of object and resources
can be appropriately presented in one of various comple-
mentary manners. For instance, at the moment of registra-
tion of a networked object, the menu can carry meta-
information about its structure. Moreover, the system can
locally keep track in the meta-information that it associates
to each object of the structure (skeleton) of the structure
(conversational structure skeletons are described in detail in
the patent application IBM Docket No. Y0999-114P, filed
concurrently herewith, entitled “Structure Skeletons For
Efficient Voice Navigation Through Generic Hierarchical
Objects”, which is commonly assigned and incorporated
herein by reference. Moreover, the system can periodically
update its skeleton information, during off-peak use of the
CPU.

[0225] The system can periodically spider any local or
external resource and hierarchical object. Alternatively, in
particular dialog structures, each system can subscribe to the
accessible resources and periodically, or when accessing,
update the skeleton meta-information. Furthermore, meta-
information servers can perform the spidering and provide
the skeleton information along with the meta-information.

US 2007/0043574 Al

[0226] This meta-information describes how to present the
menu (TTS) what vocabulary, FSG and NLU needs to be
used etc. In addition, mixed initiative and NLU can be used
to correct selections without requiring backtracking or com-
pletely new selection like imposed by conventional OS and
GUI-based selections.

[0227] Therefore, with respect to conversational searching
and selection, object can be searched or selected based not
only on conventional structures (like a file system with
directories), but also on meta-information, abstract catego-
ries associated to the object by platform applications or
users, as well as on the basis of its associated dynamic
information. In addition, search queries can be provided in
a natural fashion and narrowed down using mixed initiative.
Queries can be decoded, parsed and then translated into a
logic combination of queries (symbolic query) using NLU
technology. Conventional structures as well as categories
and dynamic information can then be searched to match the
symbolic query. Mixed initiative can be used to narrow
down and modify the query based on the results of the
search. Matching object can be singled out or accepted.

[0228] Other features offered by the CVM are conversa-
tional help, manuals and support. One of the most compel-
ling aspect of a conversational interface is its capability to
flat the learning curve of a using such system. Indeed NLU
and mixed initiative help coaching the user into using each
application and controlling the system. However, it is even
more important to be able to offer support to the user while
he performs a task.

[0229] Conversational support offers help and manuals
upon request from the user. It relies on history of the user’s
usage history of the application and of similarly categorized
(meta-information) categories. Based on a user’s previous
actions, the help feature of the present invention will be
detailed (e.g., user has never performed task, use has not
recently performed task, or the user has always failed when
doing this task) or simple reminder (when the user is familiar
with this). While the user performs a task, a support assistant
simultaneously tracks the application manual. Missing
fields, ambiguous requests and series of correction and
rejected commands are tracked and used by the assistant to
reinforce the mixed initiative with helping dialog. It is to be
appreciated that services such as conversational help and
assistance, as well as some dialog prompts (introduction,
questions, feedback etc) provided by the CVM system can
be tailored based on the usage history of the user as stored
in the meta-information repository and associated with the
application. If a user has been previously interacting with a
given application, an explanation can be reduced assuming
that it is familiar to the user. Similarly, if a user commits
many errors, the explanations can be more complex, as
multiple errors is interpreted as user uncertainty, unfamil-
iarity, or incomprehension/misunderstanding of the applica-
tion or function.

[0230] Different degrees and modalities of help are pro-
vided ranging from mixed initiative/usage support, to con-
versational access to manual (locally and over the network)
via NLU request and mixed initiative, topic based search,
multi-modal tutorial. It can take the form of conversational
technical support involving local or remote agents (e.g. to
upgrade or re-install and application in the background). As
always, uniformity and coordination of the help interface is
of the uttermost importance.

Feb. 22, 2007

[0231] Tt is to be appreciated that help information can be
accessed using NLU queries to access the help information
or on the basis of the meta-information associated to the
current user (history) and on the basis of the arguments that
are missing or modified using mixed initiative. The dialog
provided by each application is tuned to the preferences or
level of expertise of the user.

[0232] In summary, help and support is provided through
a ubiquitous coordinated conversational interface, using
local and remote resources, user’s usage history and agents
to complete request, guide through procedure, search for
information and upgrade/install new applications.

[0233] The following is a more detailed discussion on the
programming languages/scripts used for implementing the
CVM as described above. Such programming/script lan-
guages allow to use any available resources as input or
output stream. Using the conversational subsystems of the
CVM platform, each input is converted into a binary or
ASCII input or attribute value n-uples (or is declarative
equivalent-bytes or XML), which can be directly processed
by the programming language as built-in objects. Calls, flags
and tags are automatically included to transmit between
object and processes the conversational meta-information
required to correctly interface with the different objects. Any
output can be specially formatted according to the needs of
the application or user. Multi-modal discourse processing
can now be easily built using the new programming tools.
The programming/scripting language provides handles,
similar to file or stream handles, to the input or output of the
conversational sub-systems presented in the conversational
system architecture: speech recognition/speaker recogni-
tion/conversational system. These input streams are handled
as library calls, which are actually implemented by system
calls. It is to be appreciated that form the point of view of
CVM, a conversational browser as described in the above-
incorporated IBM Docket No. YO998-392P can be consid-
ered either a conversational application or that its compo-
nents (e.g., XML parser) and plug ins are deemed as part of
the conversational engines that comprise the conversational
application.

[0234] Voice input from a microphone (e.g. the standard
voice input) can be arguments of function calls with the
sequence of words, phones, or user identity or queries
(symbolic language representation provided by NLU). The
input can also be provided by handwriting, or from a file, etc.
Each of the resulting streams can be seen as derived classes
in an object-oriented context.

[0235] In the case of platform scripts, the utterances are
processed with one of the conversational sub-systems ser-
vices and processed by the script before inducing actions. A
conventional command and control environment (e.g., Voice
Center of ViaVoice) can be viewed as a relatively simple
conversational platform created with a conversational script.
By modifying the script, the platform will be modified. In
practice, Voice Center is built with conventional. C/C++
code, which hides deep in the code, input handle and
command recognition and execution. Context, audio status
etc. can be set within the platform to update environmental
or global variables. Again, as described above, the conver-
sational objects/components and foundation classes can be
procedural or declarative.

[0236] The input process described above in accordance
with one aspect of the present invention considers that

US 2007/0043574 Al

speech or any other input stream is included as a classical
input/output stream that is susceptible to all forms of pro-
cessing typically reserved for character or binary input. User
inputs can be represented by their transcriptions or their
mappings into a symbolic language after parsing and NLU.
Furthermore, outputs can be also completely controlled
through the scripts/programming language. Voice fonts can
be selected or designed, modified depending on the message.
By utilizing such conversational programming language and
scripts, complex re-directions and conversation processor or
multi modal discourse processor can be built. These are, for
instance, the natural multi-modal extensions of conventional
word-processors and drawings/photo/video editors. The
foundation classed comprising CVM are discussed above.

[0237] Furthermore, when exchange streams with other
objects, it is important to supplement seamlessly the data
stream with conversational meta-information in order to
navigate, control or synthesize the stream. When commu-
nicated with other objects or subsystems, this is done locally
through system function calls. Networked objects commu-
nicate through other remote protocols like HTTP/HTML;
TCP/IP or diverse forms of socket interactions. These pro-
tocols are complemented with tags, flags and semaphores
that enable to exchange this conversational meta-informa-
tion.

[0238] Such programming languages are fundamentally
new conversational tools that can be under the form of new
script language and extensions to PERL and Kshell, C and
C++, HTML, Javascript, Basic, Java and more, which can
now be named Spoken PERL, etc. Languages can also be
built from scratch to optimize the execution on top of the
CVM with the libraries of conversational foundation classes
and dialog components (procedural or declarative) to be
interpreted (script/declarative) or compiled (procedural).

[0239] As discussed above, the programming languages/
scripts encompass the conversational API between the con-
versational applications and the CVM. It also encompasses
CVM (conversational markup language) as described in the
above-incorporated patent application IBM Docket No.
Y0998-392P. It is worth discussing the distinction between
procedural API and protocols versus CML (XML and
HTTP), and variations on the transport protocols. Procedural
APIs expose CVM to conversationally aware applications.
Procedural APIs and protocols allow fast exchange of con-
versational information between CVMs, applications and
devices, as well as fast determination by the controller of the
state of each application and context switch require proce-
dural interfaces. CML on the other hand is an ideal way to
convey presentation material/content to a conversational
browser, which is in line with the purpose of XML, and has
the advantage of reducing the programming expertise
needed to develop a dialog.

[0240] In a conversational browser type of interface as
described in the above incorporated application, XML are
exchanged between pages but the context between pages and
between multiple simultaneous tasks are managed by the
browser through API/protocols. The implementation can be,
for instance, purely socket based (TCP/IP), Corba/Java RMI
based on HTTP based with exchanged of serialized objects
(using XML). Preferably, the protocols are designed so that
XML (declarative) as well as procedural communications
are supported.

Feb. 22, 2007

[0241] Among the possibilities opened by conversational
scripts, conversational logic is probably the most striking. At
the level of the new conversational programming languages,
direct processing on the stream issued and fed to the
conventional and conversational sub-systems implies new
logic statements and operators.

[0242] Logic statements can be the following: (1) true, (2)
false, (3) incomplete, (4) ambiguous, (5) different/equivalent
for an ASCII point of view, (6) different/equivalent from a
NLU print of view, (7) different/equivalent from an active
query field point of view, (8) unknown, (9) incompatible,
and/or (10) incomparable. Conversational logic operators
can be introduced to test or modify such statements. In
summary, logic statement status and operators are expanded
to handle the richness of conversational queries that can be
compared on the bases of their ASCIl/binary content or on
the basis of their NLU-converted query (input/output of
conventional and conversational sub-systems). Logic opera-
tors can be implemented to test or modify such systems.

[0243] Referring now to FIG. 7, a diagram illustrates an
architecture for a distributed CVM according to one aspect
of the present invention. The heart of the distributed system
is a CVM 704 (which may be located on a server, a PC, etc)
which acts as the conversational arbitrator between a plu-
rality of applications 706, devices 708-713, other CVM
applications or devices 707 and conversational resources
705. The CVM 704 provides a coordinated uniform conver-
sational interface across such devices and applications,
whereby the different conversational devices 708-713,
resources 705, applications 706 and can connect through our
conversational protocol. A coordinated interface presented
by multiple conversationally connected devices/objects. The
collection of objects present a single coordinated interface to
the user through centralized or distributed context stacks of
the CVM 704. The conversational devices can include silent
partners that can be controlled via conversational interface
from another conversational device. During the registration
phase, they will exchange upon request list of supported
context. During the connection, these contexts are updated.
Depending on the connection, the context is centralized or
distributed across the devices (i.e., the network is negoti-
ated).

[0244] When a user interacts with the collection of
devices, the interaction may always be via a central unit such
as a PVA (personal vehicle assistant) 710 in a car, or a speech
browser 713. The task dispatcher and context stack accu-
mulates the contexts associated to all the devices and will
parse and dispatch commands to each device accordingly. If
the user interacts with the entire collection of devices, then
a device is always active (the last activated context). This
devices check if a new command fits its context stack. If not,
it passes to a neighboring device that becomes active. The
process is iterated until a match is found, and possibly
confirmed by the user, or the request bounces back to the
first device. In that case, an error or confusion message is
returned to the user.

[0245] As discussed above, CVM allows a user to dialog
with the system by providing the capability to manage
multiple discourses, to use contexts, to refer to objects via
abstractions and meta-information, to assign and memorize
tasks, abstractions and contexts, to customize to the user, to
summarize, to assist the user, even an unfamiliar user, to

US 2007/0043574 Al

recognize and authenticate the user and to present the same
interface throughout all interactions with the be with or
without display, GUI, keyboard or pointing device. The
same interaction occurs over the phone, the web, PDA
desktop, plus or minus feature irrelevant to the channel

[0246] For instance, a user may be able to access remotely
information about an element of a spreadsheet and modify it
if necessary, while simultaneous checking his e-mail. The
user may choose to do all these tasks (while in front of his
desktop) conventionally, or check the spreadsheet informa-
tion by voice without looking at it, while finishing typing up
an e-mail. In all cases the interface is seamlessly the same
to the user.

[0247] When multiple devices are conversationally con-
nected, they will coordinate their interfaces so that all the
devices can be controlled through the universal CUI. This
concept may be illustrated by the following example.
Assume that you are driving home one night and remember
that your spouse asked you to buy some goods at a new
grocery store. After finding the message on your answering
machine, you rapidly transcribed it into a memo on your
desktop using a speech recognition software. However, you
forgot to print it or transfer it on your PDA. It does not
matter if your desktop PC runs a CVM since you have, in
your car, a conversational PDA, a conversational car PC
(PVA, Personal Vehicle Assistant) and a conversational
smart phone. Further assume that the PVA runs an embedded
CVM while the two other applications are conversationally
aware, i.e., you can control them through the CVM running
on the PVA.

[0248] You can instruct the PVA to dial in your PC using
the phone. Once the connection is established, you are
authenticated by voice and you find by voice the memo by
simply requesting the “grocery list” that you had previously
created, without having to remember the file name or the
directory or browse through your directory to eventually
select the appropriate file. You may need to confirm the
selection if your PC CVM requests it. You can issue another
query—*“it should be synchronized with my PDA!—and the
file is appropriately linked to be transferred to your PDA at
the next synchronization. One last command—“Do it!”—
and your PC gives up and lets the PVA handle that ambigu-
ous query. The PVA understands your desire to synchronize
the PDA and the PC based on your previous conversation.
After possible confirmation, the synchronization is per-
formed and the grocery list is stored on your PDA, ready for
later use.

[0249] You now instruct the PVA to guide you turn by turn
to the store. Your position is computed, the location of the
store is fetched, locally or from a server, and an itinerary is
computed to take into account the latest traffic information.
At any time, you can request navigation information about
where you are, what to do next, how far to go or even request
a different itinerary.

[0250] Pressed by time, you instruct the PVA to dial the
store drive-through server. This may involve an intermediate
dialog with a directory assistance service IVR. Once con-
nected to the store IVR, an illustration of the concept of a
small business or personal consumer IVR built similarly to
current home pages, through the dialog with its conversa-
tional interface, you place your order. For this, you ask the
PVA to slowly browse through the grocery list and read it to

Feb. 22, 2007

you item by item. You then rephrase the request to the IVR
and pursue the dialog until each order is appropriately taken.

[0251] By the time you reach the store, your order is ready.
You can now drive home and while driving quietly listen to
your e-mail or check the news or stock quotes. If needed,
you can dial in your PC to consult or modity some spread-
sheet information; the same way that you would have
consulted it by voice on your desktop while processing your
mail. You can also assign tasks to agents on your PVA or
desktop, requesting to be updated or reminded later on

[0252] With CVM running on the desktop and on the PVA
and CVM aware smart phone and PDA, the application
developer must only hook to the CVM API. It involves
registering all its conversational capabilities and require-
ments:

[0253] 1. Active vocabulary, finite state grammar and
language models to control the application;

[0254] 2. Symbolic mapping if NLU is supported or at list
a context state list;

[0255] 3. Associated relevant meta-information/categories
in particular to allow categorization of the for the output;

[0256] 4. Conversational I/O information: does it directly
control the input/output or is it a silent partner, client to a
conversational 1/O provider; and

[0257] 5. CVM capabilities/state: does it run a CVM; is it
a CVM client; is it a master, slave or partner CVM.

[0258] In the previous example, the PVA was the master
CVM. If CVM equipped, the PDA and the smart phone are
slave CVMs, or simply CVM aware. When the PVA con-
versational connects to the PC, it will be up to the applica-
tion developer of the PVA, to decide if the PVA acts as
master, slave or partner. When connecting locally or through
the phones, the devices exchange the necessary information
conveyed to by the API, thereby completely defining the
coordination among the devices. Again, the CVM automati-
cally handles all the input/output issues, including the con-
versational and conventional subsystems. Again, the API
conveys all the information for the CVM to transform
queries into application calls and conversely converts output
into speech, appropriately sorted before being provided to
the user.

[0259] Using developmental tools, the developer can eas-
ily build his application around the conversational API and
CVM. This development environment (referred to herein as
Spoken Age) allows programmers to emulate CVM, to
debug applications or networked protocols and to rapidly
develop conversational user interfaces. Spoken Age includes
the CUI and application development for CVM. It also
provides the environment for modifying the data files (con-
versational arguments) of the engines for a given applica-
tion. In particular this means that at the level of the tools,
Spoken Age also includes conventional engine front-ends
like SDK Toolkit like the IBM ViaVoice toolkits. This means
that toolkits and the algorithms that it provides allows the
user to re-build, adapt or extend the data files for a given
task. This involves collecting data for the application fol-
lowing data collection rules and running the appropriate
scripts to generate the data file and test the performances.
This may involve downloading data files or a portion of data
file (from CD ROM or Web sites) dedicated to the task,

US 2007/0043574 Al

domain or acoustic environment. This may also involve
updating the data based on queries made to a data file
generation service office by filling a form and describing the
new application/giving data examples.

[0260] Once an application is developed on a platform and
for a specific channel, programmers can rely on Spoken Age
to port it to any other platform supporting CVM. They can
also rely on CVM to automatically adapt its conversational
capabilities to the communication channel or to Ul con-
straints imposed by new platform or device. In other words,
a spreadsheet, written for voice access over the desktop, can
now be accessed by voice over the phone by relying on the
phone capabilities of CVM. Also, a Java, CGI and XML/
HTML-based web site written with Spoken Age can be
immediately converted into an IVR providing services
through the phone or a restricted speech mark-up language
to be accessed with a small embedded conversational
browser.

[0261] The distributed system further comprises a conver-
sational browser 713 which is a compelling speech enabled
applications that can operate with CVM. A conversational
browser can run on top of a CVM and interprets CML to
build a conversational dialog while presenting a CML page.
As shown in FIG. 7, and as explained in detail in the above
incorporated IBM Docket No. YO998-392P patent applica-
tion, legacy applications 700 can be accessed via a conver-
sational transcoder proxy to transcode conventional formats
like HTML or DB2. into XML. The conversational browser
interprets CML (conversational mark-up language), which is
a speech markup language based on XML specifications. It
can be viewed as one of the most compelling applications to
run on top of CVM. The conversational browser can be
stand-alone applications carrying its own CVM. CML
allows new experienced application developers to rapidly
develop conversational dialogs. Pursuing further the analogy
with HTML and the World Wide Web, CML and conversa-
tional browser provide a simple and systematic way to build
a conversational user interface around legacy enterprise
applications and legacy databases. Furthermore, once built
on top of CVM, this mechanism can include these applica-
tions, services and transactions in the conversation that the
user will carry across multiple applications (local and net-
worked) and devices (local and networked). It will also
provide the user with the same user interface when he or she
accesses a legacy application, a conversational application
on his or her PC or an IVR running a conversational browser
or a conversational application on the server side. The use of
conversational proxies to convert HTML dialogs into CML
allows a same page to drive conventional or multi-modal
browsers, conversational browsers on PC or embedded
devices and IVR applications. An appropriately designed
home page, on a server equipped with a telephony card,
becomes also a personal IVR. Especially when conversa-
tional proxies are introduced to transcode HTML pages into
CML pages.

[0262] While CVM is to be exposed via APIs and CVM
and distributed resources will most efficiently interacts
through APIs and procedural protocols, it is important to
extend the interaction protocols to encompass HTTP and
XML/HTML exchanges. Indeed, HTTP and XML
exchanges, possibly or serialized objects, can be sufficient
for a single, or for sequential, conversational transactions.
The option to select the optimal protocol and allowing XML

Feb. 22, 2007

exchanges simplifies the design of dialogs with very little
programming knowledge. On the other hand, procedural
calls allow to have very efficient local or distributed imple-
mentations with multiple simultaneous conversational appli-
cations. Efficient conversational platform capabilities
require APIs interfaces. Efficient dialog manager across
multiple conversational application requires exchange of
procedural objects between the different subsystems, the
applications and the involved CVM entities.

[0263] The following is an example of an application of
the present invention using a UCA (Universal Conversa-
tional Appliance) also called UCRC(Universal Conversa-
tional Remote Control) as shown in FIG. 8. The UCA or
UCRC is an example of CVM device involving multiple
aspects of the conversational protocols. The UCRC is a
speech enabled portable PDA with a spontaneous network-
ing capability. This networking capability can be RF, ad hoc
(e.g., bluetooth, hopping networking) or IR. In a home
environment, appliance are now conversationally aware (but
typically as silent partners). This means that the different
appliance can be discovered and exchange the necessary
information to be conversationally controlled. The different
appliances have similar networking capabilities. In simpli-
fied cases, they are directly controlled by a “home director”
type of interface using a permanent network like X10. In this
instance, the UCA then rather directly talks to the home
director.

[0264] The UCRC periodically (very often) broadcasts
request for handshake (discovery) via the conversational
protocols 801 (as discussed above). Each appliance (or the
home director) answers when detecting such request. Any
new discovered appliance identifies itself. The UCRC also
identifies itself. The resulting handshake leads to a registra-
tion. The registration, includes identifying the nature and
name of the appliance (and any other meta-information) and
the fact that it is a silent partner, which then leads to a
negotiation.

[0265] Inthis instance, the negotiation immediately agrees
that the UCRC drives the conversation. The newly discov-
ered appliance exchanges its current state and the commands
that it supports in that state. When supporting limited
amounts of commands, it may also send the other states that
it supports and the commands associated to these other
states. This is equivalent to sending a structure skeleton in
advance. When the structure of states is too complex, this
information will be done on a state by state basis every time
that the state change.

[0266] The exchange process involves exchanging a list of
commands with return handles/events to return to the appli-
ance upon activation, plus possibly all the necessary data
files: vocabulary, baseforms, prompts/voice fonts for the
dialog, grammars, possibly parsing, translation, tagging,
symbolic language and language generation rules for NL
interfaces. Alternatively, the information may involve
addresses of other engines that will perform the conversa-
tional engine tasks (e.g. a server that will perform the speech
recognition task etc). Upon activation and input from the
user, the UCRC CVM determines the associate appliance.
This may be based on recognition results according to the
commands supported by different appliances (locally or
remotely as described in IBM Docket No. Y0999-113P).

[0267] Upon decision, the event/return handle is activated
and the command is executed on the associated appliance.

US 2007/0043574 Al

This results into a change of state. The new state is com-
municated to the UCRC. The context on the UCRC is also
updated. Commands are updated (based on the skeleton or
based on a new exchange of supported commands. When an
appliance temporarily disappears from the network, the
information is stored in the context (if the appliance is still
to be controlled by the UCRC.

[0268] This can be based on time (how long ago was it last
seen) or location (meta-information) or in the meta-infor-
mation (if deactivated). Upon reactivation, most of the
information is reloaded from the context or meta-informa-
tion and the protocols only check for updates.

[0269] When an appliance is explicitly removed from the
controlled list, the request of sign-in off can come explicitly
from the appliance or from the UCRC. When the appliance
is controlled conventionally (conventional remote control of
the TV, or switches for the lights etc.), events are returned to
the UCRC to re-register/re-negotiate or rather just update the
context, data file and state of the appliance.

[0270] Note that when a home director is used, the pro-
tocols are exactly the same, except that two models can be
taken:

[0271] 1) only one application is registered: the home
director. Any appliance change or any command result in
a change of the state of the overall home director

[0272] 2) all the individual appliance are registered with
the UCRC. The home director acts only as a gateway that
transmits and transcode the protocols between the appli-
ances and the UCRC.

[0273] When a home director model is considered, it is
possible to extend the functionalities offered by the UCRC.
Instead of spontaneous networking, it could just be a regular
wireless LAN (Ethernet, RF to a base station connected to
the home director). When out of range the home director
solution presents the advantage to be callable by regular
phone (e.g. modem type of connection). In such case all the
protocols can now be exchanged over the phone. Therefore
a new UCRC topology is: a cell phone/UCRC with local or
spontaneous network capabilities when within ranges and
binary connections to the base station capabilities when out
of range for control away from home.

[0274] Alternatively, the UCRC capabilities can also be
duplicated or limited to the home director machine. When
duplicated, if the machine can offer speech browsing capa-
bility or local home IVR capabilities via a telephony card the
home appliances can now be controlled y voice from any
where through the phone (without needing a binary connec-
tion through a C and server exchanging conversational
protocols. The UCRC and conversational protocols are
rather between the home director and the appliances. Any
regular phone can be used. In the second case, usually the
server will also be used to control the appliances when at
home. The UCRC becomes rather just a portable I/O system:
it capture the audio, compress and ship it (conversational
Coding) to the home director. Output are similarly shipped
to the UCRC for play back. All the actual CVM processing
is now done on the home director server.

[0275] Referring now to FIG. 12, a diagram illustrates a
diagram of a conversational network system which may be
constructed using the components and features described

Feb. 22, 2007

herein. Client devices 1000 (equipped with CVM system or
dialog manager capabilities) according to the present inven-
tion can access desired information from a service network
provider network 1001 by connecting via a PSTN 1002 and
internet/intranet 1003 networks through router 1004. The
router 1004 and internet/intranet network 1003 provide
conversational network service, extensions and features
including distributed conversational protocols (discussed
above), audio coding via RecoVC (Recognition Compatible
VoCoder), applications and meta-information (distributed
application protocol), discovery, registration, negotiation
protocols, server load management to maintain dialog flow,
traffic balancing and routing to maintain dialog flow, engine
server selection based on task features and capability
requirements and conversational argument availability (data
files), conversational arguments (distribution: storage), traf-
fic/routing and caching.

[0276] Although illustrative embodiments have been
described herein with reference to the accompanying draw-
ings, it is to be understood that the present system and
method is not limited to those precise embodiments, and that
various other changes and modifications may be affected
therein by one skilled in the art without departing from the
scope or spirit of the invention. All such changes and
modifications are intended to be included within the scope of
the invention as defined by the appended claims.

What is claimed is:

1. A method for providing conversational computing
between a user and one of a single application and a plurality
of applications, the method comprising the steps of:

engaging in dialog with the user; and

processing the dialog to one of complete a query, disam-
biguate a query, summarize a query, correct a query,
correct a result of an executed task, communicate the
result of such execution, determine a target application
of an input/output event, and a combination thereof,
based on one of past dialog history, context, user
preferences, meta information, and a combination
thereof.

2. The method of claim 1, wherein the step of engaging in
dialog comprises engaging in multi-modal dialog.

3. The method of claim 1, wherein the step of engaging in
dialog comprises engaging in mixed-initiative dialog.

4. The method of claim 1, wherein the step of engaging in
dialog comprises engaging in natural language dialog.

5. The method of claim 1, wherein the step of processing
the dialog comprises deriving a user-specified action from
the dialog and dispatching the user-specified action.

6. The method of claim 1, further comprising the step of
adapting the rendering of an application to one of a regis-
tered dialog modality, device capability and channel capa-
bility.

7. The method of claim 1, further comprising the step of
maintaining the context of each active task.

8. The method of claim 7, wherein the context comprises
one of short term history, long term history, and both
short-term and long-term history.

9. The method of claim 7, wherein the step of maintaining
the context comprises maintaining one of query arguments,
/O events, application state, conversational arguments,
application events, and a combination thereof, associated
with the active task.

US 2007/0043574 Al

10. The method of claim 1, further comprising the step of
presenting a unified and coordinated user interface across
the plurality of applications.

11. The method of claim 10, wherein the step of present-
ing a unified and coordinated user interface across the
plurality of applications comprises coordinating a plurality
of tasks spawned one of locally and remotely.

12. The method of claim 10, wherein the step of present-
ing a unified and coordinated user interface across the
plurality of applications comprises dynamically negotiating
a topology among the applications based on their registered
information.

13. The method of claim 12, wherein the step of dynami-
cally negotiating a topology comprises the step of repeatedly
renegotiating the topology among the applications during a
dialog session based on currently registered application
states and resource requirements and capabilities.

14. The method of claim 10, wherein the step of present-
ing a unified and coordinated user interface across a plurality
of applications comprises the steps of:

registering, by each application, information comprising
application state, application modes, arguments, con-
text, modalities, engine resources, and a combination
thereof; and

managing the dialog across the plurality of applications

based on their registered information.

15. The method of claim 1, further comprising the steps
of arbitrating a response to an input query from each
application to determine the target application.

16. The method of claim 15, further comprising the steps
of one of prompting the user for additional input, checking
for user confirmation, clarifying an interpretation of user
intent, dispatching a user action that is derived from user
input, and a combination thereof, after determining the
target application.

17. The method of claim 14, wherein the step of managing
the dialog comprises the step of coordinating the dialog
through one of a master/slave, client/server, and peer-to-peer
topology among the applications.

18. The method of claim 10, wherein the step of present-
ing a unified and coordinated user interface across the
plurality of applications comprises managing the dialog
through one of a centralized and distributed context.

19. The method of claim 10, wherein the step of present-
ing a unified and coordinated user interface across the
plurality of applications comprises the step of discovering
conversationally aware applications and systems.

20. The method of claim 1, further comprising the step of
abstracting one of a user query, context, manipulated infor-
mation, and a combination thereof, based on one of contexts,
applications, history, user preferences, biometrics, and a
combination thereof.

21. The method of claim 1, farther comprising the steps
of:

associating abstract meta-information with elements,
wherein the elements comprises one of objects, files,
applications, data stream handles, networks, peripher-
als, hardware, a local file system, a remote file system,
dispatched tasks, links, macros, shortcuts, bookmarks,
user preferences, user habits and behavior, biometrics,
a-priori knowledge acquired, acquired user knowledge,
learned user knowledge, and a combination thereof;
and

Feb. 22, 2007

maintaining the abstract meta information of the ele-

ments.

22. The method of claim 21, wherein the step of associ-
ating abstract meta information comprises one of registering
an abstract meta information category of an elements cre-
ating a new abstract meta information category of an ele-
ment, and both.

23. The method of claim 21, further comprising the step
of searching for a target element using the abstract meta
information.

24. The method of claim 23, wherein the step of searching
comprises searching the categories through multi-modal
conversational dialog that comprises filling sets of attribute
values out of set of possible types of queries and refining or
modifying the result of current search queries based on
similarities of the associated categories.

25. The method of claim 21, further comprising the step
of selecting a desired element using the abstract meta
information.

26. The method of claim 25, wherein the step of selecting
comprises selecting the categories through multi-modal con-
versational dialog that comprises filling sets of attribute
values out of set of possible types of queries and refining or
modifying the result of current selection queries based on
similarities of the associated categories.

27. The method of claim 21, wherein the meta-informa-
tion comprises security meta-information, further compris-
ing the step of automatically authenticating a user when a
query to a restricted element is made, based on the security
meta-information associated with the element.

28. The method of claim 1, further comprising the steps
of coordinating and prioritizing output generation based on
one of an active dialog, history, and a combination thereof.

29. The method of claim 1, further comprising the step of:

memorizing an event, wherein the event comprises one of
a user command, a user preference, an I/O event, and
results of an executed task; and

subsequently activating the memorized event at a desired

time during the dialog.

30. The method of claim 29, wherein the step of activating
comprises activating the memorized event for presentation
to the user.

31. The method of claim 29, wherein the step of activating
comprises activating the memorized event to resume a
memorized dialog commencing from a state in which it was
memorized.

32. The method of claim 29, wherein the memorized event
is used to undo the effect and context impact of the memo-
rized dialog.

33. The method of claim 29, wherein the memorized event
is activated prior to dispatching an agent or executing a task.

34. The method of claim 29, wherein the step of memo-
rizing comprises storing a current context, at the time of
memorization of the event, as meta-information.

35. The method of claim 29, further comprising the steps
of:

summarizing the memorized event; and

activating the event summarization for presentation of the
event summarization to the user.
36. The method of claim 35, wherein the step of activating
the event summarization is performed by one of a user query
and a triggering event specified by an application.

US 2007/0043574 Al

37. The method of claim 1, further comprising the step of
customizing the dialog based on one of user identity, usage
history of the user, user preferences, active applications,
context, and a combination

38. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps for providing conver-
sational computing between a user and one of a single
application and a plurality of applications, the method steps
comprising:

engaging in dialog with the user; and

processing the dialog to one of complete a query, disam-
biguate a query, summarize a query, correct a query,
correct a result of an executed task, communicate the
result of such execution, determine a target application
of an input/output event, and a combination thereof,
based on one of past dialog history, context, user
preferences, meta information, and a combination
thereof.

Feb. 22, 2007

39. A method for performing a transaction or accessing or
modifying information through conversational dialog, com-
prising interacting between a user and an application or
multiple applications through multi-modal dialog, wherein
the multi-modal dialog comprises one of GUI (graphic user
interface) I/O (input/output), text /O, speech /O, DTMF
(dual tone multi frequency) input and a combination thereof,
and processing the multi-modal dialog based on one of past
dialog history, context, user preferences, user meta-infor-
mation, application meta-information, device meta-informa-
tion, domain meta-information, and a combination thereof,
to determine a target of an I/O event, and to perform one of
prompting a user for additional input, checking for user
confirmation, clarifying an interpretation of user intent,
dispatching a user specified action that is derived from a user
input, and a combination thereof.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Description
	Page 31 - Description
	Page 32 - Description
	Page 33 - Description
	Page 34 - Description
	Page 35 - Description
	Page 36 - Description
	Page 37 - Description
	Page 38 - Description/Claims
	Page 39 - Claims
	Page 40 - Claims

