a2 United States Patent

Bennett

US007203646B2

(10) Patent No.: US 7,203,646 B2
45) Date of Patent: Apr. 10, 2007

(54)

(735)

(73)

")

@

(22)

(65)

(63)

(1)

(52)
(58)

(56)

DISTRIBUTED INTERNET BASED SPEECH
RECOGNITION SYSTEM WITH NATURAL
LANGUAGE SUPPORT

Inventor:

Ian M. Bennett, Palo Alto, CA (US)

Assignee: Phoenix Solutions, Inc., Palo Alto, CA

Notice:

Appl. No.:

Filed:

US 2006/0200353 Al

Us)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

11/419,736

May 22, 2006

Prior Publication Data

Sep. 7, 2006

Related U.S. Application Data

Continuation of application No. 09/439,174, filed on
Nov. 12, 1999, now Pat. No. 7,050,977.

Int. Cl1.

GI10L 15/18
GO6F 17/20

US.CL ..o
Field of Classification Search

(2006.01)
(2006.01)
704/257; 704/270.1; 707/5

704/251,

704/252, 255, 257, 270, 270.1, 275; 707/3,

707/4, 5

See application file for complete search history.

4,473,904
4,587,670
4,783,803
4,785,408
4,852,170
4,914,590
4,991,094
4,991,217

b i i i S i

References Cited

9/1984
5/1986
11/1988
11/1988
7/1989
4/1990
2/1991
2/1991

U.S. PATENT DOCUMENTS

Suehiro et al.
Levinson et al.
Baker et al.
Britton et al.
Bordeaux
Loatman et al.
Fagan et al.
Garrett et al.

Step 1of 2¢]

Speech
Recognition of
User's Query 1101

5,068,789 A 11/1991 van Vliembergen

5,146,405 A 9/1992 Church

5,157,727 A 10/1992 Schloss

5,231,670 A 7/1993 Goldhor et al.

5278980 A * 1/1994 Pedersen et al. 707/4
5,293,584 A 3/1994 Brown et al.

(Continued)
FOREIGN PATENT DOCUMENTS

EP 1094388 4/2001

(Continued)
OTHER PUBLICATIONS

Coffman, Daniel et la., Provisional Application for Patent, U.S.
Appl. No. 60/117,595, filed Jan. 27, 1999, 111 pages.

(Continued)

Primary Examiner—Martin Lerner
(74) Attorney, Agent, or Firm—1. Nicholas Gross

(57) ABSTRACT

A speech-enabled internet based computing system includes
a configurable speech recognition engine used for interact-
ing with content on a web accessible page. The speech
recognition engine is distributed across a client and server
architecture, and is adaptive so that speech processing
operations can be allocated as needed between the two. This
allows for support for client devices having differing com-
puting capabilities. Natural language operations can also be
supported as desired. A user can thus interact with a web
page and select items of interest using speech as a mode of
input. Dynamic grammars can assist in the recognition
operations to improve speed and comprehension.

10 Claims, 31 Drawing Sheets

Send Recognized
Speach to NLE
1107

Extract Noun Phrases

e Tckenize string

* Tagtokens

» Group tokens 1108

Store User's

Query
NPinNLE 1109

Copy User's Query
NP to DBPracess
1110

Send Recognized
Speech to
DBProcess 1102

Customize SQL Query
Construct using NP &
SQL Predicates 1103

Stored Answers Recordset
returned by SQL Full-Text

Search 1108

Send Recordset to
NLE in form of
Array 1106

US 7,203,646 B2

Page 2
U.S. PATENT DOCUMENTS 6,327,568 Bl 12/2001 Joost
6,330,530 B1 12/2001 Horiguchi et al.

5371901 A 12/1994 Reed et al. 6,363,349 Bl 3/2002 Urs et al.
5,384,802 A 1/1995 Strong 6,374,219 Bl 4/2002 Jiang
5,454,106 A * 9/1995 Bumsetal.ccovvuen... 707/4 6,374,226 Bl 4/2002 Hunt et al.
5,475,792 A 12/1995 Stanford et al. 6,381,594 Bl 4/2002 Eichstaedt et al.
5,509,104 A 4/1996 Lee et al. 6,389,380 Bl 5/2002 Meunier et al.
5,513,298 A 4/1996 Stanford et al. 6,408,272 Bl 6/2002 White et al.
5,553,119 A 9/1996 McAlliser et al. 6,411,926 Bl 6/2002 Chang
5,602,963 A 2/1997 Bissonnette et al. 6,418,199 Bl 7/2002 Perrone
5,625814 A * 4/1997 LUCiW ..ooeieiiiiiieeieiiinnnns 707/5 6,427,063 Bl 7/2002 Cook et al.
5,652,897 A 7/1997 Linebarger et al. 6,434,524 B1* 82002 Weber
5,668,854 A 9/1997 Minakami et al. 6,434,529 Bl 8/2002 Walker et al.
5,675,707 A 10/1997 Gorin et al. 6,446,064 B1* 9/2002 Livowskycccoevvrvnrnnn. 707/5
5,680,511 A 10/1997 Baker et al. 6,453,020 Bl 9/2002 Hughes et al.
5,680,628 A 10/1997 Carus et al. 6,499,011 Bl 12/2002 Souvignier et al.
5,694,592 A * 12/1997 Driscoll ..ooevivvineerirnnnnnn. 707/3 6,499,013 Bl 12/2002 Weber
5,727,950 A 3/1998 Cook et al. 6,510,411 Bl 1/2003 Norton et al.
5,758,322 A 5/1998 Rongley 6,513,037 Bl 1/2003 Ruber et al.
5,802,526 A 9/1998 Fawcett et al. 6,522,725 B2 2/2003 Kato
5,819,220 A 10/1998 Sarukkai et al. 6,532,444 Bl 3/2003 Weber
5,836,771 A 11/1998 Ho et al. 6,539,359 Bl 3/2003 Ladd et al.
5,860,063 A 1/1999 Gorin et al. 6,567,778 Bl 5/2003 Chao Chang et al.
5,867,817 A 2/1999 Catallo et al. 6,574,597 Bl 6/2003 Mohri et al.
5,873,062 A 2/1999 Hansen et al. 6,584,464 B1* 6/2003 Warthenococoeow...... 707/4
5,884,302 A 3/1999 Ho 6,594,269 B1 7/2003 Polcyn
5,915,236 A 6/1999 Gould et al. 6,594,348 Bl 7/2003 Bjurstrom et al.
5,934,910 A 8/1999 Ho et al. 6,601,026 B2* 7/2003 Appelt et al. 704/9
5,956,683 A 9/1999 Jacobs et al. 6,614,885 B2 9/2003 Polcyn
5,960,394 A 9/1999 Gould et al. 6,618,726 Bl 9/2003 Colbath et al.
5,960,399 A 9/1999 Barclay et al. 6,633,846 Bl 10/2003 Bennett et al.
5,978,756 A 11/1999 Walker et al. 6,681,206 Bl 1/2004 Gorin et al.
5,987,410 A 11/1999 Kellner et al. 6,697,780 Bl 2/2004 Beutnagel et al.
5995918 A 11/1999 Kendall et al. 6,742,021 Bl 5/2004 Halverson et al.
5995928 A 11/1999 Nguyen et al. 6,823,308 B2 11/2004 Keiller et al.
6,009,387 A 12/1999 Ramaswamy et al. 6,862,713 Bl1* 3/2005 Kraft etal. ...cccooo....... 715/728
6,023,697 A * 2/2000 Bates etal.cuvennn. 707/4 6,871,179 Bl 3/2005 Kist et al.
6,029,124 A 2/2000 Gillick et al. 6,901,366 Bl 5/2005 Kuhn et al.
6,032,111 A 22000 Mohri 6,922,733 Bl 7/2005 Kuiken et al.
6,035,275 A 3/2000 Brode et al. 6,940,953 Bl 9/2005 Eberle et al.
6,044,266 A 3/2000 Kato 6,941,273 Bl 9/2005 Loghmani et al.
6,044,337 A 3/2000 Gorin et al. 6,961,954 Bl 11/2005 Maybury et al.
6,078914 A * 6/2000 Redferncooceevvvvenen. 6,964,012 Bl 11/2005 Zirngibl et al.
6,081,774 A * 6/2000 de Hita et al. 6,965,864 Bl 11/2005 Thrift et al.
6,088,692 A * 7/2000 Driscolloeeeervrvinnnnnnn. 6,965,890 Bl 11/2005 Dey et al.
6,101,472 A 8/2000 Giangarra et al. 7,058,573 Bl 6/2006 Murveit et al.
6,105,023 A * /2000 Callanccooeevvrvvnnnnnnns 707/5 2001/0016813 Al 8/2001 Brown et al.
6,112,176 A 8/2000 Goldenthal et al. 2001/0032083 Al 10/2001 Van Cleven
6,119,087 A 9/2000 Kuhn et al. 2001/0056346 Al 12/2001 Ueyama et al.
6,125,284 A 9/2000 Moore et al. 2002/0032566 Al 3/2002 Tzirkel-Hancock et al.
6,125341 A 9/2000 Raud et al. 2002/0046023 A1 4/2002 Fujii et al.
6,138,089 A 10/2000 Guberman 2002/0059068 Al 5/2002 Rose et al.
6,141,640 A 10/2000 Moo 2002/0059069 Al 5/2002 Hsu et al.
6,144,848 A 11/2000 Walsh et al. 2002/0086269 Al 7/2002 Shpiro
6,144938 A 11/2000 Surace et al. 2002/0087325 Al 7/2002 Lee et al.
6,173,279 B1* 1/2001 Levin et al.ccccceeeee... 707/5 2002/0087655 Al 7/2002 Bridgman et al.
6,178,404 Bl 1/2001 Hambleton et al. 2002/0091527 Al 7/2002 Shiau
6,182,038 Bl 1/2001 Balakrishnan et al. 2003/0191625 Al 10/2003 Gorin et al.
6,182,068 Bl 1/2001 Culliss 2005/0091056 Al 4/2005 Surface et al.
6,185,535 Bl 2/2001 Hedin et al. 2005/0131704 A1 6/2005 Dragosh et al.
6,192,110 Bl 2/2001 Abella et al.
6,195,636 Bl 2/2001 Crupi et al. FOREIGN PATENT DOCUMENTS
6,226,610 Bl 5/2001 Keiller et al.
6,233,559 Bl 5/2001 Balakrishnan EP 1096471 5/2001
6,243,679 Bl 6/2001 Mohri et al. WO 9811534 3/1998
6,246,986 Bl 6/2001 Ammicht et al. WO 9948011 9/1999
6,246,989 Bl 6/2001 Polcyn WO 9950830 10/1999
6,256,607 Bl 7/2001 Digalakis et al. WO 0014727 3/2000
6,269,336 Bl 7/2001 Ladd et al. WO 0017854 3/2000
6,278,973 Bl 82001 Chung et al. WO 0020962 4/2000
6,292,767 Bl 9/2001 Jackson et al. WO 0021075 4/2000
6,292,781 Bl 9/2001 Urs et al. WO 0021232 4/2000
6,327,561 Bl 12/2001 Smith et al. WO 0022610 4/2000

US 7,203,646 B2
Page 3

WO 0030072 5/2000
WO 0030287 5/2000
WO 0068823 11/2000
WO 0116936 3/2001
WO 0118693 3/2001
WO 0126093 4/2001
WO 0178065 10/2001
WO 0195312 12/2001
WO 0203380 1/2002

OTHER PUBLICATIONS

Fourney, G.D., “The Viterbi Algorithm,” Proc. IEEE, vol. 73, pp.
268-278, Mar. 1973.

Baker, J.H., “The dragon system—An Overview,” IEEE Trans. on
ASSP Proc., ASSP-23(1):Feb. 24-29, 1975.

Bennett, 1., “A Study of Speech Compression Using Analog Time
Domain Sampling techniques,” A Dissertation Submitted to the
Dept. Of Electrical Engineering and the Committee on Graduate
Studies of Stanford University, May 1975, pp. 16-32; 76-111.
Rabiner, L.R., “Digital Processing of Speech Signals,” Prentice
Hall, 1978, pp. 116-171; 355-395.

Jelinek, F. et a, “Continuous Speech Recognition: Statistical meth-
ods” in Handbook of Statistics, IT, P.R. Krishtnaiad, Ed. Amsterdam,
The Netherlands, North-Holland, 1982.

Bahl, L.R. et al., “A maximum likelihood approach to continuous
speech recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
PAMI-5: 179-190, 1983.

Hudson, R.A., “Word Grammar,” Blackman Inc., Cambridge, MA,
1984, pp. 1-14; 41-42; 76-90; 94-98; 106-109; 211-220.

Quirk, R. et al., “A Comprehensive Grammar of English Language”,
Longman, London and New York, 1985, pp. 245-331.

Makhoul, J. et al., “Vector Quantization in Speech Coding,” Pro-
ceedings of the IEEE, vol. 73, No. 11, Nov. 1985, pp. 1551-1588.
Rabiner, L.R., “A Tutorial on Hidden Markov Models and Selected
Applications ins Speech Recognition,” Proc. IEEE, vol. 77, No. 2,
Feb. 1989, pp. 257-286.

Gersho, A. et al., “Vector Quantization and Compression,” Kluwer
Academic Publishers, 1991 , pp. 309-340.

Rabiner, L.R. et al.,, “Fundamentals of Speech Recognition,”
Prentice Hall, 1993, pp. 11-68.

Morgan, N. et al., “Hybrid Neural Network/Hidden Markov Model
Systems for Continuous Speech Recognition,” Journal of Pattern
Recognition and Artificial Intelligence, vol. 7, No. 4 pp. 899-916.
(1993).

Lieberman, P., “Intonation, Perception and Language,” Research
Monograph No. 38, MIT Press, Cambridge, Mass., 1967, pp. 5-37.
Unisys Corp., “Natural Language Speech Assistant (NLSA) Capa-
bilities Overview,” NLR 3.0, Aug. 1998, Malvern, PA, 27 pages.
Baum, L.E. et al.,, “A Maximum Technique Occuring in the Statis-
tical Analysis of Probabilistic Functions of Markov Chains,” The
Annals of Mathematical Statistics, 1970, vol. 41, No. 1, pp. 164-
171.

Arons, B., “The Design of Audio Servers and Toolkits for Support-
ing Speech in the User Interface,” believed to be published in:
Journal of the American Voice I/O Society, pp. 27-41, Mar. 1991.
Hazen, T et al., “Recent Improvements in an Approach to Segment-
Based Automatic Language Identification,” believed to be published
in: Proceedings of the 1994 International Conference on Spoken
Language Processing, Yokohama, Japan, pp. 1883-1886, Sep. 1994.
House, D., “Spoken-Language Access to Multimedia (SLAM): A
Multimodal Interface to the World-Wide Web,” Masters Thesis,
Oregon Graduate Institute, Department of Computer Science &
Engineering, 59 pages, Apr. 1995.

Julia, L. et al., “http://www.speech.sri.com/demos/ atis.html,”
believed to be published in: Proceedings AAAI’97: Stanford, pp.
72-76, Jul. 1997.

Lau, R. et al, “Webgalaxy-Integrating Spoken Language and
Hypertext Navigation,” believed to be published in: in Kokkinakis,
G. et al., (Eds.) Eurospeech 97, Proceedings of the 5th European
Conference on Speech Communication and Technology, Rhodes
(Greece), Sep. 22-25, 1997: pp. 883-886, 1997.

Digalakis, V. et al., “Product-Code Vector Quantization of Cepstral
Parameters for Speech Recognition over the WWW,” believed to be
published in: Proc. ICSLP *98, 4 pages. 1998.

Melin, H., “On Word Boundary Detection in Digit-Based Speaker
Verification,” believed to be published in: Workshop on Speaker
Recognition and Its Commercial and Forensic Applications
(RLA2C), Avignon, France, Apr. 20-23, pp. 46-49, 1998.
Ramaswamy, G. et al.,, “Compression of Acoustic Features for
Speech Recognition in Network Environments,” believed to be
published in: IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 977-980, Jun. 1998.

Lu, B. et al., “Scalability Issues in the Real Time Protocol (RTP),”
Project Report for CPSC 663 (Real Time Systems), Dept. of
Computer Science, Texas A & M University, 19 pages, 1999.
Giuliani, D. et al., “Training of HMM with Filtered Speech Material
for Hands-Free Recognition,” believed to be published in: Proceed-
ings of ICASSP ’99, Phoenix, USA, 4 pages, 1999.

Digilakis, V. et al., “Quantization of Cepstral Parameters for Speech
Recognition over the World Wide Web,” believed to be published in:
IEEE Journal on Selected Areas of Communications, 22 pages,
1999.

Tsakalides, S. et al., “Efficient Speech Recognition Using Subvector
Quantization and Discrete-Mixture HMMs,” believed to be pub-
lished in: Proc. ICASSP 99, 4 pages, 1999.

Lin, B. et al., “A Distributed Architecture for Cooperative Spoken
Dialogue Agents with Coherent Dialogue State and History,”
believed to be published in: IEEE Automatic Speech Recognition
and Understanding Workshop, Keystone, Colorado, USA, 4 pages,
Dec. 1999.

Meunier, J., “RTP Payload Format for Distributed Speech Recog-
nition,” 48th IETF AVT WG—Aug. 3, 2000, 10 pages, 2000.
Sand Cherry Networks, SoftServer product literature, 2 pages, 2001.
Kim, H. et al., “A Bitstream-Based Front-End for Wireless Speech
Recognition on IS-136 Communications System,” IEEE Transac-
tions on Speech and Audio Processing, vol. 9, No. 5, pp. 558-568,
Jul. 2001. (11 pages).

Agarwal, R., Towards a PURE Spoken Dialogue System for Infor-
mation Access, believed to be published in Proceedings of the
ACL/EACL Workshop on Interactive Spoken Dialog Systems:
Bringing Speech and NLP Together in Real Applications, Madrid,
Spain, 1997, 9 pages.

Ammicht, Egbert et al., “Knowledge Collection for Natural Lan-
guage Spoken Dialog Systems,” believed to be published in Proc.
Eurospeech, vol. 3, p. 1375-1378, Budapest, Hungary, Sep. 1999, 4
pages.

AT&T Corp., “AT&T Watson Advanced Speech Applications Plat-
form,” 1996, 3 pages.

AT&T Corp., “AT&T Watson Advanced Speech Application Plat-
form Version 2.0,” 1996, 8 pages.

AT&T Corp., “AT&T Watson Advanced Speech Applications Plat-
form Version 2.0,” 1996, 3 pages.

Gorin, Allen, “Processing of Semantic Information in Fluently
Spoken Language,” believed to be published in Proc. ICSLP,
Philadelphia, PA, Oct. 1996, 4 pages.

Gorin, Allen et al., “How May I Help You,” believed to be published
in Proc. IVTTA, Basking Ridge, NJ, Oct. 1996, 32 pages.

Mohri, Mehryar, “String Matching With Automata,” Nordic Journal
of Computing, 1997, 15 pages.

Prudential News, “Prudential Pilots Revolutionary New Speech-
Based Telephone Customer Service System Developed by AT&T
Labs—Company Business and Marketing,” Dec. 6, 1999, 3 pages.
Riccardi, Giuseppe et al., “A spoken language system for automated
call routing,” believed to be published in Proc. ICASSP *97, 1997,
4 pages.

Sharp, Douglas, et al., “The Watson Speech Recognition Engine,”
accepted by ICASSP, 1997, 9 pages.

European Patent Office search report for EP Application No.
00977144, dated Mar. 30, 2005, 5 pages.

Burstein, A. et al. “Using Speech Recognition In A Personal
Communications System,” Proceedings of the International Con-
ference on Communications; Chicago, Illinois, Jun. 14-18, 1992,
pp. 1717-1721.

US 7,203,646 B2
Page 4

Kuhn, T. et al., “Hybrid In-Car Speech Recognition For Mobile
Multimedia Applications,” Vehicular Technology Conference,
Houston, Texas, May 1999, pp. 2009-2013.

Travis, L., “Handbook of Speech Pathology”, Appleton-Century-
Crofts, Inc., 1957, pp. 91-124.

Baum, L.E., et al., “Statistical inference for probabilistic functions
for finite state Markov chains,” Ann. Math. Stat., 37. 1554-1563,
1966.

Flanagan, J.I., “Speech Analysis Synthesis and Perception”, 2nd
edition, Springer-Verlag Berlin, 1972, pp. 1-53.

Baum, L E., “An inequality and associated maximization technique
in statistical estimation for probabilistic functions of Markov pro-
cesses,” Inequalities 3: 1-8, 1972.

Cox, Richard V. et al.,, “Speech and Language Processing for
Next-Millennium Communications Services,” Proceedings of the
IEEE, vol. 88, No. 8, Aug. 2000, pp. 1314-1337.

Kuhn, Roland, et al, “The Application of Semantic Classification
Trees to Natural Language Understanding,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 17, No. 5, May
1995, pp. 449-460.

AT&T Corp., “Network Watson 1.0 System Overview,” 1998, 4
pages.

* cited by examiner

US 7,203,646 B2

Sheet 1 of 31

Apr. 10, 2007

U.S. Patent

JAIS-HINYIS

HAIS~LNEID

651
auibug

88T
eseqeje(] yooadg-0}-xa |
T 061 sulbug
abenbuen
-|einje It
Aisnp 108 IETEN 128
poziwosny oo o
Jepeieyn
o8l AmomtoE_ psiewiuy
% 10Ss80014
asegejeq
78T JoHeAuo)
Aanp-opixa |
Jxo] - yooadst 5o
paziuboosy opIs-jualD
28] 9pis-1aniag 3JHS
S

091
Jowiajuy

L B4 00t

indino
yoeads

jnduy
yooads

US 7,203,646 B2

Sheet 2 of 31

Apr. 10, 2007

U.S. Patent

€0z m 0e
1 BuiAe|dsip 1aye suonewiue Jajoeieyd oqd '8 uoissas 1aulsiu| d1 1 H mau JelS ‘¢
obe ¥ uolJI3UUC)
1 SoeLsUl a|puByY UOI93UUCD O} Joulsu|
0] Joays Aliadoud ubissy salpadoud yuabe jo9 SNJE}S YoBq|[8D 198 7 uedo ‘|
palqo
1031q0 Huis Jys169Y Muis AHION Jueby ajeal) e ZO_._.<O_Z:_>=>_OQ
SJUSAS 3y} 9|puey 0} YuiISAoNuabyY "2 R, : :
10¢
._ J3)0BIRYD uondo soepRUI ol
ol | | juebe sy moys g Jajoeseyo Juaby 1aj0eeyo yooads uoneinbyuo)
sov/l 0] SpUBWIWOD PPY 'G 199 ajeliqIes .O__UDN
m speIqeD
di 1senbau pue 18MIBS Jeziubooai
‘a1 Jspoeieyd 9|y Jejoeleyo waby jo | | Areaqi WOD wo:m__w.moﬁmhmwmm azijeniu|
ay} jo yjed Buihoads oougjsul | | eziemu) ‘| SRIqIED SZIEUL S -
Aq Js)oeIRYD BY) PEOT aaln z qued ¢ llenul ys i
Juaby SN peo ‘€ 1 |
IN3IOV SN J4S

OI9071 W3LSAS 3AIS-IN3ITO

(g/1 ebed) g ainbi4

US 7,203,646 B2

Sheet 3 of 31

Apr. 10, 2007

U.S. Patent

—
—
o~

12
3|1} E]EP S2I0A

Sii

ysibuz yn

)
N

1IN3OV
SIN 0} Blep passaidwodap ay) ssed 'S

wLio} passaldwos e

ui Jaalas al] Wiol} Jamsue

1S9(By} SAI902Y |

lamsue ay}
ssaldwooun ‘g

asuodsal
JONISS 3Y] IO} IepA '€

lanles
0} (uonsanb
s Josn) ejep
a3y} puss ‘¢

‘di1H Buisn
Jaulaiu| BIA JBAIDS 0] puss 0) sjquedwos

S1)1 1BY1 0S SaJA(JO Weals ay) spoou])

() 1senbaidyHuadO : 'NOILYIINNWINOD

319071 WA1SAS 3dIS-IN3I'O

(¢/z abed) g @inbi4

() peayiouisiy] : 'NOILVYIINNIWWNOD {4

punoj s1 82ug|Is |jun

507 S10J09A D4\ OlUI yoaads LaAuo) ‘g

l :

Janias EH.E paniaodal fomsue
o passaiduwoosp 201N0S JEIS 'Z 19p02 L
Jamsue ay} yeads 'z oy} OAIB0SY ‘| S aledald 'L
(peeds : INIOV SN (yooeds sy} 8zIuBODRI) JyS |
10¢ HINYGTS WOHA HIMSNV JAITDOFY : 80¢ HO33dS "3sn IAI303d |

400¢ "lolyuod Buissaid Aq syeads Jasn uaym pue se pajeljul ssa04d siy | "sse004d SAIjes) Ue SISy W
5144

US 7,203,646 B2

Sheet 4 of 31

Apr. 10, 2007

U.S. Patent

X4 aoepa)u| Juaby asesoy "/ UoREZIIENILI JO B
awll] ayj Je pajeasd yosads
styalymuolsses) Jo} sia)awesed
JBUIBUI BRSSO "2 | - | sy Bulpjoy 9 [iim
H UoIym ‘ainjonuis ay}
v_C_m\C_HOZ ”_.Cmm/\ 9oBLISIU| SoeHSU| ()} _Uwcm_wwm Alowaw
h.mgm_.mmED ‘9 Jesys "doud AuIsAioNuSbyY ayj mH.w.oo__@mm_ q
: osea|dy ‘G asespy v :
RETNES . | ssao04d uonezjeniul
Upm paysijgeiss ajlym pajeald
uo1osuUL0d i i | s1o8lgo ay) 8)9le(e
uoBe aoepIa)U| 20elaU| a1 "'l a|puey
mu.o U Ja)oeleyo spuewwoD Joulau| 8y} 9so|) "L
peolun e asealoy 'z aseg|ay I
Tz Tz
INAOVSW: NOILVYOINNNINOD = J4S
900¢ (eBed gem sy} sasojo @1 s)inb Jasn uaym pue se swiopad) NOILLVZITVILINI-NN

JI90T NILSAS 3dAIS-1IN3I'TO

(g/c obed) z 8inbi

U.S. Patent Apr. 10, 2007 Sheet 5 of 31 US 7,203,646 B2

Flg 2-2 cClient-side Initialization

1. SR Initialize 2. Calibrate speech &
Allocate _ | CGreate source & Calibrate Silence until
memory 220 || coder objects 221] silence is detected

¥ ! 222
Load Configuration
file 221A Conﬁguratlog;l'llt?3
. MSAgent 2208 3. Load MS Agent
P 1. Initialize 2. Create Load the character
COM library _,| instance of Agent ~ | by specifying path
223 Server 2o4 of the character file, L
character ID, and .
requestID 2251 |:
|ACS
‘I File
4. Get 5. Add commands 6. Show the 12254
pr;a;?cter .| to Agenttgharacter = agent character f
interface g option 557
7. AgentNotifySink to handie the events 8. Display
Creajce A_gent Register sink Character &
notify sink - object 230 | _,|execute
object 229 I e specified ,
Animations 233/ -
L Get Agent Assign property —
property 231 * sheet to Agent
interfface £91 232
. Commumicaion 220¢
L 2. Set callback 3. Start new HTTP
éo?rr::ztilg;ergit 4 »| status to the .| internet session with :
== connection 235 the server 236

U.S. Patent Apr. 10, 2007

Fig.

Speech
from Use

Sheet 6 of 31

3

US 7,203,646 B2

Encoded
MFCC

Answer 254

Natural

Receive User Speech (when User speaks through microphone by clicking
' | on Start button)
240
SRE ... Commumcauon
' 2 Start 1. Encode MFCC 2. Send
1. Prepare |— Source vectors to make it encoded
Coder 248 249 compatible to | data to :
— send at server serverygos| :
5] using HTTP 251 =
3. Convgrt : 3. Wait for
speech into f response from
MFCC vectors ser\eer
250 | 253
241 242 3
Receive Answer (from Server side) 243
'MS AGENT 244 Speak Best ;
: 1. Receive 2. Articulate the | - suitable Answer >
uncompressed Received Answer :

Text-to-Speech

Language Voice
Data File 256

Engine 257

COMMUNICATION

1. Receive the
"Best" Answer
from server
(compressed)

258

2. Uncompress
the Answer

259

3. Pass
Answer to
MS Agent

U.S. Patent Apr. 10, 2007 Sheet 7 of 31 US 7,203,646 B2

Fig. 4

Client-side Un-Initialization

: SRE 270
1. Delete Objects and
/| De-allocate Memory
a. Deallocate the b. Delete all the
memory objects created in
assigned to the » the initialization
object holding process
the parameters
for speech 273 274
_COMMUNICATION 271
E 1. Close the Internet 2. Close the
connection previously Internet Session
established with created at the time
server 275 » of initialization 276
MSAGENT 272
1. Release 2. Release 3. Unload the 4. Release
Commands »| Character Agent » Sink object
Interface 277 Interfaceﬂa 279 Interface&Q
5. Release 6. Unregister 7. Release
Property Sheet | .| Agent Notify »| Agent

-

Interface 281 sink 282 Interface 283

US 7,203,646 B2

Sheet 8 of 31

opIS-I9NISS JB JHS JO

-

}X@1 JO wio} 8y} ul yosads UoNEmoomm

Apr. 10, 2007

dc09 SI0J00OAN N
i(.VO@ 994N wioy Y09 aainos
—— eula)xa
Aowawi a)eoso|jea J4S 991ed 004\ $58001g 4N PesY
09 JYS FZIVILINI-NA €09 HO33dS 3ZINDODTY 'S
4
5200 wEm: oy Jewiiedb -
Jewwels) peo — _ . uopes
4 G09 seweu UORIBS | o igdeyn
A aweu ajy Areuonoiq pue L_Bm_mco ‘@sIn09 ‘98100
=Saa uisn ssweu 4———
4209 . |J209 ~|Q209 spslqo ! w
NINH peoT [« 9|l Japeo| pue
Areuonolq peot 348 Q_Nm:o rewwelb aiedald
|
0209 spoalqo J3ys ploy |, (909 SNog| |VZ09 Aeiqr] 3 T00 jualjo Wolj
0] Alowaw 20|y [Bula)xg a1Bal1) 39S peo paniaoel |
209 JYS FZNVILIN] 2 SI0)09A QD4 | | SIOI8A
spooaqL| : OOdNW
- popoous
009 v

U.S. Patent

mEmC a|ge)-uoijoes
sweu 9|qej-isjdeyo
SWEeU gQ-8sInod 80N

US 7,203,646 B2

Sheet 9 of 31

Apr. 10, 2007

U.S. Patent

156 9%6

dN Woly paniedal splom

dN Yyoes Jaye Alenp

GG6
() ¥vaN

Aanpd 1OS 9y} 03 splom

‘plomAay
yum pojeiedas

¥G6 dN
8y} ui usasaid 1817 |e——
piomay} 189 ¢'¢

3y} ul Juasaid spiom sy}
[|e Jo} palinbai se yonw se
Aowaw ay} 31ed0||y “"Z'€

Sy} 10}S 0} PJEIO|IE |l@—| TOS 9Y} O} PIOM Ao |a—
Aowsw sy} @314 '€ ANV S]eusjesuod ‘g’ 959U} 9]EUS)BOU0D }'S
%6 dN

756

dN ays ut Juasaid spiom
JO Jagquinu 8y} 199 L€

1811 N @4} ul Jussaid gN Jo Jlequinu o} AjpAnjess)l ssa20.d siyj wiopsd ¢

(dN) aseiyd unonN

1G6 JuSLWSIE}S

1D2313S pelonasuo9 ayj 0}
aWweu 3|Je] Sjeus)eauc) ‘g

ajeaipaid SNIVINOD
ay) Buisn juswaeje)s

70S LO313S Pnjsuod °L

[t

Asenb JOS pling/eziwolsn)

Asnp 71OS jo pling

gy ‘b4

ISITAN®
aweN ajqe] —

U.S. Patent Apr. 10, 2007

Sheet 10 of 31

US 7,203,646 B2

Fig. 4C

Server-side DBProcess DLL

. CONNECT TO SQL

Database |
© SERVERDATABASE

FETCH ANSWERPATH USING
BEST ANSWER NUNBER

Receive best record
number

l

 [Fetch the

716A

» Open file using

Name
Table _
Name Get server Bund'
—————» |Name, Conngctlon
. |database string
name 7444 7118
v
Connect to the SQL
Server Database 711C
m _________________________________
. EXECUTE SQL QUERY
SQL : -
Query Receive SQL Query
g 712A

!

. ¢ | path of
. [|Answer
- { | file using

the path fetched
from recordset

¢ Read contents
of file containing
the answer

|

. {|the given

- | record

. | number
716B

716C|: -

'

Compress answer
and transmit to
client

Execute the SQL
Query 717p

‘ Record Set

!

¢ Extract total records
from recordset

¢ Allocate memory to
stored paired
questions

« Store paired question
in array 713

Construct SQL
Query 710

Answer

- saL
- Query

NLQS Database

717

-}

NP List from NLE

U.S. Patent Apr. 10, 2007

Fig. 4D

Interface Logic between

Note: PQ - Paired Question
NLE and DBProcess.DLL

NP- Noun Phrase
Red Line-1/0

Sheet 11 of 31

NP list of

US 7,203,646 B2

Best
Answer
Number

Paired Questions from DB i PQ
813 GETNPUST | 812
FOR PAIRED GET BEST ANSWER ID
880 GET NP LIST FOR QUESTION ABest
, THE USER'S QUESTION i Answer :
: Receive the NP List from | Number
.| |Receive the | |Getthe PQs from Question
| |question |, NP list DBProcess.dll and PQ
| Jfromclient | Jusing 813A] || |815A Compare NP lst
g ssoal INLE |l T |||ia
; e 880B \ . Compare NP of |
Get NP List . user's question with |
o| A% using NLE . PQfromDBtofind |
& ~ 813B - out the best suitable : |
2 % . - question presentin |
S NP List of ' A _ the DB
User's Question NP List ||
Questlon
Paired Questions
o v w
: 900 INITIALIZE GROUPER 9b. Tokenize »| 9c. Tag all the
RESOURCES ; the words from tokens 909C
Initialize Initialize — "[the given text
Token -~ Tagger ' 9098
Resources Resources
900A 900B
r———J 9d. Group all
tagged tokens
ln|t|a|lze Create to form the NP
Grouper | | Grouper 209D
resources
800C 900D
-+ 9E. UN-INITIALIZE GROUPER RESOURCES OBJECT AND FREE THE
' RESOURCES :
Free token Free tagger Free grouper NLE
resources —| resources > resources
909EA 909EB 909EC

US 7,203,646 B2

Sheet 12 of 31

Apr. 10, 2007

U.S. Patent

00065
37N
A 5 A
:o;wom_w co:mW:% dN oL
paley n ey Aanp Aanp
L
4008
- a80elIs|U] 40/d'IN
dN A A
uolsenY
A 18sn
Aanpd
1oNnIIsU0) h
,,,,,,,,,,,,,,,,,,,,,,,,,,,, 9Ane uonass
V00 - Js)dey)
— A4 _ 2s51n0)
qljemsuy Y L0S IdVSI Jonieg
SUOIIEDIUNWILLOY
Iomsuy 159 «—— s$990.1d 90 -t SI01081
, 004
papoouz]

US 7,203,646 B2

Sheet 13 of 31

Apr. 10, 2007

U.S. Patent

cUlired CUlieyq tulieyq €Clued ¢clieq || bClied
Y-O V-0 V-0 v-O V-0 V-0
A 3 3 Ar Y Y
807 80. 801
titlied cUtned L I LU €hlied Zlined || bHlaed
v-O v-O V-0 -
Y y Y V-0 v-0O V-0
Y h Ar
101 90L 0L
Ulyonoag | | CUuonoag || VHuonoss || Ucuonoag ZZuonoag || tcuonoseg Uluonoag Zluonoag i| tluonosg
{ | t f f i f
0L, 1aydeyn R0 2 tardeyo 02 | Jardeyo
10L
3SHN0O2

9614

US 7,203,646 B2

Sheet 14 of 31

Apr. 10, 2007

U.S. Patent

Vv80.L
SaA ON ON GGe Jeyosepn AWEBNUOI09S
SaA ON ON GGe Jeyoiepn VZ0Z
aweNJa)dey)n
voo. vG0. V0. veoL Va0l Vi0.L
¢d3X3aN] AT AYVYINIE TINN EVAL AdAl VivQg AWvN a13i4

v/ bl

US 7,203,646 B2

Sheet 15 of 31

Apr. 10, 2007

U.S. Patent

yel
S9A ON ON - aleq uoiedIpo Jo 91
L
SOA ON ON - areq uoneain jo ayeq
el
SaA ON ON 0S Jeyoten iojeain
1€Z
SSA ON ON GGZ leyolep ylediamsuy
0%z
(xa1-Ind) saA ON ON 9i xal uonsanppalled
6¢/
SOA ON SOA G5 Ieyoiepn SN lomsuy
Cr7
SSA AN0INN ON gsc Jfeyaien SWeN uoloeg
L
S8A 3JNOINN ON S Jeyd dl Jamsuy
9z
SOA SaA ON Jebajuy ai 1sideyn
gel vel €l L 2. 0c/
£a3ax3an| ATY AUV TINN EvdlS 3IdAl VLV(d INVYN Q1314

g/

‘b

payipow 1o pabueyd usaq sey Jusjuod Yoiym uo ayeq

<
N~

uoiedyipol Jo Sle(

US 7,203,646 B2

pappe uaaq Sey JUajuod Yydiym uo ajeq

uonealn Jo ajed

J0JESID JUBJUOD JO BWEN

Jojeain

uwNjoo snoiaaid sy} ul paiols
suoijsanb pajejal ayj 0] Jemsue 8y} SUIBJUOD UYdIYym ‘B]1} 1X9) JO ujed sy} sulejuo)

yiegiomsuy

Sheet 16 of 31

YledIomsUYy UWN|OD 1Xau 8y} Ul paIo}s
sI yyed asoym Jamsue pajeja. ayj 104 suoisenb JO SUOIJeUIqUIOD SJ0W JO SUO SUIBJUO)

o
N~

uonsanppalied

lamsue ay) jo uonduosap Hoys v

(@]
N

3l Jomsuy

A9y Arewind apew aq 0} sey
gremsuy yum Buoje pjay siy| sbuoj@q p1odsi Jeinaiped ay} Yolym o} Uoljos8s Jo sWeN

00
N~

aweN uonoses

90UBIUBAUOD J3SN 10} pajuawaIoul Ajlesijewolne - 1abajul uy

~
N~

dlemsuy

Apr. 10, 2007

Yol
o)
M~

uonduasaQg

o
M~

peld4

U.S. Patent

D/ b4

US 7,203,646 B2

Sheet 17 of 31

Apr. 10, 2007

U.S. Patent

47 _
ON ON ON - ajed uoleslipo 10 ajed
167 _
ON ON ON - ajeq uoneail) jo e
0GZ
ON ON ON 0S Jjeyouen Jojeal)
6v.
ON ON ON GGZ Jeyoien Uyied Jlamsuy
vz
(Ixa1-Ind) seA ON ON 9l xaL uopsanppalied
JAZ -
ON ON S9A GGZ leyalien S} | Jemsuy
ol _
SOA SOA ON G ieyn al emsuy
7 WL a3y Y. vl Iy . ov. i
A3aX3AN] AV TINN 3Z1S 1 a 4

a/ b4

US 7,203,646 B2

Sheet 18 of 31

Apr. 10, 2007

U.S. Patent

08
yooaadg

O sped
uanb
Jo saseiyd

Jo s

08

suaNo |
Jo s

0

8
J8dnoig

oy
[ce)

1abbe |

/

208
19zjus)o]

8 b4

08

suayo|
10} yooadg
1O sued

xa] nduj

008

US 7,203,646 B2

Sheet 19 of 31

Apr. 10, 2007

U.S. Patent

veos

SUO |
jo1s

9908
18zAjeuy

v¥#08

BETTIEN S

/

vo08
SUSM0| PIOM

1o} yooadg
Jo sped

vG08

vao8

J8zjuayo]

6 bi4

suayo |

PIOA
10} swalg

X@] nduy

US 7,203,646 B2

Sheet 20 of 31

Apr. 10, 2007

U.S. Patent

10l
‘saoe|d ¢ ‘¥ anjenlay (Zpiom

saoe|d 7 ‘uanjeniay
saoe|d /| ‘Gonjenday
‘saoeid ‘' Laneaiay (L piom

Xapu| xa1-Ind

Bojele) xa | -Ind

sanjea

Jued jeuondo
pue sanjea Aoy
anbiun JO]JaSMoy

A 4

200}

$S8001d
asled

ST

H3dIAOYd
1x3a1-1n4

Jaynugns fenb o}
‘paLinjad }es jnsay

Y001 Aisnb jo ped jxop-jiny
oy} buissed jjen

A

NI NNY

f

€001 Asonb usplmayy

€10l
7'y
6001
v jasmoy
11 = | a3io
| [Zrot " l >
|| eubuz yosesg !
1 [
_ a1101 _A
! sulbug xapuj ! 8001
| | AenDd
| 'VITOF Hoddns | 1 pxa-fing
| Butltanp | |
- - |
10} ®sanieg yotess 10S

uwnjon qj anbiun

so|qe] wa)sAs

a|qe] 198N

aseqgejeq

0L b

4

3N FTIdNOD
A

INIONS
TVNOILYT3Y

10S

001

—
1001
JOnsuoD 1xa |

-Itn4 ypm Aiond

GLol
10S)insay

00}
H08SI00Ud

3SvavivQg

U.S. Patent

Step 1 of 2<

I
|
|
|
|
i
I
I
|
I
I
|
|
|
|
|
|
/

)

|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
1 —

Apr. 10, 2007

Sheet 21 of 31

Fig. 11A

Speech
Recognition of
User's Query 1101

US 7,203,646 B2

y

Send Recognized
Speech to NLE

11

N

A 4

Extract Noun Phrases
e Tokenize string

e Tag tokens

o Group tokens 44

8

A 4

Store User's
Query

NP in NLE 1109

A 4

Copy User's Query

NP to DBProcess
111

0

A

Send Recognized
Speech to
DBProcess 1102

A

Customize SQL Query
Construct using NP &

SQL Predicates 1103
\ 4
Execute SQL
Query 1104

h 4

Search

Stored Answers Recordset
returned by SQL Full-Text

1105

A

Array

Send Recordset to
NLE in form of

1106

U.S. Patent Apr. 10, 2007 Sheet 22 of 31 US 7,203,646 B2

» Fig. 11B

i

A
For each question in Array of
recordset Extract Noun Phrases
e Tokenize string

e Tag tokens

+ Group tokens 111

y

Compute NP for

Question 1112

| ast
Question
in Array?
1113

Yes l‘

Compute:

Advance to Next Question:

Questionj = Question j+1

111

NP stored question >

NP user question 1114

y

Store Answer
1115

Last
Stored
Question?

Advance to Next
Question:

Questionj = Question

i+1

1119

Identify stored
question with
maximum NP 1117A

U.S. Patent

Apr. 10, 2007

|dentify
Matching
Stored

Question
1120

l

Extract path of
ID for Answer

1121

l

Extract Answer
from File

1122

Compress and
send to Client

1123

Sheet 23 of 31

Fig. 11C

US 7,203,646 B2

US 7,203,646 B2

Sheet 24 of 31

Apr. 10, 2007

U.S. Patent

0cel

) XA

1aafqo wue s JeUYAA
SERD ASVG INVHRSGYY UL Buya(]
SELO Aseg ITBNSOY e SHIBUAA
amnonagsuas Adoo upepdxsy
Aoyonagsuns Adoo si ey

sse e suga)
sseoe umpdxg} T ——

SHRID B 5] JEUAA

Amrnb a0y sucnsonh ajquireae at o0 BULACI]0g

“uonsonb oA yse

puE MOoU 08 op aseald Jeads o] §oiD,. U0 paal Jusaey nok 4y
o umopdop QL wioly easue anok wh oy

HOROSE oL

Toeles 100§ donsanh inok Mse pue easdg o} Y10, WO Y0 JsURIe
®oq umopdalp

CINODSS wiody mouy) 1agead nok yaym agideysn oy 1091882

xoq umopdolp [o4 woy Arenh ok Jo 850100 94) 19919G L

- 1eays sgnop dnok Buipeh 1oy sdi N

- 06¢CL

US 7,203,646 B2

Sheet 25 of 31

Apr. 10, 2007

U.S. Patent

djoH Joj aw 10BU0D

08¢l ovd e

o281 —{ BIIHOT 7]

suonony e

omm_‘/ﬁ%

- souobajen esmolg

‘ _a_s_sEoo ueid

_sBjuRIEND | SB0IIES YO |

WOo9 3)ISgam /

, Cuﬁ:‘aioo saon

CO:.OZ(T JIsni S3004g

oce T_ dioH _ ojuy E:ooo<4

gL b4

ozer” owel”

US 7,203,646 B2

Sheet 26 of 31

Apr. 10,2007

U.S. Patent

Q_wI Joj swi 1peIo0D

02yL——__ So2pIA_e)

09¥l

0S¥l
“(spioosy_e)

\ oSNy
08yl
BuyplByp(6
yphblue .

HPP voybim WO a)ISqem

orvl PPp iNalan} 99039
o i CQ:QEoOf ;mn_o - co_uu:go_m:_z L(wv_oom_)
ozvl”” OLpL 00vL
061

omil\m; dieH 7 OJu] JUNO2DY _

pL b4

US 7,203,646 B2

Sheet 27 of 31

Apr. 10,2007

U.S. Patent

djaH Jo} aw joeuoY

0SS F/m :

NG

wULOOQN_ Bt fﬁ
2 WO SHSIaM
oGl
S el mmﬁcmhm:@ wmo_met_mu _—

e ;ﬁﬁE:EEO

CmSang woo,L/co:o:,q 2SNy %wxoom J

ommv\ 0LGL

0851—1

disH

i OjUjf JUNO2TY _

Gl b4

US 7,203,646 B2

Sheet 28 of 31

Apr. 10, 2007

U.S. Patent

d|jay Joy aw 108JUCT

. b_::EEoo : :m_n_ 1S “

R 5891 wt_mu

@:a&gmoo hv:o:/C/ a1Isnpy yfwv_oom_)

owor\

ocoL—1__ dieH

| ojul unosoy A

9. bi4

oL9lL

\

US 7,203,646 B2

Sheet 29 of 31

Apr. 10, 2007

U.S. Patent

djaH 104 oW 19B1U0D

MQEV__QQ baimonibpylp.ay
” x>>E_u$_w_.E>\sa>.__m“‘

dppyjdd:baimoniBipy|fp.y
v_>>E=v_m_ua>>>Q>.__m

061

Uyl
0821~ o wnqpy

il

[yl

0Lz} g wnqpy

__EEcmm t_oE%mm%

qupiyuisiyigsy
0941

1

M v wnajy
061
N T
\4
e ® Wwod a}Isgom
or/l)
a_::EEoo ueld9NS moEEm:@ -
ondwon | sao | uopony | oisniy mv_oom_
0cil 0yl
omﬁu_ djeH | oju] unoody |
LL b

US 7,203,646 B2

Sheet 30 of 31

Apr. 10, 2007

U.S. Patent

0061
spybry

JO [1g INOA

IIlBN-3 S pusg

0891 S2IJI0AU| e

Xe] So|eg e
suondo

juswded e«

0

098l piomssed io ssalppy
[lew-3 JnoA abueyn e
suonduosgng JNOA M3IA e
SISPIQ INOA MBI @

JunoooyY
InoA abeuepy 0] MOH e

48

@U:O Ajlunwwon
2 JUNOJDY/ »
apINo sSI8jjaS e
apIng sJappig »
pape)s Buyag e

068l |ouedsy
us epnAy e

puocAag pue WO SYISYIAA @
SOIU0A03|T @

SOWES) P SAO | e

SINOY-QD pue s)oogqolpny «
QaAnd Pue SHA ‘ospije

sgD dISN @

ocar s$)o0g e

£Aoljod suinay JnQ e

afexoed INoA Buiyoel e
068} Seldlod pue sojey »

0v81

SJUBYIIBJA BUIlFUQ JaYl0 @

SIJeIYIUD Y1 *
$}00¢] WIIJ-J0-IN0

Ajjigelieay g Buiold ¢
MOUD-HID 10 HOD-| BIAe

Heq Buiddoyg eip e

LoHBWIO)L|
oy1oadg
Aiunon e

SpIe]y Bupusgs
so|dwueg punog 03 Bulug)sie
Aa1j0d Adeald Woo a)sgapp e

aping) Buiddoyg ajeg e
suonsany) paysy Ajuanbaiqe

0¢8l SIOHSIA 31] ISdi] e

uoijewioyu yuepoduw| JBYI0 ©
SJasn |BUCHEUISU| 1O e

oJu| JuswiAed e

djsH uonony e

JUNOJDY INOA @

Buiddiyg «

BuLispiQ e

sdi| yoleage

orer SIOJSIA BWI] Jsli{e

(z/1 obed) gL bi4

081

abed swoH
W02 SIS

n__u_._

US 7,203,646 B2

Sheet 31 of 31

Apr. 10, 2007

U.S. Patent

0c6l

foiod Aoeniy
WOD SUSAIMA

_speojumo(] Buosg
9 ww_aEmw nc:owm
ooa) mc_:muw_._

., " 1oA09si(] ‘prenssisely ‘esip 1daooe apn, r

\\ 0661
slied Jamsuy - uonsenp
0861 /
0 / P
¢Sand -
pue S9]19SSBI03PIA INOA Sle 1BULIOL JeUM 6
¢A9pIo 0961
| 840j2q SW Jo} 831ud By} wiuod noA ue) ¢ wayl adoung
sly} Jo Alliqe|iene ay} Jnoge sw ||8} noA ued g ? M'N 8yl ul siswoysny ‘g
¢,Wia)l s1y] Jnoge alow aw ||9) ases|d noAuen 4 sdi| uonebiaen ;7
I ¢sbuioudsiw jnoge op noA op jJeypmy 9 Adijog
ore6l ¢Aolod suinjal InoA Jnoge 1eypy G Aoenudésiybry jo g ‘9
£.5%00q juud-Jo-Jno 1apIo | Op MOH ¥ JapiQ ue age|d ‘G
¢,se9sJan0 diys noA op Bupud v
puy ¢bBuiddoys uoj abieya noA op yonw mopy ¢ douelens Ajndag ‘¢
¢pleo ypao Awesn o} ajes U s| ‘7 sawi| Aanljeq ‘2
¢1da29e noA op sjuswAied Jo swIoy ey L Em>> :o> ByMm nc_n_ g
oL . souspewn iy

(z/z obed) 81 614

US 7,203,646 B2

1

DISTRIBUTED INTERNET BASED SPEECH
RECOGNITION SYSTEM WITH NATURAL
LANGUAGE SUPPORT

RELATED APPLICATIONS

The present application claims priority to and is a con-
tinuation of application Ser. No. 09/439,174 filed Nov. 12,
1999 now U.S. Pat. No. 7,050,977; the application is also
related to the following:
1) Ser. No. 09/439,145 entitled Distributed Real Time
Speech Recognition System, now U.S. Pat. No. 6,633,
846;

2) Ser. No. 09/439,173 entitled Speech Based Learning/
Training System, now U.S. Pat. No. 6,665,640;

3) Ser. No. 09/439,060 entitled Intelligent Query Engine
For Processing Voice Based Queries—now U.S. Pat.
No. 6,615,172,

The above applications and patents are all incorporated by
reference herein.

FIELD OF THE INVENTION

The invention relates to a system and an interactive
method for an enabling a website to have interactive, real-
time speech-enabled web pages. This interactive system is
especially useful when implemented for e-commerce, e-sup-
port, search engines and the like, so that a user can intelli-
gently and easily control an internet session using a con-
ventional browser that is enhanced to handle speech
capabilities.

BACKGROUND OF THE INVENTION

The INTERNET, and in particular, the World-Wide Web
(WWW), is growing in popularity and usage for both
commercial and recreational purposes, and this trend is
expected to continue. This phenomenon is being driven, in
part, by the increasing and widespread use of personal
computer systems and the availability of low cost INTER-
NET access.

The emergence of inexpensive INTERNET access
devices and high speed access techniques such as ADSL,
cable modems, satellite modems, and the like, are expected
to further accelerate the mass usage of the WWW.

Accordingly, it is expected that the number of entities
offering services, products, etc., over the WWW will
increase dramatically over the coming years. Until now,
however, the INTERNET “experience” for users has been
limited mostly to non-voice based input/output devices, such
as keyboards, intelligent electronic pads, mice, trackballs,
printers, monitors, etc. This presents somewhat of a bottle-
neck for interacting over the WWW for a variety of reasons.

First, there is the issue of familiarity. Many kinds of
applications lend themselves much more naturally and flu-
ently to a voice-based environment. For instance, most
people shopping for audio recordings are very comfortable
with asking a live sales clerk in a record store for informa-
tion on titles by a particular author, where they can be found
in the store, etc. While it is often possible to browse and
search on one’s own to locate items of interest, it is usually
easier and more efficient to get some form of human
assistance first, and, with few exceptions, this request for
assistance is presented in the form of a oral query. In
addition, many persons cannot or will not, because of
physical or psychological barriers, use any of the aforemen-
tioned conventional I/O devices. For example, many older

20

25

30

35

40

45

50

55

60

65

2

persons cannot easily read the text presented on WWW
pages, or understand the layout/hierarchy of menus, or
manipulate a mouse to make finely coordinated movements
to indicate their selections. Many others are intimidated by
the look and complexity of computer systems, WWW pages,
etc., and therefore do not attempt to use online services for
this reason as well.

Thus, applications which can mimic normal human inter-
actions are likely to be preferred by potential on-line shop-
pers and persons looking for information over the WWW. It
is also expected that the use of voice-based systems will
increase the universe of persons willing to engage in e-com-
merce, e-learning, etc. To date, however, there are very few
systems, if any, which permit this type of interaction, and, if
they do, it is very limited. For example, various commercial
programs sold by IBM (VIAVOICE™) and Kurzweil
(DRAGON™) permit some user control of the interface
(opening, closing files) and searching (by using previously
trained URLs) but they do not present a flexible solution that
can be used by a number of users across multiple cultures
and without time consuming voice training. Typical prior
efforts to implement voice based functionality in an INTER-
NET context can be seen in U.S. Pat. No. 5,819,220 incor-
porated by reference herein.

Another issue presented by the lack of voice-based sys-
tems is efficiency. Many companies are now offering tech-
nical support over the INTERNET, and some even offer live
operator assistance for such queries. While this is very
advantageous (for the reasons mentioned above) it is also
extremely costly and inefficient, because a real person must
be employed to handle such queries. This presents a prac-
tical limit that results in long wait times for responses or
high labor overheads. An example of this approach can be
seen U.S. Pat. No. 5,802,526 also incorporated by reference
herein. In general, a service presented over the WWW is far
more desirable if it is “scalable,” or, in other words, able to
handle an increasing amount of user traffic with little if any
perceived delay or troubles by a prospective user.

In a similar context, while remote learning has become an
increasingly popular option for many students, it is practi-
cally impossible for an instructor to be able to field questions
from more than one person at a time. Even then, such
interaction usually takes place for only a limited period of
time because of other instructor time constraints. To date,
however, there is no practical way for students to continue
a human-like question and answer type dialog after the
learning session is over, or without the presence of the
instructor to personally address such queries.

Conversely, another aspect of emulating a human-like
dialog involves the use of oral feedback. In other words,
many persons prefer to receive answers and information in
audible form. While a form of this functionality is used by
some websites to communicate information to visitors, it is
not performed in a real-time, interactive question-answer
dialog fashion so its effectiveness and usefulness is limited.

Yet another area that could benefit from speech-based
interaction involves so-called “search” engines used by
INTERNET users to locate information of interest at web
sites, such as the those available at YAHOO®.com,
METACRAWLER®.com, EXCITE®.com, etc. These tools
permit the user to form a search query using either combi-
nations of keywords or metacategories to search through a
web page database containing text indices associated with
one or more distinct web pages. After processing the user’s
request, therefore, the search engine returns a number of hits
which correspond, generally, to URL pointers and text
excerpts from the web pages that represent the closest match

US 7,203,646 B2

3

made by such search engine for the particular user query
based on the search processing logic used by search engine.
The structure and operation of such prior art search engines,
including the mechanism by which they build the web page
database, and parse the search query, are well known in the
art. To date, applicant is unaware of any such search engine
that can easily and reliably search and retrieve information
based on speech input from a user.

There are a number of reasons why the above environ-
ments (e-commerce, e-support, remote learning, INTER-
NET searching, etc.) do not utilize speech-based interfaces,
despite the many benefits that would otherwise flow from
such capability. First, there is obviously a requirement that
the output of the speech recognizer be as accurate as
possible. One of the more reliable approaches to speech
recognition used at this time is based on the Hidden Markov
Model (HMM)—a model used to mathematically describe
any time series. A conventional usage of this technique is
disclosed, for example, in U.S. Pat. No. 4,587,670 incorpo-
rated by reference herein. Because speech is considered to
have an underlying sequence of one or more symbols, the
HMM models corresponding to each symbol are trained on
vectors from the speech waveforms. The Hidden Markov
Model is a finite set of states, each of which is associated
with a (generally multi-dimensional) probability distribu-
tion. Transitions among the states are governed by a set of
probabilities called transition probabilities. In a particular
state an outcome or observation can be generated, according
to the associated probability distribution. This finite state
machine changes state once every time unit, and each time
t such that a state is entered, a spectral parameter vector O,
is generated with probability density B(O,). It is only the
outcome, not the state visible to an external observer and
therefore states are “hidden” to the outside; hence the name
Hidden Markov Model. The basic theory of HMMs was
published in a series of classic papers by Baum and his
colleagues in the late 1960’s and early 1970’s. HMMs were
first used in speech applications by Baker at Carnegie
Mellon, byjelenik and colleagues at IBM in the late 1970’s
and by Steve Young and colleagues at Cambridge Univer-
sity, UK in the 1990’s. Some typical papers and texts are as
follows:

1. L. E. Baum, T. Petrie, “Statistical inference for proba-
bilistic functions for finite state Markov chains”, Ann.
Math. Stat., 37: 1554-1563, 1966

2. L. E. Baum, “An inequality and associated maximation
technique in statistical estimation for probabilistic
functions of Markov processes”, Inequalities 3: 1-8,
1972

3. J. H. Baker, “The dragon system—An Overview”,
IEEE Trans. on ASSP Proc., ASSP-23(1): 24-29, Feb-
ruary 1975

4. F. Jeninek et al, “Continuous Speech Recognition:
Statistical methods” in Handbook of Statistics, 11, P. R.
Kristnaiad, Ed. Amsterdam, The Netherlands, North-
Holland, 1982

5. L. R. Bahl, F. Jeninek, R. L. Mercer, “A maximum
likelihood approach to continuous speech recognition”,
IEEE Trans. Pattern Anal. Mach. Intell., PAMI-5:
179-190, 1983

6. J. D. Ferguson, “Hidden Markov Analysis: An Intro-
duction”, in Hidden Markov Models for Speech, Insti-
tute of Defense Analyses, Princeton, N.J. 1980.

7. H. R. Rabiner and B. H. Juang, “Fundamentals of
Speech Recognition”, Prentice Hall, 1993

8. H. R. Rabiner, “Digital Processing of Speech Signals”,
Prentice Hall, 1978

—

5

20

25

30

35

40

45

50

55

60

65

4

More recently research has progressed in extending HMM
and combining HMMs with neural networks to speech
recognition applications at various laboratories. The follow-
ing is a representative paper:

9. Nelson Morgan, Hervé Bourlard, Steve Renals,
Michael Cohen and Horacio Franco (1993), Hybrid
Neural Network/Hidden Markov Model Systems for
Continuous Speech Recognition. Journal of Pattern
Recognition and Artificial Intelligence, Vol. 7, No. 4
pp. 899-916. Also in 1. Guyon and P. Wang editors,
Advances in Pattern Recognition Systems using Neural
Networks, Vol. 7 of a Series in Machine Perception and
Artificial Intelligence. World Scientific, February 1994.

All of the above are hereby incorporated by reference.
While the HMM-based speech recognition yields very good
results, contemporary variations of this technique cannot
guarantee a word accuracy requirement of 100% exactly and
consistently, as will be required for WWW applications for
all possible all user and environment conditions. Thus,
although speech recognition technology has been available
for several years, and has improved significantly, the tech-
nical requirements have placed severe restrictions on the
specifications for the speech recognition accuracy that is
required for an application that combines speech recognition
and natural language processing to work satisfactorily.

In contrast to word recognition, Natural language pro-
cessing (NLP) is concerned with the parsing, understanding
and indexing of transcribed utterances and larger linguistic
units. Because spontaneous speech contains many surface
phenomena such as distluencies,—hesitations, repairs and
restarts, discourse markers such as ‘well” and other elements
which cannot be handled by the typical speech recognizer, it
is the problem and the source of the large gap that separates
speech recognition and natural language processing tech-
nologies. Except for silence between utterances, another
problem is the absence of any marked punctuation available
for segmenting the speech input into meaningful units such
as utterances. For optimal NLP performance, these types of
phenomena should be annotated at its input. However, most
continuous speech recognition systems produce only a raw
sequence of words. Examples of conventional systems using
NLP are shown in U.S. Pat. Nos. 4,991,094, 5,068,789,
5,146,405 and 5,680,628, all of which are incorporated by
reference herein.

Second, most of the very reliable voice recognition sys-
tems are speaker-dependent, requiring that the interface be
“trained” with the user’s voice, which takes a lot of time, and
is thus very undesirable from the perspective of a WWW
environment, where a user may interact only a few times
with a particular website. Furthermore, speaker-dependent
systems usually require a large user dictionary (one for each
unique user) which reduces the speed of recognition. This
makes it much harder to implement a real-time dialog
interface with satisfactory response capability (i.e., some-
thing that mirrors normal conversation—on the order of 3-5
seconds is probably ideal). At present, the typical shrink-
wrapped speech recognition application software include
offerings from IBM (VIAVOICE™) and Dragon Systems
(DRAGON™). While most of these applications are
adequate for dictation and other transcribing applications,
they are woefully inadequate for applications such as NLQS
where the word error rate must be close to 0%. In addition
these offerings require long training times and are typically
are non client-server configurations. Other types of trained
systems are discussed in U.S. Pat. No. 5,231,670 assigned to
Kurzweil, and which is also incorporated by reference
herein.

US 7,203,646 B2

5

Another significant problem faced in a distributed voice-
based system is a lack of uniformity/control in the speech
recognition process. In a typical stand-alone implementation
of a speech recognition system, the entire SR engine runs on
a single client. A well-known system of this type is depicted
in U.S. Pat. No. 4,991,217 incorporated by reference herein.
These clients can take numerous forms (desktop PC, laptop
PC, PDA, etc.) having varying speech signal processing and
communications capability. Thus, from the server side per-
spective, it is not easy to assure uniform treatment of all
users accessing a voice-enabled web page, since such users
may have significantly disparate word recognition and error
rate performances. While a prior art reference to Gould et
al—U.S. Pat. No. 5,915,236—discusses generally the
notion of tailoring a recognition process to a set of available
computational resources, it does not address or attempt to
solve the issue of how to optimize resources in a distributed
environment such as a client-server model. Again, to enable
such voice-based technologies on a wide-spread scale it is
far more preferable to have a system that harmonizes and
accounts for discrepancies in individual systems so that even
the thinnest client is supportable, and so that all users are
able to interact in a satisfactory manner with the remote
server running the e-commerce, e-support and/or remote
learning application.

Two references that refer to a distributed approach for
speech recognition include U.S. Pat. Nos. 5,956,683 and
5,960,399 incorporated by reference herein. In the first of
these, U.S. Pat. No. 5,956,683—Distributed Voice Recog-
nition System (assigned to Qualcomm) an implementation
of a distributed voice recognition system between a tele-
phony-based handset and a remote station is described. In
this implementation, all of the word recognition operations
seem to take place at the handset. This is done since the
patent describes the benefits that result from locating of the
system for acoustic feature extraction at the portable or
cellular phone in order to limit degradation of the acoustic
features due to quantization distortion resulting from the
narrow bandwidth telephony channel. This reference there-
fore does not address the issue of how to ensure adequate
performance for a very thin client platform. Moreover, it is
difficult to determine, how, if at all, the system can perform
real-time word recognition, and there is no meaningful
description of how to integrate the system with a natural
language processor.

The second of these references—U.S. Pat. No. 5,960,
399—Client/Server Speech Processor/Recognizer (assigned
to GTE) describes the implementation of a HMM-based
distributed speech recognition system. This reference is not
instructive in many respects, however, including how to
optimize acoustic feature extraction for a variety of client
platforms, such as by performing a partial word recognition
process where appropriate. Most importantly, there is only a
description of a primitive server-based recognizer that only
recognizes the user’s speech and simply returns certain
keywords such as the user’s name and travel destination to
fill out a dedicated form on the user’s machine. Also, the
streaming of the acoustic parameters does not appear to be
implemented in real-time as it can only take place after
silence is detected. Finally, while the reference mentions the
possible use of natural language processing (column 9) there
is no explanation of how such function might be imple-
mented in a real-time fashion to provide an interactive feel
for the user.

20

25

30

35

40

45

50

55

60

65

6
SUMMARY OF THE INVENTION

An object of the present invention, therefore, is to provide
an improved system and method for overcoming the limi-
tations of the prior art noted above;

A primary object of the present invention is to provide a
word and phrase recognition system that is flexibly and
optimally distributed across a client/platform computing
architecture, so that improved accuracy, speed and unifor-
mity can be achieved for a wide group of users;

A further object of the present invention is to provide a
speech recognition system that efficiently integrates a dis-
tributed word recognition system with a natural language
processing system, so that both individual words and entire
speech utterances can be quickly and accurately recognized
in any number of possible languages;

A related object of the present invention is to provide an
efficient query response system so that an extremely accu-
rate, real-time set of appropriate answers can be given in
response to speech-based queries;

Yet another object of the present invention is to provide an
interactive, real-time instructional/learning system that is
distributed across a client/server architecture, and permits a
real-time question/answer session with an interactive char-
acter;

A related object of the present invention is to implement
such interactive character with an articulated response capa-
bility so that the user experiences a human-like interaction;

Still a further object of the present invention is to provide
an INTERNET website with speech processing capability so
that voice based data and commands can be used to interact
with such site, thus enabling voice-based e-commerce and
e-support services to be easily scaleable;

Another object is to implement a distributed speech
recognition system that utilizes environmental variables as
part of the recognition process to improve accuracy and
speed;

A further object is to provide a scaleable query/response
database system, to support any number of query topics and
users as needed for a particular application and instanta-
neous demand;

Yet another object of the present invention is to provide a
query recognition system that employs a two-step approach,
including a relatively rapid first step to narrow down the list
of potential responses to a smaller candidate set, and a
second more computationally intensive second step to iden-
tify the best choice to be returned in response to the query
from the candidate set;

A further object of the present invention is to provide a
natural language processing system that facilitates query
recognition by extracting lexical components of speech
utterances, which components can be used for rapidly iden-
tifying a candidate set of potential responses appropriate for
such speech utterances;

Another related object of the present invention is to
provide a natural language processing system that facilitates
query recognition by comparing lexical components of
speech utterances with a candidate set of potential response
to provide an extremely accurate best response to such
query.

One general aspect of the present invention, therefore,
relates to a natural language query system (NLQS) that
offers a fully interactive method for answering user’s ques-
tions over a distributed network such as the INTERNET or
a local intranet. This interactive system when implemented
over the worldwide web (WWW) services of the INTER-
NET functions so that a client or user can ask a question in

US 7,203,646 B2

7

a natural language such as English, French, German or
Spanish and receive the appropriate answer at his or her
personal computer also in his or her native natural language.

The system is distributed and consists of a set of inte-
grated software modules at the client’s machine and another
set of integrated software programs resident on a server or
set of servers. The client-side software program is comprised
of a speech recognition program, an agent and its control
program, and a communication program. The server-side
program is comprised of a communication program, a natu-
ral language engine (NLE), a database processor (DBPro-
cess), an interface program for interfacing the DBProcess
with the NLE, and a SQL database. In addition, the client’s
machine is equipped with a microphone and a speaker.
Processing of the speech utterance is divided between the
client and server side so as to optimize processing and
transmission latencies, and so as to provide support for even
very thin client platforms.

In the context of an interactive learning application, the
system is specifically used to provide a single-best answer to
a user’s question. The question that is asked at the client’s
machine is articulated by the speaker and captured by a
microphone that is built in as in the case of a notebook
computer or is supplied as a standard peripheral attachment.
Once the question is captured, the question is processed
partially by NLQS client-side software resident in the cli-
ent’s machine. The output of this partial processing is a set
of speech vectors that are transported to the server via the
INTERNET to complete the recognition of the user’s ques-
tions. This recognized speech is then converted to text at the
server.

After the user’s question is decoded by the speech rec-
ognition engine (SRE) located at the server, the question is
converted to a structured query language (SQL) query. This
query is then simultaneously presented to a software process
within the server called DBProcess for preliminary process-
ing and to a Natural Language Engine (NLE) module for
extracting the noun phrases (NP) of the user’s question.
During the process of extracting the noun phrase within the
NLE, the tokens of the users’ question are tagged. The
tagged tokens are then grouped so that the NP list can be
determined. This information is stored and sent to the
DBProcess process.

In the DBProcess, the SQL query is fully customized
using the NP extracted from the user’s question and other
environment variables that are relevant to the application.
For example, in a training application, the user’s selection of
course, chapter and or section would constitute the environ-
ment variables. The SQL query is constructed using the
extended SQL Full-Text predicates—CONTAINS, FREET-
EXT, NEAR, AND. The SQL query is next sent to the
Full-Text search engine within the SQL database, where a
Full-Text search procedure is initiated. The result of this
search procedure is recordset of answers. This recordset
contains stored questions that are similar linguistically to the
user’s question. Each of these stored questions has a paired
answer stored in a separate text file, whose path is stored in
a table of the database.

The entire recordset of returned stored answers is then
returned to the NLE engine in the form of an array. Each
stored question of the array is then linguistically processed
sequentially one by one. This linguistic processing consti-
tutes the second step of a 2-step algorithm to determine the
single best answer to the user’s question. This second step
proceeds as follows: for each stored question that is returned
in the recordset, a NP of the stored question is compared
with the NP of the user’s question. After all stored questions

20

25

30

35

40

45

50

55

60

65

8

of'the array are compared with the user’s question, the stored
question that yields the maximum match with the user’s
question is selected as the best possible stored question that
matches the user’s question. The metric that is used to
determine the best possible stored question is the number of
noun phrases.

The stored answer that is paired to the best-stored ques-
tion is selected as the one that answers the user’s question.
The ID tag of the question is then passed to the DBProcess.
This DBProcess returns the answer which is stored in a file.

A communication link is again established to send the
answer back to the client in compressed form. The answer
once received by the client is decompressed and articulated
to the user by the text-to-speech engine. Thus, the invention
can be used in any number of different applications involv-
ing interactive learning systems, INTERNET related com-
merce sites, INTERNET search engines, etc.

Computer-assisted instruction environments often require
the assistance of mentors or live teachers to answer ques-
tions from students. This assistance often takes the form of
organizing a separate pre-arranged forum or meeting time
that is set aside for chat sessions or live call-in sessions so
that at a scheduled time answers to questions may be
provided. Because of the time immediacy and the on-
demand or asynchronous nature of on-line training where a
student may log on and take instruction at any time and at
any location, it is important that answers to questions be
provided in a timely and cost-effective manner so that the
user or student can derive the maximum benefit from the
material presented.

This invention addresses the above issues. It provides the
user or student with answers to questions that are normally
channeled to a live teacher or mentor. This invention pro-
vides a single-best answer to questions asked by the student.
The student asks the question in his or her own voice in the
language of choice. The speech is recognized and the answer
to the question is found using a number of technologies
including distributed speech recognition, full-text search
database processing, natural language processing and text-
to-speech technologies. The answer is presented to the user,
as in the case of a live teacher, in an articulated manner by
an agent that mimics the mentor or teacher, and in the
language of choice—English, French, German, Japanese or
other natural spoken language. The user can choose the
agent’s gender as well as several speech parameters such as
pitch, volume and speed of the character’s voice.

Other applications that benefit from NLQS are e-com-
merce applications. In this application, the user’s query for
a price of a book, compact disk or for the availability of any
item that is to be purchased can be retrieved without the need
to pick through various lists on successive web pages.
Instead, the answer is provided directly to the user without
any additional user input.

Similarly, it is envisioned that this system can be used to
provide answers to frequently-asked questions (FAQs), and
as a diagnostic service tool for e-support. These questions
are typical of a give web site and are provided to help the
user find information related to a payment procedure or the
specifications of, or problems experienced with a product/
service. In all of these applications, the NLQS architecture
can be applied.

A number of inventive methods associated with these
architectures are also beneficially used in a variety of
INTERNET related applications.

Although the inventions are described below in a set of
preferred embodiments, it will be apparent to those skilled
in the art the present inventions could be beneficially used in

US 7,203,646 B2

9

many environments where it is necessary to implement fast,
accurate speech recognition, and/or to provide a human-like
dialog capability to an intelligent system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a preferred embodiment of
a natural language query system (NLQS) of the present
invention, which is distributed across a client/server com-
puting architecture, and can be used as an interactive learn-
ing system, an e-commerce system, an e-support system,
and the like;

FIG. 2 is a block diagram of a preferred embodiment of
a client side system, including speech capturing modules,
partial speech processing modules, encoding modules, trans-
mission modules, agent control modules, and answer/voice
feedback modules that can be used in the aforementioned
NLQS;

FIG. 2—2 is a block diagram of a preferred embodiment
of a set of initialization routines and procedures used for the
client side system of FIG. 2;

FIG. 3 is a block diagram of a preferred embodiment of
a set of routines and procedures used for handling an iterated
set of speech utterances on the client side system of FIG. 2,
transmitting speech data for such utterances to a remote
server, and receiving appropriate responses back from such
server;

FIG. 4 is a block diagram of a preferred embodiment of
a set of initialization routines and procedures used for
un-initializing the client side system of FIG. 2;

FIG. 4A is a block diagram of a preferred embodiment of
a set of routines and procedures used for implementing a
distributed component of a speech recognition module for
the server side system of FIG. 5;

FIG. 4B is a block diagram of a preferred set of routines
and procedures used for implementing an SQL query builder
for the server side system of FIG. 5;

FIG. 4C is a block diagram of a preferred embodiment of
a set of routines and procedures used for implementing a
database control process module for the server side system
of FIG. 5;

FIG. 4D is a block diagram of a preferred embodiment of
a set of routines and procedures used for implementing a
natural language engine that provides query formulation
support, a query response module, and an interface to the
database control process module for the server side system
of FIG. 5;

FIG. 5 is a block diagram of a preferred embodiment of
a server side system, including a speech recognition module
to complete processing of the speech utterances, environ-
mental and grammar control modules, query formulation
modules, a natural language engine, a database control
module, and a query response module that can be used in the
aforementioned NLQS;

FIG. 6 illustrates the organization of a full-text database
used as part of server side system shown in FIG. 5;

FIG. 7A illustrates the organization of a full-text database
course table used as part of server side system shown in FIG.
5 for an interactive learning embodiment of the present
invention;

FIG. 7B illustrates the organization of a full-text database
chapter table used as part of server side system shown in
FIG. 5 for an interactive learning embodiment of the present
invention;

FIG. 7C describes the fields used in a chapter table used
as part of server side system shown in FIG. 5 for an
interactive learning embodiment of the present invention;

20

25

30

35

40

45

50

55

60

65

10

FIG. 7D describes the fields used in a section table used
as part of server side system shown in FIG. 5 for an
interactive learning embodiment of the present invention;

FIG. 8 is a flow diagram of a first set of operations
performed by a preferred embodiment of a natural language
engine on a speech utterance including Tokenization, Tag-
ging and Grouping;

FIG. 9 is a flow diagram of the operations performed by
a preferred embodiment of a natural language engine on a
speech utterance including stemming and Lexical Analysis

FIG. 10 is a block diagram of a preferred embodiment of
a SQL database search and support system for the present
invention;

FIGS. 11A-11C are flow diagrams illustrating steps per-
formed in a preferred two step process implemented for
query recognition by the NLQS of FIG. 2;

FIG. 12 is an illustration of another embodiment of the
present invention implemented as part of a Web-based
speech based learning/training System;

FIGS. 13-17 are illustrations of another embodiment of
the present invention implemented as part of a Web-based
e-commerce system;

FIG. 18 is an illustration of another embodiment of the
present invention implemented as part of a voice-based Help
Page for an E-Commerce Web Site.

DETAILED DESCRIPTION OF THE
INVENTION

Overview

As alluded to above, the present inventions allow a user
to ask a question in a natural language such as English,
French, German, Spanish or Japanese at a client computing
system (which can be as simple as a personal digital assistant
or cell-phone, or as sophisticated as a high end desktop PC)
and receive an appropriate answer from a remote server also
in his or her native natural language. As such, the embodi-
ment of the invention shown in FIG. 1 is beneficially used
in what can be generally described as a Natural Language
Query System (NLQS) 100, which is configured to interact
on a real-time basis to give a human-like dialog capability/
experience for e-commerce, e-support, and e-learning appli-
cations.

The processing for NLQS 100 is generally distributed
across a client side system 150, a data link 160, and a
server-side system 180. These components are well known
in the art, and in a preferred embodiment include a personal
computer system 150, an INTERNET connection 160A,
160B, and a larger scale computing system 180. It will be
understood by those skilled in the art that these are merely
exemplary components, and that the present invention is by
no means limited to any particular implementation or com-
bination of such systems. For example, client-side system
150 could also be implemented as a computer peripheral, a
PDA, as part of a cell-phone, as part of an INTERNET-
adapted appliance, an INTERNET linked kiosk, etc. Simi-
larly, while an INTERNET connection is depicted for data
link 160A, it is apparent that any channel that is suitable for
carrying data between client system 150 and server system
180 will suffice, including a wireless link, an RF link, an IR
link, a LAN, and the like. Finally, it will be further appre-
ciated that server system 180 may be a single, large-scale
system, or a collection of smaller systems interlinked to
support a number of potential network users.

Initially speech input is provided in the form of a question
or query articulated by the speaker at the client’s machine or

US 7,203,646 B2

11

personal accessory as a speech utterance. This speech utter-
ance is captured and partially processed by NLQS client-
side software 155 resident in the client’s machine. To
facilitate and enhance the human-like aspects of the inter-
action, the question is presented in the presence of an
animated character 157 visible to the user who assists the
user as a personal information retriever/agent. The agent can
also interact with the user using both visible text output on
a monitor/display (not shown) and/or in audible form using
a text to speech engine 159. The output of the partial
processing done by SRE 155 is a set of speech vectors that
are transmitted over communication channel 160 that links
the user’s machine or personal accessory to a server or
servers via the INTERNET or a wireless gateway that is
linked to the INTERNET as explained above. At server 180,
the partially processed speech signal data is handled by a
server-side SRE 182, which then outputs recognized speech
text corresponding to the user’s question. Based on this user
question related text, a text-to-query converter 184 formu-
lates a suitable query that is used as input to a database
processor 186. Based on the query, database processor 186
then locates and retrieves an appropriate answer using a
customized SQL query from database 188. A Natural Lan-
guage Engine 190 facilitates structuring the query to data-
base 188. After a matching answer to the user’s question is
found, the former is transmitted in text form across data link
160B, where it is converted into speech by text to speech
engine 159, and thus expressed as oral feedback by animated
character agent 157.

Because the speech processing is broken up in this
fashion, it is possible to achieve real-time, interactive,
human-like dialog consisting of a large, controllable set of
questions/answers. The assistance of the animated agent 157
further enhances the experience, making it more natural and
comfortable for even novice users. To make the speech
recognition process more reliable, context-specific gram-
mars and dictionaries are used, as well as natural language
processing routines at NLE 190, to analyze user questions
lexically. While context-specific processing of speech data is
known in the art (see e.g., U.S. Pat. Nos. 5,960,394, 5,867,
817, 5,758,322 and 5,384,892 incorporated by reference
herein) the present inventors are unaware of any such
implementation as embodied in the present inventions. The
text of the user’s question is compared against text of other
questions to identify the question posed by the user by DB
processor/engine (DBE) 186. By optimizing the interaction
and relationship of the SR engines 155 and 182, the NLP
routines 190, and the dictionaries and grammars, an
extremely fast and accurate match can be made, so that a
unique and responsive answer can be provided to the user.

On the server side 180, interleaved processing further
accelerates the speech recognition process. In simplified
terms, the query is presented simultaneously both to NLE
190 after the query is formulated, as well as to DBE 186.
NLE 190 and SRE 182 perform complementary functions in
the overall recognition process. In general, SRE 182 is
primarily responsible for determining the identity of the
words articulated by the user, while NLE 190 is responsible
for the linguistic morphological analysis of both the user’s
query and the search results returned after the database
query.

After the user’s query is analyzed by NLE 190 some
parameters are extracted and sent to the DBProcess. Addi-
tional statistics are stored in an array for the 2"/ step of
processing. During the 2"¢ step of 2-step algorithm, the
recordset of preliminary search results are sent to the NLE
160 for processing. At the end of this 2" step, the single

20

25

30

35

40

45

50

55

60

65

12

question that matches the user’s query is sent to the DBPro-
cess where further processing yields the paired answer that
is paired with the single best stored question.

Thus, the present invention uses a form of natural lan-
guage processing (NLP) to achieve optimal performance in
a speech based web application system. While NLP is
known in the art, prior efforts in Natural Language Process-
ing (NLP) work nonetheless have not been well integrated
with Speech Recognition (SR) technologies to achieve rea-
sonable results in a web-based application environment. In
speech recognition, the result is typically a lattice of possible
recognized words each with some probability of fit with the
speech recognizer. As described before, the input to a typical
NLP system is typically a large linguistic unit. The NLP
system is then charged with the parsing, understanding and
indexing of this large linguistic unit or set of transcribed
utterances. The result of this NLP process is to understand
lexically or morphologically the entire linguistic unit as
opposed to word recognition. Put another way, the linguistic
unit or sentence of connected words output by the SRE has
to be understood lexically, as opposed to just being “recog-
nized”.

As indicated earlier, although speech recognition technol-
ogy has been available for several years, the technical
requirements for the NLQS invention have placed severe
restrictions on the specifications for the speech recognition
accuracy that is required for an application that combines
speech recognition and natural language processing to work
satisfactorily. In realizing that even with the best of condi-
tions, it might be not be possible to achieve the perfect 100%
speech recognition accuracy that is required, the present
invention employs an algorithm that balances the potential
risk of the speech recognition process with the requirements
of the natural language processing so that even in cases
where perfect speech recognition accuracy is not achieved
for each word in the query, the entire query itself is none-
theless recognized with sufficient accuracy.

This recognition accuracy is achieved even while meeting
very stringent user constraints, such as short latency periods
of 3 to 5 seconds (ideally—ignoring transmission latencies
which can vary) for responding to a speech-based query, and
for a potential set of 100-250 query questions. This quick
response time gives the overall appearance and experience
of a real-time discourse that is more natural and pleasant
from the user’s perspective. Of course, non-real time appli-
cations, such as translation services for example, can also
benefit from the present teachings as well, since a central-
ized set of HMMs, grammars, dictionaries, etc., are main-
tained.

General Aspects of Speech Recognition Used in the Present
Inventions

General background information on speech recognition
can be found in the prior art references discussed above and
incorporated by reference herein. Nonetheless, a discussion
of some particular exemplary forms of speech recognition
structures and techniques that are well-suited for NLQS 100
is provided next to better illustrate some of the characteris-
tics, qualities and features of the present inventions.

Speech recognition technology is typically of two types—
speaker independent and speaker dependent. In speaker-
dependent speech recognition technology, each user has a
voice file in which a sample of each potentially recognized
word is stored. Speaker-dependent speech recognition sys-
tems typically have large vocabularies and dictionaries
making them suitable for applications as dictation and text
transcribing. It follows also that the memory and processor

US 7,203,646 B2

13

resource requirements for the speaker-dependent can be and
are typically large and intensive.

Conversely speaker-independent speech recognition tech-
nology allows a large group of users to use a single vocabu-
lary file. It follows then that the degree of accuracy that can
be achieved is a function of the size and complexity of the
grammars and dictionaries that can be supported for a given
language. Given the context of applications for which
NLQS, the use of small grammars and dictionaries allow
speaker independent speech recognition technology to be
implemented in NLQS.

The key issues or requirements for either type—speaker-
independent or speaker-dependent, are accuracy and speed.
As the size of the user dictionaries increase, the speech
recognition accuracy metric—word error rate (WER) and
the speed of recognition decreases. This is so because the
search time increases and the pronunciation match becomes
more complex as the size of the dictionary increases.

The basis of the NLQS speech recognition system is a
series of Hidden Markov Models (HMM), which, as alluded
to earlier, are mathematical models used to characterize any
time varying signal. Because parts of speech are considered
to be based on an underlying sequence of one or more
symbols, the HMM models corresponding to each symbol
are trained on vectors from the speech waveforms. The
Hidden Markov Model is a finite set of states, each of which
is associated with a (generally multi-dimensional) probabil-
ity distribution. Transitions among the states are governed
by a set of probabilities called transition probabilities. In a
particular state an outcome or observation can be generated,
according to an associated probability distribution. This
finite state machine changes state once every time unit, and
each time t such that a state j is entered, a spectral parameter
vector O, is generated with probability density B(O,). It is
only the outcome, not the state which is visible to an external
observer and therefore states are “hidden” to the outside;
hence the name Hidden Markov Model.

In isolated speech recognition, it is assumed that the
sequence of observed speech vectors corresponding to each
word can each be described by a Markov model as follows:

(1-1

where o0, is a speech vector observed at time t. The isolated
word recognition then is to compute:

O=0y, 05 ...0¢

arg max{P(wjO)} (1-2)

By using Bayes’ Rule,

{P(w0)}=[P(Ow)P(w)/P(O) (1-3)

In the general case, the Markov model when applied to
speech also assumes a finite state machine which changes
state once every time unit and each time that a state j is
entered, a speech vector o, is generated from the probability
density b,(o,). Furthermore, the transition from state i to state
j is also probabilistic and is governed by the discrete
probability a,.

For a state sequence X, the joint probability that O is
generated by the model M moving through a state sequence
X is the product of the transition probabilities and the output
probabilities. Only the observation sequence is known—the
state sequence is hidden as mentioned before.

Given that X is unknown, the required likelihood is
computed by summing over all possible state sequences
X=x(1), x(2), x(3), . . . x(T), that is

P(OM)=2 {ax(O)x(1)Hb ®) (Ot)ax(t)x(Hl)}

20

25

30

35

40

45

50

55

60

65

14

Given a set of models M,;, corresponding to words w,
equation 1-2 is solved by using 1-3 and also by assuming
that:

P(Ow,)=P(OIM})

All of this assumes that the parameters {a,} and {b(0)}
are known for each model M,. This can be done, as explained
earlier, by using a set of training examples corresponding to
a particular model. Thereafter, the parameters of that model
can be determined automatically by a robust and efficient
re-estimation procedure. So if a sufficient number of repre-
sentative examples of each word are collected, then a HMM
can be constructed which simply models all of the many
sources of variability inherent in real speech. This training is
well-known in the art, so it is not described at length herein,
except to note that the distributed architecture of the present
invention enhances the quality of HMMs, since they are
derived and constituted at the server side, rather than the
client side. In this way, appropriate samples from users of
different geographical areas can be easily compiled and
analyzed to optimize the possible variations expected to be
seen across a particular language to be recognized. Unifor-
mity of the speech recognition process is also well-main-
tained, and error diagnostics are simplified, since each
prospective user is using the same set of HMMs during the
recognition process.

To determine the parameters of a HMM from a set of
training samples, the first step typically is to make a rough
guess as to what they might be. Then a refinement is done
using the Baum-Welch estimation formulae. By these for-
mulae, the maximum likelihood estimates of w, (where W, is
mean vector and X, is covariance matrix) is:

W2 L (00 /[E - L0)0)

A forward-backward algorithm is next used to calculate
the probability of state occupation L(t). If the forward
probability o(t) for some model M with N states is defined
as:

aH=Ploy, . . ., 0, Xx(t)=/M)
This probability can be calculated using the recursion:
aj(l):[ZNili:2a(l_1)aij]bj(ot)

Similarly the backward probability can be computed
using the recursion:

ﬁj(l)ZENilj:2aijbj(0t+1)(l+1)

Realizing that the forward probability is a joint probabil-
ity and the backward probability is a conditional probability,
the probability of state occupation is the product of the two
probabilities:

aj(O)B;(O=P(Ox()=/M)
Hence the probability of being in state j at a time t is:

L(O=1/P[o, (O]

where P=P(OM)

To generalize the above for continuous speech recogni-
tion, we assume the maximum likelihood state sequence
where the summation is replaced by a maximum operation.
Thus for a given model M, let ¢j(t) represent the maximum
likelihood of observing speech vectors o, to o, and being
used in state j at time t:

G (O=max{@i()(-1)a; }B(0,)

US 7,203,646 B2

15

Expressing this logarithmically to avoid underflow, this
likelihood becomes:

Yy (=max{y,(-1)+log(oy) }+log(b,(0,)

This is also known as the Viterbi algorithm. It can be
visualized as finding the best path through a matrix where
the vertical dimension represents the states of the HMM and
horizontal dimension represents frames of speech i.e. time.
To complete the extension to connected speech recognition,
it is further assumed that each HMM representing the
underlying sequence is connected. Thus the training data for
continuous speech recognition should consist of connected
utterances; however, the boundaries between words do not
have to be known.

To improve computational speed/efficiency, the Viterbi
algorithm is sometimes extended to achieve convergence by
using what is known as a Token Passing Model. The token
passing model represents a partial match between the obser-
vation sequence 0, to 0, and a particular model, subject to the
constraint that the model is in state at time t. This token
passing model can be extended easily to connected speech
environments as well if we allow the sequence of HMMs to
be defined as a finite state network. A composite network
that includes both phoneme-based HMMs and complete
words can be constructed so that a single-best word can be
recognized to form connected speech using word N-best
extraction from the lattice of possibilities. This composite
form of HMM-based connected speech recognizer is the
basis of the NLQS speech recognizer module. Nonetheless,
the present invention is not limited as such to such specific
forms of speech recognizers, and can employ other tech-
niques for speech recognition if they are otherwise compat-
ible with the present architecture and meet necessary per-
formance criteria for accuracy and speed to provide a
real-time dialog experience for users.

The representation of speech for the present invention’s
HMM-based speech recognition system assumes that speech
is essentially either a quasi-periodic pulse train (for voiced
speech sounds) or a random noise source (for unvoiced
sounds). It may be modeled as two sources—one a impulse
train generator with pitch period P and a random noise
generator which is controlled by a voice/unvoiced switch.
The output of the switch is then fed into a gain function
estimated from the speech signal and scaled to feed a digital
filter H(z) controlled by the vocal tract parameter charac-
teristics of the speech being produced. All of the parameters
for this model—the voiced/unvoiced switching, the pitch
period for voiced sounds, the gain parameter for the speech
signal and the coefficient of the digital filter, vary slowly
with time. In extracting the acoustic parameters from the
user’s speech input so that it can evaluated in light of a set
of HMMs, cepstral analysis is typically used to separate the
vocal tract information from the excitation information. The
cepstrum of a signal is computed by taking the Fourier (or
similar) transform of the log spectrum. The principal advan-
tage of extracting cepstral coefficients is that they are
de-correlated and the diagonal covariances can be used with
HMMs. Since the human ear resolves frequencies non-
linearly across the audio spectrum, it has been shown that a
front-end that operates in a similar non-linear way improves
speech recognition performance.

Accordingly, instead of a typical linear prediction-based
analysis, the front-end of the NLQS speech recognition
engine implements a simple, fast Fourier transform based
filter bank designed to give approximately equal resolution
on the Mel-scale. To implement this filter bank, a window of
speech data (for a particular time frame) is transformed

20

25

30

35

40

45

50

55

60

65

16

using a software based Fourier transform and the magnitude
taken. Each FFT magnitude is then multiplied by the cor-
responding filter gain and the results accumulated. The
cepstral coefficients that are derived from this further-bank
analysis at the front end are calculated during a first partial
processing phase of the speech signal by using a Discrete
Cosine Transform of the log filter bank amplitudes. These
cepstral coeflicients are called Mel-Frequency Cepstral
Coeflicients (MFCC) and they represent some of the speech
parameters transferred from the client side to characterize
the acoustic features of the user’s speech signal. These
parameters are chosen for a number of reasons, including the
fact that they can be quickly and consistently derived even
across systems of disparate capabilities (i.e., for everything
from a low power PDA to a high powered desktop system),
they give good discrimination, they lend themselves to a
number of useful recognition related manipulations, and
they are relatively small and compact in size so that they can
be transported rapidly across even a relatively narrow band
link. Thus, these parameters represent the least amount of
information that can be used by a subsequent server side
system to adequately and quickly complete the recognition
process.

To augment the speech parameters an energy term in the
form of the logarithm of the signal energy is added. Accord-
ingly, RMS energy is added to the 12 MFCC’s to make 13
coeflicients. These coefficients together make up the par-
tially processed speech data transmitted in compressed form
from the user’s client system to the remote server side.

The performance of the present speech recognition system
is enhanced significantly by computing and adding time
derivatives to the basic static MFCC parameters at the server
side. These two other sets of coefficients—the delta and
acceleration coefficients representing change in each of the
13 values from frame to frame (actually measured across
several frames), are computed during a second partial speech
signal processing phase to complete the initial processing of
the speech signal, and are added to the original set of
coefficients after the latter are received. These MFCCs
together with the delta and acceleration coefficients consti-
tute the observation vector O, mentioned above that is used
for determining the appropriate HMM for the speech data.

The delta and acceleration coefficients are computed
using the following regression formula:

d7%%_1[¢,,0-¢, 6}/ 22% 167

where d, is a delta coefficient at time t computed in terms
of the corresponding static coefficients:

dz:[CHe—sze]/ze

In a typical stand-alone implementation of a speech
recognition system, the entire SR engine runs on a single
client. In other words, both the first and second partial
processing phases above are executed by the same DSP (or
microprocessor) running a ROM or software code routine at
the client’s computing machine.

In contrast, because of several considerations, specifi-
cally—cost, technical performance, and client hardware
uniformity, the present NLQS system uses a partitioned or
distributed approach. While some processing occurs on the
client side, the main speech recognition engine runs on a
centrally located server or number of servers. More specifi-
cally, as noted earlier, capture of the speech signals, MFCC
vector extraction and compression are implemented on the
client’s machine during a first partial processing phase. The
routine is thus streamlined and simple enough to be imple-
mented within a browser program (as a plug in module, or

US 7,203,646 B2

17

a downloadable applet for example) for maximum ease of
use and utility. Accordingly, even very “thin” client plat-
forms can be supported, which enables the use of the present
system across a greater number of potential sites. The
primary MFCCs are then transmitted to the server over the
channel, which, for example, can include a dial-up INTER-
NET connection, a LAN connection, a wireless connection
and the like. After decompression, the delta and acceleration
coeflicients are computed at the server to complete the initial
speech processing phase, and the resulting observation vec-
tors O, are also determined.

General Aspects of Speech Recognition Engine

The speech recognition engine is also located on the
server, and is based on a HTK-based recognition network
compiled from a word-level network, a dictionary and a set
of HMMs. The recognition network consists of a set of
nodes connected by arcs. Each node is either a HMM model
instance or a word end. Each model node is itself a network
consisting of states connected by arcs. Thus when fully
compiled, a speech recognition network consists of HMM
states connected by transitions. For an unknown input utter-
ance with T frames, every path from the start node to the exit
node of the network passes through T HMM states. Each of
these paths has log probability which is computed by
summing the log probability of each individual transition in
the path and the log probability of each emitting state
generating the corresponding observation. The function of
the Viterbi decoder is find those paths through the network
which have the highest log probability. This is found using
the Token Passing algorithm. In a network that has many
nodes, the computation time is reduced by only allowing
propagation of those tokens which will have some chance of
becoming winners. This process is called pruning.

Natural Language Processor

In a typical natural language interface to a database, the
user enters a question in his’/her natural language, for
example, English. The system parses it and translates it to a
query language expression. The system then uses the query
language expression to process the query and if the search is
successful, a recordset representing the results is displayed
in English either formatted as raw text or in a graphical form.
For a natural language interface to work well involves a
number of technical requirements.

For example, it needs to be robust—in the sentence
‘What’s the departments turnover’ it needs to decide that the
word whats=what’s=what is. And it also has to determine
that departments=department’s. In addition to being robust,
the natural language interface has to distinguish between the
several possible forms of ambiguity that may exist in the
natural language—Ilexical, structural, reference and ellipsis
ambiguity. All of these requirements, in addition to the
general ability to perform basic linguistic morphological
operations of tokenization, tagging and grouping, are imple-
mented within the present invention.

Tokenization is implemented by a text analyzer which
treats the text as a series of tokens or useful meaningful units
that are larger than individual characters, but smaller than
phrases and sentences. These include words, separable parts
of words, and punctuation. Each token is associated with an
offset and a length. The first phase of tokenization is the
process of segmentation which extracts the individual tokens
from the input text and keeps track of the offset where each
token originated in the input text. The tokenizer output lists
the offset and category for each token. In the next phase of
the text analysis, the tagger uses a built-in morphological
analyzer to look up each word/token in a phrase or sentence

20

25

30

35

40

45

50

55

60

65

18

and internally lists all parts of speech. The output is the input
string with each token tagged with a parts of speech nota-
tion. Finally the grouper which functions as a phrase extrac-
tor or phrase analyzer, determines which groups of words
form phrases. These three operations which are the founda-
tions for any modern linguistic processing schemes, are fully
implemented in optimized algorithms for determining the
single-best possible answer to the user’s question.

SQL Database and Full-Text Query

Another key component of present system is a SQL-
database. This database is used to store text, specifically the
answer-question pairs are stored in full-text tables of the
database. Additionally, the full-text search capability of the
database allows full-text searches to be carried out.

While a large portion of all digitally stored information is
in the form of unstructured data, primarily text, it is now
possible to store this textual data in traditional database
systems in character-based columns such as varchar and
text. In order to effectively retrieve textual data from the
database, techniques have to be implemented to issue que-
ries against textual data and to retrieve the answers in a
meaningful way where it provides the answers as in the case
of the NLQS system.

There are two major types of textual searches: Property—
This search technology first applies filters to documents in
order to extract properties such as author, subject, type, word
count, printed page count, and time last written, and then
issues searches against those properties; Full-text—this
search technology first creates indexes of all non-noise
words in the documents, and then uses these indexes to
support linguistic searches and proximity searches.

Two additional technologies are also implemented in this
particular RDBMs: SQL Server also have been integrated: A
Search service—a full-text indexing and search service that
is called both index engine and search, and a parser that
accepts full-text SQL extensions and maps them into a form
that can be processed by the search engine.

The four major aspects involved in implementing full-text
retrieval of plain-text data from a full-text-capable database
are: Managing the definition of the tables and columns that
are registered for full-text searches; Indexing the data in
registered columns—the indexing process scans the charac-
ter streams, determines the word boundaries (this is called
word breaking), removes all noise words (this also is called
stop words), and then populates a full-text index with the
remaining words; Issuing queries against registered columns
for populated full-text indexes; Ensuring that subsequent
changes to the data in registered columns gets propagated to
the index engine to keep the full-text indexes synchronized.

The underlying design principle for the indexing, query-
ing, and synchronizing processes is the presence of a full-
text unique key column (or single-column primary key) on
all tables registered for full-text searches. The full-text index
contains an entry for the non-noise words in each row
together with the value of the key column for each row.

When processing a full-text search, the search engine
returns to the database the key values of the rows that match
the search criteria.

The full-text administration process starts by designating
a table and its columns of interest for full-text search.
Customized NLQS stored procedures are used first to reg-
ister tables and columns as eligible for full-text search. After
that, a separate request by means of a stored procedure is
issued to populate the full-text indexes. The result is that the
underlying index engine gets invoked and asynchronous
index population begins. Full-text indexing tracks which

US 7,203,646 B2

19

significant words are used and where they are located. For
example, a full-text index might indicate that the word
“NLQS” is found at word number 423 and word number 982
in the Abstract column of the DevTools table for the row
associated with a ProductID of 6. This index structure
supports an efficient search for all items containing indexed
words as well as advanced search operations, such as phrase
searches and proximity searches. (An example of a phrase
search is looking for “white elephant,” where “white” is
followed by “elephant”. An example of a proximity search
is looking for “big” and “house” where “big” occurs near
“house”.) To prevent the full-text index from becoming
bloated, noise words such as “a,” “and,” and ‘“the” are
ignored.

Extensions to the Transact-SQL language are used to
construct full-text queries. The two key predicates that are
used in the NLQS are CONTAINS and FREETEXT.

The CONTAINS predicate is used to determine whether
or not values in full-text registered columns contain certain
words and phrases. Specifically, this predicate is used to
search for:

A word or phrase.

The prefix of a word or phrase.

A word or phrase that is near another.

A word that is an inflectional form of another (for
example, “drive” is the inflectional stem of “drives,”
“drove,” “driving,” and “driven”).

A set of words or phrases, each of which is assigned a
different weighting.

The relational engine within SQL Server recognizes the
CONTAINS and FREETEXT predicates and performs some
minimal syntax and semantic checking, such as ensuring
that the column referenced in the predicate has been regis-
tered for full-text searches. During query execution, a full-
text predicate and other relevant information are passed to
the full-text search component. After further syntax and
semantic validation, the search engine is invoked and returns
the set of unique key values identifying those rows in the
table that satisfy the full-text search condition. In addition to
the FREETEXT and CONTAINS, other predicates such as
AND, LIKE, NEAR are combined to create the customized
NLQS SQL construct.

Full-Text Query Architecture of the SQL Database

The full-text query architecture is comprised of the fol-
lowing several components—Full-Text Query component,
the SQL Server Relational Engine, the Full-Text provider
and the Search Engine.

The Full-Text Query component of the SQL database
accept a full-text predicate or rowset-valued function from
the SQL Server; transform parts of the predicate into an
internal format, and sends it to Search Service, which returns
the matches in a rowset. The rowset is then sent back to SQL
Server. SQL Server uses this information to create the
resultset that is then returned to the submitter of the query.

The SQL Server Relational Engine accepts the CON-
TAINS and FREETEXT predicates as well as the CON-
TAINSTABLE() and FREETEXTTABLE() rowset-valued
functions. During parse time, this code checks for conditions
such as attempting to query a column that has not been
registered for full-text search. If valid, then at run time, the
ft_search_condition and context information is sent to the
full-text provider. Eventually, the full-text provider returns a
rowset to SQL Server, which is used in any joins (specified
or implied) in the original query. The Full-Text Provider
parses and validates the ft_search_condition, constructs the
appropriate internal representation of the full-text search

20

25

30

35

40

45

50

55

60

65

20

condition, and then passes it to the search engine. The result
is returned to the relational engine by means of a rowset of
rows that satisfy fi_search_condition.

Client Side System 150

The architecture of client-side system 150 of Natural
Language Query System 100 is illustrated in greater detail in
FIG. 2. Referring to FIG. 2, the three main processes
effectuated by Client System 150 are illustrated as follows:
Initialization process 200A consisting of SRE 201, Commu-
nication 202 and Microsoft (MS) Agent 203 routines; an
iterative process 200B consisting of two sub-routines: a)
Receive User Speech 208—made up of SRE 204 and
Communication 205; and b) Receive Answer from Server
207—made up of MS Speak Agent 206, Communication
209, Voice data file 210 and Text to Speech Engine 211.
Finally, un-initialization process 200C is made up of three
sub-routines: SRE 212, Communication 213, and MS Agent
214. Each of the above three processes are described in
detail in the following paragraphs. It will be appreciated by
those skilled in the art that the particular implementation for
such processes and routines will vary from client platform to
platform, so that in some environments such processes may
be embodied in hard-coded routines executed by a dedicated
DSP, while in others they may be embodied as software
routines executed by a shared host processor, and in still
others a combination of the two may be used.

Initialization at Client System 150

The initialization of the Client System 150 is illustrated in
FIG. 2—2 and is comprised generally of 3 separate initial-
izing processes: client-side Speech Recognition Engine
220A, MS Agent 220B and Communication processes
220C.

Initialization of Speech Recognition Engine 220A

Speech Recognition Engine 155 is initialized and config-
ured using the routines shown in 220A. First, an SRE COM
Library is initialized. Next, memory 220 is allocated to hold
Source and Coder objects, are created by a routine 221.
Loading of configuration file 221A from configuration data
file 221B also takes place at the same time that the SRE
Library is initialized. In configuration file 221B, the type of
the input of Coder and the type of the output of the Coder
are declared. The structure, operation, etc. of such routines
are well-known in the art, and they can be implemented
using a number of fairly straightforward approaches.
Accordingly, they are not discussed in detail herein. Next,
Speech and Silence components of an utterance are cali-
brated using a routine 222, in a procedure that is also
well-known in the art. To calibrate the speech and silence
components, the user preferably articulates a sentence that is
displayed in a text box on the screen. The SRE library then
estimates the noise and other parameters required to find e
silence and speech elements of future user utterances.

Initialization of MS Agent 220B

The software code used to initialize and set up a MS
Agent 2208 is also illustrated in FIG. 2—2. The MS Agent
220B routine is responsible for coordinating and handling
the actions of the animated agent 157 (FIG. 1). This initial-
ization thus consists of the following steps:

1. Initialize COM library 223. This part of the code
initializes the COM library, which is required to use
ActiveX Controls, which controls are well-known in
the art.

2. Create instance of Agent Server 224—this part of the
code creates an instance of Agent ActiveX control.

US 7,203,646 B2

21
3. Loading of MS Agent 225—this part of the code loads
MS Agent character from a specified file 225A con-
taining general parameter data for the Agent Character,
such as the overall appearance, shape, size, etc.

4. Get Character Interface 226—this part of the code gets
an appropriate interface for the specified character; for
example, characters may have different control/inter-
action capabilities that can be presented to the user.

5. Add Commands to Agent Character Option 227—this
part of the code adds commands to an Agent Properties
sheet, which sheet can be accessed by clicking on the
icon that appears in the system tray, when the Agent
character is loaded e.g., that the character can Speak,
how he/she moves, TTS Properties, etc.

6. Show the Agent Character 228—this part of the code
displays the Agent character on the screen so it can be
seen by the user;

7. AgentNotifySink—to handle events. This part of the
code creates AgentNotifySink object 229, registers it at
230 and then gets the Agent Properties interface 231.
The property sheet for the Agent character is assigned
using routine 232.

8. Do Character Animations 233—This part of the code
plays specified character animations to welcome the
user to NLQS 100.

The above then constitutes the entire sequence required to
initialize the MS Agent. As with the SRE routines, the MS
Agent routines can be implemented in any suitable and
conventional fashion by those skilled in the art based on the
present teachings. The particular structure, operation, etc. of
such routines is not critical, and thus they are not discussed
in detail herein.

In a preferred embodiment, the MS Agent is configured to
have an appearance and capabilities that are appropriate for
the particular application. For instance, in a remote learning
application, the agent has the visual form and mannerisms/
attitude/gestures of a college professor. Other visual props
(blackboard, textbook, etc.) may be used by the agent and
presented to the user to bring to mind the experience of
being in an actual educational environment. The character-
istics of the agent may be configured at the client side 150,
and/or as part of code executed by a browser program (not
shown) in response to configuration data and commands
from a particular web page. For example, a particular
website offering medical services may prefer to use a visual
image of a doctor. These and many other variations will be
apparent to those skilled in the art for enhancing the human-
like, real-time dialog experience for users.

Initialization of Communication Link 160A

The initialization of Communication Link 160A is shown
with reference to process 220C FIG. 2—2. Referring to FIG.
2—2, this initialization consists of the following code com-
ponents: Open INTERNET Connection 234—this part of the
code opens an INTERNET Connection and sets the param-
eter for the connection. Then Set Callback Status routine 235
sets the callback status so as to inform the user of the status
of connection. Finally Start New HTTP INTERNET Session
236 starts a new INTERNET session. The details of Com-
munications Link 160 and the set up process 220C are not
critical, and will vary from platform to platform. Again, in
some cases, users may use a low-speed dial-up connection,
a dedicated high speed switched connection (T1 for
example), an always-on XxDSL connection, a wireless con-
nection, and the like.

20

25

30

35

40

45

50

55

60

65

22

Tterative Processing of Queries/Answers

As illustrated in FIG. 3, once initialization is complete, an
iterative query/answer process is launched when the user
presses the Start Button to initiate a query. Referring to FIG.
3, the iterative query/answer process consists of two main
sub-processes implemented as routines on the client side
system 150: Receive User Speech 240 and Receive User
Answer 243. The Receive User Speech 240 routine receives
speech from the user (or another audio input source), while
the Receive User Answer 243 routine receives an answer to
the user’s question in the form of text from the server so that
it can be converted to speech for the user by text-to-speech
engine 159. As used herein, the term “query” is referred to
in the broadest sense to refer, to either a question, a com-
mand, or some form of input used as a control variable by
the system. For example, a query may consist of a question
directed to a particular topic, such as “what is a network™ in
the context of a remote learning application. In an e-com-
merce application a query might consist of a command to
“list all books by Mark Twain” for example. Similarly, while
the answer in a remote learning application consists of text
that is rendered into audible form by the text to speech
engine 159, it could also be returned as another form of
multi-media information, such as a graphic image, a sound
file, a video file, etc. depending on the requirements of the
particular application. Again, given the present teachings
concerning the necessary structure, operation, functions,
performance, etc., of the client-side Receive User Speech
240 and Receiver User Answer 243 routines, one of ordinary
skill in the art could implement such in a variety of ways.

Receive User Speech—As illustrated in FIG. 3, the
Receive User Speech routine 240 consists of a SRE 241 and
a Communication 242 process, both implemented again as
routines on the client side system 150 for receiving and
partially processing the user’s utterance. SRE routine 241
uses a coder 248 which is prepared so that a coder object
receives speech data from a source object. Next the Start
Source 249 routine is initiated. This part of the code initiates
data retrieval using the source Object which will in turn be
given to the Coder object. Next, MFCC vectors 250 are
extracted from the Speech utterance continuously until
silence is detected. As alluded to earlier, this represents the
first phase of processing of the input speech signal, and in a
preferred embodiment, it is intentionally restricted to merely
computing the MFCC vectors for the reasons already
expressed above. These vectors include the 12 cepstral
coeflicients and the RMS energy term, for a total of 13
separate numerical values for the partially processed speech
signal.

In some environments, nonetheless, it is conceivable that
the MFCC delta parameters and MFCC acceleration param-
eters can also be computed at client side system 150,
depending on the computation resources available, the trans-
mission bandwidth in data link 160A available to server side
system 180, the speed of a transceiver used for carrying data
in the data link, etc. These parameters can be determined
automatically by client side system upon initializing SRE
155 (using some type of calibration routine to measure
resources), or by direct user control, so that the partitioning
of signal processing responsibilities can be optimized on a
case-by-case basis. In some applications, too, server side
system 180 may lack the appropriate resources or routines
for completing the processing of the speech input signal.
Therefore, for some applications, the allocation of signal
processing responsibilities may be partitioned differently, to
the point where in fact both phases of the speech signal
processing may take place at client side system 150 so that

US 7,203,646 B2

23

the speech signal is completely—rather than partially—
processed and transmitted for conversion into a query at
server side system 180.

Again in a preferred embodiment, to ensure reasonable
accuracy and real-time performance from a query/response
perspective, sufficient resources are made available in a
client side system so that 100 frames per second of speech
data can be partially processed and transmitted through link
160A. Since the least amount of information that is neces-
sary to complete the speech recognition process (only 13
coeflicients) is sent, the system achieves a real-time perfor-
mance that is believed to be highly optimized, because other
latencies (i.e., client-side computational latencies, packet
formation latencies, transmission latencies) are minimized.
It will be apparent that the principles of the present invention
can be extended to other SR applications where some other
methodology is used for breaking down the speech input
signal by an SRE (i.e., non-MFCC based). The only criteria
is that the SR processing be similarly dividable into multiple
phases, and with the responsibility for different phases being
handled on opposite sides of link 160A depending on overall
system performance goals, requirements and the like. This
functionality of the present invention can thus be achieved
on a system-by-system basis, with an expected and typical
amount of optimization being necessary for each particular
implementation.

Thus, the present invention achieves a response rate
performance that is tailored in accordance with the amount
of information that is computed, coded and transmitted by
the client side system 150. So in applications where real-
time performance is most critical, the least possible amount
of extracted speech data is transmitted to reduce these
latencies, and, in other applications, the amount of extracted
speech data that is processed, coded and transmitted can be
varied.

Communication—transmit communication module 242 is
used to implement the transport of data from the client to the
server over the data link 160A, which in a preferred embodi-
ment is the INTERNET. As explained above, the data
consists of encoded MFCC vectors that will be used at then
server-side of the Speech Recognition engine to complete
the speech recognition decoding. The sequence of the com-
munication is as follows:

OpenHTTPRequest 251—this part of the code first con-
verts MFCC vectors to a stream of bytes, and then processes
the bytes so that it is compatible with a protocol known as
HTTP. This protocol is well-known in the art, and it is
apparent that for other data links another suitable protocol
would be used.

1. Encode MFCC Byte Stream 251—this part of the code
encodes the MFCC vectors, so that they can be sent to
the server via HT'TP.

2. Send data 252—this part of the code sends MFCC
vectors to the server using the INTERNET connection
and the HTTP protocol.

Wait for the Server Response 253—this part of the code
monitors the data link 160A a response from server side
system 180 arrives. In summary, the MFCC parameters are
extracted or observed on-the-fly from the input speech
signal. They are then encoded to a HTTP byte stream and
sent in a streaming fashion to the server before the silence
is detected—i.e. sent to server side system 180 before the
utterance is complete. This aspect of the invention also
facilitates a real-time behavior, since data can be transmitted
and processed even while the user is still speaking.

Receive Answer from Server 243 is comprised of the
following modules as shown in FIG. 3.: MS Agent 244,

20

25

30

35

40

45

50

55

60

65

24

Text-to-Speech Engine 245 and receive communication
modules 246. All three modules interact to receive the
answer from server side system 180. As illustrated in FIG.
3, the receive communication process consists of three
separate processes implemented as a receive routine on
client side system 150: a Receive the Best Answer 258
receives the best answer over data link 160B (the HTTP
communication channel). The answer is de-compressed at
259 and then the answer is passed by code 260 to the MS
Agent 244, where it is received by code portion 254. A
routine 255 then articulates the answer using text-to-speech
engine 257. Of course, the text can also be displayed for
additional feedback purposes on a monitor used with client
side system 150. The text to speech engine uses a natural
language voice data file 256 associated with it that is
appropriate for the particular language application (i.e.,
English, French, German, Japanese, etc.). As explained
earlier when the answer is something more than text, it can
be treated as desired to provide responsive information to
the user, such as with a graphics image, a sound, a video clip,
etc.

Uninitialization

The un-initialization routines and processes are illustrated
in FIG. 4. Three functional modules are used for un-
initializing the primary components of the client side system
150; these include SRE 270, Communications 271 and MS
Agent 272 un-initializing routines. To un-initialize SRE
220A, memory that was allocated in the initialization phase
is de-allocated by code 273 and objects created during such
initialization phase are deleted by code 274. Similarly, as
illustrated in FIG. 4, to un-initialize Communications mod-
ule 220C the INTERNET connection previously established
with the server is closed by code portion 275 of the Com-
munication Un-initialization routine 271. Next the INTER-
NET session created at the time of initialization is also
closed by routine 276. For the un-initialization of the MS
Agent 220B, as illustrated in FIG. 4, MS Agent Un-initial-
ization routine 272 first releases the Commands Interface
227 using routine 277. This releases the commands added to
the property sheet during loading of the agent character by
routine 225. Next the Character Interface initialized by
routine 226 is released by routine 278 and the Agent is
unloaded at 279. The Sink Object Interface is then also
released 280 followed by the release of the Property Sheet
Interface 281. The Agent Notify Sink 282 then un-registers
the Agent and finally the Agent Interface 283 is released
which releases all the resources allocated during initializa-
tion steps identified in FIG. 2—2.

It will be appreciated by those skilled in the art that the
particular implementation for such un-initialization pro-
cesses and routines in FIG. 4 will vary from client platform
to client platform, as for the other routines discussed above.
The structure, operation, etc. of such routines are well-
known in the art, and they can be implemented using a
number of fairly straightforward approaches without undue
effort. Accordingly, they are not discussed in detail herein.

DESCRIPTION OF SERVER SIDE SYSTEM 180

Introduction

Ahigh level flow diagram of the set of preferred processes
implemented on server side system 180 of Natural Language
Query System 100 is illustrated in FIG. 11A through FIG.
11C. In a preferred embodiment, this process consists of a
two step algorithm for completing the processing of the

US 7,203,646 B2

25

speech input signal, recognizing the meaning of the user’s
query, and retrieving an appropriate answer/response for
such query.

The 1% step as illustrated in FIG. 11A can be considered
a high-speed first-cut pruning mechanism, and includes the
following operations: after completing processing of the
speech input signal, the user’s query is recognized at step
1101, so that the text of the query is simultaneously sent to
Natural Language Engine 190 (FIG. 1) at step 1107, and to
DB Engine 186 (also FIG. 1) at step 1102. By “recognized”
in this context it is meant that the user’s query is converted
into a text string of distinct native language words through
the HMM technique discussed earlier.

At NLE 190, the text string undergoes morphological
linguistic processing at step 1108: the string is tokenized the
tags are tagged and the tagged tokens are grouped Next the
noun phrases (NP) of the string are stored at 1109, and also
copied and transferred for use by DB Engine 186 during a
DB Process at step 1110. As illustrated in FIG. 11A, the
string corresponding to the user’s query which was sent to
the DB Engine 186 at 1102, is used together with the NP
received from NLE 190 to construct an SQL Query at step
1103. Next, the SQL query is executed at step 1104, and a
record set of potential questions corresponding to the user’s
query are received as a result of a full-text search at 1105,
which are then sent back to NLE 190 in the form of an array
at step 1106.

As can be seen from the above, this first step on the server
side processing acts as an efficient and fast pruning mecha-
nism so that the universe of potential “hits” corresponding to
the user’s actual query is narrowed down very quickly to a
manageable set of likely candidates in a very short period of
time.

Referring to FIG. 11B, in contrast to the first step above,
the 2 step can be considered as the more precise selection
portion of the recognition process. It begins with linguistic
processing of each of the stored questions in the array
returned by the full-text search process as possible candi-
dates representing the user’s query. Processing of these
stored questions continues in NLE 190 as follows: each
question in the array of questions corresponding to the
record set returned by the SQL full-text search undergoes
morphological linguistic processing at step 1111: in this
operation, a text string corresponding to the retrieved can-
didate question is tokenized, the tags are tagged and the
tagged tokens are grouped. Next, noun phrases of the string
are computed and stored at step 1112. This process continues
iteratively at point 1113, and the sequence of steps at 1118,
1111, 1112, 1113 are repeated so that an NP for each
retrieved candidate question is computed and stored. Once
an NP is computed for each of the retrieved candidate
questions of the array, a comparison is made between each
such retrieved candidate question and the user’s query based
on the magnitude of the NP value at step 1114. This process
is also iterative in that steps 1114, 1115, 1116, 1119 are
repeated so that the comparison of the NP for each retrieved
candidate question with that of the NP of the user’s query is
completed. When there are no more stored questions in the
array to be processed at step 1117, the stored question that
has the maximum NP relative to the user’s query, is iden-
tified at 1117A as the stored question which best matches the
user’s query.

Notably, it can be seen that the second step of the
recognition process is much more computationally intensive
than the first step above, because several text strings are
tokenized, and a comparison is made of several NPs. This
would not be practical, nonetheless, if it were not for the fact

20

25

30

35

40

45

50

55

60

65

26

that the first step has already quickly and efficiently reduced
the candidates to be evaluated to a significant degree. Thus,
this more computationally intensive aspect of the present
invention is extremely valuable, however because it yields
extremely high accuracy in the overall query recognition
process. In this regard, therefore, this second step of the
query recognition helps to ensure the overall accuracy of the
system, while the first step helps to maintain a satisfactory
speed that provides a real-time feel for the user.

As illustrated in FIG. 11C, the last part of the query/
response process occurs by providing an appropriate match-
ing answer/response to the user. Thus, an identity of a
matching stored question is completed at step 1120. Next a
file path corresponding to an answer of the identified match-
ing question is extracted at step 1121. Processing continues
so that the answer is extracted from the file path at 1122 and
finally the answer is compressed and sent to client side
system 150 at step 1123.

The discussion above is intended to convey a general
overview of the primary components, operations, functions
and characteristics of those portions of NLQS system 100
that reside on server side system 180. The discussion that
follows describes in more detail the respective sub-systems.

Software Modules Used in Server Side System 180

The key software modules used on server-side system 180
of the NLQS system are illustrated in FIG. 5. These include
generally the following components: a Communication
module 500—identified as CommunicationServer ISAPI
500A (which is executed by SRE Server-side 182—FIG. 1
and is explained in more detail below), and a database
process DBProcess module 501 (executed by DB Engine
186—FI1G. 1). Natural language engine module 500C (ex-
ecuted by NLE 190—FIG. 1) and an interface 500B between
the NLE process module 500C and the DBProcess module
500B. As shown here, CommunicationServerISAPI 500A
includes a server-side speech recognition engine and appro-
priate communication interfaces required between client
side system 150 and server side system 180. As further
illustrated in FIG. 5, server-side logic of Natural Language
Query System 100 also can be characterized as including
two dynamic link library components: CommunicationServ-
erISAPI 500 and DBProcess 501. The CommunicationServ-
erlASPI 500 is comprised of 3 sub-modules: Server-side
Speech Recognition Engine module 500A; Interface module
500B between Natural Language Engine modules 500C and
DBProcess 501; and the Natural Language Engine modules
500C.

DB Process 501 is a module whose primary function is to
connect to a SQL database and to execute an SQL query that
is composed in response to the user’s query. In addition, this
module interfaces with logic that fetches the correct answer
from a file path once this answer is passed to it from the
Natural Language Engine module 500C.

Speech Recognition Sub-System 182 on Server-Side System
180

The server side speech recognition engine module 500A
is a set of distributed components that perform the necessary
functions and operations of speech recognition engine 182
(FIG. 1) at server-side 180. These components can be
implemented as software routines that are executed by
server side 180 in conventional fashion. Referring to FIG.
4A, a more detailed break out of the operation of the speech
recognition components 600 at the server-side can be seen as
follows:

Within a portion 601 of the server side SRE module 500A,
the binary MFCC vector byte stream corresponding to the

US 7,203,646 B2

27

speech signal’s acoustic features extracted at client side
system 150 and sent over the communication channel 160 is
received. The MFCC acoustic vectors are decoded from the
encoded HTTP byte stream as follows: Since the MFCC
vectors contain embedded NULL characters, they cannot be
transferred in this form to server side system 180 as such
using HTTP protocol. Thus the MFCC vectors are first
encoded at client-side 150 before transmission in such a way
that all the speech data is converted into a stream of bytes
without embedded NULL characters in the data. At the very
end of the byte stream a single NULL character is introduced
to indicate the termination of the stream of bytes to be
transferred to the server over the INTERNET 160A using
HTTP protocol.

As explained earlier, to conserve latency time between the
client and server, a smaller number of bytes (just the 13
MEFCC coefficients) are sent from client side system 150 to
server side system 180. This is done automatically for each
platform to ensure uniformity, or can be tailored by the
particular application environment—i.e., such as where it is
determined that it will take less time to compute the delta
and acceleration coefficients at the server (26 more calcu-
lations), than it would take to encode them at the client,
transmit them, and then decode them from the HTTP stream.
In general, since server side system 180 is usually better
equipped to calculate the MFCC delta and acceleration
parameters, this is a preferable choice. Furthermore, there is
generally more control over server resources compared to
the client’s resources, which means that future upgrades,
optimizations, etc., can be disseminated and shared by all to
make overall system performance more reliable and predict-
able. So, the present invention can accommodate even the
worst-case scenario where the client’s machine may be quite
thin and may just have enough resources to capture the
speech input data and do minimal processing.

Dictionary Preparation & Grammar Files

Referring to FIG. 4A, within code block 605, various
options selected by the user (or gleaned from the user’s
status within a particular application) are received. For
instance, in the case of a preferred remote learning system,
Course, Chapter and/or Section data items are communi-
cated. In the case of other applications (such as e-commerce)
other data options are communicated, such as the Product
Class, Product Category, Product Brand, etc. loaded for
viewing within his/her browser. These selected options are
based on the context experienced by the user during an
interactive process, and thus help to limit and define the
scope—i.e. grammars and dictionaries that will be dynami-
cally loaded to speech recognition engine 182 (FIG. 1) for
Viterbi decoding during processing of the user speech utter-
ance. For speech recognition to be optimized both grammar
and dictionary files are used in a preferred embodiment. A
Grammar file supplies the universe of available user queries;
i.e., all the possible words that are to be recognized. The
Dictionary file provides phonemes (the information of how
a word is pronounced—this depends on the specific native
language files that are installed—for example, UK English
or US English) of each word contained in the grammar file.
It is apparent that if all the sentences for a given environment
that can be recognized were contained in a single grammar
file then recognition accuracy would be deteriorated and the
loading time alone for such grammar and dictionary files
would impair the speed of the speech recognition process.

To avoid these problems, specific grammars are dynami-
cally loaded or actively configured as the current grammar
according to the user’s context, i.e., as in the case of a remote

20

25

30

35

40

45

55

60

65

28

learning system, the Course, Chapter and/or Section
selected. Thus the grammar and dictionary files are loaded
dynamically according to the given Course, Chapter and/or
Section as dictated by the user, or as determined automati-
cally by an application program executed by the user.

The second code block 602 implements the initialization
of Speech Recognition engine 182 (FIG. 1). The MFCC
vectors received from client side system 150 along with the
grammar filename and the dictionary file names are intro-
duced to this block to initialize the speech decoder.

As illustrated in FIG. 4A, the initialization process 602
uses the following sub-routines: A routine 602a for loading
an SRE library. This then allows the creation of an object
identified as External Source with code 6024 using the
received MFCC vectors. Code 602¢ allocates memory to
hold the recognition objects. Routine 6024 then also creates
and initializes objects that are required for the recognition
such as: Source, Coder, Recognizer and Results Loading of
the Dictionary created by code 602e¢, Hidden Markov Mod-
els (HMMs) generated with code 602f; and Loading of the
Grammar file generated by routine 602g.

Speech Recognition 603 is the next routine invoked as
illustrated in FIG. 4A, and is generally responsible for
completing the processing of the user speech signals input
on the client side 150, which, as mentioned above, are
preferably only partially processed (i.e., only MFCC vectors
are computed during the first phase) when they are trans-
mitted across link 160. Using the functions created in
External Source by subroutine 6025, this code reads MFCC
vectors, one at a time from an External Source 603a, and
processes them in block 60356 to realize the words in the
speech pattern that are symbolized by the MFCC vectors
captured at the client. During this second phase, an addi-
tional 13 delta coeflicients and an additional 13 acceleration
coeflicients are computed as part of the recognition process
to obtain a total of 39 observation vectors O, referred to
earlier. Then, using a set of previously defined Hidden
Markov Models (HMMs), the words corresponding to the
user’s speech utterance are determined in the manner
described earlier. This completes the word “recognition”
aspect of the query processing, which results are used further
below to complete the query processing operations.

It will be appreciated by those skilled in the art that the
distributed nature and rapid performance of the word rec-
ognition process, by itself, is extremely useful and may be
implemented in connection with other environments that do
not implicate or require additional query processing opera-
tions. For example, some applications may simply use
individual recognized words for filling in data items on a
computer generated form, and the aforementioned systems
and processes can provide a rapid, reliable mechanism for
doing so.

Once the user’s speech is recognized, the flow of SRE 182
passes to Un-initialize SRE routine 604 where the speech
engine is un-initialized as illustrated. In this block all the
objects created in the initialization block are deleted by
routine 604a, and memory allocated in the initialization
block during the initialization phase are removed by routine
604b.

Again, it should be emphasized that the above are merely
illustrative of embodiments for implementing the particular
routines used on a server side speech recognition system of
the present invention. Other variations of the same that
achieve the desired functionality and objectives of the
present invention will be apparent from the present teach-
ings.

US 7,203,646 B2

29

Database Processor 186 Operation—DBProcess

Construction of an SQL Query used as part of the user
query processing is illustrated in FIG. 4B, a SELECT SQL
statement is preferably constructed using a conventional
CONTAINS predicate. Module 950 constructs the SQL
query based on this SELECT SQL statement, which query is
used for retrieving the best suitable question stored in the
database corresponding to the user’s articulated query, (des-
ignated as Question here). A routine 951 then concatenates
a table name with the constructed SELECT statement. Next,
the number of words present in each Noun Phrase of
Question asked by the user is calculated by routine 952.
Then memory is allocated by routine 953 as needed to
accommodate all the words present in the NP. Next a word
List (identifying all the distinct words present in the NP) is
obtained by routine 954. After this, this set of distinct words
are concatenated by routine 955 to the SQL Query separated
with a NEAR () keyword. Next, the AND keyword is
concatenated to the SQL Query by routine 956 after ecach NP.
Finally memory resources are freed by code 957 so as to
allocate memory to store the words received from NP for
any next iteration. Thus, at the end of this process, a
completed SQL Query corresponding to the user’s articu-
lated question is generated.

Connection to SQL Server—As illustrated in FIG. 4C,
after the SQL Query is constructed by routine 710, a routine
711 implements a connection to the query database 717 to
continue processing of the user query. The connection
sequence and the subsequent retrieved record set is imple-
mented using routines 700 which include the following:

1. Server and database names are assigned by routine

711A to a DBProcess member variable

2. A connection string is established by routine 711B;

3. The SQL Server database is connected under control of

code 711C

4. The SQL Query is received by routine 712A

5. The SQL Query is executed by code 712B

6. Extract the total number of records retrieved by the

query—713

7. Allocate the memory to store the total number of paired

questions—713

8. Store the entire number of paired questions into an

array—713

Once the Best Answer 1D is received at 716 FI1G. 4C, from
the NLE 14 (FIG. 5), the code corresponding 716C receives
it passes it to code in 7168 where the path of the Answer file
is determined using the record number. Then the file is
opened 716C using the path passed to it and the contents of
the file corresponding to the answer is read. Then the answer
is compressed by code in 716D and prepared for transmis-
sion over the communication channel 160B (FIG. 1).

NLQS Database 188—Table Organization

FIG. 6 illustrates a preferred embodiment of a logical
structure of tables used in a typical NLQS database 188
(FIG. 1). When NLQS database 188 is used as part of NLQS
query system 100 implemented as a remote learning/training
environment, this database will include an organizational
multi-level hierarchy that consists typically of a Course 701,
which is made of several chapters 702, 703, 704. Each of
these chapters can have one or more Sections 705, 706, 707
as shown for Chapter 1. A similar structure can exist for
Chapter 2, Chapter 3 . . . Chapter N. Each section has a set
of one or more question-answer pairs 708 stored in tables
described in more detail below. While this is an appropriate
and preferable arrangement for a training/learning applica-
tion, it is apparent that other implementations would be

20

25

30

35

40

55

60

65

30

possible and perhaps more suitable for other applications
such as e-commerce, e-support, INTERNET browsing, etc.,
depending on overall system parameters.

It can be seen that the NLQS database 188 organization is
intricately linked to the switched grammar architecture
described earlier. In other words, the context (or environ-
ment) experienced by the user can be determined at any
moment in time based at the selection made at the section
level, so that only a limited subset of question-answer pairs
708 for example are appropriate for section 705. This in turn
means that only a particular appropriate grammar for such
question-answer pairs may be switched in for handling user
queries while the user is experiencing such context. In a
similar fashion, an e-commerce application for an INTER-
NET based business may consist of a hierarchy that includes
a first level “home” page 701 identifying user selectable
options (product types, services, contact information, etc.),
a second level may include one or more “product types”
pages 702, 703, 704, a third page may include particular
product models 705, 706, 707, etc., and with appropriate
question-answer pairs 708 and grammars customized for
handling queries for such product models. Again, the par-
ticular implementation will vary from application to appli-
cation, depending on the needs and desires of such business,
and a typical amount of routine optimization will be neces-
sary for each such application.

Table Organization

In a preferred embodiment, an independent database is
used for each Course. Each database in turn can include
three types of tables as follows: a Master Table as illustrated
in FIG. 7A, at least one Chapter Table as illustrated in FIG.
7B and at least one Section Table as illustrated in FIG. 7C.

As illustrated in FIG. 7A, a preferred embodiment of a
Master Table has six columns—Field Name 701A, Data
Type 702A, Size 703A, Null 704A, Primary Key 705A and
Indexed 706A. These parameters are well-known in the art
of database design and structure. The Master Table has only
two fields—Chapter Name 707A and Section Name 708A.
Both ChapterName and Section Name are commonly
indexed.

A preferred embodiment of a Chapter Table is illustrated
in FIG. 7B. As with the Master Table, the Chapter Table has
six (6) columns—Field Name 720, Data Type 721, Size 722,
Null 723, Primary Key 724 and Indexed 725. There are nine
(9) rows of data however, in this case,—Chapter_ID 726,
Answer_ID 727, Section Name 728, Answer_Title 729,
PairedQuestion 730, AnswerPath 731, Creator 732, Date of
Creation 733 and Date of Modification 734.

An explanation of the Chapter Table fields is provided in
FIG. 7C. Each of the eight (8) Fields 720 has a description
735 and stores data corresponding to:

AnswerlD 727—an integer that is automatically incre-

mented for each answer given for user convenience

Section_Name 728—the name of the section to which the

particular record belongs. This field along with the
AnswerlD is used as the primary key

Answer_Title 729—A short description of the title of the

answer to the user query

PairedQuestion 730—Contains one or more combinations

of questions for the related answers whose path is
stored in the next column AnswerPath

AnswerPath 731—contains the path of a file, which

contains the answer to the related questions stored in
the previous column; in the case of a pure question/
answer application, this file is a text file, but, as

US 7,203,646 B2

31

mentioned above, could be a multi-media file of any
kind transportable over the data link 160

Creator 732—Name of Content Creator

Date_of Creation 733—Date on which content was cre-
ated

Date of Modification 734—Date on which content was
changed or modified

A preferred embodiment of a Section Table is illustrated
in FIG. 7D. The Section Table has six (6) columns—Field
Name 740, Data Type 741, Size 742, Null 743, Primary Key
744 and Indexed 745. There are seven (7) rows of data—
Answer_ID 746, Answer_Title 747, PairedQuestion 748,
AnswerPath 749, Creator 750, Date of Creation 751 and
Date of Modification 752. These names correspond to the
same fields, columns already described above for the Master
Table and Chapter Table.

Again, this is a preferred approach for the specific type of
learning/training application described herein. Since the
number of potential applications for the present invention is
quite large, and each application can be customized, it is
expected that other applications (including other learning/
training applications) will require and/or be better accom-
modated by another table, column, and field structure/
hierarchy.

Search Service and Search Engine—A query text search
service is performed by an SQL Search System 1000 shown
in FIG. 10. This system provides querying support to process
full-text searches. This is where full-text indexes reside.

In general, SQL Search System determines which entries
in a database index meet selection criteria specified by a
particular text query that is constructed in accordance with
an articulated user speech utterance. The Index Engine 1011
B is the entity that populates the Full-Text Index tables with
indexes which correspond to the indexable units of text for
the stored questions and corresponding answers. It scans
through character strings, determines word boundaries,
removes all noise words and then populates the full-text
index with the remaining words. For each entry in the full
text database that meets the selection criteria, a unique key
column value and a ranking value are returned as well.
Catalog set 1013 is a file-system directory that is accessible
only by an Administrator and Search Service 1010. Full-text
indexes 1014 are organized into full-text catalogs, which are
referenced by easy to handle names. Typically, full-text
index data for an entire database is placed into a single
full-text catalog.

The schema for the full-text database as described (FIG.
7, FIG. 7A, FIG. 7B, FIG. 7C, FIG. 7D) is stored in the
tables 1006 shown in FIG. 10. Take for example, the tables
required to describe the structure the stored question/answer
pairs required for a particular course. For each table—
Course Table, Chapter Table, Section Table, there are
fields—column information that define each parameters that
make up the logical structure of the table. This information
is stored in User and System tables 1006. The key values
corresponding to those tables are stored as Full-Text cata-
logs 1013. So when processing a full-text search, the search
engine returns to the SQL Server the key values of the rows
that match the search criteria. The relational engine then
uses this information to respond to the query.

As illustrated in FIG. 10, a Full-Text Query Process is
implemented as follows:

1. A query 1001 that uses a SQL full-text construct
generated by DB processor 186 is submitted to SQL
Relational Engine 1002.

2. Queries containing either a CONTAINS or FREETEXT
predicate are rewritten by routine 1003 so that a respon-

20

25

30

35

40

45

50

55

60

65

32

sive rowset returned later from Full-Text Provider 1007
will be automatically joined to the table that the predi-
cate is acting upon. This rewrite is a mechanism used
to ensure that these predicates are a seamless extension
to a traditional SQL Server. After the compiled query is
internally rewritten and checked for correctness in item
1003, the query is passed to RUN TIME module 1004.
The function of module 1004 is to convert the rewritten
SQL construct to a validated run-time process before it
is sent to the Full-Text Provider, 1007.

3. After this, Full-Text Provider 1007 is invoked, passing
the following information for the query:

a. A ft_search_condition parameter (this is a logical flag
indicating a full text search condition)

b. A name of a full-text catalog where a full-text index
of a table resides

c. A locale ID to be used for language (for example,
word breaking)

d. Identities of a database, table, and column to be used
in the query

e. If the query is comprised of more than one full-text
construct; when this is the case Full-text provider
1007 is invoked separately for each construct.

4. SQL Relational Engine 1002 does not examine the
contents of ft_search_condition. Instead, this informa-
tion is passed along to Full-text provider 1007, which
verifies the validity of the query and then creates an
appropriate internal representation of the full-text
search condition.

5. The query request/command 1008 is then passed to
Querying Support 1011A.

6. Querying Support 1012 returns a rowset 1009 from
Full-Text Catalog 1013 that contains unique key col-
umn values for any rows that match the full-text search
criteria. A rank value also is returned for each row.

7. The rowset of key column values 1009 is passed to SQL
Relational Engine 1002. If processing of the query
implicates either a CONTAINSTABLE() or FREET-
EXTTABLE() function, RANK values are returned;
otherwise, any rank value is filtered out.

8. The rowset values 1009 are plugged into the initial
query with values obtained from relational database
1006, and a result set 1015 is then returned for further
processing to yield a response to the user.

At this stage of the query recognition process, the speech
utterance by the user has already been rapidly converted into
a carefully crafted text query, and this text query has been
initially processed so that an initial matching set of results
can be further evaluated for a final determination of the
appropriate matching question/answer pair. The underlying
principle that makes this possible is the presence of a
full-text unique key column for each table that is registered
for full-text searches. Thus when processing a full-text
search, SQL Search Service 1010 returns to SQL server
1002 the key values of the rows that match the database. In
maintaining these full-text databases 1013 and full text
indexes 1014, the present invention has the unique charac-
teristic that the full-text indices 1014 are not updated
instantly when the full-text registered columns are updated.
This operation is eliminated, again, to reduce recognition
latency, increase response speed, etc. Thus, as compared to
other database architectures, this updating of the full-text
index tables, which would otherwise take a significant time,
is instead done asynchronously at a more convenient time.

US 7,203,646 B2

33
Interface between NLE 190 and DB Processor 188

The result set 1015 of candidate questions corresponding
to the user query utterance are presented to NLE 190 for
further processing as shown in FIG. 4D to determine a
“best” matching question/answer pair. An NLE/DBProces-
sor interface module coordinates the handling of user que-
ries, analysis of noun-phrases (NPs) of retrieved questions
sets from the SQL query based on the user query, comparing
the retrieved question NPs with the user query NP, etc.
between NLE 190 and DB Processor 188. So, this part of the
server side code contains functions, which interface pro-
cesses resident in both NLE block 190 and DB Processor
block 188. The functions are illustrated in FIG. 4D; As seen
here, code routine 880 implements functions to extract the
Noun Phrase (NP) list from the user’s question. This part of
the code interacts with NLE 190 and gets the list of Noun
Phrases in a sentence articulated by the user. Similarly,
Routine 813 retrieves an NP list from the list of correspond-
ing candidate/paired questions 1015 and stores these ques-
tions into an (ranked by NP value) array. Thus, at this point,
NP data has been generated for the user query, as well as for
the candidate questions 1015. As an example of determining
the noun phrases of a sentence such as: “What issues have
guided the President in considering the impact of foreign
trade policy on American businesses?” NLE 190 would
return the following as noun phrases: President, issues,
impact of foreign trade policy, American businesses, impact,
impact of foreign trade, foreign trade, foreign trade policy,
trade, trade policy, policy, businesses. The methodology
used by NLE 190 will thus be apparent to those skilled in the
art from this set of noun phrases and noun sub-phrases
generated in response to the example query.

Next, a function identified as Get Best Answer 1D 815 is
implemented. This part of the code gets a best answer 1D
corresponding to the user’s query. To do this, routines 813 A,
813B first find out the number of Noun phrases for each
entry in the retrieved set 1015 that match with the Noun
phrases in the user’s query. Then routine 815a selects a final
result record from the candidate retrieved set 1015 that
contains the maximum number of matching Noun phrases.

Conventionally, nouns are commonly thought of as “nam-
ing” words, and specifically as the names of “people, places,
or things”. Nouns such as John, London, and computer
certainly fit this description, but the types of words classified
by the present invention as nouns is much broader than this.
Nouns can also denote abstract and intangible concepts such
as birth, happiness, evolution, technology, management,
imagination, revenge, politics, hope, cookery, sport, and
literacy. Because of the enormous diversity of nouns com-
pared to other parts of speech, the Applicant has found that
it is much more relevant to consider the noun phrase as a key
linguistic metric. So, the great variety of items classified as
nouns by the present invention helps to discriminate and
identify individual speech utterances much easier and faster
than prior techniques disclosed in the art.

Following this same thought, the present invention also
adopts and implements another linguistic entity—the word
phrase—to facilitate speech query recognition. The basic
structure of a word phrase—whether it be a noun phrase,
verb phrase, adjective phrase—is three parts—][pre-Head
string],[Head] and [post-Head string]. For example, in the
minimal noun phrase—“the children,” “children” is classi-
fied as the Head of the noun phrase. In summary, because of
the diversity and frequency of noun phrases, the choice of
noun phrase as the metric by which stored answer is lin-
guistically chosen, has a solid justification in applying this
technique to the English natural language as well as other

20

25

30

35

40

45

50

55

60

65

34

natural languages. So, in sum, the total noun phrases in a
speech utterance taken together operate extremely well as
unique type of speech query fingerprint.

The ID corresponding to the best answer corresponding to
the selected final result record question is then generated by
routine 815 which then returns it to DB Process shown in
FIG. 4C. As seen there, a Best Answer ID I is received by
routine 716A, and used by a routine 716B to retrieve an
answer file path. Routine 716C then opens and reads the
answer file, and communicates the substance of the same to
routine 716D. The latter then compresses the answer file
data, and sends it over data link 160 to client side system 150
for processing as noted earlier (i.e., to be rendered into
audible feedback, visual text/graphics, etc.). Again, in the
context of a learning/instructional application, the answer
file may consist solely of a single text phrase, but in other
applications the substance and format will be tailored to a
specific question in an appropriate fashion. For instance, an
“answer” may consist of a list of multiple entries corre-
sponding to a list of responsive category items (i.e., a list of
books to a particular author) etc. Other variations will be
apparent depending on the particular environment.

Natural Language Engine 190

Again referring to FIG. 4D, the general structure of NL
engine 190 is depicted. This engine implements the word
analysis or morphological analysis of words that make up
the user’s query, as well as phrase analysis of phrases
extracted from the query.

As illustrated in FIG. 9, the functions used in a morpho-
logical analysis include tokenizers 802A, stemmers 804A
and morphological analyzers 806A. The functions that com-
prise the phrase analysis include tokenizers, taggers and
groupers, and their relationship is shown in FIG.8.

Tokenizer 802A is a software module that functions to
break up text of an input sentence 801A into a list of tokens
803A. In performing this function, tokenizer 802A goes
through input text 801A and treats it as a series of tokens or
useful meaningful units that are typically larger than indi-
vidual characters, but smaller than phrases and sentences.
These tokens 803A can include words, separable parts of
word and punctuation. Each token 803A is given an offset
and a length. The first phase of tokenization is segmentation,
which extracts the individual tokens from the input text and
keeps track of the offset where each token originated from
in the input text. Next, categories are associated with each
token, based on its shape. The process of tokenization is
well-known in the art, so it can be performed by any
convenient application suitable for the present invention.

Following tokenization, a stemmer process 804A is
executed, which can include two separate forms—inflec-
tional and derivational, for analyzing the tokens to deter-
mine their respective stems 805A. An inflectional stemmer
recognizes affixes and returns the word which is the stem. A
derivational stemmer on the other hand recognizes deriva-
tional affixes and returns the root word or words. While
stemmer 804 A associates an input word with its stem, it does
not have parts of speech information. Analyzer 806B takes
a word independent of context, and returns a set of possible
parts of speech 806A.

As illustrated in FIG. 8, phrase analysis 800 is the next
step that is performed after tokenization. A tokenizer 802
generates tokens from input text 801. Tokens 803 are
assigned to parts of a speech tag by a tagger routine 804, and
a grouper routine 806 recognizes groups of words as phrases
of a certain syntactic type. These syntactic types include for
example the noun phrases mentioned earlier, but could

US 7,203,646 B2

35

include other types if desired such as verb phrases and
adjective phrases. Specifically, tagger 804 is a parts-of-
speech disambiguator, which analyzes words in context. It
has a built-in morphological analyzer (not shown) that
allows it to identify all possible parts of speech for each
token. The output of tagger 804 is a string with each token
tagged with a parts-of-speech label 805. The final step in the
linguistic process 800 is the grouping of words to form
phrases 807. This function is performed by the grouper 806,
and is very dependent, of course, on the performance and
output of tagger component 804.

Accordingly, at the end of linguistic processing 800, a list
of noun phrases (NP) 807 is generated in accordance with
the user’s query utterance. This set of NPs generated by NLE
190 helps significantly to refine the search for the best
answer, so that a single-best answer can be later provided for
the user’s question.

The particular components of NLE 190 are shown in FIG.
4D, and include several components. Each of these compo-
nents implement the several different functions required in
NLE 190 as now explained.

Initialize Grouper Resources Object and the Library
900—this routine initializes the structure variables required
to create grouper resource object and library. Specifically, it
initializes a particular natural language used by NLE 190 to
create a Noun Phrase, for example the English natural
language is initialized for a system that serves the English
language market. In turn, it also creates the objects (rou-
tines) required for Tokenizer, Tagger and Grouper (discussed
above) with routines 900A, 900B, 900C and 900D respec-
tively, and initializes these objects with appropriate values.
It also allocates memory to store all the recognized Noun
Phrases for the retrieved question pairs.

Tokenizing of the words from the given text (from the
query or the paired questions) is performed with routine
909B—here all the words are tokenized with the help of a
local dictionary used by NLE 190 resources. The resultant
tokenized words are passed to a Tagger routine 909C. At
routine 909C, tagging of all the tokens is done and the output
is passed to a Grouper routine 909D.

The Grouping of all tagged token to form NP list is
implemented by routine 909D so that the Grouper groups all
the tagged token words and outputs the Noun Phrases.

Un-initializing of the grouper resources object and freeing
of the resources, is performed by routines 909EA, 909EB
and 909EC. These include Token Resources, Tagger
Resources and Grouper Resources respectively. After ini-
tialization, the resources are freed. The memory that was
used to store all Noun Phrases are also de-allocated.

Additional Embodiments

In a e-commerce embodiment of the present invention as
illustrated in FIG. 13, a web page 1300 contains typical
visible links such as Books 1310, Music 1320 so that on
clicking the appropriate link the customer is taken to those
pages. The web page may be implemented using HTML, a
Java applet, or similar coding techniques which interact with
the user’s browser. For example, if customer wants to buy an
album C by Artist Albert, he traverses several web pages as
follows: he first clicks on Music (FIG. 13, 1360), which
brings up page 1400 where he/she then clicks on Records
(FIG. 14, 1450). Alternatively, he/she could select CDs
1460, Videos 1470, or other categories of books 1410, music
1420 or help 1430. As illustrated in FIG. 15, this brings up
another web page 1500 with links for Records 1550, with
sub-categories—Artist 1560, Song 1570, Title 1580, Genre
1590. The customer must then click on Artist 1560 to select

20

25

30

35

40

45

50

55

60

65

36

the artist of choice. This displays another web page 1600 as
illustrated in FIG. 16. On this page the various artists 1650
are listed as illustrated—Albert 1650, Brooks 1660, Charlie
1670, Whyte 1690 are listed under the category Artists 1650.
The customer must now click on Albert 1660 to view the
albums available for Albert. When this is done, another web
page is displayed as shown in FIG. 17. Again this web page
1700 displays a similar look and feel, but with the albums
available 1760, 1770, 1780 listed under the heading Titles
1750. The customer can also read additional information
1790 for each album. This album information is similar to
the liner notes of a shrink-wrapped album purchased at a
retail store. One Album A is identified, the customer must
click on the Album A 1760. This typically brings up another
text box with the information about its availability, price,
shipping and handling charges etc.

When web page 1300 is provided with functionality of a
NLQS of the type described above, the web page interacts
with the client side and server side speech recognition
modules described above. In this case, the user initiates an
inquiry by simply clicking on a button designated Contact
Me for Help 1480 (this can be a link button on the screen,
or a key on the keyboard for example) and is then told by
character 1440 about how to elicit the information required.
If the user wants Album A by artist Albert, the user could
articulate “Is Album A by Brooks available?”” in much the
same way they would ask the question of a human clerk at
a brick and mortar facility. Because of the rapid recognition
performance of the present invention, the user’s query
would be answered in real-time by character 1440 speaking
out the answer in the user’s native language. If desired, a
readable word balloon 1490 could also be displayed to see
the character’s answer and so that save/print options can also
be implemented. Similar appropriate question/answer pairs
for each page of the website can be constructed in accor-
dance with the present teachings, so that the customer is
provided with an environment that emulates a normal con-
versational human-like question and answer dialog for all
aspects of the web site. Character 1440 can be adjusted and
tailored according to the particular commercial application,
or by the user’s own preferences, etc. to have a particular
voice style (man, woman, young, old, etc.) to enhance the
customer’s experience.

In a similar fashion, an articulated user query might be
received as part of a conventional search engine query, to
locate information of interest on the INTERNET in a similar
manner as done with conventional text queries. If a reason-
ably close question/answer pair is not available at the server
side (for instance, if it does not reach a certain confidence
level as an appropriate match to the user’s question) the user
could be presented with the option of increasing the scope so
that the query would then be presented simultaneously to
one or more different NLEs across a number of servers, to
improve the likelihood of finding an appropriate matching
question/answer pair. Furthermore, if desired, more than one
“match” could be found, in the same fashion that conven-
tional search engines can return a number of potential “hits”
corresponding to the user’s query. For some such queries, of
course, it is likely that real-time performance will not be
possible (because of the disseminated and distributed pro-
cessing) but the advantage presented by extensive supple-
mental question/answer database systems may be desirable
for some users.

It is apparent as well that the NLQS of the present
invention is very natural and saves much time for the user
and the e-commerce operator as well. In an e-support
embodiment, the customer can retrieve information quickly

US 7,203,646 B2

37

and efficiently, and without need for a live customer agent.
For example, at a consumer computer system vendor related
support site, a simple diagnostic page might be presented for
the user, along with a visible support character to assist
him/her. The user could then select items from a “symp-
toms” page (i.e., a “monitor” problem, a “keyboard” prob-
lem, a “printer” problem, etc.) simply by articulating such
symptoms in response to prompting from the support char-
acter. Thereafter, the system will direct the user on a
real-time basis to more specific sub-menus, potential solu-
tions, etc. for the particular recognized complaint. The use of
a programmable character thus allows the web site to be
scaled to accommodate a large number of hits or customers
without any corresponding need to increase the number of
human resources and its attendant training issues.

As an additional embodiment, the searching for informa-
tion on a particular web site may be accelerated with the use
of the NLQS of the present invention. Additionally, a
significant benefit is that the information is provided in a
user-friendly manner through the natural interface of speech.
The majority of web sites presently employ lists of fre-
quently asked questions which the user typically wades item
by item in order to obtain an answer to a question or issue.
For example, as displayed in FIG. 13, the customer clicks on
Help 1330 to initiate the interface with a set of lists. Other
options include computer related items at 1370 and fre-
quently asked questions (FAQ) at 1380.

As illustrated in FIG. 18, a web site plan for typical web
page is displayed. This illustrates the number of pages that
have to be traversed in order to reach the list of Frequently-
Asked Questions. Once at this page, the user has to scroll
and manually identify the question that matches his/her
query. This process is typically a laborious task and may or
may not yield the information that answers the user’s query.
The present art for displaying this information is illustrated
in FIG. 18. This figure identifies how the information on a
typical web site is organized: the Help link (FIG. 13, 1330)
typically shown on the home page of the web page is
illustrated shown on FIG. 18 as 1800. Again referring to
FIG. 18, each sub-category of information is listed on a
separate page. For example, 1810 lists sub-topics such as
‘First Time Visitors’, ‘Search Tips’, ‘Ordering’, ‘Shipping’,
“Your Account’ etc. Other pages deal with ‘Account infor-
mation” 1860, ‘Rates and Policies’ 1850 etc. Down another
level, there are pages that deal exclusively with a sub-sub
topics on a specific page such as ‘First Time Visitors’ 1960,
‘Frequently Asked Questions’ 1950, ‘Safe Shopping Guar-
antee’ 1940, etc. So if a customer has a query that is best
answered by going to the Frequently Asked Questions link,
he or she has to traverse three levels of busy and cluttered
screen pages to get to the Frequently Asked Questions page
1950. Typically, there are many lists of questions 1980 that
have to be manually scrolled through. While scrolling visu-
ally, the customer then has to visually and mentally match
his or her question with each listed question. If a possible
match is sighted, then that question is clicked and the answer
then appears in text form which then is read.

In contrast, the process of obtaining an answer to a
question using a web page enabled with the present NLQS
can be achieved much less laboriously and efficiently. The
user would articulate the word “Help” (FIG. 13, 1330). This
would immediately cause a character (FIG. 13, 1340) to
appear with the friendly response “May I be of assistance.
Please state your question?”. Once the customer states the
question, the character would then perform an animation or
reply “Thank you, I will be back with the answer soon”.
After a short period time (preferably not exceeding 5-7

20

25

30

35

40

45

50

55

60

65

38

seconds) the character would then speak out the answer to
the user’s question. As illustrated in FIG. 18 the answer
would be the answer 1990 returned to the user in the form
of speech is the answer that is paired with the question 1950.
For example, the answer 1990: “We accept Visa, MasterCard
and Discover credit cards”, would be the response to the
query 2000 “What forms of payments do you accept?”

Another embodiment of the invention is illustrated in
FIG. 12. This web page illustrates a typical website that
employs NLQS in a web-based learning environment. As
illustrated in FIG. 12, the web page in browser 1200, is
divided into two or more frames. A character 1210 in the
likeness of an instructor is available on the screen and
appears when the student initiates the query mode either by
speaking the word “Help” into a microphone (FIG. 2, 215)
or by clicking on the link ‘Click to Speak’ (FIG. 12, 1280).
Character 1210 would then prompt the student to select a
course 1220 from the drop down list 1230. If the user selects
the course ‘CPlusPlus’, the character would then confirm
verbally that the course “CPlusPlus” was selected. The
character would then direct the student to make the next
selection from the drop-down list 1250 that contains the
selections for the chapters 1240 from which questions are
available. Again, after the student makes the selection, the
character 1210 confirms the selection by speaking. Next
character 1210 prompts the student to select ‘Section’ 1260
of the chapter from which questions are available from the
drop down list 1270. Again, after the student makes the
selection, character 1210 confirms the selection by articu-
lating the ‘Section’ 1260 chosen. As a prompt to the student,
a list of possible questions appear in the list box 1291. In
addition, tips 1290 for using the system are displayed. Once
the selections are all made, the student is prompted by the
character to ask the question as follows: “Please ask your
query now”. The student then speaks his query and after a
short period of time, the character responds with the answer
preceded by the question as follows: “The answer to your
question . . . is as follows: . . . ”. This procedure allows the
student to quickly retrieve answers to questions about any
section of the course and replaces the tedium of consulting
books, and references or indices. In short, it is can serve a
number of uses from being a virtual teacher answering
questions on-the-fly or a flash card substitute.

From preliminary data available to the inventors, it is
estimate that the system can easily accommodate 100-250
question/answer pairs while still achieving a real-time feel
and appearance to the user (i.e., less than 10 seconds of
latency, not counting transmission) using the above
described structures and methods. It is expected, of course,
that these figures will improve as additional processing
speed becomes available, and routine optimizations are
employed to the various components noted for each particu-
lar environment.

Again, the above are merely illustrative of the many
possible applications of the present invention, and it is
expected that many more web-based enterprises, as well as
other consumer applications (such as intelligent, interactive
toys) can utilize the present teachings. Although the present
invention has been described in terms of a preferred embodi-
ment, it will be apparent to those skilled in the art that many
alterations and modifications may be made to such embodi-
ments without departing from the teachings of the present
invention. It will also be apparent to those skilled in the art
that many aspects of the present discussion have been
simplified to give appropriate weight and focus to the more
germane aspects of the present invention. The microcode
and software routines executed to effectuate the inventive

US 7,203,646 B2

39

methods may be embodied in various forms, including in a
permanent magnetic media, a non-volatile ROM, a CD-
ROM, or any other suitable machine-readable format.
Accordingly, it is intended that the all such alterations and
modifications be included within the scope and spirit of the
invention as defined by the following claims.

What is claimed is:

1. A system for enabling a browser program to interact
with a website using speech utterances, the system compris-
ing:

a speech recognition engine configured to generate a

recognized speech query from an utterance;

said speech recognition engine being further configurable
such that speech processing operations can be distrib-
uted between a client device and a server device as
required to achieve real-time recognition of a speech
query; and

a natural language engine configured to determine a
meaning of said recognized speech query and provide
a first response thereto;

a web page routine for presenting one or more web pages
to the browser program, wherein data content for said
one or more web pages is controlled by said recognized
speech query and/or said first response of said natural
language engine;

wherein said recognized speech queries can be presented
to both said natural language engine as well as to a text
based query database for identifying a meaning of said
recognized speech query, such that a second response
can be provided by said database for at least some
recognized speech queries prior to said first response of
said natural language engine.

2. The system of claim 1, wherein said speech query is
recognized by forming a concatenation of words and/or
phrases derived from said speech query and using said
concatenation as a search query for a database.

20

25

30

35

40

3. The system of claim 1 wherein said speech recognition
engine is also configured to dynamically change a speech
recognition grammar based on input provided by a user to
selections available within said web page.

4. The system of claim 1 wherein multiple speech gram-
mars are available and selectable within the web page, and
such that speech input provided by the user for an item
within the web page using a first grammar dynamically
controls which one of a plurality of second grammars is
loaded for speech recognition of subsequent speech input by
the user.

5. The system of claim 1 further including an electronic
conversational agent adapted to interact with a user and
mimic behavior of a human agent through a native language
interactive real-time dialog session with the user.

6. The system of claim 5, wherein said electronic con-
versational agent is configured to articulate suggestions to
the user for appropriate speech queries.

7. The system of claim 5, wherein said electronic con-
versational agent is adapted to have configurable perception
parameters which are adjusted and tailored to said content
pertaining to said list of items.

8. The system of claim 5, wherein said server device
causes said interactive character agent to respond in real-
time whenever the user provides selected speech input.

9. The system of claim 5, wherein the server device
transfers speech related data for the web page using a
hypertext transfer protocol (HTTP) and using a format
which includes a predetermined NULL character.

10. The system of claim 1, wherein the user can speak a
help command while interacting with any web page main-
tained by the server device to cause an interactive character
agent to appear.

