a9y United States

US 20070208442A1

a2y Patent Application Publication (o) Pub. No.: US 2007/0208442 A1

Perrone 43) Pub. Date: Sep. 6, 2007
(54) GENERAL PURPOSE ROBOTICS (52) U8 CL et senecenseenseesesienen 700/95
OPERATING SYSTEM
(76) Inventor: Paul J. Perrone, Crozet, VA (US)
57 ABSTRACT
Correspondence Address: 7)
LATIMER IP LAW, LLP
13873 PARK CENTER ROAD
SUITE 122 The present invention provides a general purpose operating
HERNDON, VA 20171 (US) system that shows particular usefulness in the robotics and
] automation fields. The operating system provides individual
(21)  Appl. No.: 11/361,974 services and the combination and interconnections of such
(22) Filed: Feb. 27. 2006 services using built-in service extensions, built-in com-
' ’ pletely configurable generic services, and a way to plug in
Publication Classification additional service extensions to yield a comprehensive and
cohesive framework for developing, configuring, assem-
(51) Int. CL bling, constructing, deploying, and managing robotics and/
GO6F  19/00 (2006.01) or automation applications.

Vertical robotics .
application software

Vertical robotics
framework software

infrastructure

General purpose
robotics software
platforms

General purpose
computing software and

hardware

130
Software
RoboticsApplication
(from Robot-Compohents)
135
RoboticsFramework
{from Robot-Ci its)
100 \1/
GPROS
{from Robot-Componants)
200
ComputingPlatform
(from Robot-Components)
Hardware
110

General purposs

ComputerRoboticsHardwareinterface

(from Robot-Components)

computer-robotics
hardware interfaces

\

RoboticsHardware
(from Robot-Components)

Robotics sensor,
actuator, and

mobility hardware




Patent Application Publication Sep. 6, 2007 Sheet 1 of 38 US 2007/0208442 A1

130
Software Vertical robotics
RoboticsApplication e
(from Robot-Compoirents) application software
135
RoboticsFramework Vertical robotics
(from Robot-Components) framework software
infrastructure
100 :
GPROS Gene_ral purpose
{from Robat-Components) robotics software
platforms
200
- General purpose
ComputingPlatform :
(from Robot-Components) gg:;e:‘at:_gg software and
Hardware
110 General purpose
ComputerRoboticsHardwarelnterface computer-robotics
(from Robot-Components) hardware interfaces
RoboticsHardware : g&zgifrs el
{from Robot-Components) mobility hardware

FIGURE 1



Patent Application Publication Sep. 6, 2007 Sheet 2 of 38 US 2007/0208442 A1

GeneralSoftwareServices
(from ComputingPlatform-Components)

220
OperatingRuntime
(from ComputingPlatform-Components)
210
ComputerHardware .
(from ComputingPiatform-Components)
ComputerChasis
(from ComputingPlatform-Components)
\

ComputerPowerSupply
(from ComputingPlatform-Components)

FIGURE 2

Sensor hardware
such as IR, sonar,
GPS, LADAR, etc
RobotChassis such as motors and
(trom < RobotMechanicalHardware Hghts
(rom i
el \
Mechanical hardware such as
- the mobillty (legged, wheeled)
NOTE: Boundary blurs for what is a heads,
sensor, actuator, and mechanical glr:l‘fsommnlpulators. *
hardware ’ '

FIGURE 3



Patent Application Publication Sep. 6, 2007 Sheet 3 of 38 US 2007/0208442 A1

430 Human
> {from RoboticsSystem-Components)

RobotSystemComponent _
(from RoboticsSystem-Components) 3 communicate

A -
410y 420y

RobotSystemPlanner RobotMonitorAndController
(from RoboticsSystem-Components) (fram RoboticsSystem-Components)

440 Robot
—> (from RoboticsSystem-Components)

FIGURE 4 -

iD 500

-thelDContext

IDContext| 501

FIGURE §



Patent Application Publication Sep. 6, 2007 Sheet 4 of 38 US 2007/0208442 A1

a1 | <<Interface>3
Anyinterface
510
Any
iz_; MemoryAny
FIGURE 6
<<|nterface>> <<Interface>>|
Automaton Info
522
520 N~ .
InfoGeneric
521
<<|nterface>%
State

TS

StatefulinfoGeneric

FIGURE 7



Patent Application Publication Sep. 6, 2007 Sheet 5 of 38 US 2007/0208442 A1

Log 530

,-$logger

<<Interface?>
Logger _ .

A 531

533 532
BasicLogger Level

FIGURE 8

540 <€|nterface>> ' <<|nterface>>
Configuration Configurable

>

543
configurations CiassConfiguration

542
MasterConfiguration

-CO nﬁQ
ConfigurationClassFile

-$theMasterConfig
541
ConfigurationRegistry

FIGURE 9



Patent Application Publication Sep. 6,2007 Sheet 6 of 38 US 2007/0208442 A1
553 <<interface>> 550
EnvoyMedium
<<Interface>>
5§52 Envoy
BaseEnvoy
. 554
. TargetEnvoy -envoyDelegate <<Interface>>
ClientEnvoy EnvoyMgdeiU;OSelegate
556
555 /
-envoyDelegate pprETR—
EnvoyDirectory EnvoyAndDelegate
559
nninf
EnvoyMessage
5§51
FIGURE 10
Application ApplicationThread, 56!
560 *

AsynchronousApplicationThread

564

562

SynchronousApplicationThread

RealTimeSynchronousApplicationThread

FIGURE 11



Patent Application Publication Sep. 6, 2007 Sheet 7 of 38 US 2007/0208442 A1
«é‘“etgfgfe’} 570 572
s <J——_[<<Inferface>}
Component
571
SystemGeneric
< 573
ComponentGeneri
FIGURE 12
' 583
<<Interface>> <<Interface>>
Slgnats SignalBuffer
' 582
581 \ <<Interface>>
SignailBus
SignalsGeneric
" SignalBusGeneric A SignalBufferGeneric
580 ’ L

<<|nterface>>
Signal

F

SignalGeneric

584

<<Interface>>
BinarySignal .

[

BinarySignalGeneric

FIGURE 13



Patent Application Publication Sep. 6, 2007 Sheet 8 of 38 US 2007/0208442 A1

590
<dnterface>> — <<Interface>>
InputMessage OutputMessage
N — 593
[ BasicOutputMessage l
<<Interface>>
Othetinput

594
I MessageDescriptions —I

LBInaryhpu!Message l
595

TextinputMessage
l MessageDescription 1

FIGURE 14

InterfaceManager * | <<interface>>
[T} Interface
602
600
601 '
Interface Generic

FIGURE 15



Patent Application Publication Sep. 6, 2007 Sheet 9 of 38 US 2007/0208442 A1

Peripherals

611

/

<<Interface>>
Peripheral

610

612
PeripheralGeneric

FIGURE 16.

<<|nterface>>
Timer

621
620 7} \

<<Interface>>
TimerAction

GlobalTimer

624 -actionToKill

622
TimerActionAdapter

623

TimerCancelAction

FIGURE 17



US 2007/0208442 A1

Patent Application Publication Sep. 6, 2007 Sheet 10 of 38
EventScheduler
633 "“Ys':“y 634
ActionSchedule
630 / w
ActionPlan
1 * ti 63
ActionEvent -action Action
FIGURE 18
RobotGod
{from god)
701
\ 440
RobotUniverse * | <<Interface>p
(from god) Robot
700 (from robot)
% 703
RobotGeneric
. (from robot)
@,ﬁ nsors Actuators
son). Conduct (from actuator)
711 . (from conduct) 721
702

FIGURE 19




Patent Application Publication Sep. 6,2007 Sheet 11 of 38 US 2007/0208442 A1

Sensors

. 710
m ™

<<|nterface>>

Sensor
713
<<Interface>>
SensorGeneric SensorState
(from state)
712 ZP
SensorStateGeneric
{from state)
714
FIGURE 20
Actuators
* 720
721
<<Interface>>
Actuator
72 Z%
ActuatorGeneric

FIGURE 21



Patent Application Publication Sep. 6, 2007 Sheet 12 of 38 US 2007/0208442 A1

<<|nterface>>
Mechanism 30

731
MechanismGeneric

FIGURE 22

<<Interface>>
Motor

735

136
MotorGeneric

FIGURE 23



Patent Application Publication Sep. 6, 2007 Sheet 13 of 38 US 2007/0208442 A1

740 41
PWM ——————= Pulse
742
TimerBasedPWM 744
CommandBasedPWM
UpdateBasedPWM
745 146
743
HardwareBasedPWM PWMCommand
FIGURE 24
Controls
750
. 751
ControlAction
752

ControlLevel

FIGURE 25



Patent Application Publication Sep. 6, 2007 Sheet 14 of 38 US 2007/0208442 A1

<<lnt§gace>> <<Interface>> j

MobilityPlatform i ; <<Interface>>
> MobilityMechanism _ | Mobilizer

761 760 762

763 764 765

MoblityPlatiormGenenic MabilityMechanismGeneric MobllizerGeneric

FIGURE 26

<<interface>> <<Interface>> <<Interface>>
WheeledPlatform WheelMechanism Wheel
770 Zﬁ 771 % . 772
713 774 775
WheeledPlatformGeneric . WheelMechanismGeneric WheelGeneric

FIGURE 27



Patent Application Publication Sep. 6, 2007 Sheet 15 of 38 US 2007/0208442 A1

ObstacleDetection ObstacleResolver
782 783
#detectedObstacl -obstaclePool
Obstacles ObstacleSimilarity
785
<<interface>> 780
Obstacle
T
ObstacleGeneric|
FIGURE 28
Rovte RouteSegment " OnRouteStatus
792 ! 795
793\,' Features
791
796
TrackSegment
Waypoint
794

FIGURE 29



Patent Application Publication Sep. 6, 2007 Sheet 16 of 38 US 2007/0208442 A1

s00 | Path 801

/803 804

I:;g;ig?ic::c;er PathOptions AdjacentOpenings

802 \/ > Openin

Openings

PathOption _* 805
306 T

BestRoute

FIGURE 30A

Conduct
{from conduct) 900

<<Interface>> 7 q ’ o

Conduction
(from conduct)
‘ 4 \ P
<<nterface>> ConductionGeneric Thought * 1744 0
Reaction (from conduct) (from thought)
(from react) -
7420 <
ReactionGeneric ThoughtGeneric
(from react) (from thought)
4990 7430
<<Interface>> <<Interface>> <<terface>> <<hterface>>
Analyze Reflect ] Leam Plan
(from analysls) . (from reflact) (from leam) {from plan)

7950 7960 2570 7980

FIGURE 30B



US 2007/0208442 A1

Sep. 6,2007 Sheet 17 of 38

Patent Application Publication

|
|
|

[

10afdo e Lels

(e

|
| 1€ TANDOIA
|
m

“uopeinbyucs T_na payeuew o:._:_ 193(qo yoes 40}

|
i

108lqo EmmcmE ejaf

|
|
|
|
| I
|

|
__
|
|
|-
_
|
|
]

_ aisuo) w:_EoJu 108{qo 2151622

“seluadosd uonginByuos eyl u) )

109[qo 106

al Smwﬂ 1001 & usAIb gj
Iqo yoea o)

|
|
|
|
|
|
|
_

[
Qi 4oljod un uoeoydde byy jes

Jayoune| ey} un

1aAe| Boj voneoydde jes

sajpedoud _Vo_ﬁS@:oo ] £_>+ 128[qo ainbyuocy

_ :o:m‘_zm.h:oo 100lqo pea.

satpadasd wels{s uojeoydde amm

|
|
|
|
|
|
|
|
|
|
S0
|
|
|

|
|
|
|
|

| grospwogum ||

FoE[alAUY

TqOPEDEUEw

|

|

|

|

|

| j
- ST ToBTGG

goil (m,o_
m.a.:

al Ej‘wﬂ_m_ uanb ejpuey 193/qo a6

}\ QI Jayaune) 186 pue peo;
W_\w&a uoneinByuoa j00s peo)

_ 8weu uoneinByuoo 1001 peo;

_ —

wesBoid youne)

wesbosd uny

Sauadolg
WISAS

Wﬁifgﬁ

7ol 1011

100/




US 2007/0208442 A1

Sep. 6,2007 Sheet 18 of 38

Patent Application Publication

“ ¢ ANOIA | “ m ?

| ! |
_ mm_:mno._n uoneinbyuoo sy crs 129lqo uoneoidde L_zmzcoo _
*saiupdoid uoneinBiuoo se fqo uoeoydd
QA _ _ :T A y th.n neaydde sy}
_ ; 109[qo 104 ﬂu_:mao.a :ozmSm_EOﬁ 168 _

(10algo mao_.__w_.‘Wm 01 ADAUD JuBiD B ﬂ Aowaw u 8q pinod «wo.Eov QWEBU SSEJO UO ﬁammo 108[qo uoitedydde 49_ ajeasn

|

_ _ _ sWweu ssep 1ob _ h |

_ *kood ooc_ 19)9) p3jedipap e s |l
|

|

| } !
Aoyjod mo:ESr_ psiedpep e o} ..:m_wr ‘auwreu Aoyod wo:m@rh uanifl g Aojod oocw_m_wh alqo ue 106

|
| | [ | |
|

_ =y

ﬁr

Q Smio uenb dew saipado.d 1301qo 106

|
| | iy

_ (3% TWX ue woyy 6:9) T:_uoE Buidpepun Emc\:o_ﬁ_:accoo peo _
|

paessd ~

eq ﬁhm_m Kew mcozm_:mccco.ﬁram 8Jow JO 8UO 51034|62 1yl uone.nBiuod
log) [e1eds e Ajreuondo ‘ayreu Byuos sad pajeso)(se pue adAl Byuoo

uo peseq (uojteinByuod Ty 6-a) 8dAi uonenByugo 8)eIoU0D B Bjeals wna pue aureu Biyuco JenB 10910 MU BjEeI

| | | | (

TS

D\mnb B1juod jo01 196

aweu Byuod 1001 106

...vsmeh 184 Jou Byuoo sajsew p

o_l.m; Byuoo seisew 108
* Qi 10elgo cim alpuey 109fgo sa_

| |
| |
| |

|
|
“THIUSBIRIU0NE oLy

A

0501

-




US 2007/0208442 A1

Sep. 6,2007 Sheet 19 of 38

Patent Application Publication

P —— o — e

£t HANOIA

si1opuey erg poanByuod Aue Je)siBes

Qt ueal

Joelqq

— — —

{do sapuey sjeulis _Eo:n:oarwm

=

\

o'

5_ .

1pipuey seubis soepalul 18 T

h

Qt uaaif foelqo dew [eseyduad o) mﬂm_‘._mE_ 168

:

{oalqo dew eorpaiul o} jeseydied 166

ainByuod

saio10d EmEmmmcmL a2epajul einbluoa

|
|
|
_

|
_
_
|
|
|
|
|
|

oleald

—=

Qt evepajul ue uaalb %.o.Eo HOdgSN 10 Lodieuag
ISy EE.T ul Q| evepdUl coLo 10)

6-a) 100[qo eoepelu) U 106

<
|
|
|

_ a:mnbyuod

ajealo
ai
_ —=

mco_.mhzw_:g ssejo1adns wajsAg pu

o

A6 1931qo Jebeuew 3&._0\6_ 106

e usuodwo? ‘asempiey (e ‘

_ _ ’ einbyuoa _ _
EEENEV] JELEVEEGEEN T U0 BINDuo! LN ESTENC IR
“adepaiujue -Jobeuepgdepal] | [TUGTeINDbIuo)) eRLd/o TeIdydisge REBagioalqo JUE]TH]
hogt los/ eS¢ oSl




US 2007/0208442 A1

Sep. 6,2007 Sheet 20 of 38

Patent Application Publication

Pt TANOIA

| |
| |
|
|

|
|
|
e

_ 109(q0 gyi Lers

A_oo.Eo joqoy “6°9) 100/go pabeurw e 106

| |
| | |
| |

] I —
al sk o m:_4§m (10algo joqoy .m_av 1wslqo Ja)sifal

[l _

L

D\ mSm_:___oo

TS i
olea

— _ 1 .

(a1dvioqoy “6:9) @l 19300 1001 B UBAIG (1981q0 10q0Y "B-9) apey 10slqo 196

| | |

_ saluadosd uoneinByuod sj yum 40
|
|
|

| |

| |
| |
_ |

2lqo aunbyuoo

18youne; ay} uni

al _wcwc:m_ uaaib ajpuey Jo3lqo 106

|

|
“_

Buipeo eniu) wioped

foqoy SoepoUJAUY

VR ERIRETe)
T199IGOPabEUENE "S108]qOPIDEUEW BEVEIIE] Kisibagioalan

caxl he] 7072]

—>

_ wesBoid un _

FEVEI=RT R (¢Tg) [

loxl 0av)



St MNANODIA
I | |
| H | |
| ] |
|
_

US 2007/0208442 A1

Q ued Joienpg Le uaaB {paigo _a_n_..su:_u« “B's) epuey psigo uqu

@i verd Jojenioe 4oee JQ)
**()| JOIBMIE YOrD JO}

athanpuca yove 1o; ﬁ _ @1 up piaalS {108]qo ulg B Uo.i yBnoyy v 68} c_EE_uano 186

§§T ©nByuoo _

|
_
|
|
1 sorenioe ue usAf (pelgoones B 1oeie s*,zoo © 0) oypuey i_ﬁ w6 _
|
_
_
_
|

| ]
]|
bt sosues woea B‘ﬁ Q1 205uds & uajll (1oviqo S JoH| B SB Yons L—uc_nn Josueg e ‘0'8) Q_TE 120lqo 138

8105u0s eunByuod _ _ _

gﬂ%ﬂ | |
| | |

1 Il |
w&..i&.a vonenByuaa sy :__+ 10alqo voteoijdde oSm__:oo

_
—_._\ ﬂ\ palgo .L_& seadod :an:a..El_ 106
_
|
|

speasys uaneoydde 2 oyl £=u=:8

_ _
| |
| __
45 o21jeRuI O} _
| _
| _
| |
| |
N

e

mﬁmmﬁo uo peseq 59.4 uoyeadde mau eean —

_ .u:u:uwgom.ie.ﬂuoooscotoa.g ‘f-6) eweu ssep 186

_ An_asono.h_ '68'9) QI 192490 uslB dey: sarsedosd KBk 100
{a1dwioqoy .n_s () welgo 1002 B uoAIB _Sc_ao 1060y "6°3) eyplrey 10alqo 108

_ | e |[ Sowm | [
1.0¢1 qom\

Patent Application Publication Sep. 6, 2007 Sheet 21 of 38



US 2007/0208442 A1

Sep. 6,2007 Sheet 22 of 38

Patent Application Publication

ssejosadns Joj r

9¢ HANOIA

|
|
|
|

.

e

—~—

oneinBiyuoo jjeo

ey W

T
wlmEEoo Josuas osg%o

|

|
|

E_Qm“@ww_ww ‘6-9) qj e|1s ;Lcmm e uaalb cow._n+ pUsusndleISIoOsuUaS “Brd) spuey 108lqo 106

* ssepiadns % uoenByuod ajebsjs

|

Sﬁhom:mmmn_w ‘B-8) L: Josuas e uanlb cum.Eo_

|

ﬁ__\ 109[qo ainbyuoo
_ y

|

193(qo ajesasd

Josuagsouasajoy .m.mv_m_ucmc 109[qo 186 _

|

U0Ij03]j0)S[BuUDIS: JuaUdYessydiad| |duausnIosuag J1PUBD)I0SUDSBoUBIs)RY $iosSusg
“wDCmEEOO‘_Owcmw . JOsuage :Josuege .Josuage a-m_mwmuow._no :SJosuas
S04 | 20hl! hoh| canl Zap] 1Q4]




US 2007/0208442 A1

Sep. 6,2007 Sheet 23 of 38

Patent Application Publication

- LETANDIA

|
|
|
|
|

(eje2 preq _m.mv uonew.oju uod

(sweu wod 6-9) uopewsojul ywod Joindinod [eiauab ainbyuod

(OA wioq sey ‘Auo ndino sey ‘Auo Induy ——>
sey ‘B-9) sepiod asepaju sususb ainbyuos

—

suoneinbiuoo sseiadns wajsig
pue ‘Juauodwo)) ‘asempiey |(ed

—=

_mmm_ema:m ambyuoo

]_.m_._ww jesauab ainbyuod

— — — —

—

_ ssejasadns ainbiyuoo

}\ 6yuos

|

o)ealid

* Q) 6yuoo e uo uww% s|puey (108lqo toT_m_.mm -6-9) 109/qo oum:wE_ ue job

DUSUIHSJENAIU| [OUBUa5U0g4I9INdWio))| |JUsUsDL0gEuas JabeueaoEaju]
“S0B[BIUIUE "goepaujue ERETEONE Kisibag1oeiqo BEL EVETEREYEN]
509) hof ¢o09/ 2091 109/




US 2007/0208442 A1

8¢ HANDIA

|
|
|
|
L_ 100i00 WMmd B U

L,_m 1021q0 WMd @lasoudole Joj ajpuey 103[qo 196

—

Sep. 6,2007 Sheet 24 of 38

sapadoid Jojow) H( [essuab ainbyuoo

saadosd _QoE.ﬁ 1ouab E:o.ucoo

—=
seadosd hoﬁmeo.m_'_m_mcmm aunbyuoo

Patent Application Publication

mwmﬂmwma:w mSmc:oo

|
|
|
|

_ An_:ouos_oc_._m%w ‘6'9) ) 1010w © cm>_@ (198lqo Jojopnq ‘6:8) m_v_._mz 198iqo 166

4. 1adns ainbyuoo
|
|

ssejuadns ainbyuoo

}\ 108lqo ainbyuoo

h

109{qo ajeasn

|

Jupuaneieyduag| |oBeuan)iolendy| | SUaudt)IojoN S101eNdY
Tiojenpyue TI0JENOyUE Jofenyue | SleuanIolonNTQ -0lenoyu Asibagalad "SI0JEN}IE
s0+/ hot ! cotl Q¢! Jot] ootl




US 2007/0208442 A1

Sep. 6,2007 Sheet 25 of 38

Patent Application Publication

6t TANDIA

speeJy}

Buiuuny anujuoo jeuone;s

|
|
|
|
|
|
|
|
L;ousﬁ sajeoIpul dners j1 de umopinys
|
1

pa1n6yuos Aue dojs

—>]
—=

pdo si snjeys de ajiym

T —_——

|
|
|
|
|
“
|
|
|
-
|
|
|
|
|
|

]
_co_ﬂmN__au_c_ Joyenjoe|wioped

|
}\ uonezijen:

LI 19npuco uuoped

T~

u

=

Z||eljiul JOSUSS WOy,

uogeoydde ju

T
AwsocoJoimm io m:ocofﬂim -6°8) spesiyt pa.nByuos Aue uels

uonezieniul de pa

_

_mmm_u._wa:m ay) vels

D|JOAO

_/ 109lqo ay) Lejs _

Siolenoy PNpuc) 5105055 [PEaJyuoiEo)ddy Jpduanioqoy JTauIune 103190
“S)0)enjoe ~onpucd MIGHES ~peeile T19elqDpebeueE “agoung]
qgo8/ £08/ hog/ c0%l 109/ 008/




0y TANDIA

US 2007/0208442 A1

—_ —_—
> — — —
—

y .

(uonysey iqrinByuodle U aiers

spee) oBessowinduxe ‘6'e) Jsm oju sjeubs pees
seg_ J08UaS 0} UOAUOD

|
|
|
|
|

|

_/oEv, 10SU3S O} 8_9L>...3 GoNpuy 0} |[Ed PIPROUAD

[l

uoy 0 __E&_m peunbyuod Aue uuoped
_ Lm-ﬁ._m__ auaueb o) ajeBedoxd

—>

Byuos uo paseq Asjod qo_aamaoa JUBAS BujWLIBIaP

acom__ sueueB a) ejeledasd
.  —
Byuoa uo paseq Aoijod uoned UOAS SUILTLaP

_ _ nT_Em%w o} uotreoyfiou T 12,9000 0jeBa[ap|

w0bl 8o, £0l  90u]  ob) hobl

Patent Application Publication Sep. 6, 2007 Sheet 26 of 38



US 2007/0208442 A1

Sep. 6,2007 Sheet 27 of 38

Patent Application Publication

|
|
|
|
15

Iy HANDIA

|
|
|
|
|
|

cozmen_u‘ﬂ\m:ocohcuim J.:mc:oo unopad

|

o.c_mc_wm SNOUOIYOUAS JQ:m_Eou wiopad

|
uonNIAXd G:u:,wu SNOUOIYJUAS &szcoo wiopad

[

e

Buissaooid mgoco._:o_;m umumo_.mzw

|

s|seq m:4=9:oc>m uo 9j2ho mc_mmmooﬂa 2onpuy

siojenioy 9Npuo) 5i0SuUag J1U3U8NH0q0Y uonedddy pesiy1uoned|jddySnouoIyouisS
:S10)enjoe T JoNpuo3d TSiosuas 1o8lqOpabeuepe I TPEBGIULYOUASE
s0€2 hog7 el 70¢7 18¢7 00¢7




US 2007/0208442 A1

Sep. 6,2007 Sheet 28 of 38

Patent Application Publication

¥ TANOIA

|
|
|
|
|
|

_ asuaJayp mc___mEm a;ndwod

b |

uonELAO)U) UONBIUALO 186

| |
uosod JuaLINo uo paseq Liowsod paxsap o1 Jonoanp eyndwoo

|

|

|

|

_

}\ uolBULIOJUI m:_._moAm PaJISop yIm cmi Buuaajs ajepdn
_

|

|

|

|

7 uonew.ojU] rT
|

|

f

uomisod paunsap a6

L

Isad juauno 186

—_—

_ ue|d 91a:0u02 nwvi:?o o} ejebojep

ATm.Eo ueid e ‘69) wmm_Auoa wbnoyy vmsa*:oo B ajndaxa

T

_ _ 42_393 19NpuUod Jzo_;e:oim panByuoco wioped
UONEIUd0 UonIsod - JOSUSSa0URIS)aY | | UB[gbUIEASSdD JUBUOHUE|d Jonpuayy DUBUaHI0q0H
1l ] 1 TI0SUaSE T UB|de TUBJE T npuod TJ08lqPabDEUENE
hoog €007 2007 1007 0007




US 2007/0208442 A1

Sep. 6,2007 Sheet 29 of 38

Patent Application Publication

£ty HANDIA

|
|
|
i

< .
(s yoeqpas) ‘paads ‘uonoalp 6a) ued __Qmaom 0) mc_Eooor Jojenjoe ajenjoe

(ue(d J01eN)oR mc_‘_mmﬁ_m -6-8) pajnpayos ﬁ._m_a Jojenyoe Jab

|
|

[

T

**'ue|d J0)en)oe YIea 1o}

O1jENJOB SNOUOIYIUAS

painbyuod wiopad

|

I0TENY uejgioenpy siolenioy JIaUan0q0Y
. Jojenjoyue T ug|diojenidyue .sJojenpe &uw_.DOmemcm—Zm
0|7 2042 Joig col7




US 2007/0208442 A1

Patent Application Publication Sep. 6, 2007 Sheet 30 of 38

by TINDIA

|
|
|
|

( J0l0W © 0} pL
AMd 6'0) uod -q_sw 0} BJep ojm

speubs T Buppm oyeBejop

_ seubrs e.Es

_ seudis o1um o) EJ&.&E_
Lam:s:_ o} sjeuBis sjum

} ——— e ——_

_ ‘ ; 7 UOISIFAU0D _mcm_m_ pamnByuon Aue usouad

_ _ _ f&muwmmmmhgﬂmx EZ&J%&E«EEB ‘68) mw*_ua:m 0] peEOPAAD

_ ?o_x—l B34 ‘uonesnp J.ov d o) ?_ 0008 WMd URIS
J0iRN)E BjENKE
Vo d eres oEPolnuE TSoene

eitZ bazz 80wz ?&N doz;  soll rQNN 072 wozz 1012 oort

| " 0

0} uoy Aum

_ _ PUBLILIOD PiALd BIUM

ssepars o) S|[eD PEOU3AD




US 2007/0208442 A1

Patent Application Publication Sep. 6, 2007 Sheet 31 of 38

Sy TANOIA

|
|
|
|

|
|
|
[
|
|
|
|
|
|
|

T

D\ e >o>.J ue ajesaush _
T~

umn_m*._m\;oéw ue wﬁm‘_w:wm

I

aoeuelu| >o>rm ue ajesauab

[

|

|

| | <

_AmEa: aoelaul .ﬁ.& Aoaus ue S_w_mc_ uonea.d 186 ‘@ yoes Joj
_ _ E1-EY0 o* MAoEo j0sq| 10
| |

_ | welgouers
jebley EREDE V] uoneInbjuoey T3NENACAUT
Us) AOAUT U AOAUF Uy FoAUT Uy "SIOJOE] BEE] 1aydUNE 119310
6057  hog?Z €agz 2o¢7 10§72 —
Y, YAA



US 2007/0208442 A1

Sep. 6,2007 Sheet 32 of 38

Patent Application Publication

9 TANDIA

s1senbay 90&2 piey shkoaue jable) )9 E_m dooj Aidwis uay) (s
olowas e ylim se) H..o_gmoho 193]qo pabeuew coﬂz dooj o} s1 Aoyod §in

rooa

) Joyoune) )

| | |
| | uﬁ

eAoQe Se :o__mSaE__oo J18Y) ajenqui pue .m.oo_i Aoaus Job.e) jeuon|p

| [k

al sk 0} Buipiosge @m\_no Aoaugzjebie ) sosuagaduasojey “6'0) 100lqp
T ™~

:\ Q:mcco_w

3)sibe.

pe 6°9) se|puey 1palqo Jayio 166

o 8jeasn _
(g1dvioqoy "B'8) ) 108lqo ro>:w ue uaalb (1o3{qo >o>Lm~o9m 110SUDS 32U,

jaY ‘6-a) sjpu

103[qo 106

| |
| |
| |
| ]
| |

saadosd uoieinByuoo sy yIm J_o

alqo a:nbyuoo

Jayoune| ay) ury

al hmzw::m_ uanib ajpuey 103lqo j0b6

_ Buipeoj jreqiut wioped

AGAUT1abIE [J05uaga0usI9)oy| SoE sIUjAUY
T199Iq0pabeUENE ~§)53lqopabeuely

TsgouneRala0n

Jsyoung|

ANSIBagIzala0

£ChL7 hokz

coby

TOoh7

—

_ weiBo.d uns _

JENRITERIRE]Te)

WaisAS

16 k7

ooh7




US 2007/0208442 A1

Sep. 6,2007 Sheet 33 of 38

Patent Application Publication

LYy TANODIA

| | | | g
_\_ ; F

| : ] ]
Q| sweu puig _._s_uoE Aoaua ay) Buisn Fo«o@__u syl ymm &mm_ou wnipaw Kodue 8y sesibal

[l |
A<._0Wcmm.mmwo—osom ._m.B Q1 sweu v:_nL_.E:_uoE Koaua sy} 196

|
|
m Ksojoenp a) ﬁL_ES m
|
|

[ _

a1 A101904)p AOAUS UO um*mmn ?oﬁmk_oéz_w_cz-. '6-8) 10afqp Kioianp 10a(qo 106
al bo__umh_v Aoaua 106

Aiopaip fous ue 0} }98uuoD 0} skejsdns jeo

. | _

] !
wnipaw mummw_mu Aoaud E_L Koaua 1ebie) sy} Fuw_mm_

| | |
i |

|

|

|

_ aweu ﬁmso 10 g| wnipaw] £cAud uo
peseq (idwjwhipaysedinaggam ‘[dw wnipapivg

_ ‘B-e) Gm.Jo eiebajop wnipauy Aoaua ue o6

|

|

|

|

|

; ewWEU SSEP B Jo 0] wiipew AoAlg ue 186 Jeyne

; _ alebejep wnipaw A0AUS Ue 3jeaId O

e | |

Ao:cmcmwwﬁc 6-a) g alqo _}w@ (10elqo Bm:mw.mo:w_m_mm *Ba) ajpyey 108(qo 106
I

ssepuadns (g2

ql _or_no 1961y s oy} 10B

Y A

i A mwm_o\_wni o} uonemByuco syeblep
aunbyuoo

|
TUonemnbjuony KoAujaseqy ROAUP0IE |
SIORE) POIGOPODEUENE| |TIolqOpabeuENE PAIgOPabeEIENE

o5z - tosz hasz 2052 1067 - 6057

BYOUNE 11081
Tegoung|




US 2007/0208442 A1

Sep. 6,2007 Sheet 34 of 38

8y TANOIA

1
|
|
|
ojul :T_.uo:coo Buisn mo_\._‘mm IGNP 01 198Uu09

_ 1 Alojoalip 0} ~uo_f:oo

[ | |

T
sielowesed
on2auuod je ssed 7

_ (aweu Jaauq|lepiues Aojoanq WY pue 14N IWY "6°8) o)y londauuos mo_ZMm Kioyoaup peas

[ |

| | |
| | |
| 1 |
|
|

Patent Application Publication

Y

_ mmm_emr:m 0} uopeunbyuod ﬁWmm_mv v

_ _ _._._H ainbijuoo ;

_ _ I~ oeasn ;

_ _ _u_ Aiojoanp Aoaus uo uwmmn Abouumh_o>o>m._m\_cza ‘6-8) 103lqq xﬁo_umh_v 109lqo 196

T~

_ _ _ _ al b&um.__v Aoaua 1ab

_ _ _ _ : _ Kio1oaup >o+:w UE 0) }03UUGD O} me_Eonzw k)
GDEeSSapjAOAU] Kiopanghoaug | KiG19angAoAuIIaNT uoneinbnuoy) | AGAUFo5€Eg AOAUTFIODIE ]
TOIUON0eUL0D | | TAIOIDBIIGAOALS KIO1031I(JAOAUD Y VSEIEIRE 8] KILL] TI9olQOPobEUBNE | | TIDBlG0pobEUEE

20972 Soo97 hO9T 2077 70697 1997 0697



US 2007/0208442 A1

Patent Application Publication Sep. 6, 2007 Sheet 35 of 38

6V TANOIA

aweu gj eyl uaalb
99ia1as Aiojdauip |QNT 8y} 0} (idwjwnipapiyg

|

ue ‘6-9) ejebajep wmpaw Loaue ey} puiq <
)

Q) eweu puiq wnipaw Aoaus sy Buisn Aicjoaup ayy 5_\+

1ebjop wnipaw >o>c+ ay) Jajsibai

Ki6199I1gACAUT NS
“KIGI3aIGAOAUS

AGAUFIe0IEL
TJosIqOpabeUEE

oLl

/02



US 2007/0208442 A1

Sep. 6,2007 Sheet 36 of 38

Patent Application Publication

0S¢ HANOIA

|
|
|
|
|

- — — —

") — —— =

_ (Aoaua 10618} yum se sfidis swes) Smmm_mv_E:_va Aoaua ue Smﬂ:o 0] ssejosadns (e

1aes Aiojosup _Q_T_. ay) woyy (wnpsinyg ‘Ple) wad wnipaw %Eo ue dnyoo|

|
|
|
|
|
|
|

(Aoaua 1abre) yim m_
|
|
_

AEEE_\*_Em -6-8) ey o Ez_qu AoAua ay) Qm_oo_mmm

sweu mﬁm_o B0 Q| E:_uw.._._ ABAua ue 196 Jaylo

m._\ SWEU SSBD Jo (1] wnipaw A0Aue uo paseq (Aoauusioiy 6'b 199(qo ejebajap wnip)

—_ )

q| sweu ﬂ:_n wnipaw >o>cm_w._._\e>_m (wnipspyINK m_wv uayd wnpaw Ao Lm dnyoo

_?Emcommn_ OEoErm ‘6°9) Q) eweu puiglwnipsw Aoaus ay) 196

|
|
|
|

B Sdajs Je|iwis) aohug_u fonue o) 193uu0D 01 ssejIadns [jBd

|
|

An___om:mmmuw ‘6-a) i :_w:mm e uanIb (199lqo >o>cw

|

ssejosedns o Tw_ﬁh:mzcoo ojebajap

_ _..._\ 109lgo ainByuos

| |

103/qo ayeasn

L Aoaua ue 186

I

Eo__o._omcww@o:m‘_w_mﬂ ‘6-9) ejpuey 123lg0 136

XoaugiusIDINY RIOTS8IIQAOAUT QN | UCENBuG) KoAugeseg ACAUTIUAND [ OVENVES N VEISERITE) FIET {5105u8g 'b'a)
] P! A TRIBT53IgAOAUD *SI019%j “105uage ~IOSUBSE IOSUSSE 151bagioal SSE[D WAl swios
9687 5037 hagz cosz Jogz 7082 008t




IS TINOIA

US 2007/0208442 A1

_ |
| |
_ _ —>
‘ 1

Toy? labt /" uonisod fua.uno 1B

NOINY ROAUSIUSE) | [SBESSNAGADS
i A TIOSU3GE TIndino

ope] | forgieposiessoweepy ]
T abessopRoAg | | - ~I05UBGE 00 WN D A0 SO

[ -inauy
ulh. o ®N\ hQ FN. & 0 T.N\ M.o r.N (iuaredsues s| ssaualowa.) A0AUD JUBO B yim BunjjEl SI 1 mOuy Jou SBOP SSER
1O BYY " 3BLBIL JOSUSSEIUBIBJOY ALl StuBwBIdW) AOAUFIUBIDIOSUDSEIUEID}OY DY) O5NTIdYg

-

- _ | | | |

=]

5 | | | | |

e

~—

2 | | | | |

7 | | | } | 9 Wiy PowInIe) 5 UoRIsOd
7 1

S ‘ _, A _ (uomsod L.u.& pauinial o:T> ndino Aue )ab

[ .

3 | | |

-3

=3

) poyIaw WOl pauwnias ok sbhessaw winjal Aue

wn

= 3Bessaw Jwsues o} pa|ed st gnls wnipsw Bukpepun _ _ ‘

(=]

.m afessaw Jndjno Aue wnies vioammma& ndu) yim wripau! WY 84oAul _ _ _

L _ obessai jndino Aue 4‘3_2 pue efessow indu yum ajebojppp 9_1\&_ _ ~

—

= abessepy oAUz Indul yum ) 1IED0AU} u_‘mcmm_mmm_uhw%m ea “Ainn JoxewAoaug sy Buisn paresouat
Dn.... _ A _ _:_o\ | Al[EoeWOINE aJe SUoNEIUOWAIdW
- 1701 indu) ue sad sanjea indu) Aue 1os POoUIaW AGAUS JUDID 8S0Y |
S | | | [ |

- p— .

M QI Poulaw AoAus e)d Sy} Joj mammmmi 0AU3 UB 8B |

2

="

[="

«

~N—

=

[

~N—

-]

[~™



US 2007/0208442 A1

Patent Application Publication Sep. 6, 2007 Sheet 38 of 38

|
|
|
|
|

¢S ANOIA

mmﬁmmE indino Aue winias

—_— — —— -

—=

oawmm?__‘._wgao ue 10} o:_m_> indino Aue jas

o
[4]] mﬂmmwoe Siy} 40} omemoE Indino ue gjeasn

onjea indino Aue 186 pue Q1 Indu) u

"l
|
| |
| |
| |

i}

@l indu; ue _._.W sonjea indu; Aue 168

a1 ebessaw 106

- ————— -

_ ndino Aue wniga pue sindu) yim Aoaua

_ afessaw indino b% uimas pue sabessaw Jn:_ Kue qum [duwi wnipaw wc_ ajoau)

wmm_rnzm ) UDJIBOOAU! PEOUSAD

—_—

ﬁs ay) a)oAu|

ad sanjea indu) :J, poyiaw 1adoxd Joz__
N

|

|

|
==

I0SUDGOIUI0[oY | | BOESSANADATS SOUSSONACAUT KOAUTIBBIR]
TOBETEs) TG BBESSAWAOAUS Tindoi - TBBlo0pIbeuENE “3OIOPAbEUENE
poo%  soog 400 940¢ cqog 200¢




US 2007/0208442 Al

GENERAL PURPOSE ROBOTICS OPERATING
SYSTEM

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention generally relates to operating
systems for computers and devices comprising computers.
More specifically, the invention relates to a general purpose
software platform and toolkit that can be used in various
settings, such as in robotics and automation, to rapidly and
affordably create solutions and functional products of all
kinds, shapes, and sizes.

[0003] 2. Description of the Related Art

[0004] There are many applications, domains, and result-
ing structures for robots. Examples range from and include
unmanned autonomous robotic vehicles in a military
domain, surveillance and security robots in a commercial
domain, robotic manipulator arms in an industrial domain,
medicinal transport robots in a professional service domain,
vacuum cleaning robots in a home, legged entertainment
robots for personal use, among many others. The resulting
structures for these robots assume all sorts of shapes and
sizes. The mechanisms, electronics, sensors, actuators, and
their interconnections all also vary across robots. Further-
more, the software that embodies the behavior of a robot
also varies across robotics applications.

[0005] Existing approaches to providing robotics solutions
have been highly specialized to a particular application,
domain, and selected structure. As a result, typical robotics
product architectures are inherently monolithic, lack inter-
operability, lack use of mainstream open standards, and end
up being costly. For example, if a new robotics application
for a particular environment and domain is desired, the
combination of underlying mechanisms, electronics, sen-
sors, and actuators are selected and configured and all of the
software for interacting with such hardware as well as the
software for embodying the desired application behavior is
either created from scratch and/or laboriously repurposed
from an existing specialized robotics application, domain,
and/or structure to the new robotics application, domain,
and/or structure. Unlike applications in other industries
where component-based software development is more
common, in existing robotics applications, such drawbacks
exist for each new robotics application that is to be devel-
oped, both across organizations and within the same orga-
nization. Even if a new sensor, means of actuation, or new
behavior is added to an existing robotics application, a
laborious process of integrating new software into a mono-
lithic architecture ensues.

[0006] For example, U.S. Pat. No. 6,889,118, issued to
Evolution Robotics, describes a method of providing hard-
ware abstraction for robot control software. More specifi-
cally, the patent discloses that the inventors were motivated
to develop a hardware-independent abstraction layer for
robotics. The invention detects a hardware configuration for
the robot, provides a plurality of resource drivers for the
robot, receives a request from the robot control software to
use a type of resource, automatically selects a resource from
the available resources that corresponds to the type of
resource requested by the robot control software, and
exchanges a second information with a low-level device
driver corresponding to the resource.

Sep. 6, 2007

[0007] In addition, U.S. Pat. No. 6,636,781, issued to
University of Southern California, describes a method of
discovering a communication connection to autonomous
agents communicatively coupled together in a reconfig-
urable network topology. Each robot module comprises one
or more actuators to cause movement of the robot module
and a communication interface to send and receive messages
to and from the other robot modules.

[0008] Further, U.S. Pat. No. 6,175,206, issued to
Kawasaki, describes a robot information processing appa-
ratus comprising: 1) a server processing unit that includes
detecting means for detecting the positions of a plurality of
axes of a robot body, which serves as an object to be driven,
and for outputting detection data; and 2) first communication
means for transmitting the detection data outputted from the
detecting means.

[0009] Also, U.S. Pat. No. 6,405,099, issued to SMC
Kabushiki Kaisha, describes an automatic control system
comprising a server offered by a service provider that stores
control applets to control a particular control object device
and a control device comprising a control object device and
a computer device to control said control object device. The
control object device comprises an actuator. Control applets
stored in the server can be JAVA applets stated in the JAVA
language.

[0010] Yet another example of a vertical solution for
robotics is U.S. Pat. No. 6,658,325, issued to Stephen
Zweig. This patent describes a mobile robot with an onboard
web server, telecommunications means to link the onboard
web server with the internet, and onboard telecommunica-
tions means to establish additional short-range bi-directional
digital radio links with a plurality of non-internet connected
external computer controlled devices.

[0011] U.S. Pat. No. 6,513,058, issued to Roy-G-Biv,
describes a system for allowing an application program to
communicate with any one of a group of supported hardware
devices.

[0012] U.S. Pat. No. 6,078,747, issued to James Jewitt,
describes a computer-implemented method of interfacing
between a plurality of application programs and a physical
device.

[0013] U.S. Pat. No. 6,266,577, issued to GTE Internet-
working, describes a robot network having a plurality of
robots, wherein each of the plurality of robots performs an
assigned task according to a control logic.

[0014] U.S. Pat. No. 5,124,918, issued to Case Western
Reserve, describes an autonomous robotic locomotion con-
trol system.

[0015] U.S. patent application publication number 2005/
0182518, assigned to Evolution Robotics, describes a
method of visual and simultaneous localization and map-
ping, using visual features to recognize landmarks in an
environment.

[0016] Japanese patent JP-02182688A2, issued to Kobe
Steel, describes a method of making robots cooperate with
each other by preliminarily providing each robot with a unit
motion program for executing a concrete unit motion inde-
pendent of the robots.

[0017] Japanese patent JP-2003145462 A2, assigned to
Kawasaki Heavy, describes a robot cooperative control



US 2007/0208442 Al

system which can prevent any deviation of the operation of
each robot while maintaining a plurality of control devices
in a constantly synchronous manner with each other.

[0018] PCT Publication WO 2005103848, assigned to
Frontline Robotics, describes a control system for a mobile
autonomous system, wherein a robot leader can command
and control a platoon of robotic agent nodes.

[0019] Although there have been numerous specific solu-
tions for various specific needs in the automation and
robotics fields, there still exists a need for a broad solution
to programming and implementing software and hardware in
these fields. Furthermore, in order for there to be prolifera-
tion of robotics and automation across the broader market
landscape, time and cost to deploy and integrate end-user
robotics and automation solutions must be dramatically
lowered. Two primary points of integration within an end-
user robotics and automation solution exist. One primary
integration point is between a vertical end-user robotics or
automation application and an underlying robotics or auto-
mation platform. The other primary integration point is
between a robotics or automation software platform and
underlying plug-and-play mobility, sensor, and actuator
hardware. The monolithic robotics and automation architec-
tures to date blur the boundaries of these two integration
points and accentuate the need for a general purpose robotics
and/or automation software platform bridging the gap and
complexities between robotics and automation application
software and hardware.

SUMMARY OF THE INVENTION

[0020] The present invention addresses needs in the art by
providing a general purpose robotics and automation oper-
ating system. The system of the invention enables designers
of robotics and automation solutions to easily integrate those
solutions into a working product by providing a standard-
ized, full service platform upon which the various and
widely divergent robotics and automation applications may
sit.

[0021] In general, the current invention provides generic
and general purposes software services for use by any
robotics and automation application. The invention provides
generic software services that may be commonly used by
any software application, extends these services with ser-
vices that may be commonly used by any robotics and
automation application, and combines these services to
provide a general purpose software platform for use in any
robotics and automation application. This method provides
a way to more rapidly develop, configure, assemble, deploy,
and extend robotics and automation applications over exist-
ing technologies.

[0022] The invention defines a method that provides and
enables complete configurability of application services in a
manner which allows the pluggability of any underlying
source of configuration data (e.g., configuration data in
XML files, databases, on remote servers, etc). The invention
also defines a method by which configuration data may be
loaded, transparent to the application, from one or more
configuration data sources in both a static fashion (i.e., at
application startup) or dynamically (i.e., as the application is
running). The invention combines these generic application
configuration services with a robotics and/or automation
platform to provide this ability to robotics and automation
applications.

Sep. 6, 2007

[0023] The invention also defines an approach for auto-
matic assembly and construction of applications based on
configuration data. The invention additionally defines an
approach for automatic deployment of applications in a
distributed fashion and provides a means for managing the
lifecycle (e.g., start, stop, and shutdown) of applications
either within a process or via a distributed fashion based on
configuration data. By providing a completely configurable
means for such services, the invention provides a method-
ology which lends itself to automating the process of appli-
cation configuration, assembly, construction, deployment,
and management. The invention combines these generic
application services with a robotics and automation platform
to provide this ability to robotics and automation applica-
tions in a manner which is needed but not addressed by
currently available technologies.

[0024] Such an approach also reduces development time
for robotics and automation application developers. By
using the present invention, developers can focus on writing
any custom robotics or automation business logic and leave
the rest of the implementation process to the operating
system of the invention (referred to herein at times as
“GPROS”) as a robotics and automation engine and toolkit
for rapid application development. Because the invention
provides a completely configurable robotics and automation
engine, the invention lends itself to automating the process
of robotics and automation configuration, assembly, con-
struction, deployment, and development by use of tools.

[0025] In addition to a core set of common services built
into the GPROS, the invention also provides a method for
complete pluggability of third party, proprietary, open
source, open standard, custom, or otherwise extensions (i.e.,
“plug and play” ability). That is, means for plugging in any
underlying configuration data source medium (e.g., XML
files, database data), any application object to be loaded, any
underlying distributed communications medium (e.g., Web
services, CORBA), any external peripheral source (e.g., a
display, a printer), any external communications interface
type (e.g., serial port, USB port), any application thread
control mechanism (e.g., synchronous thread, asynchronous
thread), any type of data or message format (e.g., NMEA
format, proprietary message format), any type of logging
mechanism (e.g., log to database, third-party logger), any
type of system timer, any type of test package, any type of
sensor (e.g., GPS sensor), any type of actuator (e.g., a DC
motor), any type of motor or PWM control approach, any
type of mechanical or gear configuration (e.g., DC motor
gears, differential gears), any type of mobility platform
configuration (e.g., wheeled mobility, legged mobility), any
type of reference or GPS sensor, any type of range sensor,
any type or LADAR or RADAR sensor, any type of feed-
back control approach (e.g., quadrature encoding), any type
of analog or digital /O approach, any type of application
conduct or behavioral logic, any type or robot planning
logic, any type of rules engine approach (e.g., a third-party
rule engine), any type of neural network approach (e.g., a
third-party neural network), any type of obstacle classifica-
tion, any type of obstacle detection approach, any type of
obstacle resolution approach, any type of sensor fusion
approach, etc. The GPROS hence provides a completely
extensible platform enabling plug-and-play of extensions
from third party, proprietary, open source, open standard,
custom, or other sources. As stated, the GPROS also pro-



US 2007/0208442 Al

vides a set of built-in generic and specific services
approaches for all of the above.

[0026] The technology provided by the present invention
thus allows for greater ease of communication, both static
and dynamic, between components within the same robotics
application, between robot and other robotic agents
equipped with the same open platform (operating system
upon which the software exists), as well as between human
and robotic agents. Of the many features of the invention,
one advantageous feature of this invention is its particular
approach to complete configurability, componetization, and
encapsulation of those services that are commonly useful to
any type of robotics and automation application using the
combination of a variety of proprietary services, allowing a
robotics and automation application to be defined,
assembled, deployed, and managed in a completely config-
urable and pluggable fashion. It is also dynamically recon-
figurable and lends itself to use of tools for automating a
robotics and automation application development and
deployment process itself. Configuration data can be read or
sent over a variety of network connections, and the code
itself can be read or sent over a network, such that the initial
code requires no additional customization. If multiple robots
on a network include the present invention, new configura-
tion and code (and hence, behavior) can all be dynamically,
and optionally simultaneously, loaded into any robot on the
network. Moreover, such an invention lends itself to use of
tools for the automated configuration, assembly, and deploy-
ment of robotics applications and hence dramatically reduc-
ing the time it takes to develop and deploy robotics appli-
cations.

[0027] The GPROS provides services common to any
robotics and automation application. A set of robotics and
automation specific services that may be commonly lever-
aged by any robotics and automation application are pro-
vided by GPROS. A set of general software application
services that may be commonly leveraged by software
application are also provided by GPROS. These general
software application services are extended and used by the
robotics and automation application specific services in a
combined fashion within GPROS.

[0028] A VRAF extension of GPROS provides services
common to a specific vertical robotics and automation
application domain. A set of robotics and automation ser-
vices specific to a particular vertical application domain
(e.g., UGVs, UAVs) that may be commonly leveraged by
any robotics and automation application in a vertical appli-
cation domain are provided by a VRAF. The GPROS
services are extended and used by VRAF services in a
combined fashion.

[0029] The GPROS is not limited to software or firmware
that runs onboard a robot. It may encapsulate common
robotics software services that also runs inside of a central-
ized robot system planning tool or inside of a robot moni-
toring and control device.

[0030] Thus, the current invention makes use of open
standards to facilitate the creation of a general purpose
software platform for use in both robotic- and non-robot-
specific applications. The present invention can provide
applications that can be created for broad use in robotics
without low-level customization for any particular propri-
etary robot. This technology allows for greater ease of

Sep. 6, 2007

communication, both static and dynamic, between human
and robotic agents, as well as between robot and other
robotic agents equipped with the same open platform (oper-
ating system upon which the software exists). As noted
above, some development of hardware transparency for
robotics control exists and has been included in earlier
inventions. However, among other things, one uniqueness of
the present invention is in its particular approach to com-
plete configurability using the combination of a variety of
proprietary services, allowing a robot application to be
defined in a completely configurable fashion. In yet another
example of the advantages provided by the present invention
is its dynamic reconfigurability (in the present invention,
this dynamic reconfiguration capability is described and
labeled as “envoy”). Configuration data can be read or sent
over a variety of network connections, and the code itself
can be read or sent over a network, such that the initial code
requires no additional customization. Embodiments of the
invention advantageously isolate the robotic software from
the robotic hardware, such that the abstraction of the robot
can be performed without full knowledge of the actual robot
configuration. If multiple bots on a network include the
present invention, new configuration and code (and hence,
behavior) can all be dynamically, and optionally simulta-
neously, loaded into any bot on the network.

[0031] The present invention provides a method and appa-
ratus for a general purpose robotics operating system
(GPROS). Thus, it provides a general purpose operating
system, which has, in embodiments, applicability to robot-
ics. This platform makes use of open standards to facilitate
the creation of non-robot-specific and robot-specific appli-
cations such that the applications can be created for broad
use, such as in robotics, without low-level customization for
any particular proprietary robot.

[0032] As mentioned above, the technology provided by
the present invention allows for greater ease of communi-
cation, both static and dynamic, between human and robotic
agents, as well as between robot and other robotic agents
equipped with the same open platform. Units comprising the
GPROS of the present invention are equipped with a com-
bination of neural network/rules engine technologies that
allows one or more equipped robots in a simultaneous or
individual mode to adapt rapidly to new environments and
tasks and to communicate such learned information to other
units running the GPROS. Open-source and standard or
proprietary technologies, such as, but not limited to Java,
C+, C++, C#, NET, and Ruby, can be the basis through
which the robot-specific mechanics, sensors, and actuators
are generalized so that inter-GPROS communication can
occur regardless of the robot-specific technology under-
neath. Java and other programming languages have APIs
enabling use of the eXtensible Markup Language (XML) as
a data representation format and has built-in support for
standard distributed communication technologies such as
TCP/IP, HTTP, CORBA, SOAP, and Web services. Given
the flexibility of the GPROS platform, robots can be pro-
duced in different profile standards, depending on the needs
of the end-user. As such, a GPROS unit could be essentially
any size (as small as a beetle or as large as an elephant).

[0033] According to the invention, such technologies are
integrated and used to create a generic platform for low cost
mobile autonomous robotic applications, as well as other
applications. Such an open generic platform in effect stan-



US 2007/0208442 Al

dardizes and commoditizes the operational infrastructure for
mobile autonomous robots and thus lowers the cost points
for hardware vendors to supply underlying mechanics, sen-
sors, and actuators to be driven by such a platform. It also
dramatically lowers the cost points for specific vertical
robotic applications to be deployed atop such a platform.
The cost savings, for example, include lower the costs
associated with control of proprietary robotic applications
with proprietary software by using the generic features
associated with the present invention.

[0034] GPROS technology makes use of neural networks
and rules engine technology to advance the current potential
for autonomous mobile robotic applications, especially in
terms of localization and mapping. Rather than traditional
algorithm-based techniques, which are limited and far
removed from natural human thinking, rules engine tech-
nology can use proximity and location data, sensor data,
navigation rules defined offline by humans, and newly
defined navigation rules defined online by humans to deter-
mine what movement planning actions should be under-
taken. Furthermore, rules learned or conditions acquired by
other robots may also be broadcast to cooperating robots in
the vicinity to enhance the movement and navigational plan
for the robot.

[0035] As mentioned above, the GPROS is not limited to
software or firmware that runs onboard a robot. It is to be
understood that, although the detailed description of the
invention focuses on a preferred embodiment, as the inven-
tion relates to robots, the invention is not so limited. Rather,
it includes all applications of the general purpose platform
provided by the invention. For example, it may encapsulate
common robotics software services that also runs inside of
a centralized robot system planning tool or inside of a robot
monitoring and control device.

[0036] In view of the features noted above, in a first
aspect, the invention provides computer software. The soft-
ware of the invention is a general purpose operating system
that can be implemented in computers and networks of
computers used in any field, but which finds particular
usefulness in the robotics and automation fields. The soft-
ware, also referred to herein as GPROS, provides an oper-
ating system or platform comprising services common for
all applications designed to run in a computer-driven envi-
ronment. In preferred embodiments, it provides a platform
comprising services common for all applications in a robot-
ics or automation environment, and provides for integration
of any and all services extensions for robotics and automa-
tion. The software allows programmers to develop software
solutions for particular needs, in any language, and imple-
ment those solutions into a functional product through
integration of the solution with the software of the present
invention. Integration is enabled by the present software,
providing ease of use and highly effective and efficient
adaptability for all solutions engineered for all needs. The
present software, unlike robotics software solutions cur-
rently provided in the art, is not monolithic and designed to
address a single need or solve a single problem by providing
an ability to integrate a single service or service extension.
Rather, it is capable of accommodating any and all service
extensions to create a fully integrated and adaptable soft-
ware solution to relatively simple to complex needs. Its
ability to provide a plethora of services and to accommodate
numerous different service extensions, modules, etc. makes

Sep. 6, 2007

it a powerful tool, which has immediate and apparent
applicability to the robotics and automation fields. For
example, it provides a robust platform for implementation of
software solutions, and for effecting software-hardware
implementations, in the automation field, such as a sensor
package. As another example, the invention was used to
rapidly develop a robotic Unmanned Ground Vehicle (UGV)
application, which was tested at the October 2005 DARPA
Grand Challenge (an historic event offering a prize to the
team that could build an autonomous vehicle to race over
125 miles through the Mojave desert avoiding obstacles
along the way). The DARPA Grand Challenge was estab-
lished to address drawbacks in the prior art and to push the
envelope of technology for autonomous robotic vehicles
since no such feat had ever before been achievable and had
previously been considered impossible prior to October
2005. The invention’s embodiment in such a project dem-
onstrated its utility and novelty for rapidly and affordably
building highly complex robotics applications and in
addressing drawbacks of the prior art.

[0037] The software of the invention is completely con-
figurable, and can be adapted both statically and dynami-
cally. This feature provides numerous advantages, particu-
larly in autonomous robotics applications and in applications
where numerous individual and independent units are inte-
grated into an overall functional group, such as might be
desirable or necessary when implementing a robot solution
for military purposes (e.g., a fleet of airborne drones for
reconnaissance, a ground-based search and destroy unit).
Furthermore, unlike software currently available, the soft-
ware of the present invention enables automatic assembly
and development of robotics and automation applications,
and provides the ability to automatically manage the life
cycle of one or more applications in a robotics or automation
environment. The ability to plug in a wide variety of
third-party services (e.g., loggers, rule engines, communi-
cation mechanisms) provides an advantage not available
from current technologies in the robotics and automation
fields.

[0038] Due to its power and adaptability, the software of
the present invention can be a tool for programmers. Indeed,
one key feature of the present software is its usefulness to
programmers in developing software and/or software-hard-
ware combination solutions to problems, particularly prob-
lems in the robotics and automation fields. By providing a
standardized platform for communications between soft-
ware applications and the hardware those applications are
designed to control, the present software provides a conve-
nient, stable, adaptable, and reliable basis for programmers
in all fields with all types of backgrounds, needs, and skill
levels to develop solutions.

[0039] The software of the invention, in embodiments,
provides a combination of services that are common to any
or all general applications, and to any or all robotics or
automation applications. It can provide these independently
of each other or as a combination. Of course, the general
software (GPROS), as a stand-alone platform, may be
combined with applications that are specific for other fields
(other than robotics and automation) to provide powerful
solutions in those fields. Exemplary services that can be
included in the software of the invention are discussed
below. The software of the present invention may include
some or all of those services, as well as other services that



US 2007/0208442 Al

are not mentioned. As a general matter, the software of the
invention is launched to read data from one or more con-
figuration data sources stored in any sort of underlying
configuration storage medium. The configuration services
are used in conjunction with an object registration service to
automatically create, configure, assemble, deploy, launch,
and manage any application objects defined in the configu-
ration. For the integrated robotics and automation applica-
tion of such general services, generic robotics and automa-
tion objects inherent to the invention are loaded and provide
a general purpose platform for robotics and automation
applications. Either built-in, generically configurable, or
add-on extensions for encapsulating sensor, actuator, and
behavioral conduct are loaded, assembled, linked-in, and
managed by the robotics and automation platform. During
online operations, data is read from sensors synchronously
or asynchronously, behavioral conduct is executed, and
actuators are able to be commanded or controlled to actuate.
Various configurations and extensions to the sensor, actua-
tor, and conduct services are either built-in or pluggable to
enable integration of a cohesive and comprehensive robotics
and automation application. All such services may be incor-
porated either locally within a process or in a distributed and
remote fashion using any sort of pluggable underlying
communications medium. In such a way, a robotics and
automation application hosted atop of such a platform is
automatically configured, assembled, deployed, and man-
aged.

[0040] In another aspect, the invention provides a method
of using the computer software. In general, the method
comprises running the software on a computer to achieve a
desired goal. For example, it can comprise running the
software to autonomously control a robot. It also can com-
prise running the software to automate a repetitive action or
to control a piece of hardware, such as a sensor. Of course,
the method can comprise running the software on multiple
computers or micro-controllers that are linked in a network.
In such a situation, some of the software can be resident on
one computer or micro-controller while other of the software
is resident on one or more different computers or micro-
controllers. Thus, the method of the invention can be a
method of controlling two or more pieces of hardware, such
as two or more robots. Due to the power of the software of
the invention, the method can comprise autonomously con-
trolling two or more pieces of hardware, where two or more
of the pieces of hardware are performing different functions
at any one time. For example, the method can permit
multiple robots to function as a unit, in which one robot
performs one task while, at the same time, another robot
performs another task (e.g., one robot performs surveillance
of'a road in front of a building while another robot performs
surveillance of the interior of the building).

[0041] Inembodiments,the method also comprises install-
ing some or all of the software onto a storage medium or
piece of hardware. For example, it can comprise loading the
software, completely or partially, into the RAM of a com-
puter, or installing the software, either completely or par-
tially, onto a permanent storage device of a computer, such
as on a hard drive of the computer. In addition, the method
can comprise other steps that are commonly executed by
users or computers when running software, such as moving
information from storage media to memory, creating and
deleting temporary files, and the like.

Sep. 6, 2007

[0042] Various optional additional method steps are dis-
cussed below in the context of the figures. According to the
present invention, one, some, or all of the functions
described below can be performed as part of the method of
the invention, to provide the various actions described for
each. It is well within the skill level of those of skill in the
art to select among the various functions to achieve an
end-product and a method that achieves a particular goal.

[0043] The methods for using the invention include use of
the GPROS to configure and build a robotics application that
senses data from the environment, formulates some plan of
behavior analysis and action, and actuates some actuators in
response. The invention may be used inside of a robotics
platform, inside of a platform to locally or remotely control
a robot, or inside of a more centralized system that controls
one or more robots either locally or remotely. The invention
may also be used in automation applications where local or
distributed sensing is all that is needed or perhaps sensing
coupled with some behavioral conduct to, for example,
display the fused result of multiple sensor sources. Robotics
and automation applications that also require actuation with
or without use of sensors and with or without use of
behavioral conduct are also methods of using the invention.
The invention may also be used for not only building a
robotics or automation application but in building simula-
tions of a robotics or automation applications. The invention
may also be used to build a vertical robotics and automation
framework atop of the invention which provides additional
common services specific to a vertical application domain
enabling the combination of such services to be used in an
end user robotics and automation application. The invention
may also be used to provide extensions for general purpose
or specific robotics and automation applications which pro-
vides additional robotics and automation services enabling
the combination of such services to be used in an end user
robotics and automation application. The invention may also
be used to provide extensions for general purpose or specific
applications which provides services enabling the combina-
tion of such services to be used in an application.

[0044] In embodiments, the method is a method of pro-
gramming. In these embodiments, the software of the inven-
tion can be run alone or in conjunction with additional
software applications, services extensions, modules, etc.
(i.e., plug-ins), which may be created separately by a pro-
grammer. The additional plug-ins can be any software in any
language, and may specify a single function or action, or
may specify multiple functions or actions. For example, it
may be software for running one or more optical sensors
automatically. Alternatively, for example, it may be software
for running one or more optical sensors automatically and
for running one or more steering motors automatically.
Where the method comprises running one or more plug-ins,
the method can be used to determine if the plug-in software
functions as desired. Thus, the method may be a method of
debugging a software application.

[0045] 1Ina further aspect, the invention provides a system.
As used herein, a system is a combination of the computer
software and use of the software to achieve a particular goal.
Thus, according to the present invention, a system can be a
general purpose operating system for automation and/or
robotics, and a method of using it to autonomously control
a device, such as a robot.



US 2007/0208442 Al

[0046] In general, the invention provides a general pur-
pose operating system, such as a general purpose robotics
operating system (GPROS). The system typically com-
prises: a set of application services that provides access to
configuration data using a generic abstraction, such that the
access is independent of any underlying hardware platform
(i.e., software according to the invention); and implemen-
tation of the software to achieve a desired goal. In the
context of the system of the invention, the hardware plat-
form mentioned is one that allows for any combination of
communication or operational conduct for any communica-
tion or operational task. The goal can be any goal envisioned
by a user. In exemplary embodiments, the goal is an auto-
mated action of a robot or other piece of hardware in the
automation environment.

[0047] Within the framework provided above for the soft-
ware and system, many different optional embodiments can
be envisioned. Numerous such embodiments are listed in the
following paragraphs; however, it is to be understood that
many more embodiments are encompassed by the present
software and systems, and the following list is not intended
as an exhaustive listing of all possible embodiments. Various
non-limiting embodiments, which can be implemented in
conjunction with the software and system of the invention
alone or in combination with one or more other embodi-
ments, include: a service that utilizes the generic abstraction
to allow configuration data to be stored across different
sources (also referred to herein as a config service); a service
that includes the generic abstraction to create objects in a
dedicated, shared, or pooled fashion (also referred to herein
as a registry service); a service that utilizes the generic
abstraction to link one or several peripherals to one or
several interfaces (also referred to herein as a comm ser-
vice); a service that includes a generic abstraction to create,
manage, and terminate synchronous, asynchronous, and real
time application threads (also referred to herein as an ap
service); a service that utilizes a generic abstraction to allow
client code to communicate with a remote server via a
client-side envoy (also referred to herein as an envoy
service); and a service that utilizes a generic abstraction to
allow for interacting with and managing peripherals external
to any hardware system (also referred to herein as a periph-
eral service).

[0048] Additional non-limiting embodiments include: a
GPROS comprising a set of robotic application services that
provides access to configuration data by using a generic
abstraction, wherein the access is independent of any under-
lying robotics platform, and wherein the robotics platform
allows for any combination of communication or operational
conduct for any communication or operational task; a ser-
vice that utilizes a generic abstraction for sensors (also
referred to herein as sensors service); a service that provides
base abstractions for range-type sensing (also referred to
herein as range service); a service that provides base abstrac-
tions for laser radar (LADAR) (also referred to herein as
ladar service); a service that provides base abstractions for
dealing with LADAR-type range sensing using the SICK
LMS product (also referred to herein as ladar sick service);
a service that provides base abstractions for radar-type range
sensing (also referred to herein as radar service); and a
service that provides base abstractions for dealing with
radar-type range sensing using the vorad vbox radar product
(also referred to herein as radar vorad service). Other
non-limiting embodiments include: a service that provides

Sep. 6, 2007

base abstractions for sensing reference points including
position and orientation (also referred to herein as reference
service); a service that provides base abstractions for dealing
with geographic reference positioning and orientation (also
referred to herein as reference geo service); a service that
provides abstractions that deal with parsing and interpreting
GPS-type information in the NMEA format (also referred to
herein as reference nmea service); a service that utilizes a
generic abstraction for operations for control of mechanical
hardware (also referred to herein as mechanism, gear ser-
vice); a service that utilizes a generic abstraction for actua-
tors (also referred to herein as actuator service); a service
that provides abstractions for motors in a system (also
referred to herein as motor service); and a service that
utilizes timer capabilities to provide a set of abstractions for
actuating motors using pulse-width-modulated (PWM)
method (also referred to herein as timer, pwm service).
Further non-limiting exemplary embodiments include: a
service that utilizes a generic abstraction for modeling
robotic conduct (also referred to herein as conduct service);
a service that utilizes a generic abstraction for mobilizing
robotic conduct (also referred to herein as mobility service);
a service that utilizes a wheeled platform; a service that
utilizes a legged platform; a service that utilizes a tracked
platform; a service that utilizes flight operations, including
helicopter operations; and a service that utilizes a generic
abstraction for navigation. In various non-limiting embodi-
ments, abstractions are provided for encapsulating a route
and course over which a robot travels, planning navigation
of a robot, and encapsulating route planning based on map
data (also referred to herein as navigation service). In yet
further non-limiting embodiments, the invention provides a
service that utilizes generic abstractions to determine and
standardize behavior of a group of robots, and optionally
also utilizes generic abstractions for behavioral initialization
and termination for said robots (also referred to herein as
robot god service); a service that utilizes rules engines or
neural networks for encapsulating rules of behavior (also
referred to herein as rules, neural service).

[0049] Other additional non-limiting embodiments pro-
vide a GPROS comprising: a set of application services that
provides access to configuration data using a generic
abstraction, such that the access is independent of any
underlying robotics platform, and wherein the robotics plat-
form allows for any combination of communication or
operational conduct for any communication or operational
task; a service that utilizes the generic abstraction to allow
configuration data to be stored across different sources (also
referred to herein as config service); a service that utilizes
said generic abstraction to create objects in a dedicated,
shared, or pooled fashion (also referred to herein as registry
service); a service that utilizes the generic abstraction to link
one or several peripherals to one or several interfaces (also
referred to herein as comm service); a service that utilizes a
generic abstraction to create and terminate synchronous,
asynchronous, and real time application threads (also
referred to herein as ap service); a service that utilizes a
generic abstraction to allow client code to communicate with
a remote server via a client-side envoy (also referred to
herein as envoy service); and a service that utilizes a generic
abstraction to allow for interacting with and managing
peripherals external to any hardware system (also referred to
herein as peripheral service).



US 2007/0208442 Al

[0050] In yet another aspect, the invention provides a
device comprising the software of the invention. In general,
the device is any piece or combination of pieces of computer
hardware that can comprise the software of the invention.
Thus, the device may be a circuit board comprising the
instruction set of the software of the invention. Likewise, the
device may be a central processing unit (CPU) comprising
the software of the invention, or a motherboard comprising
the software, either on the board itself or as part of the board
due to connection of the board with another piece of
hardware (e.g., a CPU or peripheral board). Furthermore, the
device may be random access memory (RAM) or another
type of hardware for ephemeral storage of some or all of the
software of the invention. In some embodiments, the device
comprises two or more components, which together contain
the software of the invention (e.g., two or more banks of
RAM; a CPU and a co-processor, etc.). Many such computer
components are known in the art, and the device of the
present invention may be fabricated in the form of any of
those. The device may be a single, separate unit, such as a
CPU or circuit board that can be packaged and sold for use
in larger automation or robotics devices, or it may be a
component of a larger unit, such as an automated or robotic
device. The device may also be one that has one or more
moving parts, such as would be seen in autonomously
controlled units that can move in one way or another to
achieve a physical task.

[0051] Inembodiments, the device is capable of executing
the software of the present invention to achieve a desired
goal. In other embodiments, the device is capable of com-
prising the software, but can execute the instructions of the
software only when the device is functionally connected to
one or more other devices or one or more pieces of hard-
ware, such as other components of a computer, a micro-
controller, a robot, an automated device, or an autonomously
controlled device.

[0052] Accordingly, in one aspect, the present invention
provides an article of manufacture comprising the software
of'the invention. For example, in embodiments, the article of
manufacture is a storage medium comprising the software of
the invention. The article of manufacture can be any of the
various articles known in the computer art as useful for
storing, either permanently or ephemerally, computer pro-
grams or software. It can be a removable storage medium,
such as a disk (e.g., CD, floppy disk, memory stick, flash
memory disk, flash memory disk) or a non-removable stor-
age medium (e.g., hard drive, tape). It can also be a medium
accessed directly, remotely accessed, or downloaded from
another computer (e.g. the Web, client-server, peer-to-peer).
In general, the storage medium can be any known storage
medium, such as those based on optical storage of data and
those based on magnetic storage of data.

[0053] In another aspect, the invention provides an
autonomously controlled device. By autonomously con-
trolled, it is meant that the device is capable of controlling
one or more actions of itself, either a single time or repeat-
edly, without or with limited human intervention. That is, an
autonomously controlled device comprises, either intrinsi-
cally or in conjunction with another device, sufficient com-
puter software and mechanical elements to carry out one or
more actions, without or with limited intervention of a
human controller. In embodiments, the autonomously con-
trolled device is provided as a completed unit that is pro-

Sep. 6, 2007

grammed and fabricated to function without further modi-
fication of software or hardware (except to replace worn or
broken parts). In other embodiments, the autonomously
controlled device is provided with software and hardware
that is sufficient to achieve a pre-defined goal, but that is also
designed to be updated with new software or hardware to
adapt to changing conditions or goals. For example, a device
that is designed not to be updated can be an automated
device for sensing movement in a defined area and gener-
ating an alert or other detectable signal, or causing some
other action, in response to detection of movement in the
area. Because the area does not change over time and the
pre-selected alert or other action is adequate to achieve the
goal of surveillance and detection, there is no need to update
the device. In contrast, an exemplary device that is designed
to be updated can be an autonomous unit that is capable of
movement over various terrain, such as an unmanned
ground vehicle (UGV), or through the air, such as an
unmanned air vehicle (UAV). Such vehicles can be repro-
grammed or have their software updated, either as a periodic
re-load or as a continuous or semi-continuous updating, or
“learning” as new environments are encountered or as new
units are added as part of a larger force that is intended to act
in a coordinated fashion to achieve a goal, such as search or
reconnaissance.

[0054] One type of autonomously controlled device is a
robot. As mentioned above, numerous types of robots are
now known or proposed. Any such robot is included within
the scope of this invention, including, but not limited to,
stationary robots and mobile robots. Among the stationary
robots, exemplary ones are those that function without
movement to achieve a task (e.g., by detection of movement
or sound), and among the mobile robots are those that
function, at least in part, with movement to achieve a task
(e.g., automated devices for building other machines or
devices, such as automobiles, UGV, and UAV). Exemplary
robots thus include those for household applications, such as
vacuums and security devices; those for industrial applica-
tions, such as those used in making motorized vehicles, and
those for stocking, retrieving, and maintaining retail inven-
tories; and those for military applications, such as UGV and
UAV. Other examples of robots and autonomous units
include entertainment robots and toys, sports playing robots,
fire extinguishing robots, robotic lawn mowers, robotic
farming equipment, robotic and moving cameras, robotic
vehicles in factories, robotic vehicles for planetary explo-
ration, robotic vehicles for hospital supply and mail delivery,
unmanned air vehicles, unmanned underwater vehicles,
unmanned sea vehicles, unmanned ground vehicles, articu-
lated robotic building structures, bulk measurement scan-
ning applications, automatic identification applications,
classification and scanning applications, mine analysis and
detection robots, among others.

[0055] The autonomously controlled devices of the inven-
tion comprise hardware (including both computer hardware
and other mechanical components for structure and move-
ment) and software. The software is any software that can
contain instructions for autonomously controlling the
device, such as described elsewhere in this document. It can
be written in any programming language and implemented
in any type of computer hardware/software combination.
Connections for hardware components running the software,
and for the software itself, can be any connections known in
the art as useful for implementing software. For example,



US 2007/0208442 Al

connections that allow the software to load, execute, or
communicate with devices or other software can be by way
of electrical connections (e.g., wiring) or any type of elec-
tromagnetic radiation (e.g., sound, light/optical, infrared,
microwave, radio wave). Furthermore, the hardware for the
structural components of the autonomously controlled
devices may be any suitable hardware, fabricated from any
suitable material, that is capable of achieving the pre-defined
goal of the device. Thus, hardware and mechanical compo-
nents may be fabricated from any combination of metals
(e.g., iron, steel, aluminum, tin), plastics or other polymeric
materials, glass, fiberglass, and the like. The hardware and
mechanical components may be connected to each other,
including parts comprising software, through any suitable
connectors, fasteners, etc., such as, but not limited to, bolts,
screws, rivets, wires, rods, hook-and-loop fasteners, adhe-
sives, welds, magnetization, and friction fits.

[0056] In yet a further aspect, the invention provides a
method of controlling an autonomously controlled device. In
general, the method comprises providing a set of instruc-
tions in the form of computer software that is functionally
connected to the device; and executing the software to effect
desired action by the device. By “functionally connected” it
is meant that the software, when executed either completely
or partially, causes one or more piece of the hardware or
mechanical components to perform a task. For example,
software that is functionally connected to a wheeled vehicle
can receive information from a sensor (e.g., optical infor-
mation indicating an obstacle is in front of the vehicle) and
cause a motor within a steering mechanism of the device to
engage, resulting in turning of the front wheels of the device
to avoid the obstacle detected by the sensor.

[0057] Because the invention provides a general purpose
platform and rich suite of services for which any type of
robotics and automation application may be built, some of
the services and built-in features of the invention may not
always be used in every application scenario. Thus, for
example, while the ability to configure one or more sensors,
one or more behavioral conduct operations, and one or more
actuators is provided by the invention, one use of the
invention may be to employ the invention for distributed
sensing applications wherein no actuators are used even
though the invention provides such a capability. Further-
more, various built-in and configuration properties are pro-
vided by the invention but not all such built-in features or
configuration properties may be utilized in an actual system
that incorporates the invention.

[0058] In embodiments, the method further comprises
modifying the software. For example, it can comprise updat-
ing the software to include new services. It likewise can
comprise adding drivers or other applications to the software
to provide specific functionalities for particular pieces of
hardware of the device or for particular pieces of software to
integrate. For example, it can comprise installing a software
application for controlling a steering mechanism or for
controlling a rotatable optical sensor. Modifying the soft-
ware can also include installing updates to modify the
functioning of the software as new or additional independent
devices are provided, such as when the device is converted
from a single unit to a member of a multi-unit force, as might
often occur in military applications.

[0059] Providing of the software can occur prior to fab-
rication of the device, during fabrication of the device, or

Sep. 6, 2007

after fabrication of the device. Likewise, modifying the
software can occur before, during, or after fabrication of the
device. Thus, modifying the software may be accomplished
by physical connection of one or more computers capable of
modifying the software to the device, or from a distance,
such as by way of transmission of updates via radio signals
to the device. Similarly, hardware or mechanical compo-
nents of the device may be modified, repaired, replaced,
added, or removed at any time during fabrication and use of
the device. Changes to the software and hardware may be
made independently of each other, but are often made at the
same time.

[0060] According to this method of the invention, the
desired action by the device can be any action. Thus,
although the action is often physical movement of one or
more parts of the device, it need not be so. Rather, the
desired action may be physical movement or simply pro-
cessing of information received from one or more sensors.
In such a situation, the action may further comprise com-
municating the sensor information, or processed information
from that sensor information, to one or more computers,
which can be located in close proximity or at a distance.
Accordingly, the action can comprise receiving sensor infor-
mation and forwarding that information to another processor
for processing and decision-making. The action also may
comprise receiving information or instructions from a pro-
cessor outside of the device, and causing an action to occur
based on that information. For example, a robot may include
the software of the invention, an optical sensor, and software
for specifically controlling the optical sensor. The optical
sensor may detect movement in a building and send that
information to the software of the invention. The software
may then forward that information to a control center
hundreds of meters or kilometers away. A computer at the
control center, which may be controlling multiple similar
units, may send instructions back for the robot to proceed
into the building. The software of the invention would
receive those instructions and cause the robot to move into
the building.

[0061] The software of the invention may also be used in
simulation or development environments. That is, exten-
sions of the software may be used to integrate the software
into other software packages for simulating or developing
robotics and automation applications. For example, exten-
sions of the invention may provide software that simulates
sensor information and environment reactions to actuators.
The invention may be used in such an environment for
simulation of robotics and automation applications. As
another example, the invention may be used inside of or in
conjunction with a development environment used to build
robotics and automation applications.

[0062] In another aspect, the invention provides a method
for using a general purpose robotics operating system
(GPROS). In this method, the method comprises: providing
a set of application services for accessing configuration data
using a generic abstraction, such that the accessing is
independent of any underlying hardware platform that is
capable of performing any communication or operational
conduct for any communication or operational task. Prefer-
ably, the method further comprises executing one or more of
the application services. In embodiments, the method further
comprises one or more of the following steps (in any order):
utilizing the generic abstraction to allow configuration data



US 2007/0208442 Al

to be stored across different sources (also referred to herein
as the config service); utilizing the generic abstraction to
create objects in a dedicated, shared, or pooled fashion (also
referred to herein as registry service); utilizing the generic
abstraction to link one or several peripherals to one or
several interfaces (also referred to herein as comm service);
utilizing a generic abstraction to create and terminate syn-
chronous, asynchronous, and real time application threads
(also referred to herein as ap service); utilizing a generic
abstraction to allow client code to communicate with a
remote server via a client-side envoy (also referred to herein
as envoy service); utilizing a generic abstraction to allow for
interacting with and managing peripherals external to any
hardware system (also referred to herein as peripheral ser-
vice). This aspect is also a method for using a general
purpose robotics operating system (GPROS), wherein the
method comprises: providing a set of robotics application
services to access configuration data using a generic abstrac-
tion, such that the accessing is independent of any under-
lying hardware platform that is capable of performing any
communication or operational conduct for any communica-
tion or operational task. In embodiments, the method further
comprises: utilizing a generic abstraction for sensors (also
referred to herein as sensors service); providing base
abstractions for range-type sensing (also referred to herein
as range service); providing base abstractions for laser radar
(LADAR) (also referred to herein as ladar service); provid-
ing base abstractions for dealing with LADAR-type range
sensing using the SICK LMS product (also referred to herein
as ladar sick service); providing base abstractions for radar-
type range sensing (also referred to herein as radar service);
providing base abstractions for radar-type range sensing
using the vorad vbox radar product (also referred to herein
as radar vorad service); providing base abstractions for
sensing reference points including position and orientation
(also referred to herein as reference service); providing base
abstractions for geographic reference positioning and orien-
tation (also referred to herein as reference geo service);
providing abstractions that deal with parsing and interpret-
ing GPS-type information in the NMEA format (also
referred to herein as reference nmea service); utilizing a
generic abstraction for operations to control mechanical
hardware (also referred to herein as mechanism, gear ser-
vice); utilizing a generic abstraction for actuators (also
referred to herein as actuator service); providing abstractions
for motors in a system (also referred to herein as motor
service); utilizing timer capabilities, thereby providing a set
of abstractions for actuating motors using pulse-width-
modulated (PWM) method (also referred to herein as timer,
pwm service); utilizing a generic abstraction to model
robotic conduct (also referred to herein as conduct service);
utilizing a generic abstraction to mobilize robotic conduct
(also referred to herein as mobility service); utilizing a
wheeled platform; utilizing a legged platform; utilizing a
tracked platform; utilizing flight operations, including heli-
copter operations; utilizing a generic abstraction for navi-
gation, thereby providing abstractions for encapsulating a
route and course over which a robot travels; planning the
navigation of a robot; and encapsulating route planning
based on map data. The method may also comprise utilizing
generic abstractions to determine and standardize the behav-
ior of a group of robots, and initialize and terminate their

Sep. 6, 2007

behaviors; and utilizing rules engines or neural networks to
encapsulate rules of behavior (also referred to herein as
rules, neural service).

[0063] In another aspect, the invention provides a system
for using a general purpose robotics operating system
(GPROS), where the system comprises: providing a set of
application services for accessing configuration data using a
generic abstraction, such that the access is independent of
any underlying hardware platform that is capable of per-
forming any communication or operational conduct for any
communication or operational task. Preferably, the system
further comprises executing the set of application services,
or a subset thereof, to achieve a pre-defined goal. In embodi-
ments, the system further comprises: utilizing the generic
abstraction to allow configuration data to be stored across
different sources (also referred to herein as the config
service); including the generic abstraction to create objects
in a dedicated, shared, or pooled fashion (also referred to
herein as registry service); utilizing the generic abstraction
to link one or several peripherals to one or several interfaces
(also referred to herein as comm service); including a
generic abstraction to create and terminate synchronous,
asynchronous, and real time application threads (also
referred to herein as ap service); utilizing a generic abstrac-
tion to allow client code to communicate with a remote
server via a client-side envoy (also referred to herein as
envoy service); utilizing a generic abstraction to allow for
interacting with and managing peripherals external to any
hardware system (also referred to herein as peripheral ser-
vice). In yet other embodiments, this invention provides a
system for using a general purpose robotics operating sys-
tem (GPROS), where the system comprises: providing a set
of application services for accessing configuration data
using a generic abstraction, such that the access is indepen-
dent of any underlying hardware platform that is capable of
performing any communication or operational conduct for
any communication or operational task. Preferably, the
system further comprises executing some or all of the
application services. In some embodiments, the method
further comprises: utilizing a generic abstraction for sensors
(also referred to herein as sensors service); providing base
abstractions for dealing with range-type sensing (also
referred to herein as range service); providing base abstrac-
tions for laser radar (LADAR) (also referred to herein as
ladar service); providing base abstractions for LADAR-type
range sensing using the SICK LMS product (also referred to
herein as ladar sick service); providing base abstractions for
radar-type range sensing (also referred to herein as radar
service); providing base abstractions for radar-type range
sensing using the vorad vbox radar product (also referred to
herein as radar vorad service); providing base abstractions
for sensing reference points including position and orienta-
tion (also referred to herein as reference service); providing
base abstractions for geographic reference positioning and
orientation (also referred to herein as reference geo service);
providing abstractions for parsing and interpreting GPS-type
information in the NMEA format (also referred to herein as
reference nmea service); utilizing a generic abstraction for
controlling mechanical hardware (also referred to herein as
mechanism, gear service); utilizing a generic abstraction for
actuators (also referred to herein as actuator service); pro-
viding abstractions for motors in a system (also referred to
herein as motor service); utilizing timer capabilities, thereby
providing a set of abstractions for actuating motors using



US 2007/0208442 Al

pulse-width-modulated (PWM) method (also referred to
herein as timer, pwm service); utilizing a generic abstraction
for modeling robotic conduct (also referred to herein as
conduct service); utilizing a generic abstraction for mobi-
lizing robotic conduct (also referred to herein as mobility
service); utilizing a wheeled platform; utilizing a legged
platform; utilizing a tracked platform; utilizing flight opera-
tions, including helicopter operations; utilizing a generic
abstraction for navigation, thereby providing abstractions
for encapsulating a route and course over which a robot
travels; planning the navigation of a robot; encapsulating
route planning based on map data; utilizing generic abstrac-
tions to determine and standardize the behavior of a group
of robots, and initialize and terminate their behaviors; and
utilizing rules engines or neural networks for encapsulating
rules of behavior (also referred to herein as rules, neural
service).

BRIEF DESCRIPTION OF THE DRAWINGS

[0064] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
several embodiments of the invention and together with the
written description, serve to explain various principles and
details of embodiments of the invention.

[0065] FIG. 1 is a UML class/concept diagram that illus-
trates the General Purpose Robotics Operating System
(GPROS) Context.

[0066] FIG. 2 is a UML class/concept diagram that illus-
trates a computing platform.

[0067] FIG. 3 is a UML class/concept diagram that illus-
trates the layout of actual robotics hardware.

[0068] FIG. 4 is a UML class/concept diagram that illus-
trates general robotics applicability.

[0069] FIG. 5 is a UML class/concept diagram that illus-
trates the ID service.

[0070] FIG. 6 is a UML class/concept diagram that illus-
trates the ANY service.

[0071] FIG. 7 is a UML class/concept diagram that illus-
trates the AUTOMATON service.

[0072] FIG. 8 is a UML class/concept diagram that illus-
trates the LOG service.

[0073] FIG. 9 is a UML class/concept diagram that illus-
trates the CONFIG service.

[0074] FIG. 10 is a UML class/concept diagram that
illustrates the ENVOY service.

[0075] FIG. 11 is a UML class/concept diagram that
illustrates the AP service.

[0076] FIG. 12 is a UML class/concept diagram that
illustrates the SYSTEM service.

[0077] FIG. 13 is a UML class/concept diagram that
illustrates the SIGNALS service.

[0078] FIG. 14 is a UML class/concept diagram that
illustrates the SIGNALS.MESSAGE service.

[0079] FIG. 15 is a UML class/concept diagram that
illustrates the COMM service.

Sep. 6, 2007

[0080] FIG. 16 is a UML class/concept diagram that
illustrates the PERIPHERALS service.

[0081] FIG. 17 is a UML class/concept diagram that
illustrates the TIMER service.

[0082] FIG. 18 is a UML class/concept diagram that
illustrates the SCHEDULE service.

[0083] FIG. 19 is a UML class/concept diagram that
illustrates the ROBOT.GOD and ROBOT.UNIVERSE ser-
vices.

[0084] FIG. 20 is a UML class/concept diagram that
illustrates the SENSOR service.

[0085] FIG. 21 is a UML class/concept diagram that
illustrates the ACTUATORS service.

[0086] FIG. 22 is a UML class/concept diagram that
illustrates the MECHANISM service.

[0087] FIG. 23 is a UML class/concept diagram that
illustrates the MOTOR service.

[0088] FIG. 24 is a UML class/concept diagram that
illustrates the PWM service.

[0089] FIG. 25 is a UML class/concept diagram that
illustrates the CONTROLS service.

[0090] FIGS. 26-27 are UML class/concept diagrams that
illustrates aspects of the MOBILITY service.

[0091] FIG. 28 is a UML class/concept diagram that
illustrates the OBSTACLE service.

[0092] FIG. 29 is a UML class/concept diagram that
illustrates the NAVIGATION.COURSE service.

[0093] FIG. 30A is a UML class/concept diagram that
illustrates the NAVIGATION.PLANNING service. FIG.
30B is a UML class/concept diagram that illustrates the
CONDUCT service and sub-services.

[0094] FIGS. 31-44 are UML sequence diagrams that
illustrate various general aspects of the invention.

[0095] FIGS. 45-52 are UML sequence diagrams that
illustrate further aspects and embodiments of the ENVOY
service aspect of the invention, as depicted in FIG. 10.

DETAILED DESCRIPTION OF VARIOUS
EMBODIMENTS OF THE INVENTION

[0096] The invention will now be described with reference
to various exemplary embodiments. Although the following
detailed description will focus on certain embodiments, the
invention should not be considered to be limited to those
embodiments.

[0097] The following detailed description focuses on the
figures, which show various features of the invention. It is to
be noted that some or all of these features may be included
in the various embodiments of the invention. Those of skill
in the art may select which features and combinations of
features and hardware and mechanical components to
include in a particular embodiment based on the particular
uses of the software platform and hardware and mechanical
components that are desired. In addition, the following
detailed description provides and discusses various UML
class/concept diagrams and UML sequence diagrams. It is
understood by those of skill in the art that there are many



US 2007/0208442 Al

tools commonly available that enable one to generate source
code from such diagrams, alone or upon inclusion of non-
critical details for implementing the actions depicted in the
diagrams, and that the diagrams can be used to generate
software in any of the various languages typically used in the
art, such as, but not limited to, Java and C++. One non-
limiting example of a tool that is available to programmers
is the Rational Rose program.

Structural Aspects

[0098] FIGS. 1-4 present the general context of the inven-
tion. The General Purpose Robotics Operating System
(GPROS) 100 serves to encapsulate operations and func-
tionality common to all robotics applications. The GPROS
runs on top of a computing platform (FIG. 2) 200 compris-
ing computing hardware 210 (e.g., a standard micro-pro-
cessing and/or micro-controller environment), a computing
operating system or runtime 220 (e.g., Windows, Linux,
Java virtual machine, micro-controller runtime), and addi-
tional computing software platform components (e.g., serial
port driver, proprietary sensor driver). By use of a comput-
ing platform 200, access to robotics hardware 300 is
allowed. Robotics hardware (FIG. 3) 300 may comprise
robotics sensors 310, actuators 320, and mechanical com-
ponents 330. Robotics hardware 300 may sometimes be
directly connected to existing computing platforms 200
(e.g., via serial ports or USB ports) but may also require
additional intermediate computer to robotics hardware inter-
faces 350 as illustrated in FIG. 1. Such a hardware interface
may include motor drivers, analog 1/O ports, digital 1/O
ports, and/or real-time and deterministic processing support.

[0099] GPROS, as depicted in FIG. 1, allows for specific
robotics applications 130 to be created. For example, an
autonomous unmanned ground vehicle (UGV) application
for traversing a long distance within a route corridor while
avoiding obstacles may be built on the GPROS, leveraging
common robotics software services. The same common
GPROS robotics software services may also be leveraged by
an autonomous unmanned air vehicle (UAV) application. As
shown in FIG. 1, additional commonality across specific
vertical robotics applications are broken up into frameworks
built on top of GPROS 100. These vertical robotics appli-
cation framework (VRAF) 135 instances extend the GPROS
100 for specific vertical applications. Software services
common to a specific vertical application domain are encap-
sulated within a framework. For example, a UGV frame-
work that resides on GPROS 100 provides for generic use
across any type of UGV application.

[0100] The GPROS 100 is not limited to software or
firmware that runs onboard a robot. It may encapsulate
common robotics software services that also run inside a
centralized robot system planning tool 410 or inside of a
robot monitoring and control device 420. A human 430 will
often interact with the robot 400 directly, through a system
planner, or through a monitoring and control device. The
GPROS 100 may run in any such incarnation and environ-
ment. FIG. 4 depicts these relations and common inheritance
hierarchy.

[0101] A set of common services exist within GPROS 100
that provide a rich and generic set of services. These services
are defined in a generic fashion and are in fact not limited to
robotics and automation applications. They in fact have

Sep. 6, 2007

applicability to a wide variety of applications. They are
defined here, however, because they are heavily leveraged
by GPROS and form the basis for many of its features.

[0102] The GPROS hence provides services common to
any robotics and automation application. A set of robotics
and automation specific services that may be commonly
leveraged by any robotics and automation application are
provided by GPROS. A set of general software application
services that may be commonly leveraged by software
application are also provided by GPROS. These general
software application services are extended and used by the
robotics and automation application specific services in a
combined fashion within GPROS.

[0103] A VRAF extension of GPROS provides services
common to a specific vertical robotics and automation
application domain. A set of robotics and automation ser-
vices specific to a particular vertical application domain
(e.g,. UGVs, UAVs) that may be commonly leveraged by
any robotics and automation application in a vertical appli-
cation domain are provided by a VRAF. The GPROS
services are extended and used by VRAF services in a
combined fashion.

[0104] By using the invention’s services, robotics and
automation applications inherit complete static and dynamic
configurability, configurability using any underlying con-
figuration medium, automateable assembly and construction
based on configuration information, automateable deploy-
ment based on configuration information, configurable and
distributable lifecycle management, configurable ability to
plug-in any underlying distributed service communications
approach, generic means for handling messages and data,
generic means for configuring one or more application
peripherals to interoperate with one or more external com-
munication interfaces, generic means for encapsulating
behavior, generic means for interfacing with and managing
electronics hardware interfaces, and other core services.
Provision of all of these services in a combined fashion
enables robotics application providers (e.g., developers and
tools) to focus on specifying the business logic and con-
figuration data specific to a robotics or automation applica-
tion. The GPROS engine provides the rest and hence a
platform atop of which robotics and automation applications
can be more rapidly, dynamically, extensibly, and affordably
developed, configured, assembled, deployed, distributed,
and managed. These common services are defined in such a
way that they are not bound to robotics and automation
applications but can be useful for any application develop-
ment approach.

[0105] FIGS. 5-19 illustrate general application services.
FIG. 5 illustrates the ID service. The ID 500 service contains
abstractions that encapsulate the identification of informa-
tion in a system. IDs 500 are used throughout the system to
identify attributes, objects, data, behavior, state, and other
concepts. An ID 500 can be used as a name to reference
some object. IDs 500 are commonly used to look up handles
to services and other objects. The ID abstraction encapsu-
lates an identifier of “something”. It may identify an object,
an attribute, a class, or some other entity. This ID class is a
basic class whereby no constraints are imposed on the
structure of an ID or on its uniqueness within an ID context.
The IDContext 501 abstraction encapsulates a context
within which an ID is valid and perhaps unique.



US 2007/0208442 Al

[0106] FIG. 6 illustrates the Any service. The Any 510
service provides generic abstractions to encapsulate any type
of data or behavior in a system. Any sort of data may be
attached and retrieved, and behavior may be registered and
invoked using the abstractions in this service. The AnylInter-
face 511 and Any 510 abstractions provide an interface and
implementation, respectively, of a generic container of data
and behavior. Any type of object data may be attached or
retrieved from Any 510 objects including collections of
objects. Any sort of behavior may also be registered and
invoked on Any 510 objects. The storage of data and
behavior in Any 510 objects is decoupled from their inter-
face. The data for an Any 510 may, for example, be stored
in memory, in a database, or in a remote server object. A
default and concrete Anylnterface 511 implementation,
MemoryAny 512, stores data and behavior in memory.

[0107] FIG. 7 illustrates the Automaton service. The
Automaton service 520 provides base abstractions for
encapsulating finite state automata. Information flowing
through an Automaton 520, the state of the Automaton 521,
and the functionality of the Automaton itself 522 are all
encapsulated within this service.

[0108] FIG. 8 illustrates the Log service. The Log service
530 provides a generic interface for logging information in
the system. A Log 530 abstraction is used to log information
from within applications defined according to different log
levels 532 of importance. A Logger 531 interface provides
a generic interface from which different types of concrete
logging mechanisms may be implemented such as logging to
a file, logging to a database, or logging to a remote server.
A basic default logger 533 implementation logs to a log file
or standard output stream. A generic interface is provided
such that third-party logging mechanisms may also be
configured into the system without changing application
code.

[0109] FIG. 9 illustrates the Config service, which pro-
vides a generic means for configuring applications. The
Config service 540 leverages the Any service 510 for
providing generic access to data storable across different
underlying mediums transparent to the application interface.
The Config service 540 extends the Any service 510 by
providing specific calls and services that relate to retrieving
and storing configuration data. Thus, configuration data may
be stored in any type of underlying storage medium (e.g.,
file, XML, database, remote server, etc). In addition, the
Config service 540 permits access to configuration data
stored in one or more mediums. Thus some configuration
data may be stored in multiple XML files while some data
may be stored in a database. The dynamic update of con-
figuration data in those mediums may also be dynamically
propagated to the applications. Thus, while configuration
data may be accessed upon application initialization, any
new changes to configuration data may be dynamically
propagated to an application at run time. A Configuration-
Registry 541 abstraction encapsulates a central registry for
accessing configuration information. Calls made on the
ConfigurationRegistry 541 return access to a registered
MasterConfiguration 542 serving as the root for one or more
Configuration object handles. The MasterConfiguration 542
manages access to configuration information across different
Configuration instances. A Configuration is a type of Any
interface 510 for storing and retrieving information used in
configuring an application. Configuration information may

Sep. 6, 2007

be stored in different underlying mediums 543 such as
configuration files, XML documents, databases, statically in
code (e.g., class files), or remote servers. Concrete configu-
ration implementations handle mapping the generic configu-
ration calls to specific underlying configuration stores.
Third-party configuration sources may also be plugged into
this framework by extending the Configuration implemen-
tation. Applications and objects that permit themselves to be
configured by the Config service 540 implement the Con-
figurable interface.

[0110] FIG. 10 illustrates the Envoy service. The Envoy
service 550 provides a set of abstractions that enable a
generic way to communicate with any object in the system
in a distributed or decoupled manner transparent to the
object code. Hence, application code communicating with
an object can be designed to communicate with that object
directly in memory using its object interface. During con-
figuration, a handle to the object may be obtained which uses
the Envoy service 550 to transparently route any invocations
on an underlying client envoy to a target envoy 556 over any
type of communications medium. Thus application code can
remain unchanged and statically or dynamically configured
to route invocation requests to objects that exist somewhere
else on a network transparent to the client service. Support
for different types of underlying communication mediums
(e.g., Web services, CORBA, RMI, serial communications)
can be provided using this mechanism. The EnvoyMessage
551 extends the Any service abstractions to encapsulate a
message that may be delivered between envoys. The Envoy
interface provides the base interface 552 implemented by
envoys which allows an envoy to invoke an operation on
another envoy by passing it an EnvoyMessage 551 and by
receiving a return EnvoyMessage 551. EnvoyMedium 553
and EnvoyMediumDelegate 554 objects provide handles for
underlying concrete envoy medium types. A concrete envoy
medium may be a remote Web service medium, a distributed
object medium such as CORBA or RMI, a serial commu-
nications medium, or some other medium over which Envoy
may communicate. The EnvoyDirectory 555 provides a
service for registering envoys using a particular envoy
medium and for looking up handles to those envoys via the
medium. A TargetEnvoy 556 represents the generic server
side of an envoy communication. The TargetEnvoy 556
provides services for registering and configuring an object
which provides the actual business logic desired to be
invoked. A ClientEnvoy 557 represents the generic client
side of envoy communication. The ClientEnvoy 557 pro-
vides services for looking up handles to target envoys and
provides the root calls that may be made for invoking that
target envoy 556. The BaseEnvoy 552 provides services
common to the ClientEnvoy 557 and TargetEnvoy 556 for
obtaining handles to EnvoyDirectory 555 objects and cre-
ating handles for EnvoyMediumDelegate 554 objects.

[0111] The Registry service allows objects to be created
based on a policy such as in a dedicated, shared, or pooled
policy fashion, among other pluggable policies. An Objec-
tRegistry abstraction provides a means for obtaining handles
to existing objects and creating new objects and services
given their IDs. The ObjectRegistry uses the Config service
540 to obtain configuration information for a particular
object. Hence, object configuration information may be
stored in files, XML documents, databases, remote servers,
etc. The object handle may be newly instantiated or simply
returned if already created. Different policies may be con-



US 2007/0208442 Al

figured for each object type indicating if the object handles
should be returned solely for use by requesting client, if it
may be shared across other clients, or if it should be returned
from a pool of similar objects. Hence, whenever an object or
service is to be obtained or created in the system, the
ObjectRegistry may be consulted to provide that handle. The
ObjectRegistry then handles determining how the object
should be returned and may populate it with all of the
necessary configuration and initialization information. This
configuration information is configurably stored in any type
of underlying medium. The ObjectRegistry may provide a
handle to an object that exists in memory or perhaps via the
Envoy service 550. An ObjectLauncher abstraction provides
a generic means for creating a main entry point for starting
a process, initiating the configuration of the process using
the ObjectRegistry, and for instantiating and managing all
root objects for the process.

[0112] FIG. 11 illustrates the Ap service. The Ap service
provides a generic framework for encapsulating applica-
tions. An Application abstraction 560 provides a core set of
services for launching, initializing, configuring, starting,
pausing, stopping, and shutting down an application process.
Concrete applications can extend or use this abstraction. A
generic means for launching applications is also possible via
the ObjectLauncher. The application can create additional
application threads to encapsulate a thread within a process.
The ApplicationThread 561 abstraction serves as a base
generic encapsulation of an application thread. Concrete but
generic threads exist for encapsulating synchronous 562,
asynchronous 563, and real time synchronous threads 564.
The Ap service also provides a means for configurably
linking an ApplicationThread to a Component in a system
such that a system component can be triggered by the thread
according in a configurable manner.

[0113] FIG. 12 illustrates the System service. The System
service provides base abstractions for assembling systems
and their components. Envoys 550 are provided which
enable remote communication with any sort of system or
component to be configured transparently. The System.inter-
face 570 and generic SystemGeneric 571 implementation
provide base abstractions for configuring and accessing a
system of components. The Component interface 572 and
generic ComponentGeneric 573 implementation provide
base abstractions for linking components together and
inducing interactions between components. A Hardware
service provides a base Hardware interface and a generic
HardwareGeneric implementation encapsulating config-
urable system components that represent some sort of elec-
tronics hardware. Operations common to hardware such as
starting up, shutting down, restarting, and failing safe are all
supported by this service. Envoys 550 are provided that
enable remote communication with any sort of electronics
hardware to be configured transparently. The Hardware
service extends the system service.

[0114] FIG. 13 illustrates the Signals service. A Signal 580
represents a unit of information and Signals 581 represent
collections of such information used in communication
between system components. A SignalBus 582 represents a
specific type of Signals collection for communicating over a
randomly accessed system bus. A SignalBuffer 583 repre-
sents a specific type of Signals collection for communicating
over a buffered sequential access medium. A specific type of
signal 580, termed a BinarySignal 584, is used to encapsu-

Sep. 6, 2007

late signal information that is binary (0 or 1, false or true) by
nature or may have a “floating” state. The Signals Event
service provides a means for generically registering interest
in events associated with signals 580. Interested listeners for
those events may be notified of the events in which they are
interested. Notifiers will notify the listeners of the signal
events when they occur. Different generic ways to handle
signal events are also encapsulated in the Signals Handler
service. Common and generic ways to handle signal events
such as logging the events, propagating the events to other
listeners in a chain, storing events in memory, or parsing
events are provided.

[0115] A Signals Packet service provides a means for
generically lumping signals together into discrete packets. A
generic SignalPacket interface and implementation provides
a means for collecting Signals into a discrete packet. The
packet may have a packet header and may be terminated
according to a delimiter or according to a fixed or dynami-
cally defined length. A SignalPackets interface and imple-
mentation provides a means for parsing a stream of data into
discrete SignalPacket instances. A Signals Mapping service
provides a generic means for mapping signals from one form
into another. A generic InterfaceMapping interface is con-
cretely realized by a set of generic interface mapping imple-
mentations. Generic implementation include means for
copying signal data from one Signals object into another, for
copying references from one object to another, and for
translating binary signals according to Boolean operations.
Additional concrete signal mapping implementations are
provided elsewhere in the framework or by applications.

[0116] FIG. 14 illustrates the Signals Message service.
The Signals Message service provides a set of abstractions
used for generically transforming between Signals 581 and
generic Any objects 510. When Signal 580 data is received
from an input stream, an InputMessage 590 can be used to
generically transform that data into more easily accessible
and logical Any object 510 data. When Signal data 580 is to
be delivered to an output stream, an OutputMessage 591 can
be used to generically transform that data from the Any
object 510 form to the output signal 580 form. A message
that has both input and output translation capability is
encapsulated by the IOMessage 597. Base classes for han-
dling input and output messages are contained in the Basi-
clnputMessage 592 and BasicOutputMessage 593 classes.
Two generic types of concrete message formats are binary
and text based messages for which there exists concrete
input, output, and 10 realizations. A generic way to describe
how to parse messages between their Signal 580 form and
Any 510 form is provided by a MessageDescriptions 594
abstraction. This abstraction contains one or more Message-
Description 595 objects, each of which describes how to
parse an individual message. Each MessageDescription 595
contains one or more MessageElement 596 objects which
describe how to parse an individual field element within a
message.

[0117] FIG. 15 illustrates the Comm service. The Comm
service provides an extension of the hardware service for
encapsulating and managing interfaces to hardware. The
Interface 600 and InterfaceGeneric 601 interface and generic
implementation, respectively, provide common operations
for opening, closing, and resetting interfaces. Common
operations also exist for synchronously and asynchronously
reading signals 581 from and writing signals to interfaces.



US 2007/0208442 Al

Envoys 550 exist for providing a means to transparently
communicate with distributed interfaces. The InterfaceM-
anager 602 provides a general mechanism for managing one
or more interfaces 600. Fither a single or a group of
hardware interfaces can be managed by the InterfaceMan-
ager 602. Configuration for how the interface(s) is managed
is provided by the interface manager. A client can commu-
nicate with the InterfaceManager 602 as a single unit
whereby, transparently to the client, the manager can be
reading information from or writing information to multiple
interfaces. The manager can configure whether associated
interfaces are pollable, asynchronous, or scheduled, among
other pluggable policies. The policy by which signals 580
are parsed to and from packets can also be defined. Clients
interested in accessing interfaces can register themselves
with the interface manager in order to be notified of specific
events that occur on the interfaces. Numerous concrete
interface types exist and can be extended from the interface
service. Concrete extensions for serial port interfaces, par-
allel port interfaces, USB interfaces, Firewire interfaces,
digital I/O port interfaces, analog 1/O port interfaces, inter-
faces to joysticks, among others exist or can be plugged in.
Interfaces 600 can also be chained together using a special
interface chain service which extends from the interface
service. With chained interfaces 600, one interface can be
chained to another such that information received from one
interface is automatically routed to another.

[0118] FIG. 16 illustrates the Peripherals service. The
Peripheral service provides abstractions for interacting with
and managing peripherals external to a system. The Periph-
eral service’s main abstractions are the Peripheral interface
610 and PeripheralGeneric 612 implementation. The Periph-
eral abstractions extend from the Hardware service abstrac-
tions. The ability to configure and create peripherals is
inherited from built-in use of the Config 540 and Registry
services. Concrete implementations of peripherals may
extend from and specialize this service. The PeripheralGe-
neric 612 abstraction provides a generic basis for defining
system peripherals. The Peripheral abstraction 610 is asso-
ciated with an InterfaceManager 602 and one or more
Interfaces. During configuration, the PeripheralGeneric 612
abstraction is associated with an InterfaceManager 602 and
these Interfaces in a configurable manner using the Config
540 and Registry services. The Peripheral abstraction 610
provides a number of operations that may be invoked by
application clients to read from a peripheral (synchronously
or asynchronously), write to a peripheral, get notified of
peripheral events, and manage the lifecycle of a peripheral.
Because the peripheral services uses the Comm service for
interfacing 600, Clients of the Peripheral service may com-
municate with the Peripheral service without knowledge or
consideration of how the peripheral is physically connected
to the system. That is, because the Comm service provides
a generic framework for plugging in interfaces, the actual
underlying physical means by which a peripheral is con-
nected (e.g., serial port, USB, etc) is transparent to the
clients of the Peripheral service. The Peripheral service also
uses the signals 581 mapping service to enable a config-
urable way to map data to and from an object form seman-
tically meaningful to the peripheral client and the raw form
required for external interface communications. Envoys 550
also exist enabling peripherals to be remotely communicated
with in a fashion transparent to the client application. A

Sep. 6, 2007

generic Peripherals abstraction 611 also provides services
for communicating with and managing peripherals as a
collection.

[0119] The Measure service provides a set of abstractions
commonly used in measurements. Abstractions exist for
encapsulating an angle, distance, duration, speed, general
rate, a generic unit, rotation, line, linear direction, angular
direction, angular speed, among others. A Test service
provides abstractions that provide a generic way for testing
software. Objects that are testable leverage the Test service
to allow the ability to set the test mode of an object, test if
it is alive or not, and to inject an object with test data. A Time
service provides a generic Time abstraction for recording,
reading, and operating on a time value. An EventTime
abstraction encapsulates information about a time for which
an event may occur which includes a delay time before
which it first occurs, an indication if it is periodic or not, an
indication if it is indefinite or not, a period if it is periodic,
and a duration if it is finite.

[0120] FIG. 17 illustrates the Timer service. The Timer
service provides a generic means for scheduling timers in a
system. The TimerAction 621 interface represents a base
interface for encapsulating an action to occur at a specific
time. Operations are extended to implement the action to
execute at a specified time, any preface to execute before an
action, any prologue to execute after an action, and an
operation to cancel a timer action. The Timer 620 interface
provides a base interface for registering timer actions to
occur once after a specified delay or at a specified period
after an optional delay, optionally after some finite duration,
or at some predefined time. Timers may be started, stopped,
cancelled, and managed in other ways through this interface.
A concrete TimerActionAdapter 622 provides a default
implementation for a TimerAction, 621 a special TimerCan-
celAction 623 provides a generic way to cancel timers, and
other concrete specialized timer actions exist throughout the
framework. A GlobalTimer 624 abstraction serves as a base
class for scheduling a global timer for a process or thread.
The frame size, resolution, period, delay, priority, among
other attributes may be set for the global timer. Individual
timer actions that are to occur according to the global timer
are registered with the GlobalTimer 624. Concrete imple-
mentations of the GlobalTimer 624 exist for different oper-
ating environments.

[0121] FIG. 18 illustrates the Schedule service. The
Schedule service extends the Timer service by providing
additional support for scheduling actions. The Schedule
service extends the Timer service by providing additional
support for scheduling actions. The Action 632 abstraction
implements the TimerAction 621 interface to provide a
means for scheduling actions with an event scheduler. An
ActionEvent 631 associates an EventTime with an Action.
Hence the event time at which an action occurs is encapsu-
lated by an ActionEvent 631. An ActionPlan 630 contains
one or more ActionEvents 631 which must take place.
Hence, an action plan represents a plan for multiple actions
to occur and the event times at which they must occur. An
ActionSchedule 633 contains and provides operations to
manage one or more ActionPlans 630 which much take
place. Hence, an action schedule represents a schedule for
multiple action plans. The EventScheduler 634 provides a
generic way to create an ActionSchedule 633 and to create
concrete Timers 620 based on configuration information



US 2007/0208442 Al

provided by the Config service 540 and ObjectRegistry. The
EventScheduler 634 then schedules the actions contained in
the ActionSchedule 633 with the appropriate timers. A
Profile service provides a Profile abstraction which is used
to contain and register information according to different
code base configuration profiles. Because some run time
environments, such as embedded environments or non-
deterministic operating systems, have restrictions that other
environments may not have, a means for configuring which
code base profile is loaded is provided by this service. A Util
service provides a means for encapsulating miscellaneous
common system abstractions and system abstractions that
may vary by computing platform profile (e.g., floating point
support, native mathematic operation support, and system
property support).

[0122] FIGS. 19-31 illustrate general robotics application
services. FIG. 19 illustrates the general structure of a robotic
application, specifically as a robot with sensors 711, actua-
tors 721, and some conduct 702. A robot may have zero or
more sensors 711 and zero or more actuators 721 configured
with it using the config service 540 and automatically
initialized and created using the registry service. The sensors
711 represent the external inputs to a robot for sensing its
environment and world. The actuators 721 represent the
external outputs from a robot for affecting its environment
and world. The operations that occur between sensing and
acting with its environment or that occur independent of its
sensor inputs are embodied within its conduct. All conduct
of a robot inherits from its Conduct services 702. Hence,
robot reflexive actions to sensor inputs, robot planning,
neural networks, sensor information analysis, rule-based
behaviors, and other common robotic conduct services are
all embodied by the Conduct service 702 and subclassed in
other specific services. A means for launching one or more
Robots operating according to the same universal time
constraints is embodied by the RobotUniverse 700 and
RobotGod 701 abstractions.

[0123] A Robot may be configured to have all three
services (sensors 711, actuators 721, and conduct 702) or
any combination thereof. For example, a Robot that only has
Sensors 711 may represent a sensor application with no
planning or operations performed on such information but
rather the data is just presented via some visual display. Such
flexibility allows, for example, for a distributed sensor
application to be constructed by configuring only Sensors
for an application, some of why may be accessed in a
transparent and distributed fashion using the Envoy service.
If Conduct 702 is added, a rules-based thought sub-service
of Conduct 702 may, for example, analyze that sensor 711
information and categorize it in certain way and then display
or log the resultant analysis. If Actuators 721 are added,
some operations may be performed on its environment, such
as movement for example, based on the sensed or analyzed
information.

[0124] FIG. 20 illustrates the Sensor service. The Sensor
service provides a set of abstractions for generically con-
figuring, managing, and communicating with sensors. A
Sensor interface 710 and SensorGeneric implementation
extend from the Peripheral service 610. Hence, all of the
features and capabilities inherent in the Peripheral service
610 are inherent in the sensor service (e.g., configurability,
object registry creation, transparent distributed communica-
tion via envoys, transparent hardware interfaces, etc). The

Sep. 6, 2007

Sensor service extends the Peripheral service 610 by allow-
ing for a configurable set of commands to be registered with
a sensor 711. These commands may be sent to a sensor 711,
transparent to the client, when the client invokes operations
on a sensor that are associated with a particular command.
The state of a sensor 713 is also encapsulated in generic
sensor state 714 abstractions. The sensor state 713 is updated
transparently to the client as information is read from the
sensor (synchronously or asynchronously). Operations on
the sensor interface 710 permit clients to access the sensor’s
state. Sensors 711 may also be managed as a collection.

[0125] FIG. 21 illustrates the Actuator service. The Actua-
tor service provides a set of abstractions for generically
configuring, managing, and communicating with actuators
721. An Actuator interface 720 and ActuatorGeneric 722
implementation extend from the Peripheral service 610.
Hence, all of the features and capabilities inherent in the
Peripheral service 610 are inherent in the Actuator service
(e.g., configurability, object registry creation, transparent
distributed communication via envoys, transparent hardware
interfaces, etc). Actuators 721 may also be managed as a
collection.

[0126] FIG. 22 illustrates the Mechanism service. The
Mechanism service 730 extends from the System service to
encapsulate operations that are performed on and with
mechanical components. While the Hardware service encap-
sulates electronics hardware, the Mechanism service 730
encapsulates mechanical hardware. MechanismGeneric 731
abstractions are used when modeling the behavior and
interactions among mechanical components in a robotic
system. Envoys 550 exist to enable transparent distributed
communication with mechanisms. A Gear service extends
from the mechanism service to provide abstractions for
individual gears and gear trains. Generic abstractions for
gears are used when modeling the behavior and interactions
among gears in a robotic system.

[0127] FIG. 23 illustrates the Motor service. The Motor
service extends from the Actuator service to provide abstrac-
tions for motors in a system. A generic Motor interface 735
and generic MotorGeneric 736 implementation encapsulate
the common services associated with operating motors.
Concrete sub-interfaces and sub-classes of these abstrac-
tions provide services specific to operating with different
types of motors. For example, a Concrete Motor DC service
can provide a software interface for interacting with and
operating DC motors. A Concrete Motor Servo service can
provide a software service for interacting with and operating
Servo motors. A Motor Stepper service can provide a
software interface for interacting with and operating stepper
motors. Other concrete sub-services for motors extends from
the generic Motor service. Envoys 550 exist to allow trans-
parent distributed communication with motors. A Command
service provides a set of abstraction used to encapsulate the
configuration of commands for various purposes (e.g., sen-
sor commands and movement commands).

[0128] FIG. 24 illustrates the PWM service. The PWM
service provides a set of abstractions used for actuating
motors using a pulse-width-modulated method. A Pulse
abstraction 741 encapsulates information about a pulse train
used to control motors in a system. Motors are often
controlled by delivering a pulse train to the motor which
controls the motor speed and direction. The pulse train



US 2007/0208442 Al

frequency can also affect motor operation efficiency. The
Pulse 741 extends from EventTime and provides additional
information needed for performing PWM 740 on a motor.
The duty cycle (percent time the pulse is active), polarity of
the pulse (active when pulse is high or low), and other
generically defined conditions of a pulse are provided by the
Pulse 741 abstraction. The PWM abstraction 740 provides a
base generic abstraction for configuring, starting, stopping,
restarting, and managing a PWM signal stream to a motor.
Concrete sub-types of the PWM 740 provide generic ways
to manage different PWM approaches. A TimerBasedPWM
742 abstraction provides a way to directly raise high and low
the outputs of a motor’s interface by interacting with the
timer service to schedule updates according to a system
timer. The UpdateBasedPWM 743 abstraction provides a
way to directly raise high and low the outputs of a motor’s
interface by relying on an external timer or service to call the
abstraction whenever a clock cycle has occurred. The Hard-
wareBasedPWM 745 abstraction provides a way to delegate
PWM timing control 742 to a dedicated PWM hardware
circuit. The CommandBasedPWM abstraction 744 provides
a way to delegate PWM timing control 742 to an external
hardware device through a hardware interface.

[0129] FIG. 25 illustrates the Controls service. The Con-
trols service 750 provides a generic means for defining
information related to controlling a system. A Conrollevel
abstraction 752 extends the Units abstraction from the
Measure service and adds a means for defining a minimum,
maximum, and set control point. Operations and queries
related to managing and providing status about a control
point are also provided. A Control Action 751 defines a set of
ControlLevels 752 that induce some discrete control action.
Subclasses of the ControlAction 751 include Movement-
Control for defining a movement action and RotationControl
for defining a rotational control action. Controls define a set
of ControlActions 751 that define a sequence or set of
control actions to perform. Subclasses of the Controls
abstraction 750 include MovementControls for defining a
sequence of movement controls and RotiationalControls for
defining a sequence of rotational controls.

[0130] FIG. 26 illustrates the Mobility service. The Mobil-
ity service provides abstractions for encapsulating configu-
ration and management of a means for mobilizing a robot.
A MobilityMechanism 760 and its generic implementation
that encapsulates a discrete mechanism that induces move-
ment of some sort. The mobility mechanism contains some
Mobilizer 762 (e.g., a wheel or individual leg), a reference
to some actuation mechanism, and any mechanical linkages
and gears between the Mobilizer 762 and the actuation
mechanism source. The MobilityMechanism 760 makes use
of the mechanism service to model mechanical linkages and
permit configuration of such linkages in a variety of ways.
In such a fashion, a completely generic means for modeling
any type of mobility mechanism is provided in a config-
urable fashion. The actuator that drives the Mobilizer 762
through some mechanical linkage may be directly connected
to the Mobilizer 762 or it may be indirectly connected via
some mechanical linkage such as a differential gear train.
The MobilityPlatform 761 interface and MobilityPlatform-
Generic 763 implementation provide a generic means for
configuring a mobility platform and for an application client
to operate that platform as a whole. The MobilityPlatform
761 is configured with one or more MobilityMechanism 760
components using the Config service 540 and Registry

Sep. 6, 2007

service. Generic MovementControl or MovementControls
750 commands may be issued to the mobility platform
requesting that it move in a particular fashion. These com-
mands are translated into commands to associated underly-
ing actuator mechanisms associated with individual mobility
mechanisms. The Mobility service has envoys 550 which
add support for transparent distributed communication with
a mobility platform. The mobility abstractions may be
generically configured for use as is or may be subclassed for
specific mobility types. As an example, there is exists a
mobility wheeled service which extends the mobility service
for application to wheeled type mobility of any sort.

[0131] FIG. 27 illustrates extensions of the Mobility ser-
vice. A WheeledPlatform 770, WheelMechanism 771, and
Wheel 772 all extend from the MobilityPlatform 761,
MobilityMechanism 760, and Mobilizer 762 abstractions
respectively. A WheeledPlatformGeneric 773 implementa-
tion uses the Config 540 and Registry service to read a
specific configuration of wheel mechanisms for the wheeled
platform. As an example, the wheeled platform may read,
via the Config service 540, that it is to be configured using
four wheel mechanisms. These mechanisms are then auto-
matically constructed via the Registry service. Each Wheel-
Mechanism 771 may also be configured to construct a Wheel
object 772 and corresponding Actuator 720 which happens
to directly drive the Wheel. Alternately, the WheelMecha-
nism 771 may reference a shared Actuator 720 which drives
multiple Wheels through a shared differential GearTrain.
Any sort of wheeled configuration can be achieved. Like-
wise, a LeggedPlatform, [LeggedMechanism, and Legged
abstractions can exist in a mobility legged service. Likewise,
a TrackedPlatform, TrackedMechanism, and Track abstrac-
tions can exist in a mobility tracked service. The Mobility
service is not limited to ground-based robots and vehicles.
The Mobility service is extended to provide services com-
mon to air, sea, underwater, space, and any sort of approach
for providing mobility. As an example, a FlightPlatform and
FlightMechanism provided one type of base aeronautical
mobility service. These abstractions are further subclassed
into HelicopterPlatform and HelicopterMechanism for heli-
copter applications.

[0132] A Range service extends the Sensor service and
provides base abstractions for dealing with range type
sensing. Generic Range information, RangeSensor interface
and RangeSensorGeneric implementation, RangeSen-
sorState and RangeSensorStateGeneric abstractions exist to
encapsulate configuration and operations common to range
sensing. A Ladar service extends the Range sensor service
and provides base abstractions for dealing with laser radar
type range sensing. Generic LADAR interface and LADAR-
Generic implementation, LADARState and LADARState-
Generic abstractions exist to encapsulate configuration and
operations common to laser radar based range sensing. A
Ladar sick service extends the Ladar service and provides
base abstractions for dealing with LADAR sensing applica-
tions using the SICK LMS product. Generic LMS interface
and LMSGeneric implementation abstractions exist to
encapsulate configuration and operations common to SICK
LMS laser radar based range sensing. A Radar service
extends the range sensor service and provides base abstrac-
tions for dealing with radar type range sensing. Generic
RADAR interface and RADARGeneric implementation,
RADARState and RADARStateGeneric abstractions exist
to encapsulate configuration and operations common to



US 2007/0208442 Al

radar based range sensing. A Radar vorad service extends the
radar service and provides base abstractions for dealing with
RADAR sensing applications using the Vorad Vbox radar
product. Generic Vbox interface and VboxGeneric imple-
mentation abstractions exist to encapsulate configuration
and operations common to Vorad Vbox radar based range
sensing.

[0133] A Reference service extends the sensor service and
provides base abstractions for dealing with sensing reference
points (e.g., position and orientation). Generic ReferenceS-
ensor interface and ReferenceSensorGeneric implementa-
tion abstractions exist to encapsulate configuration and
operations common to sensing reference points. A Reference
abstraction encapsulates a generic point of reference. A
Position abstraction extends the Reference abstraction to
specify a generic position in space. An Orientation abstrac-
tion extends the Orientation abstraction to specify a generic
orientation in space. Envoys exist for remotely accessing
reference sensors. A Reference geo service extends the
Reference Sensor service and provides base abstractions for
dealing with geographic reference positioning and orienta-
tion. Abstractions for encapsulating the information coming
from geographic reference sensors are provided including
GeoPosition extending the Position abstraction. A GeoPo-
sition contains Latitude, Longitude, and Altitude abstrac-
tions. A GeoOrientation abstraction extends the Orientation
abstraction and contains Heading, Roll, and Pitch abstrac-
tions. A Reference nmea service provides abstractions that
deal with parsing and interpreting GPS type information in
the NMEA format. A NmeaMessage abstraction extends
from the TextlIOMessage provided by the Signals Message
service.

[0134] A Digital service provides generic means for inter-
facing with digital I/O pins and ports. Abstractions for
digital data (DigitalData), digital 1/O points (DigitalPoint),
and digital I/O ports (DigitalPort) serve to provide support
in this category. An Analog service provides generic means
for interfacing with analog 1/O pins and ports. Abstractions
for analog data (AnalogData), analog I/O points (Analog-
Point), and analog I/O ports (AnalogPort) serve to provide
support in this category. A Feedback service and abstractions
that extend from it encapsulate sensors and information
related to low-level feedback from actuators or a mechanical
system. A FeedbackSensor abstraction encapsulates a means
for configuring and accessing a sensor that provides low-
level feedback about the state of an actuator, mechanical, or
electromechanical device. An EncoderSensor abstraction
subclasses from the feedback service and encapsulates a
means for configuring and accessing a sensor that provides
low-level feedback from an encoder. A QuadEncoderSensor
abstraction subclasses from the feedback service and encap-
sulates a means for configuring and accessing a sensor that
provides low-level feedback from a quadrature encoder. A
CounterSensor abstraction subclasses from the feedback
service and encapsulates a means for configuring and
accessing a sensor that provide low-level counts of external
events. A Filter service provides abstractions for filtering
data coming from sensors or events. A DataFilter abstraction
provides a generic and configurable means for averaging
data and filtering out noise across multiple samples of data
from a sensor or external event source. The Fusion service
provides abstractions for fusing data received from multiple
sensors. A SensorFusion abstraction provides a generic and
configurable means for fusing data across multiple sensors

Sep. 6, 2007

or external event sources. A FusionRule abstraction provide
the basis for encapsulating discrete rules about how to fuse
a particular combination of sensor data. A Watchdog service
provides abstractions for realizing watchdog timers in a
system. The Watchdog abstraction provides a configurable
means for implementing a watchdog timer in a system.
Watchdog event, listener, and action abstractions provide the
means by which watchdog events are generated, listened for,
and acted upon. A Safety service provides abstractions for
failing the outputs for a system to a safe state. A Safelnter-
face abstraction provides a configurable means for safely
shutting down a set of outputs to their safe state.

[0135] FIG. 28 illustrates the Obstacle service. The
Obstacle service provides a generic and configurable service
for classifying, detecting, and resolving obstacles that a
robot may need to avoid or react to. The Obstacle interface
780 and ObstacleGeneric 781 implementation provide base
abstractions for defining the characteristics of an obstacle for
a robot. Attributes such as obstacle size, position, and
confidence in its actually being an obstacle are all encapsu-
lated within this abstraction. The obstacle type is also
classifiable using such generic abstractions and concrete
abstractions such as, for example, positive obstacles (e.g.,
objects in the way), negative obstacles (e.g., ditches or holes
to avoid), and surface obstacles (e.g., walls or surfaces to
avoid). The Obstacles abstraction 784 encapsulates a col-
lection of Obstacle 780 objects and operations that are
performed on such obstacles as a whole. The ObstacleDe-
tection 782 abstraction encapsulates a generic process for
detecting obstacles 784. Specific types of detection based
on, for example, laser/radar or radar sensors, may specialize
the detection process. The ObstacleResolver 783 abstraction
encapsulates a generic process for resolving between mul-
tiple obstacles to determine which obstacles are similar 785
and to fuse information between identified obstacles. The
parameters of resolution are configurable within the Obsta-
cleResolver 783.

[0136] The Navigation service provides a generic set of
abstractions for robotic navigation. FIG. 29 illustrates the
Navigation Course service, which provides abstractions for
encapsulating a route 792 and course 791 over which a robot
travels. A Waypoint 790 abstraction encapsulates a position
and set of attributes about a discrete location to which a
robot travels. A RouteSegment 793 encapsulates a linear
route from one waypoint to another waypoint, and attributes
about that route such as a collection of features, direction,
route segment speed, and length. A Route 792 encapsulates
a collection of RouteSegments 793 over which a robot
travels. Attributes about the Route 792 include laps, first
waypoint, and last waypoint. Operations may be performed
on the route to dynamically add, remove, or modify route
segments within the route. The route may also be used to
track the location of a robot on the route. A TrackSegement
794 is a type of RouteSegment 793 that specifically outlines
a desired track over which a robot may or should travel. A
TrackSegment 794 defines boundaries within which a robot
may travel over a route segement. A Course 791 is a type of
Route 792 which defines the TrackSegments 794 over which
a robot may or should travel. The actual route taken by a
robot may differ from the desired route and the Course 791
defines the boundaries for the robot’s travel.

[0137] The Navigation Planning service is illustrated by
FIG. 30A. The navigation planning service encapsulates



US 2007/0208442 Al

abstractions used for planning the navigation of a robot. An
Opening 805 characterizes a discrete opening through which
a robot may traverse on a particular track segment. The
Opening 805 is bounded by obstacles and potentially by
track boundaries. Openings 801 encapsulate the collection
of known openings on a track segment. AdjacentOpenings
804 encapsulate a grouping of openings on a track segment
that are adjacent to one another such that the robot must
choose a passage between the openings based on the adja-
cent openings. A PathOption 806 encapsulates a discrete
option for a path of robot travel as defined by a sequence of
openings. A PathOption 806 defines the BestRoute 807 for
the robot to take. A BestRoute 807 defines the best possible
route for a robot to take based on a generic description of
factors used to make such a determination. PathOptions 803
define all of the possible path options a robot may take along
a known route. The Path abstraction 800 encapsulates a
process for planning the path a robot will travel. A set of
Obstacles 784 are examined and a set of Openings 801 are
identified for which the robot may navigate over a course.
Those AdjacentOpenings 804 through which the robot may
travel are then identified. Any identified impasses are
handled by an ImpasseHandler 802. The PathOptions 803
are then identified including the best route to travel out of all
of options available.

[0138] The Navigation Mapping service encapsulates
route planning based on map data. MapData information
such as Elevation, Water, and other Features are used to
identify Obstacle and Opening information based on Map-
Data. The navigation mapping data easily plugs into the
Navigation Planning service and hence enables navigation
planning based on information from map data as well as
from sensor data.

[0139] As shown in FIG. 30B, the Conduct 7900 service
provides a Conduction interface 7910 and ConductionGe-
neric 7920 implementation which models the conduct of a
robotic process. Conduct represents the behavior and inher-
ent properties of existence for a robot. Upon sensing infor-
mation, a robot may perform artificial intelligence opera-
tions on that data, reflexively react to such information, or
perform some other operation that exudes some conduct on
the information. The Conduction operations may also be
scheduled or randomly execute based on time or some other
stimuli. The Conduction abstractions may result in modifi-
cations to the robot state or in stimulating Actuators to
perform some action. The Conduction abstractions serve as
base abstractions for all operations by a robot that occur
between or independently of sensing and acting. The Con-
duct service extends from the System service abstractions. A
generic Conduct abstraction also provides services for com-
municating with and managing Conduction abstractions as a
collection.

[0140] A Thought service provides a Thought interface
7940 and ThoughtGeneric 7930 implementation which
models a thought process. The generic means for modeling
artificial intelligence is achieved in this fashion. Concrete
subtypes from this service’s abstractions are used to embody
different types of thought processes such as analysis, infer-
ence, deduction, and planning. The Analysis services pro-
vides an Analyze 7950 and AnalyzeGeneric implementation
used for encapsulating analysis of information retrieved
from a sensor. A Reflect service provides a Reflect 7960 and
ReflectGeneric implementation used for encapsulating rules

Sep. 6, 2007

for reflecting on information after it is analyzed in order to
generate new information. A Learn service provides a Learn
7970 and Learn Generic implementation used for encapsu-
lating rules for learning and generate knowledge and new
state information based on existing information. A Plan
service provides a Plan 7980 and PlanGeneric implementa-
tion used for planning a course of action based on sensor
information, analyzed information, new information, new
state information, or new knowledge. A React service pro-
vides a Reaction and ReactionGeneric 7990 implementation
used for encapsulating a direct reaction on one or more
actuators based on some stimuli from a sensor. A Rules
service provides a Rule, RuleGeneric, Rules, and RulesGe-
neric implementation for encapsulating rules of behavior.
Poprietary, custom, and third-party rule engines seamlessly
plug into the framework using these abstractions. A Neural
service provides a Neuron, NeuronGeneric, NeuralNetwork,
and NeuralNetworkGeneric implementation for encapsulat-
ing neural networks. Proprietary, custom, and third-party
neural networks seamlessly plug into the framework using
these abstractions.

[0141] The Robot service provides a Robot interface 440
and RobotGeneric 703 implementation which models the
generic concept of a robot. The RobotGeneric 703 is a
completely configurable abstraction that can be used to
model any type of robot. Sensors 711, Conduct, and Actua-
tors 721 are associated with a robot in a configurable
fashion. In this way, any type or number of sensors, actua-
tors, and conduct can be configured with the robot and
linkages made between them. Upon construction using the
Config 540 and Registry service, the robot may be com-
manded according to its lifecycle to live, wake, sleep, and
die.

[0142] The robotic God 701 (see FIG. 19) service provides
the base services used to create and define the universe
within which a robot operates. The RobotUniverse 700
abstraction is used to configurably define when and which
Robot objects live and die. In this way, a network, local or
distributed, of robots can live, perform their missions, oper-
ate, and die according to a common universe. The RobotGod
701 abstraction is used to configurably start and stop the
RobotUniverse 700. It is essentially a robot universe
launcher program.

Operational Aspects

[0143] FIGS. 31-44 illustrate general embodiments of the
invention. FIG. 31 shows how any sort of application can be
launched generically and configurably using the registry
service. The ObjectLauncher 1101 is launched as a program
on a system 1001. The ObjectLauncher 1101 then loads the
root configuration name and type from the System Proper-
ties (part of util service) 1102. The ObjectLauncher 1101
then retrieves a launcher ID and supplies it to the Objec-
tRegistry 1103 in order to get an object handle. The Objec-
tRegistry 1103 then reads the object configuration and
induces the object to configure itself, wherein here the object
to be configured is the Launcher:ObjectLauncher 1105. The
Launcher:ObjectLauncher 1105 then sets the application log
level (using the Log service) 1108, sets any application
system properties using the util service, and sets the appli-
cation run policy ID 1109. For each object ID in the
configuration properties, the Launcher:ObjectLauncher
1105 gets an object handle from the ObjectRegistry 1103



US 2007/0208442 Al

given an object ID, and registers the object according to its
1D 1109 by means of the Any service. The ObjectLauncher
1101 is then able to run. For each object in the managed
object configuration, the ObjectLauncher 1101 gets the
managed object and starts its operation.

[0144] FIG. 32 illustrates how any sort of application
objects can be automatically created and configured using
the registry and config services. The client obtains an object
handle from the ObjectRegistry 1050 given its ID. The
ObjectRegistry 1050 meanwhile gets a master config handle
from the ConfigurationRegistry 1055. If a master config has
not yet been created, the ConfigurationRegistry 1055 must
get a root config name and type from the System Properties
1060 (util service), and then create a new object given config
name and type by means of the MasterConfiguration 1065.
A concrete configuration type (e.g., XML Configuration) is
created based on this information. Optionally, a special root
configuration that collects one or more sub-configurations
may also be created. The MasterConfiguration 1065 loads a
configuration from the underlying medium (e.g., an XML
file). With the master config created, the ObjectRegistry
1050 can now proceed to get an object properties map from
the MasterConfiguration 1065, as well as an object reference
policy ID from the HashMap 1070. (If this cannot be
obtained, it will default to dedicated reference policy.) It will
be understood by those skilled in the art that the term
HashMap refers to a manner of storing name-value pairs as
in a software hash table. An object can be retrieved from the
HashMap 1070 collection using an ID or string. In the case
of'a dedicated reference policy, the ObjectRegistry 1050 gets
a class name from the HashMap 1070 and uses this to create
a new application object. The object could be in memory or
be a client envoy to a remote object. The ObjectRegistry
1050 then attempts to obtain configuration properties from
the HashMap 1070. If such properties exist, the application
is configured given these properties.

[0145] FIG. 33 illustrates how peripherals are generically
configured and created, including their relation to one or
more system interfaces. The Client 1500 begins by inducing
the configuration of a PeripheralGeneric object (e.g., via the
registry service) 1501, which in turn calls the hardware,
component, and system superclass configurations. The
PeripheralGeneric 1501 abstraction primarily operates in
conjunction with the ObjectRegistry 1502 and InterfaceM-
anager. Specifically, once the PeripheralGeneric 1501
obtains the interface manager object from the ObjectRegis-
try 1502 given an ID, it can create and configure the
InterfaceManager 1504 and the interface management poli-
cies. For each interface ID in the configuration list, an
interface object is obtained from the ObjectRegistry 1502
(e.g., SerialPort or USBPort object), and the interface is
created and configured. The PeripheralGeneric 1501
abstraction must then obtain a few other objects from the
ObjectRegistry 1502. An object that maps data used by a
peripheral to data used by an interface is retrieved given its
ID. An object that maps data used by a interface to data used
by a peripheral is also retrieved given its ID. Interface and
Peripheral signals handler objects are obtained as well.
Finally, the PeripheralGeneric 1501 registers any configured
packet handlers.

[0146] FIG. 34 illustrates how the registry service is used
to launch generic robotics applications. The System 1200
initiates the ObjectLauncher 1201, and after the initial

Sep. 6, 2007

loading of the program, an object handle is obtained from
the ObjectRegistry 1202 given its launcher ID. The laun-
cher:ObjectLauncher 1204 is configured, and another object
handle (e.g., “robot object”) is obtained from the Objec-
tRegistry 1202, this time given its root object ID (e.g.,
“RobotApID”). A Robot abstraction is created and config-
ured as a managed object, and the object is registered
through the Anylnterface 1203 given its recently obtained
handle (i.e., “robot object”). Once this object creation has
been completed, the ObjectRegistry 1202 will be able to
obtain and start the object by means of the Anylnterface
1203 and the recently created managed object’s interface.

[0147] FIG. 35 illustrates how the registry and config
services are used to automatically create and configure a
general purpose robotics application. The launcher:Object-
Launcher 1301 must get an object handle (e.g., “robot
object”) from the ObjectRegistry 1302 given a root object
1D (e.g., “RobotApID”). The ObjectRegistry 1302 in turn
gets an object properties map from the Masterconfiguration
1303, given the object ID (e.g., “RobotApld”), and a class
name (e.g., “‘com.perronerobotics.robot.RobotGeneric”)
from the HashMap 1304. Given this class name, a new
ApplicationObject 1305 is created (e.g., “RobotGeneric”).
The ObjectRegistry 1302 configures this new object using
properties obtained from the HashMap 1304. The newly
created object calls upon the Application superclass in order
to initialize and configure the application threads. Sensor
configuration information is obtained from the HashMap
1304 and configured using the Sensors service 1306. For
each sensor 1D, an object handle must be obtained from the
ObjectRegistry 1302. The object handle might be a Sensor
object, (or a subclass such as a ReferenceSensor object).
Conduct is initialized the same way, using the Conduct 1307
service instead of the Sensors 1306 service. Object handles
for conduct might include a Thought object or a Plan object.
Actuators are initialized similarly, using the Actuators 1308
service. For each actuator ID an object handle is obtained
(e.g., a DCMotor object or a ServoObject) and for each
actuator plan ID an object handle is obtained (e.g., an
ActuatorPlan object).

[0148] FIG. 36 illustrates an example of how a reference
sensor (e.g., for GPS) is created and configured. The Sensors
1401 service gets an object handle (e.g., ReferenceSensor
object) from the ObjectRegistry 1402 given a sensor ID
(e.g., GPSSensorID). A new object (e.g., ReferenceSensor-
Generic) 1403 is created and configured. The object con-
figuration is delegated to the superclass, i.e., SensorGeneric
1404. Sensor commands are configured through the Sig-
nalsCollection 1405. Given the sensor state ID (e.g., Sen-
sorStateID), an object handle is obtained from the Objec-
tRegistry (e.g,. SensorStateGeneric object) 1402. The
SensorGeneric 1404 calls the configuration for the super-
class, in this case the PeripheralGeneric sensor 1406.

[0149] FIG. 37 illustrates an example of how a serial port
type of system interface is created and configured. The
InterfaceManager 1601 begins by obtaining an interface
object handle (e.g., SerialPort object) from the ObjectReg-
istry 1602, based on a config ID. The new interface (i.e.,
SerialPortGeneric 1603) is created and configured. General
serial port information, such as the baud rate, will later be
configured. The superclass is configured, in this case a
ComputerPortGeneric 1604 interface. General computer
port information will later be configured, such as the port



US 2007/0208442 Al

name. This computer port interface configures its superclass,
in this case an InterfaceGeneric 1605. This interface calls its
hardware, component, and system superclass configurations,
and configures the generic interface policies (e.g., has input
only, has output only, has both I/O, etc.). Configuration is
then completed.

[0150] FIG. 38 illustrates an example of how a DC motor
actuator type of peripheral is created and configured. The
Actuators 1700 service gets an object handle (e.g., DCMotor
object) from the ObjectRegistry 1701, given a motor ID
(e.g., SteeringMotorID). A DCMotorGeneric 1702 actuator
object is created and configured. Three superclasses are
configured in turn—the MotorGeneric 1703, the Actuator-
Generic 1704, and the PeripheralGeneric 1705. The general
properties for the actuator, motor, and DC motor objects are
configured. Given a PWM object ID, the DCMotorGeneric
1702 gets an object handle from the ObjectRegistry 1701 for
a concrete PWM object.

[0151] FIG. 39 illustrates how a generic robotic applica-
tion is started. The ObjectLauncher 1800 starts a RobotGe-
neric 1801 managed object. An application superclass 1802
is started. Any configured threads (e.g., synchronous or
asynchronous) are started by means of the Application-
Thread 1803. The ApplicationThread 1803 is initialized and
the Application 1802 initialization is overloaded appropri-
ately by the RobotGeneric 1801 application class. The term
“overloaded” is taken from its object-oriented programming
meaning. It will be understood by those skilled in the art that
a method on a class can be “overloaded” by a subclass if it
is named the same way and shares the same operation
signature (input and output parameters). When an object of
that class type is invoked, the subclass’s method implemen-
tation is called instead of or before the superclass’s method.
The subclass can also invoke the superclass’s method from
within the overloaded method.

[0152] Sensor 1804, Conduct 1805, and Actuator 1806
initialization is performed through their respective initial-
ization interfaces. The application continues running as long
as it is told to stay operational. When the status is changed
to indicate shutdown, any configured threads are stopped.

[0153] FIG. 40 illustrates how a sensor is asynchronously
updated using a serial port as an interface input example.
The SerialPortGeneric 1901 interface is notified of data
availability by the Serial Port Provider 1900. It then del-
egates general event notification to the superclass, the Inter-
faceGeneric 1902, which determines event propagation
policy based on the configuration. This in turn propagates to
the generic listener, the InterfaceManager 1904. This pro-
cess 1s repeated and the propagation in turn proceeds to the
PeripheralGeneric sensor 1905. Any configured sensor con-
version is performed via the InterfaceMapping service 1906.
The PeripheralGeneric 1905 produces an overloaded call in
order to induce conversion to the sensor state via the
SensorGeneric abstraction 1907. Conversion to sensor state
is delegated to the SensorStateGeneric object 1908. The
object reads signals into the state (e.g., TextInputMessage
reads state in a configurable fashion) via the InputMessage
1909 function of the Message service.

[0154] FIG. 41 illustrates an example of how a basic
robotic synchronous processing thread is executed generi-
cally. A SynchronousApplicationThread 2300 induces a
processing cycle on a synchronous basis on an Application

Sep. 6, 2007

managed object 2301. Overloaded processing then results in
a call to a RobotGeneric managed object 2302. The Robot-
Generic object 2302 performs configured synchronous sens-
ing, conduct execution, and actuation via the Sensor 2303,
Conduct 2304, and Actuator 2305 services, respectively.

[0155] FIG. 42 illustrates an example of how a concrete
conduct implementation is invoked in order to implement a
GPS-based steering plan. A RobotGeneric managed object
2000 induces a configured synchronous conduct execution
via the Conduct service 2001. This results in execution of a
configured Thought process (e.g., a Plan object). This
generic PlanGeneric 2002 delegates to an overloaded con-
crete plan, in this case a GPSSteeringPlan 2003. The
GPSSteeringPlan 2003 gets current and desired position
information from the ReferenceSensor 2004 and Route
service 2005, respectively. The Position 2006 service uses
this information to compute the direction to the desired
position. The GPSSteeringPlan 2003 then gets orientation
information from the ReferenceSensor 2004. After all this
information has been obtained, the GPSSteeringPlan 2003
computes the steering difference via the Orientation service
2007 and finally updates the steering plan with the desired
steering information through the ActuatorPlan service 2008.

[0156] FIG. 43 illustrates an example of how an actuator
plan is initiated generically. The RobotGeneric 2100 man-
aged object performs configured synchronous actuation via
the Actuator Service 2101. For each actuator plan, the
ActuatorPlan 2102 (e.g., a steering actuator plan) is obtained
if scheduled. The physical Actuator 2103, is effected accord-
ing to its plan (e.g., direction, speed, feedback limits, etc.).

[0157] FIG. 44 illustrates an example of how a DC motor
controller is commanded to perform actuation via a serial
port. The Actuator 2200 is effected according to its actuator
plan 2201 (e.g., direction, speed, feedback limits, etc.). Calls
to the subclass, in this case DCMotorGeneric 2202 are
overloaded. This in turn starts PWM 2203 according to the
appropriate parameters (e.g., duration, direction, period,
etc.) and overloads this to the subclass (e.g., Command-
BasedPWM 2204, HardwareBasedPWM). PWM commands
are written to the DCMotorGeneric 2202, which then del-
egates write operations to the superclass, PeripheralGeneric
2205. PeripheralGeneric 2205 performs any configured sig-
nal conversions via an InterfaceMapping abstraction 2206,
which writes signals to the InterfaceManager 2207. The
InterfaceManager 2207 determines the appropriate interface
2208 to write these signals, and the writing is delegated
appropriately (in this case, to the SerialPortGeneric interface
2209). In this example, data is written to the Serial Port (e.g.,
PWM command to a motor controller) 2210.

[0158] FIG. 45 illustrates how a class can be called within
a program to automatically generate a specific client envoy,
envoy interface, and target envoy given some configuration
information. The ObjectLauncher 2300 is used to start an
EnvoyMaker 2301 instance. The EnvoyMaker 2301 gets a
list of IDs of envoys to create from the Configuration service
2302. For each ID, creation information is obtained for an
envoy (e.g., interface name) 2303. The EnvoyMaker 2301
generates an Envoy Interface 2303, and an Envoy Target
2304. Finally, an Envoy Client 2305 is generated.

[0159] FIG. 46 illustrates how an ObjectLauncher 2401
configuration can automatically create one or more target
envoys in a server process. The target envoys then listen for



US 2007/0208442 Al

requests from clients. (This figure illustrates the automated
configuration and initialization of an application with target
envoy objects. Target envoys can also be explicitly created
and configured from within an application without use of the
ObjectLauncher 2401). The System 2400 launches the
ObjectLauncher program 2401, which performs its initial
loading. The ObjectLauncher 2401 obtains an object handle
from the ObjectRegistry 2402, given a launcher ID. The
object is then configured according to its configuration
properties. The launcher:ObjectLauncher 2403 obtains an
object handle (e.g., ReferenceSensorTargetEnvoy object)
from the ObjectRegistry 2402 given an EnvoyObjectID
(e.g., RobotApID). A managed object (in this case, Refer-
enceSensorTargetEnvoy) 2405 is created and configured.
The launcher:ObjectLauncher 2403 then registers the object
(i.e., ReferenceSensorTargetEnvoy) via an Anylnterface
2404 according to its ID. This process is repeated for each
object handle. The ObjectLauncher 2401 is then ready to
launch. If the launcher policy is to loop upon managed
object creation (e.g., as with a remote object), the looping
occurs and target envoys field any remote requests.

[0160] FIG. 47 illustrates background processes that occur
when a target envoy is created and configured. The figure
illustrates how a generic superclass (TargetEnvoy), which is
part of the Envoy service, generically configures and regis-
ters a target envoy object with an envoy directory. The
specific example illustrates a distributed reference sensor
(e.g., a GPS Sensor) that is created as an RMI server and
registered with an RMI directory server using the Java JNDI
service. RMI is a type of distributed communication meth-
odology. It will be understood that the target envoy can be
created using any underlying medium, not only RMI. The
target could alternatively be created as a Web service,
CORBA service, TCP/IP service, serial communications
service, etc., and registered with an envoy directory appro-
priate for that specific medium (e.g., a UDDI directory
service for Web services, a CORBA Naming Service for a
CORBA service). The TargetEnvoy and BaseEnvoy are
generic classes in the Envoy service. The RMI and JNDI
classes are generic classes provided inside GPROS as well.
It will be understood by those skilled in the art that any sort
of object can be created as a target envoy. For robot and
automation applications, the target envoy might be a sensor,
or an actuator, or a conduct object.

[0161] In the figure, the ObjectLauncher 2500 configures
a managed object 2501, in this case “ReferenceSensorTar-
getEnvoy”. This operation is delegated to the superclass,
here TargetEnvoy 2502. The configuration provides the real
target object ID, and an object handle (e.g., ReferenceSensor
object) is obtained from the ObjectRegistry 2503 given the
object ID (GPSSensorID). The superclass (“BaseEnvoy™)
2504 is called to create an envoy medium delegate 2505.
Either an envoy medium ID or class name is obtained from
the configuration, and this information is used to obtain an
envoy medium delegate (e.g., RMIMediumImpl) 2505 from
the ObjectRegistry 2503. This envoy medium delegate 2505
is used to register the target envoy 2502. The TargetEnvoy
2502 calls the superclass (“BaseEnvoy™) 2504 to connect
with an envoy directory 2506. The envoy directory ID is
obtained from the configuration 2507. Based on this envoy
directory ID, an object directory object (e.g., INDIEnvoy-
Directory) is obtained from the ObjectRegistry 2503, and
connection is initiated. Finally, the TargetEnvoy 2502
obtains an envoy medium bind name ID (e.g., RemoteGPS-

Sep. 6, 2007

SensorA) from the configuration 2507 and registers the
envoy medium delegate with the directory using the envoy
medium bind name ID.

[0162] FIG. 48 illustrates a connection to an envoy direc-
tory service. In the illustrated example, a JNDI directory
service is connected via an underlying mapping to an RMI
directory service provider. Alternatively, for example, a
UDDI directory service could have been used for a Web
service envoy medium. In the figure, a TargetEnvoy man-
aged object 2600 calls the superclass (“BaseEnvoy”) 2601 to
connect to an envoy directory. The superclass then obtains
an envoy directory ID from the Configuration 2602 and
utilizes it to obtain a directory object (e.g., INDIEnvoyDi-
rectory) 2604 from the ObjectRegistry 2603 and then create
and configure the object. The INDIEnvoyDirectory 2604 in
this case delegates configuration to the superclass envoy
directory 2605, which creates an EnvoyMessage 2606, reads
the directory service connection info (e.g., RMI URL and
RMI Directory Service Driver name) from the configuration
2602, and passes all connection parameters to the created
EnvoyMessage 2606. In this example, the BaseEnvoy 2601
connects to the INDIEnvoyDirectory 2604, which connects
to JNDI service using the connection information. The
original Target Envoy 2600 obtains the envoy medium bind
name ID and utilizes it to register the envoy medium
delegate with the directory.

[0163] FIG. 49 illustrates a JNDI directory service binding
a server object to a name for lookup by remote clients. A
TargetEnvoy managed object 2701 registers the envoy
medium delegate with the envoy directory (i.e., INDIEn-
voyDirectory) 2702 using the envoy medium bind name ID.
The envoy directory binds the envoy medium delegate (e.g.,
an RMIMediumImpl) to the JNDI directory service given
the ID name.

[0164] FIG. 50 illustrates how an envoy client is created,
configured, and utilized to obtain a handle to an underlying
envoy medium client. The figure illustrates how a distributed
client creates a handle to a reference sensor (e.g., a GPS
Sensor). The client code does not need to know if it is
communicating with a local (in-memory) or a distributed
GPS sensor. Although an RMI medium is presented in the
figure, the client could also have been configured to com-
municate with a GPS sensor via Web services, CORBA,
TCP/IP, etc. A client class, in this example Sensors 2800,
obtains an object handle (e.g., ReferenceSensorClientEn-
voy) 2801 from the ObjectRegistry 2802 given a Sensor 1D
(e.g., GPSSensorID). The ObjectRegistry 2802 creates and
configures the ReferenceSensorClientEnvoy object 2801,
which delegates the configuration to the superclass, Clien-
tEnvoy 2803. This sensor ClientEnvoy 2803 calls the super-
class (“BaseEnvoy”) 2804 to connect to the envoy directory.
The ClientEnvoy 2803 obtains the envoy medium bind ID
(e.g., RemoteGPSSensorA) from the Configuration 2805,
and given this information, looks up the envoy medium
client (e.g., RMIMedium) via the EnvoyDirectory (here,
“JNDI EnvoyDirectory”) 2806. This EnvoyDirectory 2806
looks up an envoy medium client (e.g., RMIMedium) 2807
from the JNDI directory service 2806. After this is com-
pleted, the ClientEnvoy 2803 calls the superclass to create
an envoy medium delegate 2807. The Base Envoy 2804
obtains either an envoy medium ID or a class name from the
configuration 2805 and obtains an envoy medium delegate
object (e.g., RMIClientEnvoy) 2807 from the ObjectRegis-



US 2007/0208442 Al

try 2802 based on the envoy medium ID or class name.
Finally, the ClientEnvoy 2803 associates the envoy medium
client (e.g., RMIMedium) via the envoy medium delegate
2807.

[0165] FIG. 51 illustrates the procedure of the envoy client
when a client envoy is invoked. Zero or more input param-
eters may be sent by the client envoy and zero or more
output messages may be received and returned by the client
envoy. A client class, in the figure a Sensors abstraction
2900, obtains its current position from a ReferenceSensor-
ClientEnvoy 2901. Because the ReferenceSensorClientEn-
voy 2901 implements the ReferenceSensor interface, the
client class is unaware that it is communicating with a client
envoy, i.e., the remoteness is transparent. The client envoy
method implementations are automatically generated using
an automated software utility (e.g., EnvoyMaker). In the
figure, the ReferenceSensorClientEnvoy 2901 creates an
envoy message 2902 for the client envoy method ID. Any
input values of an EnvoyMessage are set via an input ID
2903. Generic invocations of the superclass (ClientEnvoy)
2904 are called with this input EnvoyMessage 2903. The
superclass, here a sensor ClientEnvoy 2904, invokes an
envoy medium delegate (e.g., RMIClientEnvoy) 2905 with
an input message and returns any output message 2906. This
envoy medium delegate invokes an envoy medium (e.g.,
RMIMedium) 2907 with the input message and returns any
output message 2906. The underlying message stub is called
to transmit the message. Any return message is returned.
Upon the completion of these tasks, the ReferenceSensor-
ClientEnvoy 2901 obtains any output values returned via the
output Envoy message (e.g., position) 2906. This informa-
tion is returned to the initial client class 2900.

[0166] FIG. 52 illustrates the procedure of the envoy target
side when a target envoy is invoked. Zero or more input
parameters may be received by the target envoy and zero or
more output messages may be returned and sent by the target
envoy. In the figure, a distributed runtime (e.g., RMI runt-
ime) 3000 invokes an EnvoyMediumDelegate (in this case,
RMIMediumImpl) 3001 with any input messages and
returns any output messages. The EnvoyMediumDelegate
3001 invokes a target envoy managed object 3002 with
inputs and any outputs are returned. The target envoy
methods are overloaded by a subclass, in this example a
ReferenceSensorTargetEnvoy 3003, a managed object. This
managed object gets a message ID and any input values. A
target 3004, for example a ReferenceSensor, is invoked via
a proper method with input values 3006 and any output
values are obtained 3007. The ReferenceSensorTargetEnvoy
3003 creates an output message for this message 1D and sets
any output values for an output EnvoyMessage 3005. Any
output messages are returned to the ReferenceSensorTar-
getEnvoy 3003.

[0167] Speaking now in general terms based on the above
disclosure, certain embodiments discussed thus far illus-
trated how the GPROS can be realized and used to imple-
ment a robotics application. That is, for example, an
unmanned ground vehicle (UGV) application can use a
standard GPROS profile on a main processor platform,
running Linux, and using a Java Platform, Standard Edition
to specify the configuration of sensors for GPS, inertial
navigation and orientation, multiple laser range finders,
RADAR; configuration of actuators with command based
PWM configurations for brake, steering, shifting, and

Sep. 6, 2007

throttle actuation; conduct planning for synchronous way-
point navigation and asynchronous obstacle avoidance. A
micro GPROS profile can also be used in multiple micro-
processors running a Java Platform, Micro Edition to specify
the configuration of sensors for receiving actuation com-
mands, motor feedback, and vehicle state sensors; configu-
ration of actuators with hardware based PWM configura-
tions directly driving brake, steering, shifting, and throttle
motors; and conduct planning for asynchronous motor com-
mand handling and real time synchronous feedback control
of motors.

[0168] The same GPROS profiles may be used for
Unmanned Air Vehicle (UAV) helicopter platforms by defin-
ing a configuration largely similar to the UGV application
but instead loads a configuration with longer range laser
range sensors, uses actuators for controlling helicopter
rotors and blades, and implements conduct planning for
UAV navigation and low-level feedback controls.

[0169] Similarly, for an automation application requiring
only distributed sensing and no actuation, the GPROS may
be configured to load only sensors that have distributed
envoys, each with their own underlying communications
standard, and to load conduct analysis behavior which takes
the distributed sensor information, analyzes it, and presents
it in a unified fashion via a graphical user interface.

[0170] Likewise, for applications that are not robotics or
automation related, the generic application services can be
used. For example, in a business-to-business (B2B) appli-
cation, a means using GPROS for reading information from
a mobile phone interface peripheral may be configured, a
conduct planning behavior for rendering a user interface
may be configured, and a client envoy to a distributed Web
service may be configured. GPROS on the server side may
also be used and configured with a target envoy to receive
invocations from client envoys, a conduct planning behavior
triggered by pooled asynchronous application threads may
be configured to handle such requests, and the any service
used to transparently record requests to a database.

[0171] Thus, one embodiment of the invention is a method
for building vertical robotics application framework
(VRAF) instances which extend the GPROS for specific
vertical robotics applications. One embodiment of the inven-
tion is to provide a general purpose robotics hardware
interface (GPRHI) for connecting robotics hardware to
standard computing platforms. A feature of the technology
that includes vertical robotics applications is mine analysis
and detection. Robot mobilization and mine detection are
two important examples of the actuation and sensing func-
tionality that form the core part of a mobile autonomous
robotics platform applied to mine analysis and detection. An
example application of the invention is an autonomous
unmanned ground vehicle (UGV) application for traversing
a long distance within a route corridor while avoiding
obstacles. Similarly, the same common GPROS robotics
software services may also be leveraged by an autonomous
unmanned air vehicle (UAV) application.

[0172] Tt should thus be evident that the present invention
provides an operating system that provides individual ser-
vices and the combination and interconnections of such
services using built-in service extensions, built-in com-
pletely configurable generic services, and a way to plug in
additional service extensions to yield a comprehensive and



US 2007/0208442 Al

cohesive framework for developing, configuring, assem-
bling, constructing, deploying, and managing robotics and/
or automation applications. The invention provides services
that are common to any robotics or automation application,
and encapsulates them separately, while providing them as
a complete package to enable programmers to write pro-
grams in any language for any device or peripheral and plug
those programs into the system to achieve a goal. One
advantage provided by the invention is that it provides a
software engine for programmers, allowing them to focus on
minimal business logic specifications and letting the soft-
ware of the present invention integrate each programmer’s
product into a functional end-product. In one configuration,
the software and system of the invention includes one or
both of a general robot service and an automation service,
which extend and use the general application services to
provide powerful and useful software and software/hard-
ware solutions. The ability of the present invention to use
object-oriented schemes to allow peripheral services to link
external peripherals and applications advances the art of
robotics and automation. It also allows for cohesive and
comprehensive integration of different and disparate third
party, proprietary, open source, and other modules (software
and hardware, such as third-party rules engines, third-party
neural networks, different interface protocols, different dis-
tributed communication protocols, different sensor types,
different actuator types, different styles of motor control,
different robotics application logic, different configuration
data sources, different logging mechanisms, and the like), to
enable extensibility and other advantages.

[0173] Inaddition, because the peripheral service provides
a way for applications to communicate with external periph-
erals in an object-oriented way, it permits decoupling of the
communication from the underlying physical communica-
tion interface, and complete configurability.

[0174] 1t will be apparent to those skilled in the art that
various modifications and variations can be made in the
practice of the present invention and in construction of the
device without departing from the scope or spirit of the
invention. Other embodiments of the invention will be
apparent to those skilled in the art from consideration of the
specification and practice of the invention. It is intended that
the specification and examples be considered as exemplary
only, with a true scope and spirit of the invention being
indicated by the following claims.

1. A general purpose robotics and/or automation operating
system (GPROS) comprising:

a set of application services that provides access to
configuration data using a generic abstraction, wherein
the application services are independent of any under-
lying hardware platform and allow for any combination
of communication or operational conduct for any com-
munication or operational task.

2. The GPROS of claim 1, wherein the set of application
services comprises one or more of the following services: a
sensor service, an actuator service, a conduct service, a robot
service, an obstacle service, a navigation service, a mobility
service, a thought service, a plan service, a rules service, a
neural service, a motor service, a pwm service, a god
service, a mechanism service, a gear service, a reference
service, a range service, a ladar service, a radar service, a

Sep. 6, 2007

feedback service, a digital service, an analog service, a
fusion service, a watchdog service, and a safety service.

3. The GPROS of claim 1, wherein the service is one or
more of the following services: range; ladar; ladar sick;
radar; radar vorad; reference; reference geo; reference nmea;
mechanism, gear; actuator; motor; timer, pwm; conduct;
and/or mobility services.

4. The GPROS of claim 1, wherein the set of application
services comprises at least one service that utilizes a
wheeled platform; utilizes a legged platform; utilizes a
tracked platform; utilizes flight operations; provides navi-
gation; provides robot god; and/or provides rules, neural.

5. The GPROS of claim 1, wherein the operating system
is a robotics operating system that allows for any combina-
tion of communication or operational conduct for any com-
munication or operational task.

6. The GPROS of claim 1, wherein the set of application
services is completely configurable and can be adapted
statically and dynamically.

7. The GPROS of claim 1, wherein the GPROS provides
individual services and the combination and interconnec-
tions of such services using built-in service extensions,
built-in completely configurable generic services, and a way
to plug in additional service extensions to yield a compre-
hensive and cohesive framework for developing, configur-
ing, assembling, constructing, deploying, and managing
robotics and/or automation applications.

8. A general purpose applications services operating sys-
tem comprising:

a set of application services that provides access to
configuration data using a generic abstraction, wherein
the application services are independent of any under-
lying hardware platform and allow for any combination
of communication or operational conduct for any com-
munication or operational task.

9. The operating system of claim 8, wherein the set of
application services comprises one or more of the following
services: a config service, a registry service, a comm service,
an ap service, an envoy service, a peripheral service, an any
service, a signals service, a signals.message service, a sig-
nals.mapping service, a hardware service, a system service,
an id service, and an automaton service.

10. The operating system of claim 8, wherein the oper-
ating system provides individual services and the combina-
tion and interconnections of such services using built-in
service extensions, built-in completely configurable generic
services, and a way to plug in additional service extensions
to yield a comprehensive and cohesive framework for devel-
oping, configuring, assembling, constructing, deploying,
and managing robotics and/or automation applications.

11. A method for using a general purpose robotics and/or
automation operating system (GPROS), the GPROS com-
prising:

providing a set of application services for accessing
configuration data using a generic abstraction, wherein
the application services are independent of any under-
lying hardware platform and are capable of performing
any communication or operational conduct for any
communication or operational task; and

executing at least one application service of the set of
application services.

12. The method of claim 11, wherein executing comprises

executing at least one of the following services: a sensor



US 2007/0208442 Al

service, an actuator service, a conduct service, a robot
service, an obstacle service, a navigation service, a mobility
service, a thought service, a plan service, a rules service, a
neural service, a motor service, a pwm service, a god
service, a mechanism service, a gear service, a reference
service, a range service, a ladar service, a radar service, a
feedback service, a digital service, an analog service, a
fusion service, a watchdog service, and a safety service.

13. The method of claim 11, wherein executing comprises
executing at least one of the following services: a service
that utilizes a wheeled platform; a service that utilizes a
legged platform; a service that utilizes a tracked platform; a
service that utilizes flight operations; a service that provides
navigation; a service that provides robot god; and/or a
service that provides rules, neural.

14. The method of claim 11, wherein the set of application
services are robotics application services and the operating
system is a robotics operating system.

15. A device comprising:

software for a general purpose robotics and/or automation
operating system; and

hardware upon which the software resides.

16. The device of claim 15, wherein the hardware retains
the software indefinitely.

17. The device of claim 16, wherein the hardware is a
computer hard drive or memory stick.

18. The device of claim 15, wherein the hardware retains
the software ephemerally.

19. The device of claim 18, wherein the hardware is one
or more banks of random access memory.

20. The device of claim 15, wherein the hardware is a
central processing unit.

21. The device of claim 15, wherein the hardware com-
prises a mechanical component capable of movement.

22. The device of claim 21, wherein the mechanical
component comprises an articulated joint, a wheel, a leg, a
wing, a rudder, an arm, a knob, or a pivot point.

23. The device of claim 15, which is an autonomously
controlled device.

24. The device of claim 23, which is a robot.

25. The device of claim 23, which is an unmanned ground
vehicle (UGV) or an unmanned air vehicle (UAV).

26. The device of claim 15, wherein the software is
capable of being updated or otherwise modified before,
during, and after fabrication of the device.

27. The device of claim 26, wherein the device is capable
of learning by way of updates or modifications of the
software, either through human intervention or autono-
mously.

Sep. 6, 2007

28. An article of manufacture comprising:
a medium for storage of computer software; and

computer software for a general purpose robotics and/or

automation operating system.

29. The article of manufacture of claim 28, wherein the
medium is capable of storing computer software by mag-
netic means or optical means.

30. The article of manufacture of claim 28, wherein the
medium comprises a floppy disk, a hard drive, a memory
stick, a tape, or a CD.

31. A method of controlling an autonomously controlled
device, said method comprising:

providing a set of instructions in the form of computer
software that is functionally connected to the device;
and

executing the software to effect desired action by the
device.
32. The method of claim 31, further comprising modify-
ing the software.
33. A general purpose robotics and/or automation oper-
ating system (GPROS) comprising:

a set of application services that provides access to
configuration data using a generic abstraction, wherein
the application services are independent of any under-
lying hardware platform and allow for any combination
of communication or operational conduct for any com-
munication or operational task; and

a general purpose applications services operating system
comprising:

a set of application services that provides access to
configuration data using a generic abstraction,
wherein the application services are independent of
any underlying hardware platform and allow for any
combination of communication or operational con-
duct for any communication or operational task,

wherein the GPROS extends, uses, and is combined with
the general purpose applications services operating
system.

34. The GPROS of claim 2, further comprising a set of
application services comprising one or more of the follow-
ing services: a config service, a registry service, a comm
service, an ap service, an envoy service, a peripheral service,
an any service, a signals service, a signals.message service,
a signals.mapping service, a hardware service, a system
service, an id service, and an automaton service,

wherein the GPROS services of claim 2 extend, use, and
are combined with the additional application services.

#* #* #* #* #*



	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Drawings
	Page 17 - Drawings
	Page 18 - Drawings
	Page 19 - Drawings
	Page 20 - Drawings
	Page 21 - Drawings
	Page 22 - Drawings
	Page 23 - Drawings
	Page 24 - Drawings
	Page 25 - Drawings
	Page 26 - Drawings
	Page 27 - Drawings
	Page 28 - Drawings
	Page 29 - Drawings
	Page 30 - Drawings
	Page 31 - Drawings
	Page 32 - Drawings
	Page 33 - Drawings
	Page 34 - Drawings
	Page 35 - Drawings
	Page 36 - Drawings
	Page 37 - Drawings
	Page 38 - Drawings
	Page 39 - Drawings
	Page 40 - Description
	Page 41 - Description
	Page 42 - Description
	Page 43 - Description
	Page 44 - Description
	Page 45 - Description
	Page 46 - Description
	Page 47 - Description
	Page 48 - Description
	Page 49 - Description
	Page 50 - Description
	Page 51 - Description
	Page 52 - Description
	Page 53 - Description
	Page 54 - Description
	Page 55 - Description
	Page 56 - Description
	Page 57 - Description
	Page 58 - Description
	Page 59 - Description
	Page 60 - Description
	Page 61 - Description
	Page 62 - Description/Claims
	Page 63 - Claims

