
US 20070260594A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0260594 A1
(19) United States

Lewak et al. (43) Pub. Date: NOV. 8, 2007

(54) IDENTIFIER VOCABULARY DATA ACCESS
METHOD AND SYSTEM

(76) Inventors: Jerzy Lewak, Del Mar, CA (US);
Miles Kevin Yano, Yorba Linda, CA
(Us)

Correspondence Address:
Martin J. Jaquez, Esq.
JAQUEZ & ASSOCIATES
Suite 100D
6265 Greenwich Drive
San Diego, CA 92122 (US)

(21) Appl. No.: 11/823,067

(22) Filed: Jun. 25, 2007

Related US. Application Data

(63) Continuation of application No. 10/ 969,131, ?led on
Oct. 19, 2004, noW Pat. No. 7,236,972, Which is a
continuation of application No. 10/345,093, ?led on
Jan. 14, 2003, noW Pat. No. 6,826,566.

(60) Provisional application No. 60/348,616, ?led on Jan.
14, 2002.

Publication Classi?cation

(51) Int. Cl.
G06F 17/30 (2006.01)

(52) Us. or. 707/4; 707/1317

(57) ABSTRACT

A method of organizing, managing, and providing interac
tive access to data in a database is disclosed, along With a
program and a system for implementing the method. Asso
ciations between each data Item and at least one ItemSelec
tor are established and stored. A prede?ned (but modi?able)
Vocabulary of ltemSelectors su?icient to describe each Item
of the database is created. Presently selected Items are
described by a combination of associations de?ned by an
appropriate Boolean combination of each ltemSelector in a
presently selected set of ltemSelectors. A user controls the
presently selected set by adding an ltemSelector from a
presented group, or by removing a previously selected
ltemSelector. The system ideally makes available to the user
all relevant ItemSelectorsithose Which, if added to the
presently selected set, Would result in a set that describes at
least one extant data Item. The system ideally makes all
presently selected Items available to the user.

Graphical User Interface
Screen Display ‘

Mouse/Keyboard Input

Item/ltemSelector‘Choices
V

104! Selected ltemSelector
. Boolean Expression

Generator

Boolean Query I

Association
Table < > Query Engine
Storage

. A \106
1 2

V V .

10 Data Item Data Item X110
8\ Storage A Storage B

Patent Application Publication Nov. 8, 2007 Sheet 1 0f 4 US 2007/0260594 A1

Graphical User Interface
F I G , 1 Screen Display

Mouse/Keyboard Input
A

Item/ItemSelector vChoices

104\ Selected ItemSelector
. Boolean Expression

Generator

Boolean Query I

Association
Table Query Engine
Storage _ \4

I 06

1 fzj A i t

A V

Data Item Data Item \\1 10
108\ Storage A Storage B

FIG. 2 202 FIG. 3 ' 3&2
Presently Chosen ItemSelector Set , Presently Chosen ItemSelector Set

Conjunctive ' E.X{>|USi\(e- Conjunctive - - -

|tem3e|ectors Disjunctive ItemSelectors ZIK‘QmDS'ZJIQQfQ'Q’SG
206 ItemSelectors 306

C1 - C1 \ E1 \ 201
C2 4 C2 2D2

‘ Disjunctive E2 1st Disjunctive ItemSelectors v2 ltemSeIectors '2
.204 01 I 208 r 304 1 D1 308

D2 ' 1D2

K- 210 ‘. ‘ a f 310
Resultant Boolean Expression: Resultant Boolean Expression:

Patent Application Publication Nov. 8, 2007 Sheet 2 of 4 US 2007/0260594 A1

Item Listing ItemSelectors

410 406
Description ‘\

Aged Sad woman with dog
Aged Woman
Boisterous Man
Bony Boisterous Man
Clean Fat Man
Happy Woman
Man Walking a dog
Neat Sad Child

Listing of ?rst (8)ltems

4 f4)

Day
1.

22%;; 012345677 12345670091111.1111
/

Day-O-W
Observed

Sunday
Monday
Tuesday
Wednesday
Thursday '
Friday
Saturday

Month
Observed
January

Person

February
March
A ril
May
June
July
August
September
October
Novermber
December

M. V//4
Aged
Boisterous
Bony
Clean
Shaved
Dirty
Disheveled

Vociferous
Wrinkled
Youthful

a’) No ItemSelectors Chosen
4 4 4 8 4 _2

442’ FIG. 4

FIG. 5 502
D

' ItemSelectors ‘ Item Listing '

510
Day?)

,7
14
21
2

Aged Sad woman with dog
Boisterous Man
Bony Boisterous Man
Clean Fat Man

Listing of Remaining Items 22%.,“ v

Day-O-W
Observed
Sunday
Monday
Tuesday
Wednesday
Thursday
Frida
Saturday

58 42

Person 506 Month
Description Observed
Aged ' 1 "

04/ _Two ltemSelectors Chosen
5

US 2007/0260594 A1

vItem Listing

Boisterous Man
Bony Boisterous Man

610
Dayrj Day-O-W

Observed
Sunday
Monday
Tuesday -

Wednesday
Thursday
Frida
Saturday

nuary
February

arch
il

MASQND
e n

_ ItemSelectors

506 Month
\ Observed

A ed
Boisterous
: ony
F at

Person
Description

eptember
cto - er

overrnber
ecember

Patent Application Publication Nov. 8, 2007 Sheet 3 of 4

a
FIG. 6

FIG. 7

Listing of Remaining Items

602

5 8 4 2

ltemlD» fltemselector ID
Byte (Bit) 01 234567891011 121314

0123456789@ 000000001111111
64-) Three ItemSeIectors Chosen

6

Patent Application Publication Nov. 8, 2007 Sheet 4 0f 4 US 2007/0260594 A1

FIG. 8

a[]] and y ax1s a?js? > wast-j]

a[j_est] . '

x // y=a[01+j* as -a[01)/(1asu)
> meat approx '

a[0]

/U/t1 a[j_est] <x

j axis
. ' ‘ t

3:0 Les j = last __i

US 2007/0260594 A1

IDENTIFIER VOCABULARY DATA ACCESS
METHOD AND SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation under 35 USC §
120 of copending US. application Ser. No. 10/969,131, ?led
Oct. 19, 2004 and entitled “Identi?er Vocabulary Data
Access Method and System” for issue Jun. 26, 2007 as US.
Pat. No. 7,236,972, Which is a continuation under 35 USC
§ 120 of application Ser. No. 10/345,093, identically entitled
and ?led Jan. 14, 2003, now US. Pat. No. 6,826,566 issued
Nov. 30, 2004, Which claims the bene?t under 35 USC § 119
of US. Provisional Application No. 60/348,616, entitled
“New Database Design Using Language Based Category
Identi?ers and Their Association With Data” and ?led Jan.
14, 2002; and the entire content of each of applications Ser.
Nos. 10/969,131, 10/345,093 and 60/348,616 as ?led is
hereby incorporated herein by reference.

FIELD

[0002] This invention relates to the ?eld of computers, and
more particularly to storage and retrieval of information by
means of computers.

BACKGROUND

[0003] Data access is becoming increasingly important, as
the extent of information sources that are available to

computers increases With the exponential growth of net
Works, such as the Internet. Unfortunately, current database
designs are in?exible and impose severe demands on user
and computing poWer e?fort during unplanned queries.

[0004] In?exibilities and high processing demands result
from the current structure of knoWn databases. Such struc
tures generally seek to achieve quick access to records
Within the database by calculating the precise location of the
record Within the Whole database. Inconvenient structural
limitations are often imposed to facilitate this common
database goal. For example, each record may be required to
be the same size. This limitation may be avoided by using
pointers, but a pointer structure requires user foresight and
decisions at the outset, if database restructuring is to be
avoided.

[0005] A ?xed record size requirement only assures quick
access When the record number is knoWn. To have quick
access When searching on ?eld values, indexing needs to be
performed linking those values With the record ID. In a
typical database many index tables are needed. Maintenance
of such tables requires an update of all of them Whenever
anything requires a change in the record identi?ersiWhich
in practice happens too often.

[0006] Numerous legacy databases need to be integrated
With neWer database systems. Normally this is done by
converting them all to a single, modem relational database.
This is an extremely di?icult and time-consuming task under
present systems, requiring a great deal of Work to reconcile
the different legacy structures into one neW structure. Such
integrations often incur extremely large costs, taking a very
long time, disrupt business, and yet produce only partly
satisfactory outcomes.

[0007] Accordingly, there is a need for a method and
system that facilitates queries for data from data sources.

Nov. 8, 2007

Because of the Wide range of different organizational struc
tures for the data sources that are available to many com
puters, it is desirable that improved data access be capable
of operation across a range of computing platforms and
organizational structures.

SUMMARY

[0008] In response to the needs identi?ed above, a neW
approach is described herein that is based on a universal data
structure, and is developed and applied to structured data
bases. Some foundations for this approach may be found in
US. Pat. No. 5,544,360, (LeWak et al.). Using a generalized
Vocabulary of Identi?ers (called ItemSelectors) of each data
fragment (called Items), this approach Will be referred to as
softWare Technology for Information Engineering TM or TIE,
and is applicable to most or all information systems. TIE
databases eliminate in?exibilities associated With current
databases, and reduce processing demands. They alloW
virtually any number, and any organization, of ?elds for
each record. Moreover, they signi?cantly enhance the effec
tive speed of query responses.

[0009] TIE databases typically provide an intuitive
Guided Information Access (GIA) interface to the user that
is based upon Vocabulary terms. As the user selects pre
sented Vocabulary terms, the portion of the Vocabulary that
is presented thereafter may be constrained, dynamically and
in real time, by such previous selection, such that only
ItemSelectors that Will yield viable (non-null) results remain
available to be selected. Such dynamic constraints are dif
?cult or impossible to achieve in knoWn technologies.

[0010] Associations resulting from choosing ItemSelec
tors are immediately apparent to the user, are easy to
implement and edit, and facilitate search queries. Associa
tions betWeen the Identi?ers and the individual data Items
(Which may be, for example, Records or Linked Records)
are organized in a binary matrix that facilitates quick access.
With such organization, substantial change in the relation
ship betWeen ?elds (or Items), even disruptive changes,
typically require a change of data Within just one universal
data structure, generally implemented in TIE systems as a
Universal Matrix Structure (UMS).

[0011] The Items in a TIE database may be referenced
through a path, URL, or any other suitable identi?er. The
references themselves may be hidden to avoid confusion.
The actual data may be located anyWhere that can be
accessed by a computing system employing TIE, sometimes
even across a Wide Area NetWork such as the Internet. Such
?exible referencing techniques, particularly in combination
With a universal structure described further beloW, facilitates
an easy, non-invasive integration of disparate legacy data
bases. The TIE system permits conversion of legacy data
bases into a neW database structure in an intuitive manner

that need not disrupt the legacy system, Which can continue
to be used in parallel.

BRIEF DESCRIPTION OF THE FIGS.

[0012] FIG. 1 is a block diagram shoWing typical infor
mation How in a TEE system.

[0013] FIG. 2 illustrates derivation of a Boolean expres
sion from ItemSelectors in groups.

[0014] FIG. 3 illustrates Boolean derivation for ItemSe
lectors differing from those of FIG. 2.

US 2007/0260594 A1

[0015] FIG. 4 represents an initial condition for an inter
active GUI during a user search.

[0016] FIG. 5 represents a modi?ed condition of the GUI
during the user search of FIG. 4.

[0017] FIG. 6 represents a GUI as further modi?ed during
the user search of FIG. 4.

[0018] FIG. 7 shoWs a matrix providing associations
betWeen. Items and ItemSelectors in a bitmap.

[0019] FIG. 8 is a graph illustrating element estimation
using straight line interpolation.

DETAILED DESCRIPTION

Introduction

[0020] Extremely ?exible databases can be achieved by
employing a universal matrix structure (“UMS”). For back
ground on such structures, see US. Pat. No. 5,544,360
(LeWak et al.) (“the ’360 patent”).

[0021] In TIE (Technology for Information Engineering
TM) system databases described herein, each element of
information is called an Item, and each Item has its oWn
unique identi?er (typically an ID number). Each Item may
be described using a set of one or more descriptors (Item
Selectors), each of Which represents an attribute of the Item.
Some combination of meaningful ItemSelectors (Which may
be key Words, phrases, or other descriptors, each uniquely
identi?ed Within the system), Will su?ice to distinguish a
particular Item Within the constellation of Items available in
a database. Such meaningful descriptive key Words or
phrases may therefore be used to select an Item. The
meaningful descriptive key Words or phrases Will be referred
to as “ItemSelectors.” (Note that in the Provisional Appli
cation upon Which this application is based, these key Words
or phrases Were referred to as “Categories.” The terminology
is substantially arbitrary, and, though different, is internally
consistent Within each document.) As With any search, a set
of ItemSelectors Will typically describe a ?rst set of Items
consistent thereWith. One or more additional ItemSelectors
may be needed to uniquely describe a single Item from the
?rst set of Items. Conversely, Items may be described as
belonging to, or associated With, one or more ItemSelectors.

[0022] Because as many ItemSelectors as needed may be
associated With each Item, relationships betWeen Items may
be as complicated as Will be helpful. In a TIE database,
associations betWeen records, and betWeen ?elds Within
such records, need not be restricted to a ?xed hierarchy such
as is imposed by knoWn legacy databases, but may have
much greater ?exibility due to association via a virtually
unlimited number of ItemSelectors. The relationships
betWeen Items may thus mimic those that naturally form in
the mind of the user, through associations conveyed by
meanings of the name given to each ItemSelector associated
With such Items.

[0023] One TIE database described herein uses a single
universal table, referred to as a Matrix because of its
theoretical (and, in some implementations, physical) struc
ture. This Matrix may be maintained in readily accessible
memory for quick access. A tWo-matrix alternative TIE
database approach is also described, Which may permit
increased response speed under some circumstances.

Nov. 8, 2007

[0024] The Matrix holds all associations betWeen Items
and ItemSelectors. Changes in the ItemSelectors, or in the
relationships betWeen the ItemSelectors and information
Items, require the update of just this one universal matrix
and so are relatively easy and quick to achieve. Each TIE
database is characterized by a Vocabulary of ItemSelectors
that are su?icient to describe each information Item in the
database. The Vocabulary is typically structured into Groups
of ItemSelectors, and sometimes into Subgroups.

[0025] The use of ItemSelectors as Language-Based Iden
ti?ers (or descriptors) of each ?eld and record, along With an
appropriate softWare implementation, reduces processing
demands While making the database organiZation extremely
?exible. A TIE database may contain any number of Items,
and may e?‘ectively permit a user to select virtually any
organiZation of “?elds” for each “record.” Moreover, query
responses may be almost instantaneous. A TIE database
typically employs a GUI that alloWs users to both vieW and
interrogate the data intuitively, by selection (“point and
click”) of descriptors (ItemSelectors) that are presented. The
Associations resulting from the use of such descriptors are
immediately apparent to the user, and yet permit the soft
Ware underlying the organiZation to be simple and fast.

[0026] Many other advantages result from the TIE
approach. In particular, it is easy to combine legacy data
bases across any number of platforms and any number of
different data types, into one uniform, intuitive interface,
Without the need to disturb the current legacy databases. The
only decisions that need to be made When merging databases
involve the Vocabulary of ItemSelectors and their properties.
Such decisions are orders of magnitude easier than the
complicated structure decisions required When current data
bases, each With its oWn structure or data model, must be
merged into a single neW structure or data model.

[0027] A TIE user interface is preferably uniform, and
typically may be customiZed. The user interface generally
alloWs users to actually vieW portions or representations of
the available data, by displaying the structured Vocabulary
(of ItemSelectors, Which are descriptors/identi?ers) for such
data, even before initiating any actual search. Thus, the
interface permits users to search through the data interac
tively, generally by adding or removing an ItemSelector
(descriptor or identi?er) to a present search query. After each
such modi?cation of a search query, the TIE interface may
incrementally adjust both the data Items that are available in
vieW of the modi?ed query, and also adjust the further
ItemSelectors (descriptors) that are available to further nar
roW the query. Such incremental adjustment may indicate to
the user the neW scope of available data, Without a need to
actually retrieve the data speci?ed by the search query. By
thus incrementally indicating the scope of data speci?ed to
the current point, a TIE interface may guide a user through
to the completion of each search. Moreover, the interface
may prevent the user from selecting combinations of
descriptors (ItemSelectors) that lead to a null set of data
Items, by presenting to the user only that subset of the
ItemSelector Vocabulary Which, When added to the present
query, Will still identify at least one data Item. Consequently,
no actual search need ever encounter Zero hits, because an
absence of data may be seen before the search is even
performed, Which eliminates the frustration and Wasted time
of “dead end” searches.

US 2007/0260594 A1

[0028] Integration of existing databases using TIE
requires only a relatively easy choice of an ItemSelector
Vocabulary. A user may de?ne the ItemSelectors (and their
properties) that are associated With data Items, thereby
establishing ItemSelector relationships to data Items as the
data is entered. To integrate tWo different TIE databases, the
user may choose a starting Vocabulary (of ItemSelectors)
that is simply the union of the individual Vocabularies for
each database, accounting for synonyms. Such a selection of
Vocabulary requires virtually no decisions at all. HoWever,
a more optimiZed Vocabulary is recommended, and can
readily be developed, Which could reduce the number of
ItemSelectors in the Vocabulary. All of the associations
betWeen Items and ItemSelectors are established by the
?nal, united Vocabulary.

[0029] FIG. 1 is a block diagram illustrating information
How in a typical TIE system. Interaction With the user takes
place at a graphical user interface 102, With the user choos
ing ItemSelectors from those offered by the system to
describe information that is sought. The selections of Item
Selectors and/or Items entered by the user are passed on to
a Boolean expression generator 104, Where a Boolean search
expression is created from the entered information. This
important step is described subsequently in much more
detail. The Boolean search expression may be passed to a
query engine 106 (Which may, of course, be part of the same
computing hardWare as item 104). The query engine may
access data Item information from any number of different
locations, represented here by just tWo: Storage A 108 and
Storage B 110. The query engine accesses relationship data,
such as association tables in storage 112, Which information
may be organiZed in a TIE system as a Universal Matrix
System.
De?nitions and Usage

[0030] Database users have evolved a language speci?c to
database tasks. In order to describe the TIE system, it is
necessary to extend this language. The folloWing is a glos
sary of terms relevant to TIE systems. Some de?nitions
explain methods used Within TIE, and thus provide a
description of some TIE procedures.

[0031] Some of these de?nitions relate to current, struc
tured databases, While others to the TIE database and to
unstructured databases.

[0032] Item: Information Items are the elementary data
objects stored in a database. Users may choose to de?ne
Items in different Ways, according to their previous experi
ence and needs. Thus, the user of a particular TIE database
may treat a traditional “Field” as an Item, or may treat a

collection of Field Components (i.e., Sub?elds), or Records,
or any other identi?able data entity, as an Item by simply
providing the appropriate ItemSelectors (descriptors) related
to such data entity, thereby permitting it to be accessed by
the system. In general, Items may constitute any type of
data, such as Text, Graphics, Sound Recordings, Movies,
and so on. Users may de?ne, and then later rede?ne, What
data entities constitute an Item. Thus, When converting an
existing database to the TIE system it may be convenient to
?rst de?ne a record or a roW of the existing database as an

Item, and then to change the initial de?nition upon deter
mining a more convenient linking of records, to form more
appropriate or useful Items. Quite often Items are concur
rently de?ned in a plurality of different Ways, Which is to say

Nov. 8, 2007

that What constitutes an Item may be easily changed. Such
?exibility ?oWs naturally from the TIE system.

[0033] Derived Item: These are special Items that are not
contained Within the database, but are derived from the
information contained Within the database. For example, in
a Police Department’s Overtime Database, records of Work
hours and pay are kept for each individual and each occa
sion.. When converting from a traditional structured data
base, it may be convenient to derive neW ?elds having totals
of both the pay and the hours, for each person, for each
department subdivision, for each kind of activity etc. In the
TIE database, such totals may be added as explicit neW data
Items, or may alternatively be made available indirectly as
Derived Items by simply de?ning the treatment of explicit
Items that Will produce each Derived Item. For example,
graphical plots and associated tables of total spending for
each kind of activity and each department subdivision may
be Derived Items that are produced as needed from under
lying data Items, rather than being maintained Within the
database as explicit Items (Which, of course, require storage
space). Such Derived Items may be de?ned When converting
to a TIE system, or, more ?exibly, may be created upon user
request.. Such Derived Items are accessed using the overall
TIE database Vocabulary, Which accordingly must be
amended to include any terms needed to de?ne the desired
Derived Items.

[0034] Field: This term belongs to the terminology of
previous databases, and is used someWhat loosely in the
context of TIE databases. A Field is generally the smallest
fragment of information having a separate meaning Within a
database, but different database organizations Will generally
have different Field de?nitions. “Address” records in one
database, for example, may be de?ned to contain a ?eld
“street address” that includes a street number and street
name, and such “street address” information Would not be
subdivided into further ?elds in such database. HoWever,
another database may de?ne separate “Street Name” and
“Street Number” ?elds Within the “Address” record.

[0035] Sub?eld: This term again is appropriate to previous
databases, and is loosely used With respect to TIE databases.
A Sub?eld is not a separate entity Within a database, but
refers to a portion of a Field. For example, if a Field
“Address” contains both street name and number, then the
street name and the street number may each be considered
a sub?eld of the “Address” Field. While sub?elds are not
formally maintained as separate information fragments
Within a database, it may be a simple matter to either enter
such sub?elds separately, or to separate the information from
a particular ?eld into sub?elds. With a TIE database, the
distinction betWeen Sub?elds and Fields is rarely signi?cant,
as either may be de?ned by the user as an Item for direct
access.

[0036] ItemSelector: A TIE ItemSelector is simply a
descriptor, or identi?er, of information. Words, phrases,
letters and numbers may all be used to specify a particular
ItemSelector. A single letter or number may be an ItemSe
lector, as may “Sick and Vacation Time.” Like a name, an
ItemSelector may be indicated by any unique (Within a
Group, see beloW) combination of symbols. Though the
symbols are typically simple alphanumerics and spaces, they
may be mathematical expressions, symbols associated With
chemical expressions, or icons, or graphics or pictures of

US 2007/0260594 A1

any sort. Also like a name, a particular ItemSelector may
refer to a single entity (e.g., Frederic B. Remington, Exxon
Corporation), or may encompass many entities (e.g., Fred,
Corporation). Due to this broad usage Within TIE systems,
it is useful to further de?ne many different kinds of Item
Selectors. A partial list folloWs:

[0037] AlphaSelector: individual letter or number values
(a special case of SingularSelector, beloW). For example,
“House Number Digit 1” and “House Number Digit 2” are
names of ItemSelector Groups. The individual digits 0-9 are
ItemSelectors that belong to such group, and are AlphaSe
lectors because they are single alphanumeric characters.
Thus, When a user is searching and selects the AlphaSelector
“3” from the Group “House Number Digit 1” and the
AlphaSelector “4” from the Group “House Number Digit 2,”
the Vocabulary choices thereafter presented Will typically be
limited to the available AlphaSelectors for any as-yet
unspeci?ed position Group. If other information that has
already been selected in a search process (e.g., the street
name) narroWs the possible range of “House Number Digit
1,” then it is possible that only one or tWo such AlphaSe
lectors Will then be available for selection by the user. On a
short street, for example, all of the house numbers may begin
With either 7 or 8, and thus only the AlphaSelectors “7” and
“8” Will be presented to the user as selectable Vocabulary
choices (Within the Group “House Number Digit I”) after
such street name has been selected.

[0038] RangeSelector: (or ValueRangeSelector) a range of
values sharing a common descriptor (Which is the RangeSe
lector). For example, “180-185 lbs.” is a RangeSelector that
describes all Weight values betWeen 180 and 185 lbs.

[0039] lmpreciseSelector: a descriptor that is not precise,
and thus conveys some potentially ambiguous scope of
equivalents. Colors are good examples of this type of
ItemSelector; for example, “BroWn” is an ImpreciseSelector
that generally encompasses light broWn, dark broWn, bru
nette, etc.

[0040] SingularSelector: Some ItemSelectors (descrip
tors) identify just a single value. For example, phone num
bers may be split up into “area code” and “pre?x” and “last
four”“Area codes” can only take on certain values (speci?
cally, betWeen 200 and 999). Each value of an area code,
such as “601” or “503” is a SingularSelector.

[0041] FieldSelector (Field ItemSelector): Terms used to
describe Fields, such as Billing Address, Shipping Address,
and Costs. A FieldSelector is an ItemSelector (and thus a
descriptor) of a Group of ItemSelectors that have a logical
association With each other. For example, an “Area Code” is
a descriptor (ItemSelector) of an entity that is often consid
ered a “Field.” Because it describes a Field, “Area Code” is
a FieldSelector.

[0042] Sub?eldSelector This is a descriptor of a sub?eld.
Last Name, First Name, Street Name, and Number may all
be Sub?eldSelectors for a Field such as “Mailing Address”
that encompasses all of this information (or more).

[0043] GroupSelector: a descriptor or identi?er (ItemSe
lector) of a Group of ItemSelectors that are, perhaps arbi
trarily, included in such group; see Group, beloW.

[0044] WildSelector: is a class of ItemSelectors, speci?
cally a descriptor of a data value that is position indepen

Nov. 8, 2007

dent. It is most commonly used With AlphaSelectors, such as
“LicensePlateCharacter.” HoWever, it can also be a descrip
tor of a DNA sequence of a number of amino acids, and
Within a gene it may be searched for irrespective of position.

[0045] PositionDependentSelector (PD ItemSelector)
describes any class of ItemSelectors that happen to be
position dependent, such as “LicensePlateCharacter1” or
“Area Code” (Which, of course, is the ?rst three digits of a
phone number.) Both Wild and PD AlphaSelectors are
useful, for example, in a Police Department crime database
that includes data on license plates. There, Wild AlphaSe
lectors may classify each license plate by all of its character
components, independently of character position Within the
license plate sequence. In contrast, there may be a separate
set of PD AlphaSelectors that apply to each character
position Within a license plate. When searching for a par
tially knoWn license plate, selections of characters Whose
position is knoWn may be made form PD AlphaSelectors,
While Wild AlphaSelectors may be used for characters
Whose position is unknoWn.

[0046] Group: In practice, ItemSelectors are usually orga
niZed into logical Groups of ItemSelectors for easier access
by a user. Upon user selection, Group membership de?nes
the query Boolean that is used intemally. ItemSelectors need
only be unique Within a Group; that is, a particular Group
may contain an ItemSelector that has the same name as a

different ItemSelector in a different Group. For example, a
Group “Licensed Drivers” may contain an ltemSelector
“Hair color,” but it Would not be the same as an identically
named ItemSelector “Hair color” in a Group “Registered
Owners.” Thus, membership in a Group effectively distin
guishes an ItemSelector from a same-named ItemSelector
that is in another Group, or in no Group. This hierarchical
structure Within the organization of the Vocabulary Will be
familiar to most users of computers, due to its similarity to
typical directory organization. Indeed, although most TIE
databases need Zero, one or tWo levels of such hierarchy
Within the Vocabulary, TIE system softWare generally may
readily be extended to utiliZe any number of hierarchical
levels as may suit the needs for a particular database
Vocabulary. No hierarchy is typically required in the orga
niZation of associations betWeen Items and ItemSelectors.

[0047] Vocabulary: This is simply the union of all Item
Selectors, and forms the entire scope of descriptors (Item
Selectors) that may be selected by a user to locate or
describe each and every Item in a TIE database. The
available Vocabulary is intuitively similar to Words that may
be used to describe a desired Item. A TIE Vocabulary is a
limited set of descriptors (ItemSelectors) that is suf?cient to
describe all Items Within a TIE database. During a search, a
user initially may select any ItemSelector from the entire
TIE database Vocabulary, and thereafter the TIE interface
typically presents only that subset of the Vocabulary of
ItemSelectors Which, if any one is selected to make a further
combination With those ItemSelectors already chosen,
describes at least one data Item.

[0048] Boolean “Conjunctive” ItemSelectors are those
that a TIE system treats as if they are invoked With a Boolean
“AND” betWeen such descriptors (ItemSelectors that have
the Conjunctive attribute). Accordingly, Items so described
must contain the attributes of all of the Conjunctive Item
Selectors chosen. A plurality of Conjunctive ItemSelectors

US 2007/0260594 A1

may be assigned to an Item, so that they act in an overlap
ping fashion to identify the Item. For example, the ItemSe
lectors “SoftWare,”“Development,”“Tools,”“C++” may be
overlapped or conjoined to describe a set of Items, and thus
they may each be Conjunctive ItemSelectors.

[0049] Boolean “Disjunctive” ItemSelectors are those
Which, When selected by a user in the process of describing
an Item, are treated by a TIE system as having an “OR”
disjunction betWeen them. ItemSelectors are often divided
into several separate Disjunctive Groups. When a plurality
of ItemSelectors is chosen from Within a Disjunctive Group,
they are combined With the “OR” disjunction betWeen
themselves. The resulting disjunctive combination of Item
Selectors from such Disjunctive Group, hoWever, is “paren
thesiZed” and combined, using the conjunctive “AND,” With
selected Conjunctive ItemSelectors and With any other par
enthetical expressions of ItemSelectors, in accordance With
Boolean logic rules (e.g., distribution of the “AND” opera
tion that is external to a parenthetical expression over those
ItemSelectors that are “OR’d” Within such parenthetical
expression).

[0050] ItemSelectors that Would not normally be assigned
in plurality to any Item (that is, Would normally be assigned
only one at a time) are good candidates for a Disjunctive
Group. Consider a database of events that is catalogued
according to the particular date and time at Which they
begin. Various date-related ItemSelector Groups (such as
Year, Month, Day, and Day-of-Week ItemSelector Groups)
are disjunctive because an event cannot begin at tWo differ
ent times or dates.

[0051] Boolean “Bijunctive” ItemSelectors are those that
are used in both Conjunctive and Disjunctive contexts. For
example, When considering or searching on toWns in the US,
the ItemSelector group “State” (in Which each toWn is
located) is a disjunctive ItemSelector because each toWn is
located in only one state. HoWever, When considering or
searching on other geographical features (that overlap
states), such as lakes, national parks, rivers, etc., the Item
Selector group “State” may need to be conjunctive. Thus, the
same Group is sometimes conjunctive (e.g., When searching
for rivers) and disjunctive (e.g., When searching for toWns).
One Way to manage the bijunctive nature of such a Group is
to start With disjunctive search rules, and then to automati
cally sWitch to conjunctive search rules When the user
chooses any ItemSelector indicating Items that are described
by more than one ItemSelector Within the Group. Another
Way is to have tWo parallel Groups of ItemSelectors: “States
for ToWns” and “States for Lakes,” in this example.

[0052] Boolean “Exclusive Disjunctive” (“ED”). ItemSe
lectors are treated by a TIE system as connected by a
Boolean exclusive “OR” or “XOR” operator. Groups of
ItemSelectors that share this property are very useful in
minimiZing the number of disjunctive ItemSelectors in a
Boolean query When ranges of values are selected by the
user. For example, in a database regarding persons, it is often
useful to have an age Group of ItemSelectors in Which each
age is represented in years. A user searching for someone
betWeen 30 and 40 could select each of the Disjunctive
ItemSelectors 30, 31, 32, . . . 40. HoWever, each ValueSe
lector, such as “30,” may be interpreted (particularly if more
than one is chosen) to indicate an age of up to 30 years, that
is, an age of 0 to 30 years old. If, moreover, the ItemSelec
tors in “Age” are all ED ItemSelectors, then simply selecting
“30” and “40” de?nes the range betWeen these tWo (because

Nov. 8, 2007

that is the “XOR” of the de?ned ranges. Thus, “ED”
properties may reduce the selection actions from eleven
separate “clicks” to just tWo.

[0053] Negative ItemSelectors: Sometimes it is conve
nient to invoke a Boolean negative of certain ItemSelectors.
For example, in a database of people Where the race of each
person is stored, it may be necessary to search for non
Europeans. If “European” is an ItemSelector, using its
negation Would serve the purpose. This could, of course, be
implemented by adding an ItemSelector “Non-European”
Whose synonyms are all the non-European ItemSelectors,
but may be more conveniently implemented by using a
modi?er key (such as the Control key) While clicking on the
ItemSelector to indicate that an negative or inverse of the
ItemSelector is being selected.

[0054] ItemSelector Group Properties: Each Group of
ItemSelectors has a Boolean property that is associated With
each ItemSelector in the Group. When a user selects an
ItemSelector, a query Boolean is automatically created by
the TIE softWare Which then executes an Item search based
on this Boolean query and evaluates the Item hits and the
remaining Available ItemSelectors. In creating this Boolean
query, the TIE softWare takes its cue from the Boolean
property of the group to Which the selected ItemSelector
belongs. Exemplary Boolean properties are described beloW,
but are best understood in the context of TIE system
functions, Which are set forth in a functional description that
folloWs these de?nitions.

[0055] Conjunctive/Disjunctive/ED Decisions: The deci
sion as to Which ItemSelectors to treat as Conjunctive and
Which as Disjunctive is a matter of choice and meaning,
based on the speci?c type of data and the types of searches
required through the data. Guidance for handling these
decisions in a TIE system is provided beloW.

[0056] A TIE system may assign the ED (Exclusive
Disjunctive) property to appropriate ItemSelectors, and may
present them graphically to a user With instructions to select
endpoints of a range. As one alternative, a TIE system may
present (or permit to be entered) values for certain Groups
of ItemSelectors, such as “Age.” The system may then
interpret a ?rst selected ValueSelector as ED With the
immediately succeeding ValueSelector in the Group (effec
tively treating it as identifying a unique ValueSelector), but,
upon selection by the user of a second ValueSelector, treat
the tWo as ED With each other.

[0057] A Bijunctive Group may be expanded into tWo
separate groups,: one treated Conjunctively and one Dis
junctively, each displayed so as to make the treatment clear.
ItemSelectors that are never assigned together to the same
Item are alWays Disjunctive, because if used Conjunctively,
they Would ?nd Zero Items.

[0058] ValueRangeSelectors, When users may need vary
ing ranges, may be presented as Exclusive Disjunctive, so
that any range can be selected by choosing the tWo boundary
ranges. BeloW is a further example of an appropriate use of
Exclusive Disjunctive (ED) properties With ValueRangeSe
lectors:

[0059] Suppose Items are described With the folloWing
ValueRangeSelectors:

US 2007/0260594 A1

Such ItemSelectors could appropriately be designated as
“Disjunctive,” whereupon each range could be selected
individually, or ranges could be combined to create broader
ranges. Thus, if the range $50-$30 Was desired, all three
ItemSelectors could be chosen.

[0060] NoW suppose instead, the same data Was described
by the following, alterative ItemSelectors:

and these Were all designated as ED ItemSelectors (for
example, by attaching ED attribute to the entire Group of
ItemSelectors). With this change, any contiguous range may
be chosen by selecting one range, or by combining just tWo
ItemSelectors. Combining the ?rst and the last yields the
range $l0->$30.

[0061] A better Way to present such an Exclusive disjunc
tive Group Would be:

$0 $10 $20 $30

With instructions that a user pick the tWo range boundaries.

[0062] ItemSelector Groups and Group Properties: When
designing the GUI, the various types of ItemSelectors are
usually logically grouped into ItemSelector Groups. It has
not been found convenient to combine ItemSelectors having
different Boolean properties Within the same group. There
fore, ItemSelector groups are typically divided into (Bool
ean) Disjunctive, Conjunctive, Exclusive Disjunctive, and
sometimes Negative types. It is convenient to refer to each
group by name (i.e., the GroupSelector for such Group), and
to describe attributes of each group by a property called
Kind. “Kind” itself is a name (GroupSelector) for a Group
of ItemSelectors that determines the rules by Which Item
Selectors are assigned to Items.

[0063] FIGS. 2 and 3 illustrate rules that may be used for
creating a Boolean expression from ItemSelectors chosen
from different groups having different Boolean properties
associated thereWith. FIG. 2 indicates that a presently cho
sen set of ItemSelectors 202 includes a pair 204 of ItemSe
lectors Cl and C2 that are from a Conjunctive group (or are
otherWise associated the conjunctive Boolean property. A
pair 206 of Disjunctive ItemSelectors D1 and D2 are also in
the chosen set, as are a pair 208 of ItemSelectors El and E2
that are associated With the Boolean Exclusive-Disjunctive
property (at least as to each other). The fact that pairs of such
items is merely for convenience; any number may be
selected. The resulting Boolean Expression is created by ?rst
relating chosen ItemSelectors having the same Boolean
property With respect to each other (such as D1 and D2, or
E1 and E2) according to such Boolean property, Within a
parenthetical expression. In this case the result is parentheti
cal expressions (Dl+D2) and (El-E2), Where “+” indicates
“OR,”“—” indicates “XOR,” and “*” indicates “AND.” The
resulting parenthetical expressions are then conjunctively
combined With each other, generally irrespective of the
Boolean property associated With the ItemSelectors. Due to

Nov. 8, 2007

the nature of Boolean logic, it does not matter if Cl and C2
are originally parenthesiZed or not, because they in any
event are eventually related to the rest of the overall Boolean
search expression conjunctively.
[0064] FIG. 3 illustrates a slightly different situation that
FIG. 2. The same Conjunctive pair Cl and C2 (304) is
present, but also tWo different disjunctive pairs, lst Disjunc
tive ItemSelectors 306 and 2nd Disjunctive ItemSelectors
308. These different pairs are presumably from different
disjunctive groups; in any event, they are disjunctive only as
to the other member of the pair (or larger group). Accord
ingly, the parenthetical expressions that result include (1 D1 +
lD2), as Well as (2Dl+2D2). As in FIG. 2, the resulting
parenthetical expressions are conjunctively associated With
all other parts of the Boolean search expression, and again
it is not necessary to actually put Cl and C2 Within a
parenthesis, because they Will be related conjunctively With
or Without such parenthetical.

[0065] ItemSelectors may be assigned to Items in diverse,
selectable Ways. The desirable rules Will generally be
selected depending upon the nature of the data contained
Within the associated Items. For example, consider a Group
of ItemSelectors broadly described by the term (GroupSe
lector) “Address.” Subgroups of “Address” may be identi
?ed by the folloWing ItemSelectors:

House Number; Street Name; Street Type; City; Zip; State

[0066] Exact Kind Groups. Consider the House Number.
A list of all the house numbers in the database may be
designated as the House Number group. An appropriate
Kind designation for that group Would be Exact, because the
assignment of each ItemSelector from the list of house
numbers Would occur only if the ItemSelector matched
exactly the data in the House Number ?eld.

[0067] Alpha Wild Groups. Presenting a list of every
possible house number for the user to choose from is usually
too cumbersome. So an easy alternative, though very much
less precise, is to list a single column of digits from 0
through 9, each of Which is an ItemSelector, and is assigned
to an Item Whenever it is contained in any position of the
house number. For example, if a house number Was 3421,
the Item containing this number Would be assigned the four
ItemSelectors l, 2, 3 and 4. When the user chooses these
four ItemSelectors from the available list (in any order), all
numbers that contain these digits, in any order, Would be
selected. In addition, any house number that contains other
digits in addition to these, Would also be selected. The Kind
property of this group is referred Alpha Wildithat is,
Alpha-Numeric and Wild. The Alpha Wild designation does
not distinguish betWeen purely numeric ItemSelectors and
those including letters.
[0068] Although an ItemSelector from an Alpha Wild
Selector group does not narroW doWn a search as much as

those from an Exact group, ItemSelectors of this type useful
in many applications, particularly When only partial infor
mation is knoWn. In combination With other ItemSelectors,
it is very effective at narroWing doWn possibilities When
searching or broWsing through data.
[0069] Digit Number Groups. ItemSelectors describing
the number of digits in numbers, such as house numbers, can

US 2007/0260594 A1

also form a useful ItemSelector group. In combination With
an Alpha Wild group, for example, an ItemSelector from
such a group can considerably narroW doWn the possible
matches. A group of number ItemSelectors that designates
the number of Digits in a house number that is the target of
a search Would be described as being of Digit Number Kind.

[0070] Alpha Position Groups. One precise Way of clas
sifying a house number (or indeed any number, name or
Word) is to select ItemSelectors from an appropriate set of
ItemSelectors of Alpha Position Kind. A “set” of such
groups is needed, the complete set including one group for
each digit position. Each group consists of all possible
AlphaPosition ItemSelectors for its associated digit position,
Which for house numbers (for example) is generally limited
to the numerals 0-9. An ItemSelector Group Set of this Kind
is designated Alpha Position n, Where n is the number of
character positions, and therefore is also the number of
Groups Within the set.

[0071] Sub?eld Values Groups: The abstraction of a Sub
?eld, such as for example the Last Name, is instantiated With
a Sub?eld Value When the data is entered. So for example if
the name Smith is entered into the Last Name Sub?eld, then
Smith is the Value of that Sub?eld.

[0072] Sub?eld Value Types: The folloWing broad three
Value Types can be easily identi?ed: Text, Numbers, and
Dates. Other Value Types can be introduced as the need
arises in speci?c applications. The Words used to describe
the Value Types can also be implemented as ItemSelectors.
When choosing Sub?eld Value Selectors, each of these
Value Types can be treated differently by the software. In
some cases, the individual Values can be used as ItemSe
lectors. In other cases ranges of values can be de?ned as
ItemSelectors.

[0073] Sub?eld Derived ItemSelectors: For example,
When the database contains product sales information about
a very large number of products, the individual sales prices
could be used as ItemSelectors or alternatively price ranges,
optionally de?ned by the user, can be used as ItemSelectors,
or both these sets of ItemSelectors can be used.

[0074] The Price Range Selectors Would be the derived
ItemSelectors. Another, less obvious example is the day-of
Week ItemSelector in a database Where the entries are dates,
because the day-of-Week can be derived from the date. Yet
another example: the ?rst letter of the last name in a long list
of names can be a (Disjunctive) ItemSelector to help narroW
doWn the list of name ItemSelectors.

[0075] ItemSelector Synonyms: ItemSelector Synonyms
are useful in many different contexts. The ItemSelector
Synonym here is used With a broader meaning then the
dictionary synonym. A synonym normally means a Word
With a similar meaning. ItemSelector Synonym includes that
meaning but additionally includes any Word Whose meaning
is narroWer than, but contained Within that of the ItemSe
lector.

[0076] So for example, if the original ItemSelector is
Correspondence, then Email, Letter, Fax, and Voice Mail,
could be that ItemSelector’s Synonyms. When considering
Sub?eld Value Selectors and using ItemSelector ranges, the
values Within a range are that range’s synonyms.

[0077] ItemSelector Synonyms are not symmetrically
related. So in the Correspondence ItemSelector example

Nov. 8, 2007

above; every Item that has the Email ItemSelector Would
also have assigned to it the ItemSelector Correspondence,
but the converse could not be asserted: not every Corre
spondence is an Email.

[0078] Synonyms of ItemSelector Booleans: More gener
ally the Synonym of an ItemSelector Boolean is the Item
Selector equivalent to a Boolean expression of other Item
Selectors. The example of Sub?eld Value Selectors, Which
represent ranges of values, can equivalently be considered as
the Synonym of the disjunctive Boolean of all the detailed
Value Selectors Within the range.

[0079] Conventional & TIE DB Designs Compared: There
are tWo levels of description of databases: the Logical Level
and the Physical Level. At the Logical Level, a conventional
Relational Database is described in terms of a logical
Schema Within a data de?nition language. The purpose of
the Schema is to specify those properties (such as relation
ships, value types etc.) of a database that are permanently
true, regardless of the particular data details or situation that
applies at any particular time. The data dictionary is used to
catalog the various data attributes and relations.

[0080] In contrast, the TIE system does not care hoW or
Where the data is stored because it is based entirely on data
about dataiusually called “Meta-Data”inot directly on
the data itself. This alloWs total ?exibility in the storage and
the type of data stored. We Will call this data about data the
“Data BLOBS” because Meta-Data is already being used
With a completely different meaning in the database context
and its use here could cause misunderstanding. (BLOBS
stands for Binary Linked and Organized Binary System.)

[0081] It is Well knoWn in other contexts (particularly in
programming data structures) that it is much easier to track
dynamic data When only references to the data are used. A
very simple example of this is the use of pointers to data
elements in databases When each data element can be stored
anyWhere, can be of any siZe and can be changed Without in
any Way affecting the pointer.

[0082] All the data associations and descriptions are
abstracted to the BLOBS. It is shoWn here that an appro
priate logical optimal data structure of the BLOBS is a
Binary Matrix. Its equivalent optimal physical data structure
depends on the hardWare and compiler implementations, but
for current olf-the-shelf hardWare and compilers, an array of
vectors (of varying dimensions) With integer (id) compo
nents is usually optimal.

[0083] Users of databases need to be able to see the data
to help them form a question or search query. In forming the
search query, they need to be guided to the available data
only, to protect them from fruitless searches. To be useful to
the average user, a database should not require the knoWl
edge of complex query languages nor the knowledge and
understanding of Boolean query expressions.

[0084] None of these requirements are met by current
state-of-the-art databases. The TEE system hoWever ful?ls
all these requirements and in addition makes the merging of
disparate legacy databases relatively very easy.

[0085] We begin With a simple example, describing a
possible conventional approach and the TIE approach, and
then folloW With a generalization, describing a common
implementation. One of the properties of the TIE system is

US 2007/0260594 A1

that a su?iciently general implementation Will cover almost
all the features needed in almost all implementations, With
differences being con?ned to the GUI. Any small additional
features that may become desirable can be easily added
without affecting the main application.

[0086] The Conventional Approach: Consider a relational
database containing customer and product information. In
current databases, this Would normally be handled With three
types of records: one for the customer information another
for the product information, and the third for the purchase
orders, tied together through de?ned hierarchical relations.
For example, the data of each product purchased by a
customer Will be linked to that customer’s record, and a
purchase order record.

[0087] Under current in?exible, structured databases, We
have to decide What ?elds to assign to each record in the
Customer database. As an example, We Would naturally
de?ne a set of address ?elds for the Shipping Address, and
another set of address ?elds for the Billing Address. Suppose
noW that the customer for some reason has tWo shipping
addresses. (Perhaps one is for one type of product the other
for other products.) We are noW faced With the prospect of
adding another set of address ?elds, but With no space
originally allocated for them. Current databases Would nor
mally require us to add another address ?eld to all customer
records, even though only a very small fraction of the
customers may need it. In addition if indexing is used, any
tables We have created Will all require updating When We do
add such an extra ?eld set.

[0088] Of course, With foresight at the outset, a possible
need a different number of Address Fields for each customer
Would have been recogniZed, and this Would have alloWed
creation of a table of addresses that Would solve this
particular problem of in?exibility. HoWever, it is hard to
determine at the outset Which Fields Will need a plurality of
alternatives. The overhead of having each and every ?eld be
a table of ?elds is too great to make that approach practical.

[0089] Consider noW hoW such a database could be orga
niZed and in particular hoW it could groW, using the TIE
technology.

[0090] Descriptive OvervieW of TIE: The TIE deals With
tWo classes of objects: Information Items (referred to simply
as Items) and ItemSelectors (Which are the individual
descriptors Within the TIE system vocabulary).

[0091] In implementations of the TIE technology the user
may be presented With the entire vocabulary of ItemSelec
tors. The organiZation by Which the vocabulary is presented
Will vary, but typically folloWs the folloWing general
approach, as illustrated in FIGS. 4, 5 and 6. As shoWn in
FIG. 4, a user may be presented on a graphical screen 402
With lists of ItemSelectors and Items. ItemSelector list 404,
for example, is a group of Person Description ItemSelectors
(although not alWays true, We may assume for the moment
that the ItemSelector is the same as the name by Which it is
represented). FIG. 4 shoWs an initiation of a search, before
the user has chosen any ItemSelectors at all. A list 406 of
(tWelve) possible ItemSelectors for a “month observed” is
presented, as Well as a list 408 of (seven) possible ItemSe
lectors for Day Of Week Observed. Finally, an ItemSelector
list 410 makes all possible ItemSelectors for Day (of the
month). Thirty one such ItemSelectors are possible, but the

Nov. 8, 2007

situation is represented in Which there is not su?icient room
for all possible ItemSelectors to be directly presented the the
user. Any graphical technique may be used; shoWn here is a
“scroll bar”412 by Which the user, With aid of a mouse, can
quickly scroll through the ItemSelectors that are not imme
diately visible.

[0092] Because no ItemSelectors have yet been selected to
narroW the ?eld of described Items, all Items belong to the
Selected Item listing 414. Here, another technique for dis
playing less than all possibilities is illustrated: listing some
of the Items, and indicating hoW many there are. More
typically, the number of selected Items that are NOT dis
played Would be indicated. Here, a representative sample of
eight selected Items is shoWn for illustration.

[0093] Turning to FIG. 5, it can be seen that the overall
graphic presentation 502 has changed, as has the list 504 of
possible Person Descriptions. That is because the user has
chosen (and added to the present ItemSelector set) tWo
ItemSelectors. One, “September,” is clearly indicated as
selected in list 506. The other, “Saturday,” is indicated in the
Day Of The Week list 508. Due to these selections, the
number of possible ItemSelectors in the Day list 510 is
reduced to just the days of the four Saturdays in September,
i.e., to 7, 14, 21 and 28 (a single year is assumed for
descriptive convenience). During Saturdays in September, a
smaller set of Person Descriptions Were recorded (and thus
exist as ItemSelectors, or descriptors, in the database). In
this example, four such Item selectors are applicable to
persons observed on the limited days de?ned by the present
set of ItemSelectors. Moreover, the Item listing of actual
Items (persons, in this case, represented by some of their
salient characteristics) is much reduced, as Well, to just four
that are described by the present set of Item Selectors.

[0094] FIG. 6 re?ects the next user choice from Items and
ItemSelectors presented in GUI 602. In the list 604, the user
has chosen “Boisterous.” This does not affect the Month
Observed list 506 or Day Of Week Observed list 508. In
some embodiments the user is permitted to choose an
additional ItemSelector from these lists, Which Would
INCREASE (typically) the number of selected Items shoWn
in the list 614. Given the three ItemSelectors that have been
chosen and thus constitute the present set of ItemSelectors,
the Day list 610 re?ects that a Boisterous person Was
observed only on the 7th of September. The Selected Items
list 614 is also reduced by this further choice, noW re?ecting
only tWo persons. unchosen possibilities thatselects some
thing further in the GUI 602, as is re?ected in FIG. 6.

[0095] A user searches for Items of interest by selecting
combinations of particular ItemSelectors from the vocabu
lary. This is typically done one at a time, either using a
mouse click or by using the keyboard. Although multiple
simultaneous selections are possible, they are either avoided
or constrained in order to prevent “null hits” in Which no
Items are consistent With the selected combination of Item
Selectors. The simplest Way to avoid such null hits is to
reneW that portion of the vocabulary that is presented as a
selectable option to the user after each single ItemSelector
choice entered by the user.

[0096] Thus, as each ItemSelector is chosen by a user, the
remaining ItemSelector vocabulary that is made available to
the user adjusts itself in such a Way that at each stage any
choice of an available ItemSelector Will alWays result in at

US 2007/0260594 A1

least one Item that matches all of the ItemSelectors selected
thus, or in other Words that ?ts the description that has been
entered to such point.

[0097] Each ItemSelector chosen further describes a target
that the user is seeking.

[0098] ItemSelectors in some Groups of ItemSelectors
(descriptors) are mutually exclusive When describing the
target Item(s); that is, if an Item is described by one of such
mutually exclusive ItemSelectors, then it cannot be
described by another. Such groups are called “disjunctive.”
An example of this is a group of ItemSelectors that Will be
called “gender.” The ItemSelectors (descriptors) Within this
group include only “male,”“female,”“unknoWn,” or “none.”
These ItemSelectors, as can be seen, are mutually exclusive
as applied to any particular Item, and may be referred to as
“disjunctive.” Groups of ItemSelectors my be used in the
manner of disjunctive Groups even if not all ItemSelectors
Within such Group are truly mutually exclusive; this Will be
a matter of choice and convenience for the purposes of a
particular database.

[0099] In other Groups, the ItemSelectors are mostly NOT
mutually exclusive, but instead have a large degree of
overlap. Such Groups Would be called conjunctive. A “Prod
ucts” group of ItemSelectors is likely to contain the folloW
ing ItemSelectors (descriptors), in addition to others: appli
ance, furniture, electrical, kitchen, outdoor, major, small,
large, etc. Many of these descriptors can apply to a single
product, and thus such a group Would be treated as a
conjunctive group.

[0100] A TIE system typically makes decisions about the
Items selected by applying rules that take into consideration
Whether a particular ItemSelector selected by a User belongs
to a conjunctive group of ItemSelectors, or a disjunctive
Group. In some cases special rules apply to ItemSelectors
belonging to groups that are bijunctive, meaning that Item
Selectors in such groups are often useful both conjunctively
and disjunctively.

[0101] The precise Boolean Algebraic combination of the
chosen ItemSelectors depends on the groups from Which the
ItemSelectors Were chosen.

[0102] For example, the most common group type is
termed Disjunctive, because selections of more than one
ItemSelector from such a group implies the disjunctive “or”
betWeen them. Such ItemSelector selection increases (or in
rare cases leaves unchanged) the number of selected Items
and the available ItemSelectors.

[0103] The second most common group type is termed
Conjunctive, because selection of more than one ItemSe
lector from such a group implies the conjunctive “and”
betWeen them. Such ItemSelector selection narroWs doWn,
i.e. decreases (or in rare cases leaves unchanged) the number
of selected Items and the available ItemSelectors.

[0104] Other ItemSelector group types comprise the
Exclusive Disjunctive (implying an exclusive “or”) and the
Negated Disjunctive (implying “or not”) and the Negated
Conjunctive (implying “and not”). Other, more complicated
types are also useful and Will be described.

[0105] In situations Where said ItemSelector vocabulary is
large it can be divided into a number of groups and group
sets, logically organiZed to make navigation to the appro

Nov. 8, 2007

priate vocabulary terms easy for the user. In cases Where the
siZe of the vocabulary is such that even this arrangement
makes navigation cumbersome, a higher level vocabulary
can be created for the sole purpose of controlling the display
of the various vocabulary groups and subgroups.

[0106] For example the Items either in one frame, WindoW,
or a set of frames or WindoWs, each accessible using tabs,
and listings (usually in several and sometimes in many list
groups) of various descriptive ItemSelectors. Some of these
ItemSelectors may be presented as buttons of various kinds,
While others are presented as lists in columns, divided into
tabs When necessary to accommodate larger numbers. Some
ItemSelector groups may be initially hidden and only dis
played under certain conditions, such as When the user
makes appropriate choices of ItemSelectors and/or of con
trol elements.

[0107] The Items are listed using some suitable identi?ers
or names as determined by the particular data. When no
selection of ItemSelectors is made, all items are available to
be listed, their number is displayed and a small subset of
them, is usually listed at any time.

[0108] As the user chooses ItemSelectors that describe the
Items of interest, the number of listed Items is updated,
(usually reduced). These listed Items are the ones that match
the description and Will be here referred to as the Selected
Items. The remaining available ItemSelector lists are also
updated, (also usually reduced) to shoW only those ItemSe
lectors that are related to the already selected set through any
Item. These ItemSelectors Will be referred to here as the
Available ItemSelectors. When the number of Selected
Items is small enough, the user selects from the Item listing
by name those Items to be vieWed in detail. Each such Item
chosen may be presented in its entirety in a neW WindoW.

[0109] In addition, in preferred implementations of TIE, a
user option is provided enabling the display of Item counts
associated With each ItemSelector. These Item counts re?ect
the number of Items, from amongst the current selected Item
set, associated With each of the available ItemSelectors.
Each time the user changes the selected ItemSelectors, these
counts are updated. This gives the user an immediate “View”
of the data in the database. In addition of course, the listing
of ItemSelectors and their updating provides a continuously
updating vieW of the data. No such vieWs of the data in a
traditional structured database are possible. Thus When
using the TIE system, neW, useful queries often suggest
themselves to the userisomething impossible under current
systems, both structured and unstructured.

[0110] The ItemSelectors form a Vocabulary in terms of
Which the user can create descriptions of Items to be listed.
The dynamic updating of the ItemSelector lists to shoW only
available ItemSelectors, means that Zero returns to any query
(or search) never occur.

[0111] In many interesting applications, the ItemSelector
Vocabulary consists of ItemSelectors that have different
Boolean Properties. It is then necessary to divide these
ItemSelectors into groups, each group de?ning the property.
So for example, in a database using ItemSelectors With a
large variety of properties, there Would be groups With all the
possible Boolean properties and all the possible value prop
erties.

[0112] Applying TIE: Using the TIE technology We can
begin implementing a database by deciding on the ?elds

US 2007/0260594 A1

needed for each record We enterijust as in the current, old
technology. Each record or Item in TIE, hoWever, is free to
have any number of ?elds, Without burdening other records
in any Way. Additional ?elds can be added at any timeiit
is not necessary to knoW at the outset the number or kind of
?elds needed.

[0113] Each customer Would be uniquely identi?ed (as is
currently usual also) With an ID number and each product
and purchase order Would likeWise be so identi?ed. Using
the TIE technology, hoWever, We could also decide precisely
Which groups of sub-?elds We Wish to list as separate Items
and identify With a Record Type ItemSelector. In this
example, We Will assume, similarly to a standard database,
that We have decided to describe the data groupings as three
types of Items: the Customers, the Products, and the Pur
chase Orders. We could then use the linking number

[0114] ItemSelector Identi?cation of Items: Each Cus
tomer Would be assigned a number of descriptive attributes
or ItemSelectors, their combined meaning identifying the
type, name, and other attributes of the customer, this being
the customer data, and the type, description, price range and
other attributes of the product, being the product data, and
the product identi?ers, descriptions and other data, being the
purchase order data.

[0115] Automatic ItemSelector Association: When a cus
tomer purchases a product, the data entry automatically also
assigns, to that customer, and to the purchase order, the
descriptive ItemSelectors or attributes of the product, Which
Would also include the product name, and the product ID, as
ItemSelectors. This is done automatically When the data
entry of the purchase order is created. Such an assignment
automatically associates the product With all its ItemSelec
tors, the customer and all customer ItemSelectors, and the
purchase order With its ItemSelectors, plus those of the
product and those of the customer.

[0116] Therefore When the user subsequently chooses an
ItemSelector describing a product, all customers Who pur
chased that product are also listed. To see a listing of only
the products, and not the customers, you Would choose the
Record Type ItemSelector Products. Similarly to see only
the Customers you Would choose the Record Type ItemSe
lector Customers, similarly for purchase orders, using the
Record Type ItemSelector Purchase Orders.

[0117] Other Record Associations: In this example, the
details of each purchase order Would normally constitute
another record in a traditional database. Each purchase order
Would also have an identifying number. In the TIE database
each such order Would be just another, though differently
classi?ed, data Item, linked to the customer through all the
customer ItemSelectors including the customer ID number,
to the product through the product ItemSelectors, and to the
Purchase order through both sets of ItemSelectors and
possibly neW, PO speci?c ItemSelectors.

[0118] Here is hoW the TIE database Would be used to
search data.

[0119] The major Record Type ItemSelectors: Customer,
Product, Purchase Order, Would be displayed either as
buttons or on some separate list. Such broad Data Type
ItemSelectors Will typically be used in tWo Ways: to restrict
the display to only one Data Type, and to include more then
one Data Type in the display. They may also be used to

Nov. 8, 2007

describe any neW ?eld or sub?eld needed for a particular
record and so automatically associate it With the appropriate
Items.

[0120] It is important to realiZe that in the TIE system, a
neW ItemSelector can be added at any time, as needed,
Without necessarily affecting ItemSelector assignments for
any current Item.

[0121] It is also possible that an added ItemSelector may
need to be assigned to some subset of already entered Items.
When this happens, a possible interface Would have the user
?rst choose existing ItemSelectors to narroW doWn the listed
Items to those, or mostly those needing the neW ItemSelec
tor. Then, through suitable controls, the user Would indicate
Which of the listed Items are to have assigned Which of the
neW ItemSelectors. One simple implementation of this inter
face alloWs the user to mouse-drag the ItemSelector to the
selected Items.

[0122] Conjunctive, Disjunctive and Bijunctive ItemSe
lectors: Examples. Many ItemSelectors are Conjunctive, but
some are Disjunctive. For example, in the customer-product
purchase order database We are discussing, price ranges of
products and totals of each purchase order Would be appro
priate useful ItemSelectors, but they Would be disjunctive,
that is, they Would automatically be included With an “OR”
betWeen them When more than one of their kind is selected.
This is because it is not useful to search for products or
purchase orders that are in tWo price ranges: in fact there
should be none! Similarly, if days-of-Week (on Which the
purchase order Was initiated) are used as ItemSelectors, they
too Would be Disjunctive, because an order can only be
initiated on one day. Descriptive ItemSelectors are usually
Conjunctive. So for example ItemSelectors describing a
product, such as “Electrical, Appliances, Kitchen” are three
Words that are usually used together to form a description,
so they are Conjunctive ItemSelectors.

[0123] Distinctive Display of ItemSelector Types: One
Way to implement the distinction betWeen the Conjunctive,
Disjunctive, and Bijunctive ItemSelectors is to list them
distinctively. For example, in one implementation the Item
Selector types are in separate lists. In another, the Disjunc
tive ones are buttons Whereas the Conjunctive ones are on
lists. Bijunctive ItemSelectors can be displayed either in tWo
displays, in separate lists, or in one display and a control can
be provided to sWitch betWeen the types.

[0124] As a third alternative, or addition the display could
use a modi?ed Word or phrase to represent each ItemSelec
tor. For example, after the ?rst ItemSelector in a group is
chosen, the disjunctive “or” could be pre-?xed to each
subsequent ItemSelector in the disjunctive display (or as a
pre?x to a listing) and the conjunctive “and” to those in the
conjunctive display. Other Ways to distinguish the tWo
displays are possible and are a matter of interfaces, to be
decided by any special needs of the particular application.

[0125] It is also possible to provide a Way to enter explic
itly the “AND” the “OR” and the “NOT” betWeen the
ItemSelectors. The user could explicitly enter the conjunc
tion, disjunction, or negation With the aid of a control or
using the keyboard, or the entry could be affected by using
a modi?er key While clicking on an ItemSelector.

[0126] Item Names: Usually the user decides, at the outset,
Which Sub?elds are to be used to identify a record in a listing

US 2007/0260594 A1

displayithat is hoW to name each Item. This decision can
be left as a preference for the user of the TIE Database, With
a default of the most likely choice.

[0127] For example, for the Customer database, the last
and ?rst names plus the Zip code of the customer’s shipping
address Would be possible choices. The display of Items
could then be ordered alphabetically by last name or numeri
cally by Zip code, at user’s option. In general, it is possible
to choose any combination of Sub?elds as the Item name.

[0128] Similarly, the user can choose the identi?ers to use
in a display of the Products and Purchase Orders data.

[0129] For example, product Name and product ID num
ber could be useful identi?ers for the Products data, While
the Purchase Order Number and Customer last Name and
Product Name could be useful displays for the Purchase
Order data.

[0130] Interface for Choosing Item Names: Users Would
be given the choice of Which Sub?eld combinations to use
as Item names for the display. A list of the ItemSelector
names of all Sub?elds Would be provided and the user Would
choose from that list the combination to use as the Item
name.

[0131] Data Entry Interface: When entering data, the user
Would describe each data Field (alternatively in a more
detailed mode, Data Sub?eld) by selecting those ItemSelec
tors from lists that describe the Field (or Sub?eld). Each
selection Would immediately list the ?elds that have in
common the currently selected description. The user Would
continue adding ItemSelectors to the description until just
one ?eld Was available. That Would ensure that each ?eld is
uniquely identi?ed through its ItemSelectors.

[0132] If a Sub?eld, described by the selected ItemSelec
tors, has not yet been de?ned, the user is alloWed to create
a neW Sub?eld using those ItemSelectors to identify it, and
add it to the list of Sub?elds. In this Way neW ?elds can be
added, because they are made up of particular subgroups of
individual Sub?elds.

[0133] Example Adding a Field: In the customer database,
suppose We have de?ned tWo address ?elds With the fol
loWing tWo ItemSelector sets (Commas separate ItemSelec
tors):

[0134] 1 Customer, Shipping, Address.

[0135] 2 Customer, Billing, Address.

[0136] Suppose that We noW need to add another address
for some customer and that there is no descriptive ItemSe
lector to distinguish it from the tWo addresses already used.

[0137] In that case We introduce a neW ItemSelector, using
any appropriate descriptive terms. A possible ItemSelector
might be: Large Products. (A ItemSelector may use any
number of Words.) Having created such an ItemSelector by
typing it in, it Would appear in our list of ItemSelectors and
We Would be able to choose it to create a neW, unique Field
described by the folloWing ItemSelectors: Customer, Ship
ping, Large Products, Address.

[0138] In this example, the Field de?ned by the ItemSe
lectors in (l) is referred to as the Parent Field of the Field
de?ned by (3).

Nov. 8, 2007

[0139] The Large Products ItemSelector then becomes
available for use in combination With any other ItemSelec
tors and for assignment by the user to any Item, as may be
appropriate.
[0140] Automatic ItemSelector Assignment: After adding
a neW ItemSelector, it may be useful to assign it to the
appropriate existing Items. This can, of course, alWays be
done manually, picking each relevant Item and through
suitable controls, assigning the ItemSelector. But such
manual assignment may not be practical When the number of
relevant Item groups is large.

[0141] In that case a feature can be provided to automati
cally assign the neW ItemSelector. The conditions selecting
the appropriate ItemSelectors for such an assignment, Will
then be speci?ed by the user and the automatic assignment
process put into place.

[0142] The conditions for such an assignment can be
dependent on data content and/or existing assigned ItemSe
lector combinations. When data content is the criterion, the
automatic assignment process involves a search of content
and so can use the current conventional optimiZed search
techniques.
[0143] When a combination of ItemSelectors is included
in the criteria, the Matrix can be used to quickly access the
relevant Items.

[0144] When both criteria are used, the Matrix may be
used ?rst to reduce the number of relevant Items and then a
conventional search performed through the reduced set of
items.

[0145] For example, in the already cited example When
adding the Large Products ItemSelector, it may be useful to
classify all the large products by assigning that ItemSelector
to them. A simple speci?cation Would be a list of product IDs
or names that are considered Large. If product names are
unique and are used as ItemSelectors, the user could assign
the neW ItemSelector manually by selecting the Disjunctive
set of product ItemSelectors and indicating by some means
that the neW ItemSelector is to be assigned to all the listed
products. One possible such indication Would be a drag and
drop of the neW ItemSelector to the listing.

[0146] Union Set Sub?elds De?nes NeW Field.: On a
more detailed level, each Sub?eld is de?ned using descrip
tive ItemSelectors. When a neW Field is added, it automati
cally contains the union set of all the currently selected
Sub?elds, each With its corresponding relevant ItemSelector
Description, de?ned by the selected ItemSelectors before the
neW ItemSelector Was addedithat is the Parent Field.

HoWever, any Sub?eld can be removed, and any neW
Sub?eld can be added to a neWly de?ned Field. This frees
completely every de?ned ?eld from all restrictions of its
Parent Field.

[0147] For example, if the Parent Field comprises Sub
?elds that include the last Name, the First Name, Street,
City, State, Zip, but has no Sub?eld for the Country (not
needed for mail in the US) such a component may be added
simply by choosing (or if not present adding and then
choosing) the additional ItemSelector Country. Adding
Country as a sub?eld implies that the address is not for US
customers, so the sub?eld “State” is not exactly appropriate
and so may be removed from the Field and from the Field
ItemSelector Descriptions.

US 2007/0260594 A1

[0148] ItemSelector Uses: ItemSelectors can be used for
de?ning, describing, accessing and associating Records,
Fields and even Sub?elds, as Well as for de?ning and
creating neW Records, Fields and Sub?elds.

[0149] In general ItemSelectors are to be regarded as a
vocabulary to be used in descriptions of Items, Fields and
Sub?elds and other, more speci?c ItemSelectors.

[0150] Relations Automatic: In a traditional, Relational
Database the various relations have to be de?ned by the user,
usually through a hierarchical structure. In a TIE Database,
all relations are automatic through the ItemSelectors. In
essence they are also de?ned by the user, but naturally,
implicitly, by use of languageithrough the use of descrip
tive ItemSelectors and not restricted by the hierarchy.

[0151] For example, When a Customer Order is entered in
the TIE Database, the neW Record so de?ned is automati
cally (clearly With optional user override) classi?ed With the
ItemSelectors of the particular Customer and those of the
particular Product, or-Products ordered.

[0152] Example Scenario: Here is hoW the TIE Database
system might be used.

[0153] Suppose the user selects ItemSelectors describing a
set of products. These ItemSelectors could be one or more of
the folloWing types:

[0154] 1 product description ItemSelectors (for example:
Electrical, Small, Appliances, Kitchen)

[0155] 2 product price range ItemSelectors

[0156] 3 product name ItemSelectors

[0157] The listing Will contain all products matching the
ItemSelector descriptions plus all Customers Who have
bought any of these plus all Purchase Orders associated With
them.

[0158] When choosing these ItemSelectors, the remaining
available ItemSelector vocabulary is displayed and as indi
vidual ItemSelectors are chosen, the vocabulary is updated,
shoWing only the related or available ItemSelectors. This
process guides the user to the available information and
simultaneously shoWs the user, through the ItemSelector
display, the information Within the database. At each step of
the process the user can actually see into the database and so
be better informed. All this is in great contrast to all present
database possibilities.

[0159] The user can choose to narroW doWn the listing by
choosing more ItemSelectors of any kind, and/or by choos
ing ItemSelectors describing the type of Records to vieW,
that is, choosing from the Disjunctive set of ItemSelectors:
Customers, Products, Purchase Orders. (Usually, all are
shoWn When no choice is made.)

[0160] Once the Item list has been suf?ciently narroWed to
shoW only the desired Items, the user can obtain information
about them, open them individually to see the details, note
the counts of the various Items, or extract speci?ed data
from all Items or the selected items in the listing.

[0161] There are many different interfaces for selecting
data to extract. They can be described generally as folloWs.

[0162] Extracting Data & Creating Reports: Assuming the
user has narroWed doWn the listing of Items to those of

Nov. 8, 2007

interest, the user then selects the Items of interest from the
listing, either individually or in groups. Then by choosing a
menu or using a button control in a WindoW, the user
indicates the desire to extract data. The resulting WindoW
frames may shoW, in one, a listing of ItemSelectors describ
ing each Field and Sub?eld Within the selected Items, and in
another a listing of the selected Sub?elds.

[0163] The user chooses the set of ItemSelectors describ
ing the Sub?elds desired, narroWing or enlarging the list of
selected Sub?elds. The user then picks, from the resulting
list, those Sub?elds needed for the extracted data report. One
GUI for doing this is to drag each Sub?eld to a Report
WindoW, locating each Where desired and even adding
descriptive text to each as appropriate.

[0164] Individual sub?elds selected can further offer the
user the choice to insert in the report various statistics
evaluated from the values of these sub?elds Within the
chosen set of Items. Another option can alloW the user to
create a formula involving the sub?elds, said formula to be
evaluated for each Item selected and its speci?ed statistics
inserted in the chosen location in the report.

[0165] A ?nal menu command or other control executes
the data extraction, creating the report to be vieWed on the
screen for ?nal editing and alloWing he user to save it to a
?le. HTML or more generally XML may be a convenient ?le
format to use, but any ?le format can be used.

[0166] Handling Field Values: Field values can be of four
types: Text, Numbers, Dates (including time), and Mixed
The ?rst three are obvious, the last needs some explanation.
Mixed type means that the Field contains a mixture of more
then one of the other three types. Such a Mixed type can be
parsed and split into its components and each component
can then be treated as a separate type. The splitting can be
de?ned by the user.

[0167] Often it is convenient to use Number Ranges as
ItemSelectors rather then the actual numerical values, hoW
ever there may be applications in Which the actual values
Would be convenient ItemSelectors also. In those cases each
of the possible values could be an ItemSelector, or position
dependent Alpha-ItemSelectors could be used. The user can
be alloWed to choose hoW to convert the Field Values to
ItemSelectors. A suitable interface Would display the list of
individual values, together With the frequency of occurrence
of each, Which can be grouped into ranges, alloWing for the
adjustment of these ranges. When groupings of the values
are created, the interface should also display the cumulative
frequencies associated With each group, to alloW for balanc
ing the groups by adjusting the ranges.

[0168] TIE Implementation in General: The application
described here is very general and the particular details are
determined by the speci?c application and speci?cs of the
data.

[0169] As already mentioned, the application implement
ing TIE can be a single piece of softWare, referred to as the
stand-alone implementation, or tWo separate pieces of soft
Ware: the Server and the Client. The Client, in turn can also
be of tWo types: a separate application, or a broWser-based
Client, implemented in any of the practical Ways using either
an automatically doWnloadable Java Applet, or some addi
tion, plug-in or modi?cation of the broWser. All these
possibilities are envisioned in What folloWs, although the

US 2007/0260594 A1

tWo-piece, Client-Server implementation Will be described.
If the Stand-Alone implementation is used, it can still be
built in similar fashion to the Client-Server, though more
optimizations of response times to queries may then be
possible and a communication protocol is unnecessaryi
making all data on the server side immediately accessible to
the client side.

[0170] In the preferred implementation of the Client
Server version, the communication betWeen the tWo can use
either of the common protocols: HTTP or TCP or a custom
protocol. TCP generally alloWs for a better communication
time, but has the disadvantage of being blocked by certain
?re-Walls.

[0171] In certain applications it is convenient to develop a
combined type application. This is a stand-alone application
that also communicates With the same server as a Client. The

mode of communication hoWever, is adjustable. For
example it can act as an ordinary TIE Client, keeping locally
only the minimum ItemSelector information, or it can be a
stand-alone application keeping all information contained in
the Matrix and even possibly additionally all Item contents.
In the event of the second possibility, periodic connections
to the server Would keep the local data up to date, as each
connection Would verify the time of the last change of each
piece of data and send any needed neW data.

[0172] Stateless Communication: The Client-Server
implementation to be described assumes stateless commu
nications, that is, each request from the Client is dealt With
by the Server, independently of any previous or future
requests from the same or different clients. Although a
stateless implementation is not necessary, it has the advan
tage of not requiring the Server to keep track of concurrent
Clients. Its principal disadvantage is that because each
request is independent of prior requests, calculations of
Booleans may sometimes not be as ef?cient as they could
beiin some small additions to a Boolean query it may be
advisable to require its complete re-evaluation. HoWever, in
most cases, Boolean evaluations can be made incrementally
by having the client pass back the results of previous
evaluations.

[0173] When using any application of TIE, We speak of
user actions sending a “Query” to the server and the server
responding, said response being processed and presented to
the user by the Client.

[0174] TIE Applications OvervieW: The command How of
control in a Client-Server or stand-alone application imple
menting the TIE system Will be outlined next. Following
that, details of the various parts Will be presented.

[0175] As usual, assuming the application is structured as
a Client Server system (alternatively as a Client part and a
Server part of a stand-alone application) the user interacts
With the Client, Which is the vehicle of the GUI. Many GUI
implementations of the TIE technology are possible.

[0176] The objective of the TIE technology is to present
the user choices to use to describe, in small steps, the
information Item they Want to ?nd. After every such step in
said description process, said user choices are updated to
shoW only the available remaining choices.

[0177] One Way to present the user With said choices is to
display sets of Words, phrases and/or graphics, described as

Nov. 8, 2007

the Vocabulary, using Which the user composes a description
of the Item of interest. For example, an implementation that
uses only text as the Vocabulary may display descriptive
key-Words or phrases in lists, on buttons, as checkboxes,
radio buttons or in other Ways Which alloW user choices.
This may be effected by a simple system that displays the
Vocabulary in one or more alphabetiZed lists of key-Word or
phrase descriptions.

[0178] There are also many Ways enabling the use of such
lists in making up the particular Item description. One Way
to begin is to have the user mouse-click on any one appro
priate Word or phrase. Then to immediately update the
Vocabulary display to indicate the remaining available
Vocabulary, alloWing further additional choices. In addition
it is often convenient to also display the total number of
matching Items and to display the ?rst 10 or 20 of these
matching Items by name. Another useful feature is to
display, next to each member of the Vocabulary (that is, next
to each ItemSelector), the current number of Items to Which
that ItemSelector is assigned. None of these displays are
essential for the functioning of TIE, but they all add to its
usefulness. As the user adds to the description, the list of
matching Items usually shrinks, eventually becoming a
suf?ciently small number for the user to be able to choose
from the Item listing.

[0179] The ?nal step in the user search process is a request
to get the Item or Items. This can also be done in many Ways.
One simple customary Way is to let the user double-click on
a listed Item or selected Items. Another is to click on a “Get
Items” button, having selected the Items of interest in the
listing. Other possibilities parallel other methods of select
ing the ItemSelectors.

[0180] Once the Item or Items are requested, the detailed
data can be presented in separate WindoWs. That detailed
data can be stored in any conventional database system or it
can be stored in conventional computer ?les. The data held
by the TIE system, includes either the detailed data for each
item, or preferably the URL, the path or other reference data
identifying the location of the Item, enabling the Item details
to be displayed Without a delaying search.

[0181] Examples of other possible implementations of
ItemSelector and/ or Item selection include the use of Speech
recognition, the use of simple remote controls Where each
ItemSelector and or Item has displayed a number identi?er,
Where the user selects an ItemSelector or Item by said
number, and use of the eyes to control selections. The latter
possibility is particularly useful for the severely handi
capped. If a means is provided for the detection of Which
ItemSelector or Item the eyes are focused or directed at, then
a pause of a minimum predetermined duration on an Item
Selector or Item could be used to indicate a selection.

[0182] It is often convenient to use Whatever method of
selection of ItemSelectors or Items is implemented as a
“Toggle” that is, as a method of both selecting and dese
lecting the ItemSelector or Item. This makes it unnecessary
to provide an additional control for deselecting individual
ItemSelectors or Items, although it is still useful to provide
a control that clears all selections.

[0183] Program Steps: Having outlined the general user
driven functionalites enabled by an implementation of the
TIE technology, We noW proceed With a list of the steps that

US 2007/0260594 Al

the software program implementing TIE might make. (This
assumes a Client-server implementation, but the steps for a
stand-alone implementation are similar, replacing the com
munications over a connection steps With communications
internal to the program.)

[0184]
[0185] 2 The Client sends ?rst request to the Server.

1 The user starts the program or Client.

[0186] 3 The server responds With the Time Stamp (unless
the Client’s Time Stamp is current) With a listing of the
ItemSelector names, Group numbers (if groups used), ID
numbers, With the ?rst Item Names, and With the number
count of Items, number count of ItemSelectors, and if
requested, the number of Items associated With each Item
Selector.

[0187] 4 The Client receives response from Server and
draWs the display that includes the ItemSelector Vocabulary
and the list of the alphabetically ?rst 10 or 20 Items by name.

[0188] 5 The user selects an ItemSelector (or deselects on
already selected).
[0189] 6 The Client sends a Boolean request, based on
user selections of ItemSelectors, to the Server.

[0190] 7 The server sends a response listing the available
ItemSelectors, the number of Items Selected, and the alpha
betically ?rst Item names and ID numbers, and the Number
Counts if requested. Such counts include the number of
Items, from the Selected Set, Which have each of the
Available ItemSelectors assigned. That is, a count is asso
ciated With each Available ItemSelector.

[0191] 8 The Client updates the display of the ItemSelec
tor Vocabulary, Item counts of each ItemSelector and the list
of the ?rst Items from the Selected Items.

[0192] The above steps, from step 5, are repeated until the
user selects an Item or Items and requests them, at Which
point the folloWing happens:

[0193] 9 User selects an Item and requests its contents.

[0194] 10 Client sends request to Server for the contents of
an Item. These contents can be the full Item data but more
often are simply a URL or a path to the Item.

[0195] 11 The server responds With the Item contents, no
matter What these contents are. The type designation of the
contents is also returned to the Client so the Client Will knoW
hoW to deal With the data. If the data contains the Item
contents, the Client presents that to the user to read. If the
data is a URL to the Item, the Client sends the URL to the
BroWser to be opened. If the Item contains some other
reference to the Item data, it is dealt With by the Client Who
gets the data and presents it to the user.

[0196] The user can noW go on to other searches, choose
to start over form the beginning, or deselect an already
selected ItemSelector, in both cases the steps start over from
step 5. At any time, the user can select from the listed Items,
or select all the chosen Items and perform a standard Content
search using a conventional text or other data matching
engine.

[0197] Other features can be implemented and these may
need other controls. For example, controls may be provided
for the folloWing features:

Nov. 8, 2007

[0198] Display Item counts for each ItemSelector

[0199] Display ItemSelectors in alternative orders, such as
in order of Item counts or in order of frequency of use by
user or in some other ordering.

[0200] Select an Item and request a listing of the ItemSe
lectors assigned to that Item. This requires the Client to
send that request to the Server and then to act accordingly.
The result of this is also a display of all Items With the
same ItemSelectors.

[0201] Remember a ?lterithat is a combination of Item
Selectors. All remembered ?lters can be listed for the user
to choose from in future quick searches. This does not
require the intervention of the Server, although it could be
remembered on the server. The Client can save these

?lters as combinations of ItemSelectors, in a ?le on the
Client computer.

[0202] The organiZation of the ItemSelectors on the screen
is used to make their relative location logical and selection
easier. Screen organiZation is useful in displaying to the user
the ItemSelector Groups that determine the translation of the
ItemSelector selections to the Boolean query sent to the
Server.

[0203] Building the ItemSelector Boolean: OvervieW: As
already described, the more advanced and feature rich
implementations of TIE divide the ItemSelectors into a
number of Groups. Each group contains only one ItemSe
lector Type, that is, Groups are used to keep the Disjunctive
and Conjunctive, Bijunctive and Negated ItemSelectors
quite separate and to group different types of ItemSelectors
together. The Boolean created from the user selections is
determined by the ItemSelector Type and Group member
ship of each selected ItemSelector. The folloWing example
illustrates the relationship betWeen the ItemSelector Type
and the contribution the selection of that ItemSelector makes
to the query Boolean.

[0204] Suppose A, B, C, D, stand for Conjunctive Item
Selectors. Suppose further that a, b, c, d, represent Disjunc
tive ItemSelectors in one Group and e, f, g represent
Disjunctive ItemSelectors in a different Group. The folloW
ing table shoWs the Booleans Which result from the selection
of the corresponding ItemSelectors:

Selected ItemSelectors Boolean Sent to Server

[0205] It is important to understand that the calculation of
the available ItemSelectors (the IRV) involves more than
one Boolean query When disjunctive ItemSelectors are
involved. Thus the IRV resulting from the Boolean query
A*B*(a+b) determines the available ItemSelectors in all
groups other than the Disjunctive group (a, b) in Which all
ItemSelectors remain available.

US 2007/0260594 A1

[0206] Likewise the IRV resulting from the query
A*B*(a+b)*e determines the available ltemSelectors in all
groups except those containing the Disjunctive ltemSelec
tors (a,b,e). To determine the available ltemSelectors in the
(a, b) group the modi?ed query A*B*e must be sent to the
server, Whereas all ltemSelectors remain available in the
group containing the Disjunctive ltemSelector e.

[0207] If any of the Disjunctive Groups are Exclusive, the
“OR” operator is replaced With the “XOR” operator, but
otherWise the procedure folloWs similar steps.

[0208] Finally, When negated Disjunctive ltemSelectors
are selected, they become Conjunctive (DeMorgan’s LaW)
but negated Conjunctive ltemSelectors remain Conjunctive.

[0209] This clearly illustrates that Disjunctive ltemSelec
tors sharing the same Group are parenthesiZed together
When creating the Boolean to be sent to the Server. Further
more, When determining the IRV (available ltemSelectors)
resulting form a Boolean containing Disjunctive ltemSelec
tors, modi?ed Booleans need to be used. Therefore it is
necessary to track the ltemSelector Group to Which each
selected Disjunctive ltemS elector belongs, though this is
not necessary for Conjunctive groups.

[0210] The interpretation of user choices and their con
version is normally done by the Client, though of course it
could be done by the server. We have found it better to make
the server as general as possible and as simple as possible,
so that it should not be burdened With such details as Which
ltemSelectors are Disjunctive Which Conjunctive, hoWever
When performance is an issue, the server should track the
different groups, because the calculation of the available
ltemSelectors (the IRV) involves multiple Boolean requests
to the server and these can be optimiZed When the server
knoWs the types of all groups.

[0211] Converting Selections to a Boolean: To interpret
the user ltemSelector selections and convert them to a
Boolean string, a function is needed in the Client, Which
accepts each selection and returns a Boolean string Which is
then passed to the server. Let us call this the boolean_se
lection function. This in turn can be divided into tWo steps
(and so probably tWo functions). First is the conversion of
the user selections to data in an array. Second, the conver
sion of this array to a Boolean string. The click location
determines the ID number of the selected ltemSelector and
the number of its Group. The Boolean_selection function
holds the current selection in an array. When the user makes
a selection of an ltemSelector “j” from Group “i” its ID “j”
is added to any other ltemSelectors, if present in Group “i”
Then the array is passed to the Boolean_selection function
Which returns the Boolean string. We ?rst detail functions
that store the ltemSelector selections in the Boolean array.
Then We folloW With the details of the conversion of this
array into the Boolean query string.

[0212] Structure of the Boolean Array: An easy data
structure to use to track and store the current ltemSelector
selections is an array of struct, Where the struct is an integer
plus tWo strings. The integer stores the Group number of the
ltemSelector, except for the Conjunctive ltemSelectors and
negated Disjunctives that are all treated the same Way,
independently of groups.. The ?rst string holds the Boolean
operator de?ning the group type, and the second holds the
current Boolean accumulated expression for that ltemSelec

Nov. 8, 2007

tor Group, in the form of a string consisting of ltemSelector
IDs and Boolean operators. Each Group type is either
Conjunctive, Disjunctive, negated Conjunctive and negated
Disjunctive. The Group’s type determines hoW ltemSelector
IDs are added to the current Boolean expression. When the
Boolean Array is completed, the boolean_selection function
converts it to the Boolean query string.

[0213] All Conjunctive ltemSelectors are stored in the ?rst
element of the struct. All the Conjunctive Negated and
Disjunctive negated are stored in the second element, and
the Group number part of the struct is not necessary for those
tWo elements.

[0214] The three Boolean operators corresponding to each
type of group are: “*” for Conjunctive groups, “+” for
Disjunctive groups, and “*!” for Negated Conjunctive and
negated Disjunctive Groups. Designated ltemSelectors can
be negated by virtue of belonging to a group. Any other
ltemSelectors can be negated by the choice of the user.

[0215] For example, an ltemSelector selection When a
modi?er key is pressed can mean the negative of the
(normally non-negated) ltemSelector. Negated ltemSelec
tors, even When they belong to a Disjunctive group are
added Conjunctivelyibecause that is the most likely intui
tive meaning the user intends and can easily understand.

[0216] As another example, in a TV Guide application, the
days of the Week are normally Disjunctive ltemSelectorsi
the user Wants to knoW Which programs are on Tuesday OR
Wednesday (not Tuesday AND Wednesday). If the user
chooses the ltemSelector Tuesday but negated and then
chooses Wednesday also negated, clearly the meaning must
be to ?nd programs that are not on Tuesday AND not on
Wednesday. A further choice of Thursday and the additional
ltemSelector Friday must mean that the program is not on
Tuesday AND not on Wednesday AND on (Thursday OR
Friday).
[0217] To account for this, the Disjunctive ltemSelector
that is negated is automatically placed into the array element
for the negated Conjunctive Group. (Applications Where this
is not appropriate are free to interpret user choices in other
Ways and can even provide interfaces for the user to decide
to override any automatic such choice.)

[0218] It is useful to standardiZe on a convention. For
example, that the ?rst element alWays holds all the ltemSe
lectors from all Conjunctive groups, the second one all
ltemSelectors Which are negated Conjunctive or Disjunc
tive, and the subsequent series of elements holds all the
Disjunctive ltemSelectors, one element for each distinct
Group.

[0219] As is obvious by the examples, and previously
stated, Conjunctive ltemSelectors from different groups
together With any negated ltemSelectors of any type are all
combined together in one elementibecause it makes no
difference to the resulting Boolean Which group they come
from. HoWever, Disjunctive (non-negated) ltemSelectors
have to retain their Group origin to the extent that the
ltemSelectors from each group are grouped together and
parenthesiZed to be Conjunctively added, as a group, to the
output Boolean string, and in addition modi?ed Booleans,
omitting ltemSelectors from each Disjunctive group in turn
are needed to determine the IRV appropriate for the disjunc
tive Groups.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Description
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Description
	Page 31 - Description
	Page 32 - Description
	Page 33 - Description
	Page 34 - Description
	Page 35 - Description
	Page 36 - Description
	Page 37 - Description
	Page 38 - Description
	Page 39 - Description
	Page 40 - Description
	Page 41 - Description
	Page 42 - Description
	Page 43 - Description
	Page 44 - Description
	Page 45 - Description
	Page 46 - Description
	Page 47 - Description/Claims

