
US 20060242105A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0242105 A1
(19) United States

Shur et al. (43) Pub. Date: Oct. 26, 2006

(54) PACK URI SCHEME TO IDENTIFY AND (22) Filed; Apr, 22, 2005
REFERENCE PARTS OF A PACKAGE

Publication Classi?cation
(75) Inventors: Andrey Shur, Redmond, WA (US);

Bruce A. MacKenzie, Sammamish, WA (51) Illt- Cl
(US); David B. Ornstein, Seattle, WA G06F 17/30 (2006.01)
(Us); Jerry J, Dunietza Seattle, WA (52) U.S. Cl. 707/1
(US); Young Gah Kim, Bothell, WA
(US); Sarjana B. Sheth, Redmond, WA
(US); Alexei Vladimirovich Vopilov, (57) ABSTRACT
Redmond, WA (U S)

Correspondence Address:
SHOOK, HARDY & BACON L.L.P.
(c/o MICROSOFT CORPORATION)
INTELLECTUAL PROPERTY DEPARTMENT
2555 GRAND BOULEVARD
KANSAS CITY, MO 64108-2613 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

The present invention is directed to a system and method for
providing access to individual resources stored Within a
package. The system enables a client to access the resources
Without having to access the entire package. The system
alloWs a client to reference the different resources Within the
package through use of a URI scheme. The URI scheme of
the present invention is composed through a method of
combining the URI for the package and the URI for the

(Us) resource. The URI scheme of the present invention is able to
Work With any scheme, thereby enabling the URI scheme to

(21) Appl. No.1 11/111,735 be universal and not protocol-speci?c.

2 O1

PACKAGE

202 203 204

RESOURCE RESOURCE RESOURCE

Patent Application Publication Oct. 26, 2006 Sheet 2 0f 6 US 2006/0242105 A1

201

PACKAGE

202 203 204

RESOURCE RESOURCE RESOURCE

FIG. 2

Patent Application Publication Oct. 26, 2006 Sheet 4 of 6

Package URI
Relative reference
Pack URI

Package URI
Relative reference
Pack URI

Package URI
Relative reference
Pack UR

Pack URI
components:
authority
path
converted to:
Package URI
Part name

US 2006/0242105 A1

= http: //www. my.com/ my. package
= ./a/foo.xaml

= pack:// http:,,www.my.com,my.package/a/foo.xaml

= http: //www. my.com/ packages.aspx?my. package
= ./a/fo0.xaml

= packzl / http:,,www.my.com,packages.aspx%3fmy.package/a/foo.xaml

sql://serro:47serro11@l0calhost/ser
./a/b/foo.xamI
pack: / lsqlz, ,serroz47serro11%40localhost,ser/a/b/foo.xaml

FIG. 5

= pack: // http: , ,www.my.com,packages.aspx%3fmy.package/ a/b/fo0.xaml

= http:,,www.my.com,packages.aspx%3fmy.package
= /a/b/foo.xaml

= http: / /www.mv.c0m / packages.a_spx?mv. package
= /a/b/foo.xaml

FIG. 6A

K- 602 f- 603

PARSE PACK 7

URI

/- 604 f 605
REPLASJIE , UN-ESCAPE ACCESS ACCESS
WITH r IN RESULTING

. 7 ~ PACKAGE PART

AUTHORITY AUTHOR'TY RESOURCE RESOURCE
COMPONENT COMPONENT

FIG. 6B

Patent Application Publication Oct. 26, 2006 Sheet 5 0f 6 US 2006/0242105 A1

701
REMOVE FRAGMENT /

IDENTIFIER

K- 702
ESCAPE CHARACTERS

REPLACE "l” K- 703 F I G . 7
WITH ","

APPEND RESULTING [704
STRING TO “PACKz/l"

STRING

/ 705 K706

RESOLVE RELATIVE
APPEND ‘7" TO REFERENCE AGAINST

RESULTING STRING coNSTRucTED PACK @
URI

Patent Application Publication Oct. 26, 2006 Sheet 6 0f 6 US 2006/0242105 A1

w .QE

OZ OZ

how K

02

mom vow mom

Now K

‘l
mUmDOwmE QwhwwDOwm mom E3 v_O<n_ mwOmEOu

Pow

US 2006/0242105 A1

PACK URI SCHEME TO IDENTIFY AND
REFERENCE PARTS OF A PACKAGE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application us related to co-pending
application, Ser. No. , docket number MFCP.1 l 8938,
entitled “Ef?ciently Describing Relationships BetWeen
Resources,” ?led on the same date as the present application,
Which application is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not applicable.

FIELD OF THE INVENTION

[0003] Embodiments of the present invention relate to a
system and method for selectively identifying and accessing
a resource Within a package, Without having to access the
entire construct. More particularly, embodiments of the
present invention relate to a system and method for com
posing a URI scheme that identi?es a resource Within a
package that is consistent With present URI formats, rules,
and standards.

BACKGROUND OF THE INVENTION

[0004] A Uniform Resource Identi?er (URI) is a compact
string of characters for identifying an abstract or physical
resource. AURI provides a simple and extensible means for
identifying a resource for a client’s need. A URI can be
further classi?ed as a name, a locator, or both. A Uniform
Resource Name (URN) is a subset of URI that is required to
remain globally unique and persistent even When the
resource ceases to exist or becomes unavailable. A Uniform

Resource Locator (URL) is also a subset of URI, and
identi?es resources through a representation of their primary
access mechanism (location) rather than identifying the
resource by name. URIs, URNs, and URLs are described
further in detail in “Request for Comments: 2396” (RFC
2396).
[0005] When accessing information over a netWork, cur
rent technology utiliZing URIs only provide a client the
ability to access a package as a Whole. Therefore, a client is
forced to retrieve an entire package even When the client
desires to have only one particular part of the package. For
example, for the given URI “WWW.microsoft.com/sam
ple.package,” using existing URI schemes like Hypertext
Transfer Protocol (HTTP), there is no current method to
retrieve individual parts Within the package, “sample.pack
age,” Without having to access the entire package and then
extracting the speci?c part on the client side.

[0006] Technology is needed among other things for
enabling clients to address speci?c resources Within pack
ages, Without a necessity to access the entire package.

[0007] This method should be universal and ?exible,
thereby able to coexist and stay consistent With the current
URI formats, rules, and standards. The present invention
addresses and solves these needs.

SUMMARY OF THE INVENTION

[0008] The present invention is directed to a system and
method of accessing resources over a netWork. According to

Oct. 26, 2006

embodiments of the invention, a client may request a
resource from a data store, Wherein the resource is an
individual part a package. A method according to embodi
ments of the invention may additionally include composing
a pack URI, and requesting the resource by identifying it
through the pack URI. Methods according to embodiments
of the invention may further include retrieving the resource
and storing the pack URI, along With the resource, in a cache
Within the client.

[0009] In further embodiments, a system may include at
least one data store for storing a plurality of packages. The
system may additionally include at least one resource stored
Within each package, and at least one pack URI for identi
fying the resources Within each package.

[0010] In further embodiments of the present invention, a
resource identi?er scheme may provide a method of com
posing a pack URI using an algorithm, Wherein the pack
URI identi?es a resource Within a package. The resource
identi?er scheme may include composing a pack URI that is
able to Work With any scheme and is not protocol-speci?c.
The resource identi?er scheme may additionally include an
algorithm for decomposing the pack URI into its main
components.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 illustrates a block diagram that illustrates a
computing environment adapted to implement the present
invention.

[0012] FIG. 2 illustrates a package of the present inven
tion.

[0013]
[0014] FIG. 4 illustrates examples of different pack URIs
and the resources that each one addresses.

[0015] FIG. 5 illustrates examples of pack URIs com
posed from package URIs and relative references.

[0016] FIG. 6A illustrates an example of a pack URI
being decomposed and converted into a package URI and a
part URI.

[0017] FIG. 6B illustrates an algorithm that describes
decomposing a pack URI into its main components.

[0018] FIG. 7 illustrates hoW to compose a pack URI from
an absolute package URI and a relative reference.

[0019]
URIs.

FIG. 3 illustrates the general form of a pack URI.

FIG. 8 illustrates a method of comparing pack

DETAILED DESCRIPTION OF EMBODIMENTS

[0020] FIG. 1 is a block diagram that illustrates a com
puting environment in Which a system and method for a pack
URI scheme may operate according to embodiments of the
present invention. The computing system environment 100
is only one example of a suitable computing or netWork
environment and is not intended to suggest any limitation as
to the scope, use or functionality of the invention. Neither
should the computing environment 100 be interpreted as
having any dependency or requirement relating to any one or
combination of components illustrated in the exemplary
operating environment 100.

US 2006/0242105 A1

[0021] The invention is operational With numerous other
general purpose or special purpose computing system envi
ronments or con?gurations. Examples of Well knoWn com
puting systems, environments, and/ or con?gurations that
may be suitable for use With the invention include, but are
not limited to, personal computers, server computers, hand
held or laptop devices, multiprocessor systems, micropro
cessor-based systems, set top boxes, programmable con
sumer electronics, netWork PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above systems or devices, and the like.

[0022] The invention may be described in the general
context of computer-executable instructions, such as pro
gram modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. The invention may
also be practiced in distributed computing environments
Where tasks are performed by remote processing devices that
are linked through a communications netWork. In a distrib
uted computing environment, program modules may be
located in both local and remote computer storage media
including memory storage devices.

[0023] With reference to FIG. 1, an exemplary system for
implementing the invention includes a general purpose
computing device in the form of a computer 110. Compo
nents of computer 110 may include, but are not limited to,
a processing unit 120, a system memory 130, and a system
bus 121 that couples various system components including
the system memory to the processing unit 120. The system
bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec
tures. By Way of example, and not limitation, such archi
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus also knoWn as MeZZanine bus.

[0024] Computer 110 typically includes a variety of com
puter readable media.

[0025] Computer readable media can be any available
media that can be accessed by computer 110 and includes
both volatile and nonvolatile media, removable and non
removable media. By Way of example, and not limitation,
computer readable media may comprise computer storage
media and communication media. Computer storage media
includes both volatile and nonvolatile, removable and non
removable media implemented in any method or technology
for storage of information such as computer readable
instructions, data structures, program modules or other data.

[0026] Computer storage media includes, but is not lim
ited to, RAM, ROM, EEPROM, ?ash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium Which can be used to
store the desired information and Which can accessed by
computer 110. Communication media typically embodies
computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier Wave or other transport mechanism and includes any

Oct. 26, 2006

information delivery media. The term “modulated data sig
nal” means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in
the signal. By Way of example, and not limitation, commu
nication media includes Wired media such as a Wired net
Work or direct-Wired connection, and Wireless media such as
acoustic, RF, infrared and other Wireless media. Combina
tions of the any of the above should also be included Within
the scope of computer readable media.

[0027] The system memory 130 includes computer stor
age media in the form of volatile and/or nonvolatile memory
such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133
(BIOS), containing the basic routines that help to transfer
information betWeen elements Within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
on by processing unit 120. By Way of example, and not
limitation, FIG. 1 illustrates operating system 134, applica
tion programs 135, other program modules 136, and pro
gram data 137.

[0028] The computer 110 may also include other remov
able/non-removable, volatile/nonvolatile computer storage
media. By Way of example only, FIG. 1 illustrates a hard
disk drive 140 that reads from or Writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that
reads from or Writes to a removable, nonvolatile magnetic
disk 152, and an optical disk drive 155 that reads from or
Writes to a removable, nonvolatile optical disk 156 such as
a CD ROM or other optical media. Other removable/non
removable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, ?ash
memory cards, digital versatile disks, digital video tape,
solid state RAM, solid state ROM, and the like. The hard
disk drive 141 is typically connected to the system bus 121
through an non-removable memory interface such as inter
face 140, and magnetic disk drive 151 and optical disk drive
155 are typically connected to the system bus 121 by a
removable memory interface, such as interface 150.

[0029] The drives and their associated computer storage
media discussed above and illustrated in FIG. 1, provide
storage of computer readable instructions, data structures,
program modules and other data for the computer 110. In
FIG. 1, for example, hard disk drive 141 is illustrated as
storing operating system 144, application programs 145,
other program modules 146, and program data 147. Note
that these components can either be the same as or different
from operating system 134, application programs 135, other
program modules 136, and program data 137. Operating
system 144, application programs 145, other program mod
ules 146, and program data 147 are given different numbers
here to illustrate that, at a minimum, they are different
copies. Auser may enter commands and information into the
computer 110 through input devices such as a keyboard 162
and pointing device 161, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shoWn) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 120 through a user input
interface 160 that is coupled to the system bus, but may be
connected by other interface and bus structures, such as a

US 2006/0242105 A1

parallel port, game port or a universal serial bus (U SB). A
monitor 191 or other type of display device is also connected
to the system bus 121 via an interface, such as a video
interface 190. In addition to the monitor, computers may
also include other peripheral output devices such as speakers
197 and printer 196, Which may be connected through a
output peripheral interface 190.

[0030] The computer 110 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server,
a router, a netWork PC, a peer device or other common
netWork node, and typically includes many or all of the
elements described above relative to the computer 110,
although only a memory storage device 181 has been
illustrated in FIG. 1. The logical connections depicted in
FIG. 1 include a local area netWork (LAN) 171 and a Wide
area netWork (WAN) 173, but may also include other
networks. Such netWorking environments are commonplace
in of?ces, enterprise-Wide computer netWorks, intranets and
the Internet.

[0031] When used in a LAN netWorking environment, the
computer 110 is connected to the LAN 171 through a
netWork interface or adapter 170. When used in a WAN
netWorking environment, the computer 110 typically
includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet.
The modem 172, Which may be internal or external, may be
connected to the system bus 121 via the user input interface
160, or other appropriate mechanism. In a netWorked envi
ronment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote
memory storage device. By Way of example, and not limi
tation, FIG. 1 illustrates remote application programs 185 as
residing on memory device 181. It Will be appreciated that
the netWork connections shoWn are exemplary and other
means of establishing a communications link betWeen the
computers may be used.

[0032] FIG. 2 illustrates a package construction according
to embodiments of the present invention. A package 201 is
a logical entity that holds a collection of resources 202-204.
Resources are different parts Within package 201 that could
be or include, for example, individual ?les such as image,
audio, HTML, and XML ?les, or other ?les, objects, or
content. The package 201 may be stored at a data store, such
as an external server, in Which a client could doWnload or
access the package 201 over a netWork. The present inven
tion alloWs a client to access the different resources 202-204
Without needing to access the entire package 201. A client
may address the different parts of the package 201 through
the pack Uniform Resource Identi?er (URI) schemes of the
present invention as shoWn in FIG. 3.

[0033] The pack URI uses a technique of combined
addressing that is consistent With knoWn URI formatting.
The pack URI is designed to be consistent With the standards
set for in the “Request for Comments: 2396” (RFC 2396).
The URI syntax is dependent upon the scheme. In general,
absolute URI are Written as folloWs:

[0034] <scheme>:<scheme-speci?c-part>

An absolute URI contains the name of the scheme being
used (<scheme>) folloWed by a colon (“:”) and then a

Oct. 26, 2006

string (the <scheme-speci?c-part>) Whose interpreta
tion depends on the scheme. The URI syntax does not
require that the scheme-speci?c-part have any general
structure or set of semantics Which is common among
all URI. HoWever, a subset of URI do share a common
syntax for representing hierarchical relationships
Within the namespace. This “generic URI” syntax con
sists of a sequence of four main components:

[0035] <scheme>://<authority><path>?<query>
each of Which, except <scheme>, may be absent from a

particular URI.

[0036] RFC2396 provides an extensible mechanism for
de?ning neW kinds of URIs based on neW “schemes.”
Schemes are the pre?x in a URI before the colon (e.g.,
“http”, “ftp”, “?le”). The present invention, de?nes a spe
ci?c URI scheme used to refer to parts in a package. The
scheme name used in the present invention is “pack.” A URI
using the pack scheme is called a pack URI.

[0037] FIG. 3 illustrates a general form of a pack URI.
The pack URI scheme is de?ned using the “generic URI”
pattern from RFC2396 as shoWn in FIG. 3. In a pack URI,
the authority component Will contain an embedded URI that
points to a package. The embedded URI should meet the
requirements de?ned in RFC2396 for a valid absolute URI.
The absolute path (abs_path) can be used to identify a
particular part Within the package identi?ed by the embed
ded URI. When provided, the abs_path component describes
a path to a part in the package. In order to identify a part,
abs_path component must be anASCII part name. When the
<abs_path> is empty, the resource identi?ed by the pack
URI is the package as a Whole.

[0038] A pack URI is composed of at least tWo main
components: a package URI and a part URI. A part URI may
be a resource Within a given package that a client is
interested in retrieving. The package URI is in one regard the
package, container or object that contains the resource. In
the format of a pack URI, the package URI takes the place
of the authority component, and the part URI takes the place
of the abs_path component. By remaining consistent With
the generic URI format, and not deriving a speci?c approach
or other syntax, the invention in one regard may enable
applications to resolve relative references in a Well knoWn
and de?ned fashion. Thus, the pack URI is universal and is
not protocol-speci?c, and is able to Work With a package
URI of any scheme (http, ftp, ?le, etc.).

[0039] FIG. 4 illustrates examples of different pack URIs
and the resources that each one addresses. In example 401,
the ?rst line illustrates the actual pack URI, While the second
line identi?es the part Within the package of the third line.
Note that the ?rst “/” after the scheme delimiter “://”
separates the package URI (authority component) from the
part URI (abs_path component). As mentioned previously, a
pack URI may address the entire package or a part Within the
package, and a pack URI With an empty path identi?es the
package as a Whole. Example 402 illustrates this feature.
Both pack URIs identify the same package as a Whole. The
second pack URI has a “/”, hoWever, the path is empty,
therefore, the pack URI identi?es the entire package.

[0040] With reference to FIGS. 5 and 7, the folloWing
section Will describe an algorithm for composing a pack URI
from an absolute URI of a Whole package and a relative

US 2006/0242105 A1

reference. The relative reference may be considered to be the
part component/URI before it is in absolute form. Absolute
URI of a package resource to be suitable for composing a
pack URI must ?t RFC2396 requirements for valid absolute
URIs.

[0041] FIG. 7 illustrates composition of a pack URI from
an absolute package URI and a relative reference using
syntactical conversions. In the composition of a pack URI,
at least the folloWing steps may be performed: In step 701,
the fragment identi?er is removed from the package URI, if
it is present. Fragment identi?ers are described more in
detail in section 4.1 of RFC2396. In step 702, characters
such as “%”, “7”, “@”, “#” and “,” are escaped in the
package URI. In step 703, all “/” are replaced Wit “,” in the
resulting string. In step 704, the resulting string is appended
to a “pack://” string. In step 705, “/” is appended to the
resulting string. Constructed string represents a pack URI
With blank abs_path component. In step 706, relative refer
ence are resolved against constructed pack URI as a Base to
a target absolute pack URI. Resolving is accomplished
through an exemplary technique outlined in section 5.2 of
RFC2396. Examples of pack URIs composed from package
URIs and relative references are illustrated in FIG. 5.

[0042] The present invention also alloWs for pack URIs,
that have been previously composed, to address another
relative reference that may be a part of the same package. In
order to accomplish this method, the present invention
utiliZes an exemplary resolving technique outlined in
RFC2396 and referenced above. An example of composing
a neW pack URI, that addresses another package part, from
an old pack URI is as folloWs: if a client has a pack URIi

[0043] pack://http:,,WWW.microsoft.com,my.container/
a/b/ foo .xaml

and it Wants to obtain another URIi

[0044] /images/picl.jpg

after resolving the tWo URIs, it Will get the pack URIi

[0045] pack://http:,,WWW.microsoft.com,my.container/
images/picl .jpg

[0046] Once the pack URI is composed, a piece of code,
softWare or other resource may be utiliZed in order to
retrieve the resource from the data store that the pack URI
addresses. This softWare or logic processes the pack URI to
get the requested resource back to the client. In the process
ing step, the softWare may decompose the pack URI into its
at least tWo main components, package URI and part URI,
and Will extract the requested part/resource from the pack
age.

[0047] With reference to FIGS. 6A and 6B, the folloWing
Will describe a technique of decomposing pack URIs. FIG.
6A illustrates an example of a pack URI being decomposed
and converted into a package URI and a part URI. FIG. 6B
illustrates an algorithm that describes decomposing a pack
URI into certain components. FIG. 6B begins at step 601
Wherein the pack URI is parsed into four potential compo
nents: scheme, authority, abs_path, and fragment identi?er.
The next step, 602, replaces all “,” With “/” in the authority
component. Next, the resulting authority component is un
escaped 603, and access to the package resource by the
absolute URI represented by the converted authority com

Oct. 26, 2006

ponent is given 604. Finally, the part resource is accessed in
the package resource using abs_path as a part name 605.

[0048] Once a pack URI is composed and used to retrieve
the given resource, the pack URI and resource may be stored
in the client’s cache for subsequent use. If a client requests
a resource by composing a pack URI, an application running
on the client may ?rst compare the composed pack URI With
previously-composed pack URIs stored Within the cache. If
the requested pack URI for the given resource is found
Within the cache, the application may retrieve the resource
from the cache instead of unnecessarily retrieving it from the
data store that the pack URI addresses.

[0049] FIG. 8 illustrates the method of comparing pack
URIs. In step 801, a pack URI is composed in order to
retrieve a requested resource. Step 802 compares the com
posed URI With the list of previously-composed pack URIs
stored in the client’s cache. In the comparison step, the
application checks for syntactical equivalence betWeen the
composed pack URI and the previously-composed pack
URIs stored in the cache. In step 803, the scheme compo
nents of the pack URIs are ?rst compared to determine if
they are equivalent. The scheme components are equivalent
if they are octet-by-octet identical after they are converted to
loWercase. If at this point it is determined that the scheme
components are not equivalent for any of the URIs stored in
the cache, the application Will proceed to retrieve the
resource from the data store that the composed pack URI
addresses 807. If it is determined that the scheme compo
nents are equivalent for any of the pack URIs, the applica
tion continues the comparison analysis by moving to step
804.

[0050] In step 804, the authority components of the pack
URIs are next compared to check for equivalence. The rules
for determining equivalence among authority components
vary by scheme and may be similar to the rules outlined in
RFC2396. If it is deemed that the authority components are
not equivalent for any of the pack URIs stored in the cache,
the application Will proceed to retrieve the resource from the
data store that the composed pack URI addresses 807. If it
is determined that the authority components are equivalent
for any of the pack URIs, the application continues the
comparison analysis by moving on to step 805.

[0051] In step 805, the abs_path components of the pack
URIs are compared to test for equivalence. The abs_path
components are equivalent if they are octet-by-octet equiva
lent after being converted into Normalized Unicode Part
names. If after the comparison analysis it is determined that
the abs_path are not equivalent for any of the pack URIs
stored in the cache, the application Will proceed to retrieve
the resource from the data store that the composed pack URI
addresses. If it is determined that the abs_path components
are equivalent for any of the pack URIs, the application
determines that there is an equivalent pack URI stored in the
cache and Will proceed to retrieve the resource from the
cache 806.

[0052] While particular embodiments of the invention
have been illustrated and described in detail herein, it should
be understood that various changes and modi?cations might
be made to the invention Without departing from the scope
and intent of the invention. The embodiments described
herein are intended in all respects to be illustrative rather
than restrictive. Alternate embodiments Will become appar

US 2006/0242105 A1

ent to those skilled in the art to Which the present invention
pertains Without departing from its scope.

[0053] From the foregoing it Will be seen that this inven
tion is one Well adapted to attain all the ends and objects set
forth above, together With other advantages, Which are
obvious and inherent to the system and method. It Will be
understood that certain features and sub-combinations are of
utility and may be employed Without reference to other
features and sub-combinations. This is contemplated and
Within the scope of the appended claims.

We claim:
1. A method to access resources over a network, com

prising:
requesting a resource from a data store, Wherein the

resource comprises an individual part stored Within a
package at the data store;

composing a URI scheme;

requesting the resource by identifying the resource
through the URI scheme; and

retrieving the resource.
2. The method according to claim 1, further comprising

accessing at least one of the resource and the package by
utiliZing the URI scheme to identify the resource or the
package.

3. The method according to claim 1, Wherein composing
the URI scheme comprises combining a ?rst URI and a
second URI.

4. The method according to claim 3, Wherein the ?rst URI
identi?es the package, and the second URI identi?es the
resource Within the package.

5. The method according to claim 1, further comprising
storing the URI scheme, the resource, and a plurality of
previously-composed URI schemes in a cache Within the
client.

6. The method according to claim 5, further comprising:

determining syntactical equivalence by comparing the
plurality of previously-composed URI schemes stored
in the cache to the URI scheme.

7. The method according to claim 6, Wherein the resource
is accessed from the cache if there is syntactical equivalence
betWeen the URI scheme and one of the previously-com
posed URI schemes; and

the resource is accessed from the data store that the URI
scheme addresses if there is no syntactical equivalence
betWeen the URI scheme and any of the previously
composed URI schemes.

8. A system to access resources over a netWork compris
ing:

at least one data store storing a plurality of packages, at
least one resource stored Within each package, and a
plurality of URI schemes that are composed for iden
tifying the resources Within each package.

9. The system according to claim 8, Wherein a client
accesses the resource through the composed URI scheme,

Oct. 26, 2006

that addresses the data store of the packages and resources,
Without having to access the entire package.

10. The system according to claim 8, Wherein a client
composes the URI scheme by combining a ?rst URI and a
second URI.

11. The system according to claim 9, Wherein the client
includes a cache for storing the composed URI schemes,
resources, and a plurality of previously-composed URI
schemes.

12. The system according to claim 11, Wherein the client
includes an application for comparing at least one of the
composed URI schemes against all of the previously-com
posed URI schemes stored in the cache to test for syntactical
equivalence.

13. The system according to claim 12, Wherein the
resource is accessed from the cache if there is syntactical
equivalence betWeen the at least one composed URI scheme
and one of the previously-composed URI schemes, and is
accessed from the data store that the at lest one composed
URI scheme addresses if there is no syntactical equivalence
betWeen the at least one URI scheme and any of the
previously-composed URI schemes.

14. A resource identi?er scheme, the scheme being gen
erated by a method comprising:

requesting a resource from a data store, Wherein the
resource comprises an individual part stored Within a
package at the data store;

composing a URI scheme;

requesting the resource by identifying the resource
through the URI scheme; and

retrieving the resource.
15. The resource identi?er scheme according to claim 14,

Wherein the URI scheme is able to Work With any scheme
and is not protocol-speci?c.

16. The resource identi?er scheme according to claim 14,
Wherein the resource is retrieved from the data store that the
URI scheme addresses.

17. The resource identi?er scheme according to claim 16,
Wherein the URI scheme, through use of an algorithm, is
decomposed into its main components before retrieving the
resource.

18. The resource identi?er scheme according to claim 14,
further comprising:

determining syntactical equivalence by comparing a plu
rality of previously-composed URI schemes stored in
the cache to the URI scheme.

19. The resource identi?er scheme according to claim 18,
Wherein comparing the URI scheme to the previously
composed URI schemes involves comparing a scheme, an
authority, and an abs_path component to determine equiva
lence.

20. The resource identi?er scheme according to claim 14,
Wherein a previously-composed URI scheme can be used to
compose a neW URI scheme that Will identify a neW
resource.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description/Claims

