US006647514B1
a2 United States Patent (10) Patent No.: US 6,647,514 B1
Umberger et al. 45) Date of Patent: Nov. 11, 2003
9
(54) HOST IO PERFORMANCE AND 5,680,539 A * 10/1997 Jonesoccoeeevnvvenrinnn... 211/183
AVAILABILITY OF A STORAGE ARRAY 5,822,584 A * 10/1998 Thompson et al. 709/103
DURING REBUILD BY PRIORITIZING I/O 5,835,700 A * 11/1998 Carbonneau et al. 714/44
REQUEST 5,881,311 A F 3/1999 WOOdS 710/4
5941,993 A * §/1999 Tanaka et al. 714/6
| . . | 6,032.217 A * 2/2000 AMOtt evoveeeeeeerereee. 710/200
(75) Inventors: David K. Umberger, Boise, ID (US), 6,516,425 Bl * 2/2003 Belhadj et al. ..o.o.......... 714/6
Rodger D. Daniels, Boise, ID (US);
Mohamed Belhadj, Eagle, ID (US) OTHER PUBLICATIONS
(73) Assignee: Hewlett-Packard Development Chen et al., RAID: High—Performance, Reliable Secondary
Company, L.P., Houston, TX (US) Storage, Jun. 1994, ACM Computing Surveys, vol. 26, pp.
141-184.*
(*) Notice: Subject to any disclaimer, the term of this | |
patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by 0 days.
Primary FExaminer—Robert Beausoliel

(21) Appl. No.: 09/534,921 Assistant FExaminer—Michael Maskulinski
. No.: .
(22) Filed: Mar. 23, 2000 (57) ABSTRACT
(51) Tnt. CL7 oo GOGF 11/00 Improved host I/O performance and availability of a storage
(52) US.CL i, 714/42; '714/5; 714/6; array during refbuﬂd 1S obt.amed by prioritizing I7O requests.
714/7 In one embodiment, rebuild I/O requests are given priority
(58) Field of Search 714/42. 6. 747 over host I/O requests when the storage array 1s close to

714/22. 5-7: 711/114. 162: 358/450: 365/228 permanently losing data (for example, failure of one more
’ ’ ’ ’ ’ particular disk in the storage array would result in data loss).

(56) References Cited Rebuild I/0 requests continue to have priority over host I/0O
requests until the storage array 1s no longer close to perma-
U.S. PATENT DOCUMENTS nently losing data, at which point host I/O requests are given
5,278,838 A * 1/1994 Ng et al. wovovvevevevereenn., 714/ Prority over rebuild I/O requests.
5,392,244 A 2/1995 Jacobson et al.
5,500,940 A * 3/1996 Skeie ...ccoeveviiiiiiiiinnnnnn. 714/25 6 Claims, 6 Drawing Sheets
>
\ 4

92
Host I/O Requests Have Priority

94

Disk
Failure Resulting
In Degraded RAID
Level?

No

Yes

06
One Or More

RAID Levels At
Critical Point

No

Yes

A 4

08 Give Rebuild I/0 Requests Priority
TN

Over Host I/0 Requests For RAID

Levels At Critical Point

U.S. Patent Nov. 11, 2003 Sheet 1 of 6 US 6,647,514 Bl

24

U.S. Patent Nov. 11, 2003 Sheet 2 of 6 US 6,647,514 Bl

"'-------- el g Ll B R L L B R T F T L L oy Yy ammm—m— hath b b e gl B B & L K X 1 1 4 K T T T T LT T T R T P T g P g W g e g . e o D P N AR A B A B e ek -~~-------*~**-----‘

Computer 22 : 4 Memory) 44
. 40 ' .
| [Administrator 46
42 \l Volatile Memory }———l ' Module I 48

§ | { User Interface .

32 Keyboard
34 Mouse

’

. ke "
N

'-- L A L R L L R R R I g g g g P R S ST S S w——" — . A Aun S anh SE W D Y WS wib whe hby e wny Wk S T W T I N W N WE P Y YEP T WP W W W L 2 4 4 2 1 B 2 J K X ¥ KE & 32 7 I F'7 | -~
o,)

Data Storage System 24

RAID Management System

. 68 Queue Request Rebuild 74
Controller Queue Controller
66 76
, 56
70 Priority Request Request i
. |dentifier Processor Dispatcher 72

S48 Disk Array Disk Array 94b
504 Controller A Controller B 62b
§ Mem i
58

bt e b Bl R L L e pep—pp—— -
L T 3 AT T bl ke R ol L 2 g LR L T T ppp—p— b d o L L L TR R L bl G L L L R e G —— - ay W e e --‘

U.S. Patent Nov. 11, 2003 Sheet 3 of 6 US 6,647,514 Bl

02
Host I/O Requests Have Priority

04

Disk
Failure Resulting
In Degraded RAID
Level?

— 96

One Or More
RAID Levels At
Critical Point

Yes

08 Give Rebuild 1/0 Requests Priority
Over Host I/O Requests For RAID
Levels At Critical Point

U.S. Patent Nov. 11, 2003 Sheet 4 of 6 US 6,647,514 Bl

10
Receive |/O Request 6

110

RAID Level At Yes

Rebuild Priority
?

No

114

Host Rebuild

Host Or Rebuild

Request
?

Any Rebuild
Requests In

Queue
?

Yes 112 Place Request Into

Queue At Bottom

Place Request Into
Queue Below Any
Other Host Requests
And Above Any
Rebuild Requests

o 118

U.S. Patent Nov. 11, 2003 Sheet 5 of 6 US 6,647,514 Bl

128

Ready To Process 1/0 No

Request
?

Yes

No RAID Level At Rebuild

Priority
?

134

No Host /O Usage Yes
Of Restricted Resource

Exceed Threshold
?

Does

132 136

Select Next Rebuild I/O
Request From Request

Select Next I/O Request
From Request Queue

For Processing

Queue For Processing

US 6,647,514 Bl

-
M 1451 ¢Gl
.m ejeq)senbayy 1senbayy
€0 peoy peSY pESY
OAIDDTY OAIB09Y plIngay
e’
—
& 0 — e e — e e e e o e e
S @ ————— - — - ———
o
o
. S)MSH
W (shHsi((s)uone|nojen Bleq A w_._..o 1sanbay | 1sonbay
O] IJUAA wiopo peay beoy OJUAA OJIAA
oNss| OAID09N anss| 9AI900Y }SOH
0GL 8vI ovl 124" AR

U.S. Patent

US 6,647,514 B1

1

HOST 1/O PERFORMANCE AND
AVAILABILITY OF A STORAGE ARRAY
DURING REBUILD BY PRIORITIZING 1/O
REQUEST

TECHNICAL FIELD

This invention relates to storage arrays. More particularly,
the mvention relates to prioritizing I/0 requests to improve
host I/O performance and availability of a storage array
during rebuild.

BACKGROUND

Conventional disk array data storage systems have mul-
tiple storage disk drive devices that are arranged and coor-
dinated to form a single mass storage system. The common
design goals for mass storage systems include low cost per
megabyte, high input/output performance, and high data
availability. Data availability involves the ability to access
data stored 1n the storage system while ensuring continued
operation 1n the event of a disk or component failure. Data
availability 1s often provided through the use of redundancy
where data, or relationships among data, are stored in
multiple locations 1n the storage system. In the event of disk
failure, redundant data 1s retrieved from the operable portion
of the system and used to regenerate the original data that 1s
lost due to the component failure.

There are two common methods for storing redundant
data on disk drives: mirrored and parity. In mirrored
redundancy, the data being stored 1s duplicated and stored in
two separate areas of the storage system that are the same
size (an original data storage area and a redundant storage
area). In parity redundancy, the original data is stored in an
original data storage area and the redundant data 1s stored in
a redundant storage area, but because the redundant data 1s
only parity data the size of the redundant storage area 1s less
than the size of the original data storage area.

RAID (Redundant Array of Independent Disks) storage
systems are disk array systems in which part of the physical
storage capacity 1s used to store redundant data. RAID
systems are typically characterized as one of seven archi-
tectures or levels, enumerated under the acronym RAID. A
RAID 0 architecture is a disk array system that is configured
without any redundancy. Since this architecture 1s really not
a redundant architecture, RAID 0 1s often omitted from a
discussion of RAID systems.

A RAID 1 architecture involves storage disks configured
according to mirrored redundancy. Original data 1s stored on
one set of disks and a duplicate copy of the data 1s kept on
separate disks. The RAID 2 through RAID 6 architectures
all 1mvolve parity-type redundant storage. Of particular
interest, a RAID 5 architecture distributes data and parity
information across all of the disks. Typically, the disks are
divided into equally sized address arcas referred to as
“blocks”. A set of blocks from each disk that has the same
unit address ranges are referred to as “stripes”. In RAID 5,
cach stripe has N blocks of data and one parity block which
contains redundant information for the data in the N blocks.

In RAID 35, the parity block 1s cycled across different
disks from stripe-to-stripe. For example, in a RAID 35
architecture having five disks, the parity block for the first
stripe might be on the fifth disk; the parity block for the
second stripe might be on the fourth disk; the parity block
for the third stripe might be on the third disk; and so on. The
parity block for succeeding stripes typically “precesses”
around the disk drives in a helical pattern (although other

10

15

20

25

30

35

40

45

50

55

60

65

2

patterns are possible). RAID 2 through RAID 4 architectures
differ from RAID 5 in how they place the parity block on the
disks.

A RAID 6 architecture 1s similar to RAID 4 and 5 1n that
data 1s striped, but 1s dissimilar in that 1t utilizes two
independent and distinct parity values for the original data,
referred to herein as P and Q. The P parity 1s commonly
calculated using a bit by bit Exclusive OR function of
corresponding data chunks 1n a stripe from all of the original
data disks. This corresponds to a one equation, one
unknown, sum of products calculation. On the other hand,
the Q parity 1s calculated linearly independent of P and using
a different algorithm for sum of products calculation. As a
result, each parity value 1s calculated using an independent
algorithm and each 1s stored on a separate disk.
Consequently, a RAID 6 system can rebuild data (assuming
rebuild space is available) even in the event of a failure of
two separate disks in the stripe, whereas a RAID 5 system
can rebuild data only 1n the event of no more than a single
disk failure 1n the stripe.

Similar to RAID 5, a RAID 6 architecture distributes the
two parity blocks across all of the data storage devices in the
stripe. Thus, 1 a stripe of N+2 data storage devices, each
stripe has N blocks of original data and two blocks of
independent parity data. One of the blocks of parity data 1s
stored 1n one of the N+2 data storage devices, and the other
of the blocks of parity data is stored 1n another of the N+2
data storage devices. Similar to RAID 3§, the parity blocks in
RAID 6 are cycled across different disks from stripe-to-
stripe. For example, in a RAID 6 system using five data
storage devices 1n a given stripe, the parity blocks for the
first stripe of blocks may be written to the fourth and fifth
devices; the parity blocks for the second stripe of blocks may
be written to the third and fourth devices; the parity blocks
for the third stripe of blocks may be written to the second
and third devices; etc. Typically, again, the location of the
parity blocks for succeeding blocks shifts to the succeeding
logical device 1n the stripe, although other patterns may be
used.

A hierarchical data storage system permits data to be
stored according to different techniques. In a hierarchical
RAID system, data can be stored according to multiple
RAID architectures, such as RAID 1 and RAID 5, to afford
tradeofls between the advantages and disadvantages of the
redundancy techniques.

Additionally, a data storage system may permit data to be
stored 1n multiple redundancy groups co-existing within the
system. In a RAID system, each redundancy group 1s a set
of disks in the RAID system that use the same RAID
architecture (or RAID architectures for a hierarchical RAID
system) to provide redundancy. By way of example, in a
RAID system having a total of thirty disks, ten disks may be
in a first redundancy group using one RAID architecture(s)
(e.g., using RAID 1), another twelve disks may be in a
second redundancy group using a second RAID architecture
(s) (e.g., using RAID 1 and RAID §), and the remaining
eight disks may be 1n a third redundancy group using a third
RAID architecture(s) (e.g., using RAID 1 and RAID 6).

U.S. Pat. No. 5,392,244 to Jacobson et al., entitled
“Memory Systems with Data Storage Redundancy
Management”, describes a hierarchical RAID system that
enables data to be migrated from one RAID type to another
RAID type as data storage conditions and space demands
change. This patent, which 1s assigned to Hewlett-Packard
Company, describes a multi-level RAID architecture 1n
which physical storage space 1s mapped mto a RAID-level

US 6,647,514 B1

3

virtual storage space having mirrored and parity RAID areas
(e.g., RAID 1 and RAID 5). The RAID-level virtual storage
space 1s then mapped 1nto an application-level virtual stor-
age space, which presents the storage space to the user as
one large contiguously addressable space. During operation,
as user storage demands change at the application-level
virtual space, data can be migrated between the mirrored and
parity RAID areas at the RAID-level virtual space to accom-
modate the changes. For instance, data once stored accord-
ing to mirrored redundancy may be shifted and stored using
parity redundancy, or vice versa. The U.S. Pat. No. 5,392,
244 patent 1s hereby incorporated by reference to provide
additional background information.

In the event that a disk in a RAID system fails the data in
the array 1s “rebuilt”, a process which typically involves
1ssuing multiple read and/or write requests to the disk array.
Typically, the RAID system 1s also available for read and
write requests from a host computer during this rebuilding
process. Unfortunately, these host requests often require
access to the same resources as are used by the rebuild
requests, and therefore compete with the rebuild requests.

In some systems, such competition between host requests
and rebuild requests are resolved by either always delaying
the host requests in favor of the rebuild requests (which can
result in situations where the data in the storage array is
rebuilt more quickly and the performance of the system in
responding to host requests 1s diminished even though the
storage array is not close to permanently losing data) or
always delaying the rebuild requests in favor of the host
requests (which can result in situations where the perfor-
mance of the system 1n responding to host requests 1s not
diminished, but rebuilding data in the storage array can take
a very long time even though the storage array 1s close to
permanently losing data). A storage array is close to perma-
nently losing data when, for example, failure of one more
particular disk 1n the storage array would result 1n data loss.

The improvement of host I/O performance and availabil-
ity of a storage array during rebuild by prioritizing I/0
requests described below addresses these and other disad-
vantages.

SUMMARY

Improving host I/O performance and availability of a
storage array during rebuild by prioritizing I/O requests 1s
described herein.

According to one aspect, rebuild I/O requests are given
priority over host I/O requests when the storage array 1s
close to permanently losing data (for example, failure of one
more particular disk in the storage array would result 1n data
loss). Rebuild I/O requests continue to have priority over
host I/O requests until the storage array 1s no longer close to
permanently losing data, at which point host I/O requests are
ogrven priority over rebuild I/0 requests.

According to another aspect, host I/O requests and rebuild
I[/O requests are both input to a queue to await processing.
When rebuild I/O requests are to have priority (e.g., in a
“rebuild priority” mode), new I/O requests (whether host or
rebuild) are input to the bottom of the queue and propagate
to the top of the queue, where they are processed m a
first-in-first-out (FIFO) manner. However, when host 1/0
requests are to have priority (e.g., in a “host priority”
mode”’), new rebuild I/O requests are input to the bottom of
the queue and new host I/O requests are inserted into the
queue below any other host I/O requests but above any
rebuild I/O requests. This has the effect of allowing host I/0
requests to be processed before rebuild I/0 requests when 1n

10

15

20

25

30

35

40

45

50

55

60

65

4

the host priority mode, but allowing host I/O and rebuild I/O
requests to be processed 1n the order they are received when
in the rebuild priority mode (which results in allocation of
more system resources to rebuild I/O requests than host I/0
requests).

According to another aspect, allocation of one or more
system resources to host I/O requests 1s restricted when
rebuild I/O requests are to have priority over host I/O
requests. In this case, I/O requests (whether host or rebuild)
are processed 1n the order they are received so long as the
system resource(s) usage by host I/O requests has not exceed
a threshold amount. If the threshold amount 1s exceeded,
then rebuild I/O requests are processed before host I/0
requests.

According to another aspect, processing of I/O requests
(whether host or rebuild) occurs in multiple phases. The
processing of a particular request can be preempted between
two phases 1n favor of a higher priority I/O request. By way
of example, if a new rebuild I/O request 1s recerved while 1n
a rebuild priority mode then processing of a host I/O request
can be preempted, allowing the rebuild I/O request to be
processed.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention 1s illustrated by way of example
and not limitation i1n the figures of the accompanying
drawings. The same numbers are used throughout the figures
to reference like components and/or features.

FIG. 1 1s a block diagram 1illustrating an exemplary
computer system having a host computer connected to a data
storage system.

FIG. 2 1s a block diagram illustrating an exemplary host
computer and an exemplary data storage system in more
detail.

FIG. 3 1s a tlowchart 1llustrating an exemplary process for
managing host I/O requests and rebuild I/O requests.

FIG. 4 1s a flowchart illustrating an exemplary process for
managing a request queue based on whether host I/O
requests or rebuild I/0 requests have priority.

FIG. 5 1s a flowchart illustrating an alternative process for
managing a request queue based on whether host I/O
requests or rebuild I/O requests have priority.

FIG. 6 1s a flow diagram 1illustrating an example of
preemption of an I/O request.

DETAILED DESCRIPTION

FIG. 1 shows a computer system 20 having a host
computer 22 connected to a data storage system 24 via an
input/output (I/O) interface bus 26. Host computer 22 is a
general purpose computer that can be configured, for
example, as a server or workstation. Computer 22 has a
visual display device 28, a central processing unit (CPU) 30,
a keyboard 32, and a mouse 34. Other data entry and output
peripherals may also be included, such as a printer, tape
drive, CD-ROM drive, network interfaces, and so forth. In
FIG. 1, host computer 22 1s coupled to a network 36 to serve
data from the data storage system 24 to one or more clients
(not shown).

Data storage system 24 represents a storage array conflg-
ured to hold user data and other information. In one
implementation, data storage system 24 i1s a hierarchical
redundant array of independent disks (RAID) system that is
capable of storing data according to different and/or multiple
redundancy schemes. Host computer 22 provides an inter-
face for an administrator or other user to manage the RAID

US 6,647,514 B1

S

storage system, such as to run diagnostics, evaluate
performance, set operating parameters, etc. For ease of
explanation, data storage system 24 is described herein as a
RAID system, although other types of storage arrays could
alternatively be used.

FIG. 2 shows host computer 22 and data storage system

24 1n more detail. The computer 22 has a processor 40, a
volatile memory 42 (i.e., RAM), a keyboard 32, a mouse 34,

a non-volatile memory 44 (e.g., ROM, hard disk, floppy
disk, CD-ROM, DVD, efc.), and a display 28. An adminis-
trator module 46 1s stored in memory 44 and executes on
processor 40. Administrator module 46 can set various
parameters of data storage system 24 and also provides
management functions such as diagnostics, performance
review, capacity analysis, etc. Administrator module 46
supports a storage manager user interface (UI) 48 that
presents a visual interface on the display 28. An
administrator, via UI 48, can alter various parameters in data
storage system 24 to control the priority given to host I/0O
requests versus rebuild I/0 requests, as discussed 1n more
detail below.

Data storage system 24 includes a disk array 50 with
multiple storage disks 52, disk array controllers 54a and
54b, and a RAID management system 56. As used herein, a
“disk” refers to any mass storage device, typically a non-
volatile, randomly accessible, and rewriteable mass storage
device. Examples of disks include magnetic disks and opti-
cal disks, as well as non-volatile electronic storage elements
(e.g., PROMs, EPROMs, EEPROMs, etc.).

The disk array controllers S4a and 54b are coupled to the
disk array 50 via one or more interface buses 38, such as a
small computer system interface (SCSI). The RAID man-
agement system 56 1s coupled to the disk array controllers
S54a and 54b via an interface protocol 60. It 1s noted that the
RAID management system 356 can be embodied 1n software,
firmware, hardware, or a combination thereof, and can be
embodied as a separate component (as shown), or within the
disk array controllers 54a and 54b, or within the host
computer 22. In one implementation, RAID management
system 56 1s a software module that runs on a processing
unit of data storage system 24, or on processor 40 of
computer 22. Alternatively, RAID management system 356
may be executed by another processing unit, be embodied in
firmware, or be embodied in hardware (e.g., an ASIC).

Disk array controllers 54a and 54b coordinate data trans-
fers to and from the disk array 50. One or more redundancy
ogroups can be implemented on disk array 50 and one or more
RAID architecture levels can be implemented 1n each redun-
dancy group. In FIG. 2, disk array controllers 54a and 54b
are 1dentical controller boards. The parallel controllers
enhance reliability by providing continuous backup and
redundancy 1n the event that one controller becomes 1nop-
erable. The parallel controllers 54a and 54b have respective
mirrored memories 62a and 62b through link 64. In one
implementation, the mirrored memories 62a and 62b are
battery-backed, non-volatile RAMs (NVRAMs), although
other types of memories could alternatively be used. The
mirrored memories 62a and 62b store several types of
information, such as a memory map of the storage space in
disk array 50, a read cache for data being read from disk
array 50, a write cache for data before it 1s written to disk
array 50, etc. Although dual controllers 54a and 54b are
illustrated 1in FIG. 2, different configurations can be used
such as multi-controller configurations where more than two
controllers are employed, or alternatively single-controller
conflgurations.

RAID management system 56 includes a request queue
66, a queue controller 68, a priority identifier 70, a request

10

15

20

25

30

35

40

45

50

55

60

65

6

dispatcher 72, a rebuild controller 74, and a request proces-
sor 76. Rebuild controller 74 manages the rebuilding of data
in any of the one or more RAID architecture levels main-
tained by disk array 50 1n the event that one or more of disks
52 fails. Failure of a disk 52 refers to all or a portion of a disk
52 becoming 1naccessible, due to a problem with the disk

itself or a component used in accessing the disk (e.g., a bus).
The detection of disk failures 1s well known to those skilled

in the art and thus will not be discussed further except as it
pertains to the mvention.

Due to the different RAID levels that may possibly be
stored on disk array 50, failures of different disks can result
in different RAID levels being rebuilt. The manner in which
the data 1n the storage array is rebuilt can vary depending on
numerous factors, such as the nature of the failure, the RAID
levels employed in the array, the number of disks in the
redundancy group, etc. Examples of rebuilding data in an
array 1nclude migrating data to other disks and/or RAID
levels so that a failed disk is not used, copying data to (or
determining what data to write and writing that data to) a
newly 1nstalled disk, writing data to a designated backup or
spare disk. Nonetheless, rebuilding of a RAID level typi-
cally mnvolves the reading of data from and/or the writing of
data to disk array 50. Additionally, the rebuilding process
may be performed automatically 1n response to detecting the
failure, or alternatively may be performed 1n response to a
user (or administrator) request. The rebuilding of RAID
levels 1s well known to those skilled 1n the art and thus will
not be discussed further except as 1t pertains to the invention.

Request queue 66 1s 1llustrated 1n FIG. 2 and discussed
herein as being a logical queue structure (an abstraction of
the actual queue mechanism implementation). Request
queue 66 can be implemented 1n any of a wide variety of
manners. Examples of such implementations include: a
single queue may be used into which all I/O requests
(whether host or rebuild) are placed; multiple queues may be
used and I/O requests placed 1n one queue while rebuild
requests are placed 1n another queue, or alternatively
requests of different priorities may be placed into different
queues; a simple list may be maintained of the requests and
time of receipt of each request (and optionally priority of
each request); etc.

Request queue 66 stores I/0 requests targeting disk array
50 and to be processed by controllers 54a and 54b. These 1/0
requests can originate with host computer 22 or alternatively
rebuild controller 74, and can be input and/or output requests
(e.g., read requests, write requests, etc.). In the illustrated
example, requests are 1nput to request queue 66 by queue
controller 68, although alternatively requests could be input
to request queue 66 directly by host computer 22 or rebuild
controller 74. Requests can be input to request queue 66 in
different manners, such as in the order they are received or
according to some other ordering as discussed 1n more detail
below.

Requests are retrieved from request queue 66 by request
dispatcher 72 and forwarded to request processor 76 for
processing. Processing of a request varies based on the type
of request, but generally refers to performing any of the
actions necessary to carry out the request. These actions may
include, for example, calculating parity values, writing data
to one or more disks, reading data from one or more disks,
etc. Request dispatcher 72 can retrieve requests from request
queue 66 1n the order they were placed 1n the queue, or
alternatively according to some other ordering as discussed
in more detail below.

Priority 1dentifier 70 determines whether host I/O requests
or rebuild I/O requests should have priority over the other.

US 6,647,514 B1

7

The behavior of queue controller 68 and/or request dis-
patcher 72 may change based on whether host I/O requests
or rebuild I/0 requests should have priority over the other,
as discussed 1n more detail below.

Generally, request queue 66, queue controller 68, priority
identifier 70, and request dispatcher 72 operate together to
orve host I/0 requests or rebuild I/O requests priority over
cach other. Whether host or rebuild requests have priority at
any particular time 1s dependent on how close the array 50
1s to permanently losing data. Giving priority to one type of
request over the other can be on a request basis (e.g., all of
the priority requests will be submitted to array controllers
S4a and 54b for processing before any of the other requests)
or alternatively on a resource basis (e.g., the requests with-
out priority will be more limited in their resource usage than
requests with priority), as discussed in more detail below.

FIG. 3 1s a flowchart 1llustrating an exemplary process for
managing host I/O requests and rebuild I/O requests. The
process of FIG. 3 1s implemented by RAID management
system 56 of FIG. 2, and 1s described with additional
reference to elements of FIG. 2.

Initially, when there are no disk failures 1n data storage
system 24, host I/O requests have priority (referred to as
“host priority”) (act 92). Host I/O requests continue to have
priority until a disk failure resulting in a degraded RAID
level occurs (act 94). A degraded RAID level refers to a
RAID level in which one or more disks have failed. If a disk
that 1s storing data for one or more RAID levels fails, then
the disk failure results in a degraded RAID level. However,
not all disk failures will result 1n a degraded RAID level
(e.g., the disk may be a spare disk and thus not have any data
stored on 1t, the disk array may be new and not 1nitialized yet
for RAID levels, the failed disk may be 1n another redun-
dancy group, etc.).

When a disk failure resulting in a degraded RAID level
occurs, priority identifier 70 checks whether there are one or
more RAID levels at a critical point (act 96). A critical point
refers to a situation where a RAID level is close to perma-
nently losing data. Permanently losing data refers to losing
data and being unable to recover the lost data. Permanently
losing data is different from simply losing data (e.g., due to
a disk failure), as the very nature of the RAID storage system
1s to provide redundancy so that some disk failures can occur
and data on those disks recovered by rebuilding without
permanently losing data.

In one implementation, a RAID level 1s 1dentified as being
close to permanently losing data when the failure of one (or
one more) disk would result in permanent loss of at least
some data 1n that RAID level. The number of failures that a
particular RAID architecture level can endure without data
loss varies, so it 1s possible 1n a hierarchical data storage
system to have some RAID levels that would be close to
permanently losing data as soon as one disk in the redun-
dancy group fails (e.g., RAID 1 or RAID $§), but that other
RAID levels would not be close to permanently losing data
until an additional disk(s) in the redundancy group fails
(e.g., RAID 6).

In the 1llustrated example, priority identifier 70 1s pro-
crammed with which disks 52 of array 50 are being used for
which RAID levels and which redundancy groups, as well as
how many of the disks 1n each RAID level can fail before a
data loss results. When a disk 52 fails, priority 1dentifier 70
is notified of which disk(s) failed (e.g., either directly or via
rebuild controller 74). Similarly, when the system has com-
pleted rebuilding data as a result of a failed disk, priority
identifier 70 is similarly notified (e.g., by rebuild controller

10

15

20

25

30

35

40

45

50

55

60

65

3

74). Priority identifier 70 is thus able to accurately determine
which redundancy groups and RAID levels within each
redundancy group, it any, are at critical points.

[f priority identifier 70 determines that no RAID levels are
at therr critical points as a result of the disk failure, then host
[/O requests continue to be given priority (act 92). Thus, in
such situations, host I/O requests are processed 1n the order
they are received and rebuild I/O requests are processed
when there are available resources not being consumed by
host I/O requests.

Returning to act 96, if one or more RAID levels are at
their critical points, then rebuild I/O requests for those RAID
levels are given priority over host I/O requests, referred to
as “rebuild priority” for those RAID levels (act 98). When
at rebuild priority, rebuild I/O requests are given preferential
treatment (e.g., processed first, allocated more resources,
etc.) than host I/O requests. This priority, for each RAID
level at its critical point, continues for as long as that RAID
level is at its critical point (act 96), at which point host 1/0
requests have priority over rebuild I/O requests for that
RAID level. For example, if a redundancy group includes
RAID 1 data and RAID 6 data and one disk 1n the redun-
dancy group fails, then RAID 1 for that redundancy group
would be at its critical point but RAID 6 would not, so RAID
1 would be at rebuild priority but RAID 6 would still be at
host priority. By giving rebuild I/O requests priority over
host I/O requests when a RAID level 1s at its critical point,
data from that RAID level can be rebuilt more quickly to
help protect against the possibility of permanent data loss.

Alternatively, 1n act 98 if at least one RAID level 1s at a
critical point then that RAID level and at least one other
RAID level (in one implementation, all RAID levels) have
rebuild I/O requests given priority over host I/O requests.
For example, if a redundancy group includes RAID 1 data
and RAID 6 data and one disk 1n the redundancy group fails,
then RAID 1 for that redundancy group would be at its
critical point so both RAID 1 and RAID 6 in that redundancy
group would be at rebuild priority (even though RAID 6 is
not at its critical point). In this case, the whole redundancy
group 1s at rebuild priority.

Additionally, in act 98, rebuild I/O requests for RAID
levels at their critical points are given priority over host I/0O
requests for all redundancy groups (even if none of the
RAID levels 1n a particular redundancy group are at their
critical points). Alternatively, rebuild I/O requests for RAID
levels at their critical points may be given priority over only
host I/O requests in the same redundancy group(s) as the
RAID levels at their critical points (other redundancy groups
with no RAID levels at their critical points remain at host
priority).

FIG. 4 1s a flowchart illustrating an exemplary process for
managing a request queue based on whether host I/O
requests or rebuild I/0 requests have priority. The process of
FIG. 4 1s implemented by RAID management system 56 of

FIG. 2, and 1s described with additional reference to ele-
ments of FIG. 2.

In the process of FIG. 4, requests are placed 1n a location
of request queue 66 based on priority. If the RAID level 1s
at rebuild priority then requests are placed into request
queue 66 1n the order they are received and processed 1n a
first-in-first-out (FIFO) manner. Although this can result in
host I/0O requests being removed from request queue 66 and
processed before some rebuild I/0 requests are removed and
processed, the result 1s that rebuild I/0 requests have priority
because they typically consume more system resources
during processing than host I/O requests.

US 6,647,514 B1

9

Initially, an I/O request (either host or rebuild) is received
(act 108) and queue controller 68 checks (e.g., by querying
priority identifier 70) whether the RAID level (or alterna-
tively the redundancy group or the entire disk array) that the
request corresponds to is at a rebuild priority (act 110). If the
RAID level 1s at rebuild priority, then queue controller 68
places the received request 1nto the bottom of request queue
66 (act 112), regardless of whether the request is a host 1/0
request or a rebuild I/O request. Processing then returns to

act 108 for receipt of another I/O request (either host or
rebuild).

On the other hand, 1f the RAID level 1s at host priority,
then queue controller 68 checks whether the request 1s a host
[/O request or a rebuild I/O request (act 114). If the request
1s a rebuild I/O request, then controller 68 places the request
into the bottom of request queue 66 (act 112). If, however,
the request 1s a host request then queue controller 68 checks
whether there are any rebuild requests in request queue 66
(act 116). If there are no rebuild requests in request queue
66, then controller 68 places the request 1nto the bottom of
request queue 66 (act 112). On the other hand, if there are
rebuild requests 1n request queue 66, then controller 68
places the request mto the queue below any other host
requests but above any rebuild requests (118). Processing
then returns to act 108 for receipt of another I/O request.

The process of FIG. 4 allows request dispatcher 72 to
always remove I/O requests form the top of request queue
66, as queue controller 68 1s responsible for ordering the
requests 1n request queue 66. Alternatively, the same result
can be obtained by having controller 68 place requests in
request queue 66 1n the order they are received and having
dispatcher 72 alter the order 1n which requests are removed
from request queue 66 for processing (for example, if at host
priority, search request queue 66 for host I/O requests and
select a host I/O request (e.g., in a FIFO manner) for
processing before selecting any rebuild I/O requests for
processing).

FIG. § 1s a flowchart 1llustrating an alternative process for
managing a request queue based on whether host I/0
requests or rebuild I/O requests have priority. The process ot
FIG. 5 1s implemented by RAID management system 56 of
FIG. 2, and 1s described with additional reference to ele-
ments of FIG. 2.

In the example of FIG. 5, queue controller 68 places
requests 1into request queue 66 1n the order they are received.
Request dispatcher 72 then selects requests from request
queue 66 for processing in a manner that ensures rebuild I/0
usage of a restricted resource(s) when at rebuild priority. If
the host I/O usage of a restricted resource(s) exceeds a
threshold amount when at rebuild priority, then rebuild
requests will be processed before host requests until that
threshold amount 1s no longer exceeded. This results in
allowing rebuild I/O requests to receive full usage of the
restricted resource(s) if there are no host I/O requests in
request queue 66, while at the same time preventing rebuild
[/O usage of the restricted resource(s) from falling below a
particular amount (1.e., a lower bound) if there are host I/O
requests 1n request queue 66. By so ensuring an amount of
rebuild I/O usage of a restricted resource(s), some host 1/0
requests will be processed when the RAID level 1s at rebuild
priority but rebuild I/O requests are prevented from being
starved out.

Although FIG. § 1s illustrated with reference to limiting
host I/O usage of a restricted resource(s), RAID manage-
ment system 56 may alternatively limit rebuild I/O usage of
a restricted resource(s) in an analogous manner. In such an

10

15

20

25

30

35

40

45

50

55

60

65

10

implementation, 1f the rebuild I/O usage of a restricted
resource(s) exceeds a threshold amount when at host
priority, then host requests will be processed before rebuild
requests until that threshold amount is no longer exceed.

Referring to FIG. 2, storage system 24 can be imple-
mented using any of a variety of resources. Examples of
such resources 1include memories, CPUs, buses, etc. Restric-
tions can be placed on any of these resources in system 24.

In one implementation, restrictions are placed on resources
that are deemed to be “bottlenecks”, such as a CPU(s) in the
disk array controllers 54a and 54b, or a bus (or other

channel) between controllers 54a and 54b and disk(s) 52.
Returning to FIG. 5, request dispatcher 72 waits until disk
array controllers 54a and 54b are able to process another I/0
request (act 128). Once ready, request dispatcher 72 checks
whether the RAID level (or alternatively the redundancy
group or the entire disk array) corresponding to the next I/0
request in request queue 66 is at rebuild priority (act 130).
The RAID level for requests in request queue 66 can be
stored along with the requests 1n request queue 66, or
alternatively request dispatcher 72 can determine the corre-
sponding RAID level (e.g., request dispatcher 72 may be

programmed with, or otherwise have access to, a mapping of
addresses to RAID levels).

If the RAID level corresponding to the next request in
request queue 66 1s not at rebuild priority, then that next
request is selected from request queue 66 for processing (act
132). However, if the RAID level is at rebuild priority, then
request dispatcher 72 checks whether host I/O usage of a
restricted resource(s) for that RAID level exceeds a thresh-
old (act 134). If host I/O usage of the restricted resource(s)
does not exceed the threshold, then that next request in
request queue 66 1s selected from request queue 66 for
processing (act 132). If, however, host I/O usage of the
restricted resource(s) does exceed the threshold, then the
next rebuild I/0 request for that RAID level 1s selected from
request queue 66 for processing (act 136).

Alternatively, dispatcher 72 may not concern itself with
distinguishing between different RAID levels in act 130. For
example, 1if any RAID level were determined to be at rebuild
priority then the determination can be made as to whether
the host I/O usage for any RAID level (or all RAID levels
combined) exceeds the threshold in act 134.

The determination of which resources are restricted, as
well as what corresponding thresholds are to be exceeded to
change between host priority and rebuild priority, can be
made 1n a variety of manners. RAID management system 56
of FIG. 2 can be pre-configured with an identification of
which system resources are to be restricted and their corre-
sponding threshold values. Such resource restrictions may
be modified by, or alternatively initially input by, an admin-
istrator or other user. Such input can be received, for
example, via user interface 48 of FIG. 2. By way of example,
a user may be presented with identifiers of the various
resources 1n RAID management system and be allowed to
select which of those resources are to be restricted.
Additionally, specific threshold values can be mput (e.g., by
the user indicating that not greater than 25% of a particular
resource should be used by host I/O requests when 1n rebuild
priority). Alternatively, multiple presets may be given that
correspond to particular values (e.g., a user may be able to
select a “low”, “medium”, or “high” restriction, each of
which can be converted to a particular value by administra-

tor module 46 or RAID management system 56, such as
25%, 50%, and 75%, respectively).

FIGS. 2-5 are described with reference to a data storage
system 24 having a single request queue 66, queue controller

US 6,647,514 B1

11

68, priority identifier 70, and request dispatcher 72 for all
RAID levels and redundancy groups being supported by
storage system 24. Alternatively, each redundancy group
may have its own request queue 66, controller 68, 1dentifier
70, and dispatcher 72, and/or each RAID level (or other
combination of RAID levels) may have its own request
queue 66, controller 68, identifier 70, and dispatcher 72.

Additionally, the RAID management system can give
priority to rebuild I/O requests and/or host I/O requests
during the processing of requests. Processing of an I/O
request typically occurs in multiple phases with various
delays between these phases. For example, request processor
76 of FIG. 2 may need to read data from one or more disks
52 1n order to process one request. However, due to delays
in actually reading data from a disk(s) 52, there is often a
period of time when request processor 76 1s simply waiting,
for data to be received from the disks. During this period of
time, an additional request(s) can be received from request
dispatcher 72 and preempt the previous request, resulting in
request processor 76 beginning (and possibly completing)
processing of the new request.

FIG. 6 1s a flow diagram illustrating an example of
preemption of an I/O request. FIG. 6 1llustrates a write
request as an exemplary request, although similar phases
occur for other types of I/O requests.

Initially, the host write request is received (block 142).
Based on the host write request, a read command(s) 1s issued
to one or more of the disks 52 of FIG. 2 (block 144). After
a period of time, the requested data 1s received from the
disk(s) (block 146). Various calculations, such as parity
calculations, are then performed (block 148). The manner in
which such calculations are performed can vary depending,
on the RAID level(s) involved in the request. Once such
calculations are completed, a write command(s) with the

data corresponding to the host write request 1s 1ssued to one
or more of the disks 52.

However, 1n the example of FIG. 6, a rebuild read request
is received (block 152) while the read data 1s being received
from the disk(s) 52 (block 146). Request processor 76
preempts the host write request 1n favor of the rebuild read
request after the data is received (block 146), and issues the
rebuild read request to one or more of the disks 52 (block
154). After a period of time, the requested data is received
from the disk(s) (block 156), and is returned to the requestor.
As this completes the processing of the rebuild read request,
the preempted host write request can resume, with request
processor 76 performing the necessary calculations (block
148) and issuing a write command(s) to the disk(s) (block
150).

Alternatively, rather than completely preempting the host
write request, preference may simply be given to the rebuild
read request 1n situations where either the host write request
or the rebuild read request can be processed. For example,
after the read command(s) for the rebuild read request are
issued to the disk(s) (block 154), request processor 76 can
perform the various parity calculations (block 148) while
waiting for the requested data for the rebuild read request to
be received from the disk(s), thereby reducing the amount of
time request processor 76 1s 1dle.

Request processor 76 may optionally check whether the
preempted host I/O request alters the same address(es)
and/or disk locations as the rebuild I/O request and, to
ensure data integrity, allow the host I/O request to finish
processing before the rebuild I/O request.

The discussions above describe both host and rebuild 1I/0
requests as being queued by the RAID management system.

10

15

20

25

30

35

40

45

50

55

60

65

12

In alternative embodiments, such queuing is not necessary.
By way of example, a host computer or rebuild controller
may send a signal or message to the RAID management
system when it has an I/O request, and then transmit the I/0
request for processing when 1t receives an acceptance or
acknowledgment signal or message from the RAID man-
agement system.

Thus, improving host I/O performance and availability of
a storage array during rebuild by prioritizing I/O requests
has been described. Rebuild I/O requests are advantageously
ogrven priority over host I/O requests only when the storage
array 1s close to permanently losing data. Otherwise, host
I/O requests are given priority over rebuild I/O requests to
increase the performance of the storage array in response to
the host I/O requests without significantly increasing the
chance of data loss.

Although the description above uses language that is
specific to structural features and/or methodological acts, 1t
1s to be understood that the invention defined i1n the
appended claims 1s not limited to the specific features or acts
described. Rather, the specific features and acts are disclosed

as exemplary forms of implementing the mvention.
What 1s claimed 1s:
1. A method comprising:

1dentifying that a storage array is close to permanently
losing data, wherein the storage array and a correspond-
ing controller include a plurality of resources; and

g1ving, 1n response to 1identifying that the storage array 1s
close to permanently losing data, input/output (I/O)
requests for rebuilding at least a portion of the storage
array priority over host I/O requests, and wherein
oiving I/O requests for rebuilding at least a portion of
the storage array priority over host I/O requests com-
prises restricting host I/O resource usage to not exceed
a threshold amount.

2. A method as recited 1n claim 1, wherein the threshold

amount 1s user-configurable.
3. A method as recited in claim 1, wherein:

the storage army comprises a redundant array of indepen-
dent disks (RAID) system that includes a plurality of
RAID levels;

the 1dentifying comprises 1identifying when at least one of
the plurality of RAID levels is close to permanently
losing data; and

the giving comprises giving rebuild I/O requests priority

over host I/0 requests only for the at least one RAID
level that 1s close to permanently losing data.

4. One or more computer-readable media having stored
thereon a computer program that, when executed by one or
more processors of a computer, causes the one or more
processors to perform acts including:

identifying that a storage array is close to permanently
losing data, wherein the storage array and a correspond-
ing controller mnclude a plurality of resources; and

g1ving, 1n response to 1identifying that the storage array 1s
close to permanently losing data, input/output (I/O)
requests for rebuilding at least a portion of the storage
array priority over host I/O requests, and wherein
oiving I/O requests for rebuilding at least a portion of
the storage array priority over host I/O requests com-
prises restricting host I/O resource usage to not exceed
a threshold amount.

5. One or more computer-readable media as recited 1n

claim 4, wherein:

the storage array comprises a redundant array of indepen-
dent disks (RAID) system that includes a plurality of
RAID levels;

US 6,647,514 B1
13 14

the identifying comprises 1dentifying when at least one of a request dispatcher, communicatively coupled to the
the plurality of RAID levels 1s close to permanently priority identifier, to select host I/O requests and
losing data; and rebuild I/O requests for execution based at least 1n part

the giving comprises giving rebuild I/O requests priority on whether host I/O requests or rebuild I/O requests are
over host I/O requests only for the at Ieast one RAID 3 to have priority,

level that is close to permanently losing data.

6. An apparatus comprising: wherein the apparatus further comprises,

a priority identifier to determine whether host input/output a priority 1dentifier associated with each ot the plurality
(I/O) requests or rebuild I/O requests for a storage array of RAID levels, and
are to have priority, wherein the storage array com- 10 a request dispatcher associated with each of the plu-
prises a redundant array of independent disks (RAID) rality of RAID levels.

system, wherein the RAID system includes a plurality
of RAID levels; and £ % % k%

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description/Claims
	Page 14 - Claims

