a2 United States Patent

Katsandres et al.

US006356949B1

(10) Patent No.:
5) Date of Patent:

US 6,356,949 Bl
Mar. 12, 2002

(549) AUTOMATIC DATA COLLECTION DEVICE
THAT RECEIVES DATA OUTPUT
INSTRUCTION FROM DATA CONSUMER

(75)

(73)

*)

@D
(22
(D
(52)
(58)

(56)

Inventors: James T. Katsandres, Seattle; Jeffrey
M. Hunt, Everett; Chau Minh Ho,
Edmonds; Paul David Shoeman,
Lynnwood, all of WA (US)

Intermec IP Corp., Beverly Hills, CA

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

3

................... GO6F 15/173
09/238; 709/217; 709/203
................................. 709/238, 201,

709/203, 217, 218, 219; 370/351, 401,
409, 911; 235/462.07; 455/445

References Cited

Assignee:
(US)

Notice:

Appl. No.: 09/240,30.

Filed: Jan. 29, 1999

Int. C1.7

US.CL ...

Field of Search
4,801,786 A 1/1989
4825058 A 4/1989
4,831,539 A * 5/1989
5034598 A 7/1991
5,052,020 A 9/1991
5,070,536 A 12/1991
5121342 A 6/1992
5218188 A 6/1993
5261079 A 11/1993
5205154 A 3/1994
5309351 A 5/1994
5322091 A 6/1994
5349678 A 9/1994
5365546 A 11/1994
5404493 A 4/1995
5418684 A 5/1995
5425051 A 6/1995
5440564 A 8/1995
5471,596 A 1171995
5572512 A 1171996

U.S. PATENT DOCUMENTS

Stobbe 235/377
Poland ... 235/472
Hagenbuch 340/988
Polandccceenvrnrennnn 235/435
Koenck et al. 375/62
Mahany et al. 455/67
Szymborski et al. ... 364/514
Hansonc.evvvvveennnn. 235/375
Celi, It ovvevveiieeieeeenne. 395/500
Meier et al. .c.oovvveennnnnnnn. 375/1
McCain et al. ... 364/132
Hanson 235/472
Morris et al. 395/800
Koenck et al. 375/9
Bolme et al. 395/500
Koenck et al. 361/680
Mahany o 3757202
Ovada et al. 370/112
Brown, IIT 395/375
Cutler, Ir. et al. 370/13

603

CLIENT
1

5,577,229 A 11/1996 Wakerlyccooeveene 395/474
5,586,281 A 12/1996 Miyama et al. 395/405
5,604,516 A 2/1997 Herrod et al. 345/168
5,623,603 A 4/1997 Jiang et al. 395/200.04
5,666,645 A * 9/1997 Thomas et al. 455/6.1
5,790,536 A * 8/1998 Mahany et al.

6,006,100 A * 12/1999 Loenck et al. 455/466
6,119,941 A * 9/2000 Katsandres et al. 235/462.07

OTHER PUBLICATIONS

Palmer, Roger C. “Reading, Printing and Specification of
Bar Code Symbols,” The Bar Code Book, 2nd ed., Helmers
Publishing, Inc., Peterborough, New Hampshire, 1991, p.
107.

* cited by examiner

Primary Examiner—Mehmet B. Geckil
(74) Antorney, Agent, or Firm—Seed IP Law Group, PLLC

(7) ABSTRACT

A method and system for receiving a client’s instructions
with regard to specifying an output mechanism and a data
type for data received from an automatic data collection
(“ADC”) device on an ADC device platform. The method
and system allows client applications to register their ADC
data requests in a grid that is referenced during the process-
ing of received ADC data. Clients, residing either on the
ADC device platform or on a remote computing system,
register with a data transfer mechanism to receive data via
a particular output mechanism. Following registration of a
client’s preferred output mechanism, the data transfer
mechanism forwards all data received for the client by the
ADC device platform to the client’s specified output mecha-
nism. Using the data transfer mechanism, the same set of
input data, destined for more than one application, may be
simultaneously transmitted over different output mecha-
nisms. The invention may utilize data output mechanisms
such as pipes, remote procedure calls (“RPC”), sockets,
stream files, NetBIOS, mail slots, NetDDE, and shared
memory. The invention further allows the updating of exist-
ing data output grids or the addition of new information in
data grids in association with a newly added ADC device, a
newly added output condition, or a newly added client.

46 Claims, 14 Drawing Sheets

130
ADC DATA SERVER

301"

1003

DATA

CLIENT
1001 2

CUENT DATA
e

CLIENT 1

CLIENT 2| CLIENT 3| - - = |CHLENT Y

PIPE

1002 TRANSMITTER| 150, n7

ADC
DEVICE
| apc 1
1 DATA
RECEIVER
QUTPLT

METHOD

SOCKET

RPC

STREAM FILE

NetBI0S

ORGANIZER

602

MAIL SLOTS

NET DDE

SHARED
MEMORY

US 6,356,949 B1

Sheet 1 of 14

Mar. 12, 2002

U.S. Patent

5, "WOiLYId 30IA30_(,00v,) NOWOTTIOO VAVG JUVHOLNY] g J L]
) 05/ W3LSAS ONILNWOD
g (72}
PING NS VIV S
: aav 2l S
“ VTR (=z
ENEl NOILVOIddY| NOILYONddY], . _INOILVOMddY =
oﬁ Y201 201 1v201 S
L1 A
. N
a / 004 _
201 STOIATT
SNOILVIINNKAOD
N3LSAS ONILNdNOD 3LOW3Y 54
| b2 NOILVOIddV | _ |NOILYIddV
g - 310N3Y 3LOW3Y
u NOILYOINddY | _ | NOILYOITddY S¢S f f
=
(ﬁ 3 HIOMLIN
01 60! 70 ﬂ
: ANy £0!

U.S. Patent Mar. 12,2002 Sheet 2 of 14 US 6,356,949 B1

FROM 10
100 REMOTE APPLICATION REMOTE APPLICATION
COMMUNICATIONS DEVICES 116
120
NETWORK COMMUNICATIONS UNIT 221
= 711
B =
% \J_8
% 232~ ==
(&) 9 =
= a
> | 1 =
S S8 \J 3
5o =
- O OO
O S =
= 22 =
o =
= = :
< —
o - S
— =
Lt < <
< 88
& 130 - &
(4]
: x <
113
ADC DATA SERVER
20— L /239
DEVICE . . . DEVICE
HANDLER HANDLER
118 117
ADC / . . . \\ s
DEVICE DEVICE

US 6,356,949 B1

Sheet 3 of 14

Mar. 12, 2002

U.S. Patent

Y

YIZINVOYO
Q149

vshn\\\\\

RERYEN

viva

o0V

08~

LERVENEL
1S3IN03Y
vivd

NANANAY

NEANERANEN

a9

_
IN3ID

g ol

v ~
N §&
é‘, LI . é’
L L
$ $

U.S. Patent Mar. 12,2002 Sheet 4 of 14 US 6,356,949 B1

301

\ /40/
CLIENT

1 ADC | DATA | DATA | DATA DATA
__ DEVICE| TYPE | TYPE | TYPE |+ « «| TYPE ["401a

1] 1=Y | 2=N | 3=Y 2=N
ADC | DATA

DEVICE| TYPE | N/A | N/A |« « «| N/A 4016
2 | 1=Y

. T 401¢

ADC | DATA | DATA
DEVICE| TYPE | TYPE | N/A |« o «| N/A |~ 00y
X | 2=N | 3=Y

Fig. 4

U.S. Patent

Mar. 12, 2002

ADC DATA SERVER) 200

Sheet 5 of 14

RECEIVE GRID 501
REQUEST ~
IDENTIFY 503

CLIENT ~

DATA

TYPE

SPECIFIED
?

es 507

IDENTIFY
DATA TYPE

‘ 509

ADC
DEVICE
SPECIFIED
?

Yes

/5//

IDENTIFY
ADC DEVICE

513

DATA TYPE
ASSOCIATED
WITH
DEVICE
2

MYes

US 6,356,949 B1

U.S. Patent

L 517

REPORT
ERROR

Mar. 12, 2002

No

CAN ADC
DEVICE HAVE
SPECIFIED
TYPE

Sheet 6 of 14

519

IDENTIFY ALL ADC
DEVICES APPLICABLE
FOR SPECIFIED DATA

TYPE

US 6,356,949 B1

©

521
MAKE ENTRY/ENTRIES|”

IN DATA GRID

|

Fig. 5B

523

US 6,356,949 B1

Sheet 7 of 14

Mar. 12, 2002

U.S. Patent

9 T

4IZINYOYO

AOH1IN

1nd1no

N@@.\\\\
NELREN RELEREN)
v1va 1S3nd3Y
0ay V1vQ
109

AYONIN (3YVHS

e e o

300 13N

S101S VA

SOIgieN

714 NVIULS

Jdy

13¥30S

1did

A INIMD

¢ INJTD | ¢ INITD

b IN3O

05!

JOH13A LNdlno

108~

|
IN3ITO

Mgwl\\\\\

U.S. Patent

Mar. 12,2002 Sheet § of 14 US 6,356,949 B1

ADC DATA SERVER)}—""%0

RECEIVE OUTPUT 701
MECHANISM
REQUEST

|

IDENTIFY 703
CLIENT ~

OUTPU
MECHANISM
SPECIFIED

707

IDENTIFY
OUTPUT MECHANISM

709

SELECTED
MECHANISM
AVAILABLE

////-7z/
GENERATE

ERROR MESSAGE

Yes

STORE IN

OUTPUT GRID

Flg. 7

US 6,356,949 B1

Sheet 9 of 14

Mar. 12, 2002

U.S. Patent

_

301A30

aav

w

411

Y

4IHILVA AHHV \

v1vd@
a9

508

r08

N

dALLINSNVYL

£08 \\
=1 L
T 7
\ \
e N
\\ M/Wo SN
2l
o

A

vivd

43A43S vIva 0Qv

ININD /
. £08
Z
“lnam =" %
_
=" 1%

g I

U.S. Patent Mar. 12,2002 Sheet 10 of 14 US 6,356,949 B1

ADC DATA SERVER 790

RECEIVE DATA 901
FROM ADC DEVICE ol

IDENTIFY ADC 903
DEVICE TYPE "

|

IDENTIFY DATA 905
TYPE ~

EXAMINE GRID TO IDENTIFY|
RECIPIENT CLIENT(S) |~
BASED ON DATA TYPE

EXAMINE GRID TO IDENTIFY |
RECIPIENT CLIENT(S)
BASED ON ADC DEVICE TYPE

TRASMIT DATA TO

911
IDENTIFIED CLIENT(S)J

|

Fig. 9

US 6,356,949 B1

Sheet 11 of 14

Mar. 12, 2002

U.S. Patent

_

301A3
Y

)

41

7y

A4ONIN
Q34VHS

300 13N

S101S VN

SOIg4eN

ERIERLVEL T

ody

13A00S

idid

01 o]
209
4IZINVOYO
QOHLIN
1Nd1n0
4N
v1va
0¥
700} YILLINSNVAL
v1va
£001 ~_]
¥INNIS VIYO DV

A INIMD | - - - |g INIMD|Z IN3MD |} IN3MD
mgm.\\\\\\
it Ao =42
N%w\ :
T
e

U.S. Patent Mar. 12,2002 Sheet 12 of 14 US 6,356,949 B1

ADC DATA SERVER) 7700

\

RECIEVE DATA
FROM ADC DEVICE

Y

IDENTIFY RECIPIENT
CLIENT(S) FOR DATA

Y

IDENTIFY RECIPIENT
CLIENT(S) SPECIFIED
OUTPUT MECHANISM(S)

1105

|

CLIENT(S) OVER SPECIFIED
OUTPUT MECHANISM(S)

TRANSMIT DATA TO RECIPIENT

1107

Y

Flg. 11

US 6,356,949 B1

Sheet 13 of 14

Mar. 12, 2002

U.S. Patent

gl oy

9721 222 9221 szz1 WY041Y1d 301A30 90V
¢ (4 ¢
201 43NS vIval | 30IA3Q | | |, | 3DIAIC NOILD3TI0)
INIAT oav Qv 0av aIn
SIN39Y-8NS h
3 Sal \rzz) e
o = [IN39V ¥3LSVA dANS |
g 8= 6221 —" =
\ 2 |2
] AVM3LY9 oz<§8\):§ S =
811 > =
o 430v34/ dANS 1223 =
. = u = 2
o = E
<[=
= u NOILOITION o 2
o Y3 TANVH S 3
= 10201044 ¥ =
w ££71 |2
. %N % v_om\ N
I90IM N o~
L1 _ /" 1IVNLYIA 911
/ O o g2 | TN ZH~ TN
J > Lo
S == MINIQ F0IA3A__ NOILVOMddY] _ NOILVOTddv| NOTLVOIddY
= o Z| 667 e@m@_ V90T w901 W01 | Ny
Q = g5zl NILSAS ONILNJWOI
<t

I_/— FROM REMOTE APPLICATION

/ TO REMOTE APPLICATION/i

001

US 6,356,949 B1

Sheet 14 of 14

Mar. 12, 2002

U.S. Patent

gl Il

| N|\ rl
£577 3 T (03w 69) Sﬂw,m;_
(IN02) | ¥3TI04INOD SIOVAHIINI oiavy
1¥0d VIS | LIN¥IHLI J4VMOEVH frovisd
WIISAHd 0IQvY N3dO
D —
soel 6757 (T¥0) ¥3AVT NOILAVY W30 32 SMOGNIM
NIANG 8Z5! 975 Gzel 1747
WVINIS NI-1TINg (INVNdWOD SION) | ¥3AING
YNNG
P NI 1D SMOANIM |3N3HL | ¥3ANO 1000104d | OIOV
205} AOVOT
41V T ddd 4/1 01avy N31d0
7T 0% SION
coc/— N NYOMLIN SIEl 44V ONV ‘dWDI ‘dI 77T
dl/dan
P05/ — N 1Y0dSNVYL L 4an 19178
£081—" NOISS3S 6221 szm% [ig] [zel *dan
_ Y\ dlil
Z0e1— N NOILVINISIMd | 275/ NS T AN
j— SNOILYDITddY ADVOI1 404 SNOILIGQY SMd
joss —~| NOILYONddV V1 L OROSN

NOILYDINddY JGV

/%Q

US 6,356,949 B1

1

AUTOMATIC DATA COLLECTION DEVICE
THAT RECEIVES DATA OUTPUT
INSTRUCTION FROM DATA CONSUMER

TECHNICAL FIELD

The invention relates generally to automatic data collec-
tion (“ADC”) devices and more particularly to receiving
instructions from ADC data consumers regarding data
output, including instructions specifying a data output
mechanism and specifying the characteristics of the data to
be routed through the selected data output mechanism.

BACKGROUND OF THE INVENTION

Automatic Data Collection (“ADC”) device platforms,
such as ADC device platforms equipped with bar code
readers, have received increasing commercial attention in
the past few years. ADC device platforms, such as handheld
data collection terminals, or hand-held personal computers,
have been widely implemented in the retail marketplace and
have garnered increasing utilization in a diverse range of
application areas. The ever-decreasing cost and size of ADC
device platforms has facilitated their entry into a wide
variety of commercial, institutional, and governmental set-
tings.

An ADC device platform having a bar code reader adeptly
accesses and retrieves data stored in the form of a bar code
label. Data representing virtually any product or service
found in the stream of commerce may be encoded in a bar
code label for later access by an ADC device platform
having a bar code reader. Bar code readers include laser
scanners as well as other means of collecting product
information, such as a bar code wand, a still camera or an
area imager. In addition to bar code labels, other ADC data
formats include Radio Frequency (“RF”) tags, resonators,
SmartCards, magnetic strips, Optical Character Recognition
(“OCR”), speech input, two-dimensional (“2D”) symbols,
dipole devices (such as those recited in U.S. Pat. No.
5,581,257), and any symbol having encoded data therein.

In a conventional ADC device platform environment, the
recipient of ADC data either physically manipulates the
ADC device platform itself to retrieve the ADC data or
receives the ADC data through a local, and probably
proprietary, network. Thus, a typical ADC device operator is
limited both in terms of the distance from which the operator
may be located away from the actual device and by the
complexity and versatility of the elements that comprise the
ADC device network which the operator utilizes. The opera-
tor suffers from still further limitations due to the fact that
many conventional ADC device platforms are not readily
configurable for new ADC devices, or even for ADC devices
other than those attached to the ADC device platform when
it is initially sold. Yet another limitation in a conventional
ADC device platform arises when an operator wishes to add
a new ADC device to one of the few ADC device platforms
that will accept new ADC devices. This limitation stems
from the fact that many ADC devices require proprietary
communications protocols, and even when the communica-
tions protocols are non-proprietary, the communications
protocols are typically non-standard. Thus, the operator
cannot simply attach a new ADC device to an existing ADC
device platform and expect that the new combination will
function properly. Finally, the above limitations, both sepa-
rately and together, hinder an ADC operator’s ability to
customize the ADC device platform to operate in the most
productive possible manner.

Input data received by an ADC device platform must be
routed to the intended destination. Conventional ADC

10

15

20

25

30

35

40

45

50

55

60

65

2

device platforms typically have a simple connection that
routes one type of data from a single ADC device to a single
destination, typically an application program. However,
ADC data consumers presently demand sophisticated and
customizable ADC device platforms. In addition, consumers
expect their ADC device platforms to be reconfigurable for
new ADC devices and new data-receiving applications.
Many ADC data consumers also need their ADC device
platform to process ADC data without requiring modifica-
tion of destination applications, which are frequently pro-
vided by third parties and cannot be modified without the
cooperation and permission of the producer and owner.

A single ADC device may transmit data having a variety
of characteristics into an ADC device platform. As ADC
device platforms become more adept at receiving data from
a variety of ADC devices, efficient mechanisms for routing
ADC data become increasingly critical to the overall success
of the ADC device platform. Moreover, an application
program may request ADC data having characteristics that
may potentially arise in the ADC data retrieved by more than
one ADC device. While routing decisions may be perma-
nently fixed in an ADC device platform’s basic design, such
an approach provides only minimal flexibility and does not
accommodate the addition of new ADC devices and new
applications.

In prior art ADC device platforms, the ADC device
platform typically receives input data from a single ADC
device, performs minimal processing on the data, then routes
the data to a single destination application. While this design
might have been adequate in the past, this design is wholly
deficient for the modern data collection environment in
which multiple ADC devices provide data to an ADC device
platform that then forwards the data to one or more appli-
cations. In addition, different applications, for a variety of
reasons, may operate more efficiently when they receive data
from one particular output mechanism as opposed to another
output mechanism. Accordingly, ADC data consumers
require increased flexibility regarding the output mechanism
available for data output from an ADC device platform.

SUMMARY OF THE INVENTION

The invention provides a method and system for receiving
a client’s instructions with regard to routing data to the client
from one or more automatic data collection (“ADC”)
devices in an ADC device platform.

An aspect of the invention allows client applications to
register a request ADC data type in a grid that operates as a
data filter. For example, a client may use the grid to request
all ADC data received from any ADC device on an ADC
device platform when the ADC data has been encoded in a
particular data type. Similarly, a client may request one or
more data types that may be produced by a specific ADC
device.

Another aspect of the invention provides a data transfer
mechanism that performs simultaneous data transmission
from an ADC device platform over different output mecha-
nisms to reach multiple clients. Clients, residing either on
the ADC device platform or on a remote computing system,
register with a data output grid to receive data via a
particular output mechanism. Following registration of a
client’s preferred output mechanism, a data transfer mecha-
nism forwards all data received by the ADC device platform
to the client using the output mechanism specified in the data
output grid. Using the data transfer mechanism, the same set
of input data, destined for more than one application, may be
simultaneously transmitted to different output mechanisms.

US 6,356,949 B1

3

Thus, the data transfer mechanism eliminates a potential
data communications bottleneck in a multiple client envi-
ronment. The invention may utilize an unlimited number of
data output mechanisms, including pipes, remote procedure
calls (“RPC”), sockets, stream files, the network Basic
Input/Output System (“NetBIOS”), mail slots, the network
Dynamic Data Exchange (“NetDDE”), and shared memory.

ADC devices accommodated by the invention include bar
code readers, speech recognition systems, RF tag readers,
resonators, SmartCards, two-dimensional data readers,
ASCII data devices, AIMI-EIC data devices, dipole device
readers, and optical character recognition (“OCR”) systems.
The invention further allows the updating of existing data
output grids or the addition of new information in data grids
in association with a newly added ADC device, a newly
added output condition, or a newly added client. Similarly,
the invention allows the data output grid to be modified to
accept a new ADC device, a new output mechanism, or a
new client.

BRIEF DESCRIPTION OF THE DRAWINGS

An exemplary embodiment of the invention will be
described below relative to the following figures. Note that
similar elements and steps in the figures have the same
reference number. For ease in identifying the discussion of
any particular element, the most significant digit in a refer-
ence number refers to the figure number in which that
element is first introduced (e.g., element 204 is first intro-
duced and discussed with respect to FIG. 2).

FIG. 1 depicts an ADC network 150 comprising a network
controller 103, remote computing systems 104-106, and
ADC device platforms 100-102 through which ADC data
may be directed by one embodiment of the invention.

FIG. 2 provides a more detailed illustration of the com-
puting system 120 in the ADC device platform 100, accord-
ing to one exemplary embodiment of the invention.

FIG. 3 is a block diagram illustrating the process by which
a client application registers its data requests for a given
ADC device in an ADC data grid.

FIG. 4 represents a portion of the ADC grid 303 that
contains the ADC data requests registered by the client 301.

FIGS. 5A-5B are flowcharts illustrating the operations of
the ADC data server 130 with regard to processing data type
registration requests from client applications associated with
the ADC device platform 100.

FIG. 6 is a block diagram illustrating the process by which
a client application specifies an output mechanism for ADC
data.

FIG. 7 is a flowchart illustrating the operations of the
ADC data server 130 with regard to the processing of output
mechanism instructions from a client application such as the
client 301.

FIG. 8 illustrates one embodiment of the ADC device
platform 100 that intelligently routes data to client applica-
tions.

FIG. 9 is a flowchart showing the intelligent data routing
operations performed by the ADC data server 130.

FIG. 10 provides a block diagram illustrating the process-
ing of ADC data using the output mechanism grid 603
shown in FIG. 6.

FIG. 11 is a flowchart illustrating the procedures followed
by the ADC data server 130 for transmitting ADC data to
client applications associated with the ADC device platform
100.

FIG. 12 illustrates an alternate embodiment of the ADC
computing system 120.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 13 displays an exemplary ADC device platform’s
communication protocol stack.

DETAILED DESCRIPTION OF THE
INVENTION

The invention provides a method and system for receiving
instructions regarding transmitting data from one or more
automatic data collection (“ADC”) devices in an ADC
device platform to one or more destinations. The invention
allows an application program to indicate the types of data
it should receive and to specify an output mechanism for
routing input data for the application to an appropriate
destination. The invention further allows applications to
specialize their data requests and process all data of a given
type, without regard for the ADC device from which the data
has been retrieved. The invention additionally provides an
efficient mechanism for changing the routing of data to an
application. The invention utilizes a data output grid that
retains instructions regarding the output of data to an appli-
cation. The invention further allows the updating of a data
output grid and the addition of new information in the data
output grid in association with a newly added ADC device,
a newly added output condition, or a newly added applica-
tion.

An aspect of the invention provides a method and system
for allowing client applications to register their ADC data
requests in an ADC grid that operates as a data filter. The
invention also allows client applications to register instruc-
tions such as whether ADC data output to the client appli-
cation requires virtual wedging or dynamic wedging and
under what circumstances such wedging will be required.
The invention may operate as an application programming
interface (“API”) that channels ADC data to client applica-
tions based upon information in the ADC grid, according to
one embodiment of the invention. For example, a client may
request all ADC data received from one or more ADC
devices on an ADC device platform when the ADC data has
been encoded in the Code 39 bar code symbology. Similarly,
a client may request all of the ADC data from a specific ADC
device but also specify that all transmitted data be formatted
as keyboard input, thus signaling the API to route the data
through a virtual wedge, according to an embodiment of the
invention.

Another aspect of the invention provides a data transfer
mechanism that allows simultaneous transmission of data
from an ADC device platform over different output mecha-
nisms to reach various client applications. Client
applications, residing either on the ADC device platform or
residing on a remote computing system, may register with
the data transfer mechanism to receive data via a specific
output mechanism. According to one embodiment of the
invention, the data transfer mechanism operates in conjunc-
tion with a data output grid, or output filter, to allow client
applications to register their output mechanism selections.

The data transfer mechanism obviates the need to buffer
data while waiting to send it to client applications because
all client applications receive the data at the same time,
according to one embodiment of the invention. Thus, the
data transfer mechanism eliminates data communication
bottlenecks wherever possible, enabling more efficient uti-
lization of system resources. The invention may utilize data
output mechanisms such as pipes, remote procedure calls
(“RPC”), sockets, stream files, network Basic Input/Output
System (“NetBIOS”), mail slots, network Dynamic Data
Exchange (“NetDDE”), and shared memory. Following reg-
istration of a client’s preferred output mechanism, the data

US 6,356,949 B1

5

transfer mechanism forwards all data received by the ADC
device platform to the specified mechanism registered for a
client.

FIG. 1 depicts an ADC network 150 comprising a network
controller 103, remote computing systems 104-106, and
ADC device platforms 100-102 through which ADC data
may be directed by one embodiment of the invention. The
ADC network 150 may comprise additional remote com-
puting systems, as indicated by the ellipsis between the
remote computing system 105 and the remote computing
system 106. The ADC network 150 may also comprise fewer
than three remote computing systems in some embodiments.
In addition, the ADC network 150 may comprise additional
ADC device platforms, as indicated by the ellipsis between
the ADC device platform 101 and the ADC device platform
102. The ADC network 150 may also comprise fewer than
three ADC device platforms in some embodiments.

Using the ADC network 150, a remote operator at the
remote computing system 104, for example, may receive
data from ADC devices on the ADC device platform 100,
such as an ADC device 117, an ADC device 118, or from
both the ADC devices 117, 118 concurrently. A local opera-
tor at an ADC device platform, such as the ADC device
platform 100, may similarly receive data from the ADC
devices 117, 118. The ADC network 150 also allows an
operator to control characteristics of the ADC platform 100
and any configurable subsystems on the ADC device plat-
form 100. An operator may perform file transfers, view files,
provide firmware upgrades and review graphically-
represented unit performance statistics using the ADC net-
work 150. An operator may also view a map of all ADC
device platforms 100-102 in the ADC network 150 and their
current status.

The remote computing systems in the ADC network 150,
such as the remote computing system 104, comprise a
communications device 114, and remote applications 109,
110. The ellipsis between the remote application 109 and the
remote application 110 indicates that the remote computing
system 104 may contain more than two remote applications.
The remote computing system 104 may be a Windows95-
equipped personal computer (“PC”), a UNIX workstation,
an IBM host computer, a WindowsCE-equipped hand-held
computer, or any computing system capable of performing
the tasks described herein. The Microsoft Corporation pro-
duces the Windows95 and WindowsCE operating systems.

The remote application 109 on the remote computing
system 104 may include a browsing capability that facili-
tates data communication with the ADC device platform 100
over the ADC network 150. The ADC device platform 104,
for example, may have a uniform resource locator (“URL”)
that facilitates communication between the ADC device
platform 104 and the remote application 109. The remote
web browser may host Java applets that coordinate data
transfer from an ADC device on the ADC device platform
100 to the remote computing system 104. The remote
computing system 104 may receive the Java applets from a
variety of sources, including the ADC device platform 100
itself. The remote application 109 may also communicate
with the ADC device platform 100 using other communi-
cations methods.

The network controller 103 includes communications
devices 115, and the remote applications 107-108. The
ellipsis between the remote application 107 and the remote
application 108 indicates that the network controller 103
may contain more than two remote applications. In addition,
the network controller 103 may contain fewer than two

5

10

15

20

25

30

35

40

45

50

55

60

65

6

remote applications in some embodiments. The network
controller 103 further includes applications that configure
and manage the ADC device platforms 100-102 and the
elements comprising the ADC device platforms 100-102.
The remote computing systems 104-106 also may configure
the ADC device platforms 100-102, either directly or indi-
rectly via the network controller 103. An exemplary system
and method for managing and configuring ADC device
platforms is described in a provisional patent application
entitled “Automatic Data Collection Device Having A Net-
work Communications Capability,” U.S. Provisional Appli-
cation No. 60/084,272, filed on May 4, 1998, and assigned
to a common assignee.

An exemplary ADC device platform, such as the ADC
device platform 100, includes communications devices 116,
a computing system 120, and the ADC devices 117, 118. The
ADC device platform 100 may comprise more than two
ADC devices as indicated by the ellipsis between the ADC
device 117 and the ADC device 118. The ADC devices 117,
118 may comprise, for example, bar code readers, radio
frequency (“RF”) tag readers, resonators, SmartCard
readers, magnetic stripe readers, optical character recogni-
tion (“OCR”) readers, text-to-speech devices, speech input
recognizing devices, two-dimensional data readers, dipole
device readers, and all other forms of scanning or imaging
devices. AIMI-ECI (“extended channel interpretation”) uti-
lizes symbol value ranges (e.g., the range 00000 to 811,799)
that represent particular classes of items (e.g., retail
merchandise). An exemplary RF tag reader suitable for use
in the ADC device platform 100 is described in U.S.
application Ser. No. 08/771,320, entitled, “Automatic Mode
Detection and Conversion System for Printers and Tag
Interrogators,” filed on Apr. 27, 1998 and assigned to a
common assignee. The ADC device 117 may be a different
type of, or the same as, the ADC device 118.

The computing system 120 in the ADC device platform
100 may utilize any suitable operating system. In a preferred
embodiment, the computing system utilizes a WindowsCE
operating system. The computing system 120 includes local
applications 111-113 and an ADC data server 130. The
computing system 120 may include more than three local
applications, as indicated by the ellipsis between the local
application I11 and the local application 112. Embodiments
of the computing system 120 may contain fewer than three
local applications.

The ADC data server 130 performs tasks such as man-
aging multiple local and network ADC applications and
collecting, filtering, buffering, and distributing data from
multiple ADC devices to multiple clients such as the local
application 111 and the remote application 109. The ADC
data server 130 provides device-independent logical con-
nections between client applications, such as the local appli-
cations 111-113 and the remote applications 107-110, for
data communication with the ADC devices 117, 118. At the
request of client applications, the ADC data server 130
collects data from the ADC devices 117, 118 and distributes
it to the clients while also allowing the clients to write
instructions regarding the disposition of data received from
the ADC devices 117, 118.

A remote client, such as the remote application 107, is an
ADC client running on a computing system other than the
computing system 120. If the computing system 120 uses the
WindowsNT or Windows98 operating systems then
“DCOM” may be used to communicate to the ADC data
server 130, according to an embodiment of the invention.
DCOM, or “Distributed Component Object Model,” stipu-
lates how software components, or small, reusable program-

US 6,356,949 B1

7

ming elements, communicate over Windows-based net-
works and permits the distribution of different components
for a single application across two or more networked
computers, such as the computing system 120 and the
remote computing system 104, such that distribution of the
components is not apparent to the user.

If the computing system uses a non-Windows operating
system, then a TCP/IP sockets interface will be used. Sock-
ets provide an identifier for a particular service on a par-
ticular node of a network. The socket consists of a node
address and a port number that identifies the service. The
Transmission Control Protocol (“TCP”), governs the break
up of data messages into packets to be sent via the Internet
Protocol (“IP”) and the reassembly and verification of the
complete messages from packets received. The ADC data
server 130 allows multiple clients, such as the remote
application 109 and the local application 111, to access
multiple ADC devices without burdening these client appli-
cations with an understanding of the low level ADC device
protocols or how to share access to multiple ADC devices.

The ADC data server 130 operates in conjunction with
ADC protocol handlers and ADC device handlers. ADC
protocol handlers and ADC device handlers encapsulate
ADC device management, so adding a new ADC device to
the ADC device platform 100 does not require modifications
to the ADC data server 130. The ADC data server 130 may
also communicate with a reader command gateway to pro-
vide commands for the ADC devices, according to an
embodiment of the invention. (As will be discussed below in
FIG. 2, the ADC device handler may also communicate with
a reader command gateway to provide commands for the
ADC devices.) The ADC data server 130 further notifies
ADC devices, such as the ADC devices 117 and 118, when
their configuration has changed to support on-the-fly con-
figuration changes. The local applications 111-113 and the
remote applications 107-110 may send operational and
configuration commands to the ADC devices 117, 118.

FIG. 2 provides a more detailed illustration of the com-
puting system 120 in the ADC device platform 100, accord-
ing to an exemplary embodiment of the invention. The
computing system 120 enables applications, such as the
remote application 107 and the local application 111, to
communicate with and access data from ADC devices, such
as the ADC device 117. The computing system 120 further
enables applications to register their ADC and data requests
and output mechanism requests. The computing system 120
may comprise the ADC data server 130, an ADC protocol
handier collection 232, ADC device handlers 239, 240, and
a network communications unit 221, according to an
embodiment of the invention.

The ADC data server 130 communicates with remote
ADC clients, such as the remote application 109, through the
network communications unit 221. In a preferred
embodiment, remote ADC clients communicate with the
ADC data server 130 using the Winsock 1.1 socket’s inter-
face over TCP/IP. Winsock is an API that provides a TCP/IP
socket interface in the Windows operating system. Embodi-
ments of the network communications unit 221 may utilize
a variety of communications methods in communicating
with remote applications, including sockets, TCP/IP, UDP,
and UDP+. The Transmission Control Protocol (“TCP”),
governs the break up of data messages into packets to be sent
via the Internet Protocol (“IP”) and the reassembly and
verification of the complete messages from packets
received.

The User Datagram Protocol (“UDP”) is a connectionless
protocol parallel to TCP in the IP communication stack.

10

15

20

25

30

35

40

45

50

55

60

65

8

UDP converts data messages generated by an application
into packets to be sent via IP, but does not verify that the
messages have been delivered correctly. Therefore, UDP is
more efficient than TCP, although the reliability of UDP
depends on the application generating the message. UDP+
provides additional functionality that is not provided by
UDP, such as guaranteed packet delivery and packet order-
ing. The ADC data server 130 supports all physical com-
munication methods provided by TCP/IP, UDP, and UDP+
such as serial communication and Infrared Data Association
(“IRDA”) standard communication. UDP+is further
described in U.S. application Ser. No. 08/852,002, entitled,
“Reliable Communication over an Unreliable Transport
Layer in a Hand-Held Device using User-Configurable
Timers,” is also described in U.S. application Ser. No.
08/851,848, “Providing Reliable Communication over an
Unreliable Transport Layer in a Hand-Held Device using a
Persistent Session,” both filed on May 6, 1997 and assigned
to a common assignee.

After a successful connection with a client application,
including both local and remote applications, the ADC data
server 130 dedicates resources to handle all communications
to the client application, ensuring that communication prob-
lems with one client will not affect other remote or local
clients. In one embodiment, the communication scheme
utilized between the remote applications, such as the remote
application 109, and the ADC data server 130, provides a
variable length, packet message format. A client, such as the
remote application 109, performs a first read to determine
the message length. The client next allocates a sufficiently
large buffer to hold the response and performs a second read
to retrieve the rest of the message.

If communication errors occur while the ADC data server
130 communicates with a client, such as the remote appli-
cation 109, the ADC data server 130 tries to re-establish
communication before closing the connection. After closing
the connection, the ADC data server 130 maintains the client
data and resources for a user-configurable time period so that
the client may reconnect with the ADC data server 130. The
reconnect time out period is configurable by users of the
ADC device platform 100. After the reconnect time out
period, the ADC data server 130 discards all data resources
for the client. The ADC data server 130 uses a “no activity
time out” to control client communications when the ADC
data server 130 “pings” clients for which there has been no
recent activity. For clients that fail to respond, the ADC data
server 130 enters a communication “retry” mode similar to
the connection error mode above.

The ADC device platform 100 maintains an ADC device
handler 239-240 and an ADC protocol handler (in the
protocol handler collection 232) for each ADC device,
according to an embodiment of the invention. The ADC
protocol handlers format messages for device-unique func-
tions while the ADC device handlers format messages for
device-common functions. The ADC device handler and
ADC protocol handler pair hide device-specific protocols
from the ADC clients, simplifying the addition of ADC
devices to the ADC device platform 100. The ADC protocol
handler collection 232 contains the ADC protocol handlers.

The ADC device handlers, such as the ADC device
handler 239, accept commands from the ADC data server
130, translate them into commands for their respective ADC
device, and send them to the ADC device using a serial
channelor any other means for communicating with the
ADC device, such as Short Haul RF and parallel channel.
The ADC data server 130 utilizes the ADC device handlers
239, 240 for communicating instructions to the ADC devices

US 6,356,949 B1

9

117, 118, respectively. Each supported ADC device, such as
the ADC device 118, has a corresponding ADC device
handler, such as the ADC device handler 240 for the ADC
device 118. Accordingly, if the ADC device platform 100
includes more than two ADC devices, then the computing
system 120 will include more than two ADC device han-
dlers. The ADC device handlers hide the specific access
requirements for a respective ADC device from the ADC
clients, such as the local application 111 and the remote
application 109. The ADC device handlers are COM objects
that provide a transport layer for sending data formatted by
the corresponding ADC protocol handler in the ADC pro-
tocol handler collection 232 to the ADC device, according to
an embodiment of the invention. COM objects, or “Com-
ponent Object Model” objects, are software components that
may be assembled into programs or add functionality to
existing programs. COM objects may also be easily
removed from programs. Of course, the invention does not
require the use of COM objects. Dynamic Link Libraries
(“DLLs”) may also be used, as well as a number of other
appropriate technologies.

The ADC protocol handlers in the ADC protocol handler
collection 232 provide APIs that allow applications to
retrieve ADC data and control ADC devices, such as the
ADC devices 117, 118. Each ADC protocol handler in the
ADC protocol handler collection 232 is a COM object that
supports an ADC device-specific interface to guarantee
access to the interface for the ADC data server 130, accord-
ing to an embodiment of the invention. The ADC device-
specific interface operations include opening a client com-
munications channel to a specific ADC device, such as the
ADC device 117. For ADC devices that support client
handles, the ADC device-specific interface issues a device
request that causes the ADC device to return a client handle.
A client handle is a numeric value used by the device to
identify specific clients. A client handle is assigned to an
application when the application first requests a communi-
cations channel with the device. A client is a single instance
of an application that communicates with the device. For
ADC devices that do not support handles, the corresponding
ADC device handler itself may generate a handle, according
to some embodiments of the invention.

To receive responses from an ADC device, the ADC data
server 130 calls the appropriate ADC device handler.
Responses provided by an ADC device handler from its
corresponding ADC device may include additional informa-
tion along with the response data to help match the response
data to the request that generated the response data or to a
client who should receive the data. For example, a read
request may return a sequence number, a client handle, a
data class specification, and a data set. The sequence number
associates a particular read request with a specific response,
e.g., the request includes a sequence number. The ADC
device handler does not guarantee that the sequence number
will be returned. For example, unsolicited responses pro-
duced by an ADC device may not have a sequence number,
and some ADC devices do not support sequence numbers.
The client handle associates input from an ADC device with
a specific client. If the ADC device (or the ADC device
handler) supports client handles, a client’s read request will
return the appropriate client handle. The data class specifi-
cation indicates the data classes to which the response data
belongs. The ADC data server 130 may store the data class
specification along with the data for retrieval by the appro-
priate client(s).

When a data read returns a client device handle (and a
zero for the sequence number), the ADC data server 130

10

15

20

25

30

35

40

45

50

55

60

65

10

routes the data to the client having the same client device
handle. A client device handle of zero indicates that there is
no handle for the response data. If both the sequence number
and client device handle are non-zero, the sequence number
takes precedence.

When the ADC device handler returns a sequence number
of zero and a client device handle of zero, the ADC data
server 130 performs grid processing to determine which
client(s) should receive the data, according to an embodi-
ment of the invention. First, the ADC data server 130
performs non-device specific grid processing to match one
or more data masks with the data received from the ADC
device. The ADC data server 130 next calls the appropriate
ADC device handler’s “match grid” function to perform
device-specific grid processing. If both grids match, then the
response is routed to the identified client.

The ADC data grid operates as a data filter criteria. A
client receives only the data that meets its criteria specified,
shown and described below with respect to FIG. 8. The ADC
data server 130 supports data filtering so that the data sent
to ADC clients matches their grid criteria. The ADC data
server 130 supports non-device specific grid criteria, and the
ADC device handlers support device-specific grid criteria.
The ADC data grid may be changed dynamically. The ADC
data grid may comprise three components, according to an
embodiment of the invention. The three components are one
or more data classes, a device-independent grid data mask,
and a device-dependent grid mask. A device-dependent
mask is specific to the device type. For example, a device-
dependent mask may exist for Code 39, which is a type of
data that may be produced from an ADC device known as a
bar code scanner. Non-device specific grid criteria may be
represented in a data mask, having a data pattern such as
BT where “#7 represents a numeric value and
“-” represents a dash literal, according to an embodiment of
the invention. A literal is a value used in a program that is
expressed as itself rather than as a variable’s value or the
result of an expression. Other non-device specific grid
criteria include a data value range (for example, the data
values from 23 to 192 may be specified); a number of data
elements, a range for the number of data elements (for
example, bar-code labels containing from 6 to 9 characters
may be specified) and a data class specification. The ADC
data grid is considered matched when all grid specifications
are true. To perform grid matching, the ADC data server 130
first attempts to match one of the data classes and then tries
to match the device-dependent grid and the device-
independent grid, according to an embodiment of the inven-
tion. If all three conditions are satisfied, then the data
response will be returned to the client. In other words, the
grid specifications are logically “ANDed” to determine
whether the grid matches.

Of course, each client application will typically complete
the following sequence in order to read data: perform an
Open(Device) operation, perform a series tasks such as
Read(Data_ Grid) and device control, concluding with a
Close() task when the client does not wish to access the
ADC device anymore, according to an embodiment of the
invention. The open/close operations are typically per-
formed only once, while other device accesses may be
performed multiple times by the client application.

The ADC data grid contains a data class specification that
identifies the data classes accepted for a client and the data
classes specifically disallowed. A data class is a device-
dependent classification of data responses from an ADC
device. The ADC device handler identifies an ADC device
response with one or more data classes. Data classes can

US 6,356,949 B1

11

identify responses that come from device configuration
requests, responses that come from user-entered data, and
responses that come from ADC data server requests. The
ADC protocol handler may change the data class specifica-
tion. When the protocol handler sends a read request to an
ADC device, the ADC protocol handler specifies one or
more data classes requested to be read. The data class
specification identifies the data classes that may be queued
for the client and those that are specifically disallowed.

The ADC data server 130 supports read ahead and non-
read ahead clients. For a read ahead client, the ADC data
server 130 queues data until the client is ready to read it.
Read ahead de-couples ADC device performance from an
ADC client’s communications system performance. For a
non-read ahead client, the ADC data server 130 does not
post a data read to an ADC device until the client posts a read
to the ADC data server 130. However, if an ADC device
sends data without a read posted, the ADC data server 130
accepts the data, buffers it, and returns it to the client on the
next read.

The ADC data server 130 may further support read ahead
clients by automatically posting a read to the ADC device on
the client’s behalf when the ADC data server 130 receives
data from the ADC device. When its data queue is full, the
ADC data server 130 notifies the appropriate ADC device
handler that no more data can be read. The next read by the
client returns the data, and the ADC data server 130 notifies
the appropriate ADC device handler that data can again be
read. The ADC data server 130 may support non-read ahead
clients by canceling all outstanding read ahead requests and
not issuing another read command until the client issues a
read. This allows the non-read ahead clients to pace the
device operator in entering data. Only one non-read ahead
client will be allowed at a time for a given ADC device since
the non-read ahead client paces the performance of the ADC
device, according to a preferred embodiment of the inven-
tion.

The ADC data server 130 also supports synchronous and
asynchronous requests. For a synchronous request, the ADC
data server 130 blocks the call until the request is complete
or until the timeout expires. When a synchronous request is
outstanding, the ADC data server 130 blocks all other
requests except for a cancel request. For asynchronous
requests, the ADC data server 130 returns the call immedi-
ately with or without data. Whenever data is received for
asynchronous local clients, the ADC data server 130 may
signal an ADC client-supplied event. For asynchronous
clients, another mechanism may be utilized, according to an
embodiment of the invention.

The invention allows a client application to indicate the
types of data it should receive and provides a mechanism for
routing ADC data to its appropriate destination. The data
types registered by various application programs are stored
in an ADC data grid that filters data received from each ADC
device. By routing data based upon its type, the invention
allows application programs to specialize their data requests
and process all data of a given type, without regard for the
ADC device from which the data has been retrieved.

When an ADC device platform manufacturer, a user, or an
ADC device developer adds a new ADC device to an ADC
device platform, then the user’s application programs may
receive appropriately channeled data from the new ADC
device by merely providing an appropriate filter to the ADC
data grid once the new device has been properly installed. Of
course, the client application will also have to complete
steps such as opening the device, performing a data read, and

10

15

20

25

30

35

40

45

50

55

60

12

closing the device. Thus, the ADC data grid provides a
streamlined means for adding the new ADC device.
Moreover, by allowing application programs to register their
data requests with the ADC data grid, the invention provides
a capability for adding new data recipients and permits
reconfiguration of the ADC device platform for service in
new data collection environments.

The invention also provides a data transfer mechanism
that enables simultaneous transmission of data to client
applications over a number of different output mechanisms.
An ADC device platform equipped with the data transfer
mechanism allows more than one client application to
receive and process data from one or more ADC devices.
Depending on the type of output mechanism requested by
the client applications, the data transmitted over the multiple
channels on an ADC device at any instance may be the same
set of ADC data in route to different client applications. The
data transmitted from the ADC device platform at any given
instance may also be a set of data from one ADC device to
one client application, via a particular output mechanism,
and another set of data from another ADC device to another
application, via another output mechanism. In some
embodiments, the data transfer mechanism obviates the need
to buffer data for transmission to client applications because
all client applications receive the data at the same time.

FIG. 3 is a block diagram illustrating the process by which
a client application registers its data requests for a given
ADC device in an ADC data grid. A client 301 sends a data
request to the ADC data server 130. The client 301 may be
a local application, such as the local application 111 or the
client 301 may be a remote application, such as the remote
application 109. The ADC data server 130 routes the data
request to a data request receiver 302. The data request
receiver 302 analyzes the data request to determine that it
satisfies the formal requirements for such requests. If the
data request satisfies the formal requirements, the data
request receiver 302 routes the data request along with an
identity for the client 301 to a grid organizer 304.

The grid organizer 304 then adds the clients’ data request
to an ADC data grid 303. The ADC data grid 303 is
represented as a unified collection of data requests; however,
the ADC grid 303 may actually be stored in disparate
locations throughout the ADC device platform 100. Regard-
less of how or where its data routing instructions are stored,
the ADC data grid 303 allows each client application to store
instructions regarding the data types that it wishes to receive
for each of the ADC devices associated with the ADC device
platform 100.

FIG. 4 represents a portion of the ADC grid 303 that
contains the ADC data requests registered by the client 301.
A grid array 401 retains the data requests submitted by the
client 301 for the ADC devices associated with the ADC
device platform 100 (e.g., ADC device 1-ADC device X). As
indicated by the ellipsis between the ADC device 2 and the
ADC device X, the ADC array 401 may contain more than
three ADC devices. The rows of the ADC data grid 401
provide the information regarding how the ADC data server
130 will process various data types provided by a specific
ADC device that could be routed to the client 301. ADC
device 1 through ADC device X may represent any ADC
device capable of producing data, such as a bar code reader,
RF tag reader or SmartCard reader.

In the ADC data array 401, the client 301 has requested
to receive ADC data type 1 and ADC data type 3 when such
data types are retrieved by the ADC device 1. For example,
data types 1 and 3 can be different bar code symbologies,

US 6,356,949 B1

13

e.g., UPC and Code 1. As indicated by the ellipsis between
the data type 3 and the data type Z, the ADC device 1 may
process an essentially unlimited number of data types. The
client 301 may request receipt of different types of data from
different ADC devices and does not necessarily need to have
the same instruction for each data type. Data type 1 to data
type Z may represent any of the various types of data that
may be retrieved by an ADC device, such as Code 39.
Different types of ADC devices may produce different types
of data, and all ADC devices may not necessarily be capable
of producing the data types available from another type of
ADC device.

FIGS. 5A-5B are flowcharts showing the operations of
the ADC data server 130 with regard to processing data type
registration requests from client applications associated with
the ADC device platform 100.

The ADC device server 130 receives a grid request (step
501). A client application sends a grid request to the ADC
data server 130 to provide directions regarding the process-
ing of ADC data. The ADC data server 130 identifies the
client (e.g., the remote application 109) associated with the
received grid request (step 503). The ADC data server 130
determines whether the grid request specifies a particular
data type (step 505). If the received grid request specifies a
data type (step 505), then the ADC data server 130 identifies
the data type specified (step 507). Otherwise, the ADC data
server 130 continues processing the received data registra-
tion request.

The ADC data server 130 next determines whether an
ADC device has been specified in the grid request (step
509). If an ADC device has been specified, then the ADC
data server 130 identifies the specified ADC device (step
511). If no ADC device has been specified (step 509), then
the ADC data server 130 identifies all ADC devices capable
of producing the specified data type (step 519).

If the ADC data server 130 has identified the requested
ADC device (step 511), then the ADC data server 130
determines whether the previously specified data type (if
any) is associated with the identified ADC device in the grid
request (step 513). If the specified data type is associated
with the identified ADC device in the grid request (step 513),
then the ADC data server 130 determines whether the
identified ADC device may process the requested data type
(step 515). If the identified ADC device does process the
requested data type (step 515), then the ADC data server 130
makes the appropriate entry or entries into the ADC data grid
(step 521). If the ADC data server 130 determines that the
identified ADC device may not process the requested data
type (step 515), then the ADC data server 130 generates a
report error (step 517).

Once the ADC data server 130 has identified all of the
data routing requests in the received data registration
request, then the ADC data server 130 makes the appropriate
entry or entries into the ADC data grid 303 (step 521). The
ADC data server 130 next determines whether additional
data types or additional ADC devices have been specified in
the received data grid request step 523). If additional data
types or ADC devices have been specified in the data
registration request (step 523), then the ADC data server 130
returns to its analysis beginning with step 505. If additional
data types or ADC devices have not been specified (step
523), then the ADC data server 130 terminates the data type
registration function.

FIG. 6 is a block diagram illustrating the process by which
a client application specifies an output mechanism for ADC
data. The client 301 sends an output mechanism request to

10

15

35

40

45

50

55

60

65

14

the ADC data server 130. A data request receiver 601 in the
ADC data server 130 receives the output mechanism request
and determines the identity of the client 301. The data
request receiver 601 may also receive output mechanism
requests from a user interface associated with the ADC
device platform 100 for one or more client applications. The
data request receiver 601 determines whether the output
mechanism request satisfies the formal requirements for
such requests and generates an error message if the formal
requirements are not satisfied. Otherwise, the data request
receiver 601 forwards the output mechanism request to an
output mechanism organizer 602. The output mechanism
organizer 602 processes the output mechanism request and
stores the processed request for the client 301 in an output
mechanism grid 603.

The output mechanism grid 603 lists all the possible
output mechanisms available on the ADC device platform
100 in an array along with all of the clients associated with
the ADC device platform 100. As shown in the output
mechanism grid 603, an unlimited number of clients may be
specified as well as an unlimited number of output mecha-
nisms. The output mechanisms listed in the output mecha-
nism grid 603 include pipes, sockets, RPC, stream files,
NetBIOS, mail slots, NetDDE, and shared memory. These
output mechanisms are all well known in the art. Of course,
other embodiments of the output mechanism grid 603 may
include more or fewer output mechanisms than shown in this
embodiment. Moreover, while the output mechanism grid
603 is depicted as a unified structure, the actual storage of
such information may occur in more widely dispersed
locations throughout the ADC device platform 100.

Once the client 301 has specified an output mechanism,
then the ADC data server 130 will output data received for
the client 301 in accordance with the specified output
mechanism. In some embodiments, the client 301 may
specify a particular output mechanism for ADC data
received from a particular ADC device, specify a particular
output mechanism for a particular data type or both. Thus,
the client 301 may specify more than one output mechanism.

FIG. 7 is a flowchart illustrating the operations of the
ADC data server 130 with regard to the processing of output
mechanism instructions from a client application such as the
client 301.

The ADC data server 130 receives the output method
request from the client 301 (step 701). The ADC data server
130 identifies the client 301 sending the output method
request (step 703). The ADC data server 130 then deter-
mines whether an output mechanism is specified in the
output mechanism request (step 703). If no output mecha-
nism has been specified (step 705), then the ADC data server
130 terminates its processing of the output mechanism
request and generates an error message. If an output mecha-
nism has been specified (step 705), then the ADC data server
130 identifies the particular output mechanism specified
(step 707).

The ADC data server 130 then determines whether the
selected output mechanism is available on the ADC device
platform 100 (step 709). If the selected output mechanism is
available on the ADC device platform 100, then the ADC
data server 130 stores the output mechanism request for the
identified client in the output grid (step 713). If the selected
output mechanism is not available on the ADC device
platform 100, then the ADC data server 130 generates an
error message that is sent to the client 301 sending the output
mechanism request (step 711).

The output mechanism request may contain more than
one requested output mechanism. For example, the client

US 6,356,949 B1

15

301 may wish to provide an alternate output mechanism.
Accordingly, the ADC data server 130 then determines
whether additional output mechanisms have been specified
(step 705). The ADC data server 130 then continues pro-
cessing the output mechanism request until the entire request
has been completely processed.

FIG. 8 illustrates an embodiment of the ADC device
platform 100 that intelligently routes data to client applica-
tions. The ADC data server 130 receives data from the ADC
device 117 and may transmit received data to clients
801-803. The ellipsis between the client 802 and the client
803 indicates that the ADC data server 130 may transmit
data to more than three clients. The clients receiving data
may include both local and remote applications, such as the
local application 111 and the remote application 107 shown
in FIG. 7. The ADC data server 130 may also transmit data
to fewer than three clients.

The ADC data server 130 includes a data transmitter 804
and a grid data matcher 805. When the ADC device 117
transmits data to the ADC data server 130, the grid data
matcher 805 analyzes the ADC data received from the ADC
device 117 and then references the ADC data grid 303. The
ADC data grid 303 comprises a collection of client data
requests and ADC devices. For example, each client may
specify the types of data that it wishes to receive from a
particular ADC device. The grid data matcher 805 deter-
mines the type of ADC data sent by the ADC device 117, for
example, and then references the ADC data grid 303 to
determine which clients, if any, have requested data of the
type received from the ADC device 117. For example, the
client 803 may have requested that it receive two different
types of data transmitted by the ADC device 117. Similarly,
other clients may have also specified various data types with
regard to data provided by the ADC device 117. The grid
data matcher 805 determines how many clients will receive
data of the received data type from the ADC device 117.

The grid data matcher 805 then informs the data trans-
mitter 804 which, if any, of the clients 801-803 will receive
the ADC data transmitted by the ADC device 117. In some
circumstances, no client may have registered to receive the
type of data received from a particular ADC device. In such
cases, the received ADC data will not be transmitted to any
of the clients 801-803 but may be buffered by the ADC data
server 130 for a configurable time period or until a client
registers for receipt of data having such characteristics.

The ADC data grid 303 may be stored in memory of the
computing system 120 as a unified grid or may be stored in
disparate elements throughout the computing system 120.
Similarly, the computing elements that perform the tasks of
the grid data matcher 805 and the data transmitter 804 may
constitute unique computing elements within the ADC data
server 130 or may be comprised of separate computing
elements that cooperatively perform the tasks discussed.

FIG. 9 is a flowchart showing the intelligent data routing
operations performed by the ADC data server 130. The ADC
data server 130 receives ADC data from an ADC device,
such as the ADC device 117 (step 901).

The ADC data server 130 then identifies the ADC device
type (step 903). The ADC data server 130 next identifies the
data type of the ADC data received from the ADC device
(step 905). As discussed with regard to FIG. 8, the ADC data
server 130 may include elements such as the grid data
matcher 805 that performs tasks such as those in steps 901
and 903.

The ADC data server 130 examines the ADC data grid
303 to identify recipient client(s) (e.g., the remote applica-

10

15

20

25

30

35

40

45

50

55

60

65

16

tion 109) for the received ADC data based upon data
characteristics and the ADC device (step 907). As previously
discussed, the ADC data grid 303 may be interrogated by
ADC data server 130 functionality such as the grid data
matcher 805. The ADC data server 130 thus examines the
ADC data grid 303 to identify recipient clients for the
received data based upon the ADC device type (step 909).
The ADC data server 130 thus analyzes a matrix comprised
of data type and ADC device type to determine the recipient
(s) for the received ADC data. The ADC data server 130 may
alternatively perform step 909 prior to step 907.

The ADC data server 130 then transmits the ADC data to
the identified clients (step 911). As previously discussed, the
ADC data server 130 may transmit ADC data to one or more
than one client. Moreover, if examination of the ADC data
grid 303 reveals that no client has requested receipt of the
received ADC data type from the ADC device, then the ADC
data server 130 will not transmit the received ADC data.

FIG. 10 provides a block diagram illustrating the process-
ing of ADC data using the output mechanism grid 603
shown in FIG. 6. The ADC device 117 sends ADC data to
an ADC data receiver 1004 in the ADC data server 130. The
ADC data receiver 1004 then transmits the received ADC
data to an ADC data transmitter 1003 and the output
mechanism organizer 602. The output mechanism organizer
602 analyses the received ADC data to determine which
client(s) will be receiving the ADC data. Once the output
mechanism organizer 602 has determined which client(s)
will receive the ADC data, then the output mechanism
organizer 602 examines the output mechanism grid 603 to
determine the output mechanism specified by the clients that
will receive the ADC data. As indicated by the ellipsis
between the clients, the output mechanism grid 603 may
contain an unlimited number of clients. As indicated by the
ellipsis in the list of possible output mechanisms, the output
mechanism grid 603 may process an unlimited number of
output mechanisms. The output mechanism organizer 602
then transmits the identity of the selected output mechanism
to the data transmitter 1003.

The data transmitter 1003 transmits the ADC data to the
clients selected for receiving the ADC data using the
selected output mechanism. In the embodiment shown in
FIG. 10, three clients, the client 301, a client 1001 and a
client 1007 may receive the ADC data sent by the ADC
device 117. In the case of the client 1007, the data in the
output mechanism grid 603 indicates that the selected output
mechanism is outputting the ADC data to a data file 1002.
Accordingly, the data transmitter 1003 outputs the ADC data
destined for the client 1007 to the data file 1002. The client
1007 may then read the data file 1002 to receive the ADC
data.

FIG. 11 is a flowchart illustrating the procedures followed
by the ADC data server 130 for transmitting ADC data to
client applications associated with the ADC device platform
100. The ADC data server 130 receives data from an ADC
device, such as the ADC device 117 (step 1101). The ADC
data server 130 identifies the recipient clients for the
received ADC data (step 1103).

The ADC data server 130 identifies the recipient clients’
specified output mechanism using an output mechanism
grid, such as the output mechanism grid 603 (step 1105).
Once the ADC data server 130 has determined the specified
output mechanism for the client(s) to receive the ADC data,
then the ADC data server 130 transmits the data to the
recipient clients over the specified output mechanism (step
1107).

US 6,356,949 B1

17

FIG. 12 illustrates an alternate embodiment of the ADC
computing system 120. The ADC computing system 120
further comprises an SNMP/Reader Command Gateway
1231, an SNMP master agent 1229, a management infor-
mation base (“MIB”) collection 1223, an SNMP subagent
collection 1224, a virtual wedge 1237, a keyboard device
driver 1238, and an ADC software development kit (“SDK”)
1233, all described below.

The ADC data server 130 uses shared memory and
process synchronization objects to perform inter-process
communication (“IPC”). The IPC mechanisms are hidden
within the ADC data server’s API, and the ADC device
handlers. The ADC data server API provides an ADC
device-ADC data server interface. The ADC device-ADC
data server interface hides the IPC mechanism from the
ADC data server process. The ADC device-ADC data server
interface initializes and deletes an ADC data server API
COM object for an ADC device and opens and closes a
logical communications channel with an ADC device, such
as the ADC device 117. The ADC data server 130 determines
the default channel attributes.

The ADC device-ADC data server interface may request
data from the ADC data server 130. This operation produces
a “data class mask” that identifies the class of data to be sent
to a particular client, as previously discussed with regard to
FIG. 2. The data class masks may be device dependent or
device independent. The ADC data server 130 only returns
data from the mask(s) identified. The ADC device-ADC data
server interface sends control data to the ADC device
without interpretation by the ADC data server 130. The ADC
device-ADC data server interface may also perform a “query
attribute” function that returns a specific device attribute or
specific client handle attribute. Device attributes include the
device’s enablement status. Handle attributes include in the
device-dependent grid, the device-independent grid, read
ahead status, and the data class read specification. The ADC
device-ADC data server interface performs alterations of
specific ADC device attributes. The ADC device-ADC data
server interface includes a “query data” function that returns
the number of data items stored for a client and the size of
the next data item. The ADC device-ADC data server
interface further includes operations such as reading a data
class, setting attributes, and matching the ADC data grid.
The “match grid” command requests that the ADC device
handler determine if the input data matches the input grid.
Both the structure and meaning of the data, and the structure
and meaning of the grid are device dependent.

The ADC data server process interface includes an open
function that opens a single data collection device channel
and returns an ADC data server client handle that allows a
client to access the ADC device. The open function creates
a device client handle for the ADC device. The ADC
protocol handler can retrieve a device’s client handle. The
ADC server process interface also allows the setting of
specific ADC device attributes. Using an ADC data server
client handle as input and the device attribute to be set, this
function may be used for setting ADC device attributes such
as enable/disable status; data grid (device independent and
device dependent); read ahead/non-read ahead status; device
client handle, and data class specification.

The ADC data server process interface also includes a
read function that allows an ADC protocol handler to receive
ADC data or device responses from an ADC device. The
read function takes an ADC data server client handle and a
data class mask indicating the classes of data to be retrieved.
The structure of the data returned is device dependent. If the
data class mask indicates that ADC data will be read, the

10

15

20

25

30

35

40

45

50

55

60

65

18
read function initiates reading ADC data from the ADC
device. The ADC data server 130 calls the ADC device
handler’s read function so that it can notify the ADC device
that a client is ready to accept data. The function will wait
until data is received or until a timeout arises.

Local applications, such as the local application 111, may
utilize the ADC SDK 1233 in the collection of ADC data.
The SDK is a dynamic link library (“DLL”) that allows ADC
client applications to use legacy interfaces in communicat-
ing with ADC devices. Local applications may also utilize
the ADC protocol handler collection 232, which may con-
tain specialized DLLs for each ADC device configured to
operate with the ADC device platform 100. DLLs allow
executable routines to be stored separately as files having
DLL extensions that are loaded only when needed by a
program, such as by the local application 111. A DLL routine
consumes no memory until it is used. Because a DLL routine
is a separate file, a programmer may make connections or
improvements to the routine without effecting the operation
of the calling program or any other DLL routine. In addition,
a programmer may use the same DLL routine with other
programs. The DLL interface optimizes performance and
resource overhead. The remote applications, such as the
remote application 107, may also utilize the specialized
DLLs provided by the ADC protocol handler collection 232.

In one exemplary embodiment, the ADC SDK 1233
supports programming elements such as Visual C/C++,
Microsoft Foundation Class (“MFC”), Visual Basic, and
Java. The ADC SDK 1233 includes Active X control/Java
classes, and ADC device platform legacy DLLs. The ADC
device platform 100 legacy DLLs provide legacy interfaces
that tie together system elements. Both the Active X control/
Java classes and the ADC device platform legacy DLL may
operate in connection with value-added reseller (“VAR”)
applications. For example, the VAR applications may pro-
vide data collection and unit management applications. The
Active X control/Java classes may communicate with a VAR
application using Active X and Java APIs. The ADC device
platform DLL communicates with the VAR applications
through legacy APIs, such as a DLL interface.

The ADC device platform legacy DLLs use legacy reader
commands to communicate with the Reader Command/
SNMP gateway 1231. The Reader Command/SNMP gate-
way 1231 in turn uses legacy management commands or an
SNMP interface to communicate with an ADC device plat-
form SNMP that includes the SNMP master agent 1229 and
the SNMP subagent collection 1224.

As previously discussed, the invention may also deter-
mine whether some form of wedging must be performed on
the input data from a given device, based upon an applica-
tion program’s requested data input format stored in the
output mechanism grid 603 or the ADC data grid 303. The
ADC data server 130 may communicate with the keyboard
device driver 1238 through the virtual wedge 1237. The
virtual wedge 1237 retrieves ADC data from ADC devices
117, 118 and sends it into the keyboard device driver 1238
so that an ADC reader-unaware application, such as the local
application 113, receives the ADC data as if it were key-
board input. An exemplary embodiment of the virtual wedge
is described in U.S. Pat. application Ser. No. 09/239,558,
“Automatic Data Collection (ADC) Device That Includes A
Virtual Wedge That Routes ADC Data To Application
Programs,” filed on Jan. 29, 1999, which is assigned to a
common assignee. The invention may similarly operate in
conjunction with a mechanism for performing dynamic
wedging of ADC data. An exemplary dynamic wedge is
described in U.S. application Ser. No. 09/240,425, entitled

US 6,356,949 B1

19
“Automatic Data Collection (“ACIC”) Device That
Dynamically Wedges Data Transmitted To Data
Customers,” filed on Jan. 29, 1999, and assigned to a
common assignee.

The ADC device platform 100 utilizes the Simple Net-
work Management Protocol (“SNMP”) for network man-
agement. SNMP has recently become a well-favored net-
work management protocol. SNMP utilizes a fetch-store
paradigm in which agents and subagents maintain sets of
management information such as statistics, status, and con-
figuration values in a MIB, such as the MIBs contained in
the MIB collection 1223. The elements of an SNMP network
management architecture typically comprise an SNMP
manager, a managed system (e.g., the ADC device platform
100), a database of management information (e.g., a MIB),
and a network protocol (e.g., TCP/IP). An exemplary SNMP
network management architecture with regard to an embodi-
ment of the ADC device platform 100 is further described in
a provisional patent application entitled “Automatic Data
Collection Device Having A Network Communications
Capability,” U.S. Provisional Application No. 60/084,272.
filed on May 4, 1998, assigned to a common assignee.

The SNMP master agent 1229 controls the SNMP sub-
agents in the SNMP subagent collection 1224. The SNMP
subagent collection 1224 comprises an ADC data server
SNMP subagent 1227, an event log SNMP subagent 1228,
an ADC device SNMP subagent 1225 (for the ADC device
117), and an ADC device SNMP subagent 1226 (for the
ADC device 118). The ADC device SNMP subagents 1225,
1226 respectively contain control information for the ADC
devices 117, 118. The ADC device 117 and the ADC device
118 may each operate under different protocols and com-
mands. For example, the ADC device platform 100 may be
equipped with ADC devices as diverse as bar code readers
and SmartCard readers. Since each ADC device typically
operates under different protocols, each ADC device typi-
cally requires its own SNMP subagent. The SNMP subagent
collection 1224 may contain a respective ADC device
SNMP subagent for each ADC device in the ADC device
platform 100. Thus, the SNMP subagent collection 1224
does not necessarily contain precisely two ADC device
SNMP subagents. The event log SNMP subagent 1228
allows the SNMP master agent 1229 to retrieve the event log
and set its filter. The event log SNMP subagent 1228 also
generates SNMP traps when specific events are received.

The SNMP master agent 1229 performs SNMP packet
verification on incoming and outgoing SNMP commands
while a respective SNMP subagent (e.g., the ADC device
SNMP subagent 1225) in the SNMP subagent collection
1224 performs the actual sending and retrieving of control
information to/from a network element (e.g., the ADC
device 117). For example, the ADC device SNMP subagents
1225, 1226 respectively translate between the communica-
tions protocol of ADC devices 117, 118 and the standardized
SNMP protocol using information retrieved from the MIB
collection 1223. The SNMP master agent 1229 operates with
all SNMP compliant management software, according to an
embodiment of the invention. The SNMP architecture pro-
vides flexibility to the ADC device platform 100 by allowing
the SNMP subagents to be added and removed without
effecting the other SNMP subagents or the MIB collection
1223. Adding a new ADC device to the ADC device
platform 100 requires only adding a new SNMP subagent
and storing relevant information in the MIB collection 1223,
regardless of the new ADC device’s communication proto-
col. The SNMP architecture also aids ADC device platform
manufacturers and their VARs by simplifying the addition of

10

15

20

25

30

35

40

45

50

55

60

65

20
new ADC devices. The ADC data server 130 communicates
with the SNMP subagent collection 1224 through a DLL
interface. The ADC device platform SNMP master agent
1229 also communicates with the ADC data server, the
network communication unit 221, and the computing sys-
tem’s operating system.

The MIB collection 1223 describes or provides manage-
ment information for SNMP devices, including the ADC
data server 130 and the ADC devices 117, 118. For example,
the MIB collection 1223 includes a reader group MIB that
provides ADC device configuration, reporting ADC device
statistics, and running end device diagnostics. The MIB
collection 1223 describes a set of objects (such as the ADC
devices 117, 118) to the SNMP subagents and provides
information about each object, including its structure, its
relationship to other objects, and the operations allowed on
the object. The MIB collection 1223 essentially tells the
SNMP subagents what pieces of information they may
modify or view on the ADC device platform 100.
Configuration, control, and statistics data particular to the
ADC device platform 100 are also described in the MIB
collection 1223. In addition to supporting the ADC device
platform, the MIB collection 1223 may include additional
MIBs such as: a MIB-II (“RFC 1213”), an Intermec Reader
MIB, an Intermec UDP+MIB, a Proxim Open Air Radio
MIB, a Scorpion 900 MHz Radio MIB, and a 802.11 MIB
(“IEEE P802.11”), and other protocols, especially RF read-
able tag protocols, according to an embodiment of the
invention.

The ADC data server 130 may also communicate with the
Reader Command/SNMP Gateway 1231 to provide reader
commands for the ADC devices. A Reader command con-
trols ADC devices, such as the ADC device 117, by sending
commands for operations, such as turning laser scans on and
off, changing reader configuration, and performing system
management operations like backup and restore. The Reader
Command/SNMP gateway 1231 controls parsing/formatting
and routing of reader commands. The Reader Command/
SNMP gateway 1231 is a DLL that converts legacy reader
commands to SNMP requests, according to an embodiment
of the invention. Reader commands can be received from bar
code devices, 900 MHz devices, and local or remote clients.
The Reader Command/SNMP gateway 1231 parses these
commands, translates them to an object identifier (“OID”)
for an appropriate ADC device and then routes the command
through the ADC data server 130.

Using the Reader Command/SNMP gateway 1231, an
application (e.g., the remote application 109) may transfer
legacy system management commands through the Reader
Command/SNMP command gateway 1231 to an ADC
device, such as the ADC device 117. If a client (e.g., the
remote application 109) requests configuration data in reader
command format, then the Reader Command/SNMP gate-
way 1231 packages the configuration data in the reader
command format. This architecture isolates all legacy reader
command processing in a single place, simplifying mainte-
nance of the ADC device platform 100.

FIG. 13 illustrates an exemplary ADC device platform’s
communication protocol stack. Data communications sys-
tems contain a communications stack for transferring data
between computers such as between the ADC device plat-
form 100 and the remote computing system 104. Each
computer typically has a communications stack containing a
number of layers. For example, the open systems intercon-
nect (“OSI”) communications stack defined by the Interna-
tional Standards Organization consists of seven layers. The
layers form a sequence from a lowest layer (“or bottom

US 6,356,949 B1

21

layer”) to the highest layer (“or top layer”). The layers divide
the processing necessary for communicating between com-
puters into discrete units. The bottom layer in the commu-
nications stack typically interacts with the physical medium
used for transferring the data, such as coaxial cables. The top
layer of the communications stack provides services to
application programs, and the middle layers of the commu-
nications stack typically are responsible for routing and
maintaining a connection. A local computer transfers data to
a remote computer when an application program first passes
the data to the top layer of the communications stack of the
local computer. The top layer then processes the data and
sends the data to the next lowest layer in the communica-
tions stack.

Thereafter, each layer in turn processes the data until the
data reaches the bottom layer, where the data is sent to the
remote computer over the transfer medium. The bottom
layer of the communications stack of the remote computer
receives the data from the transfer medium and passes the
data up the communications stack. Each layer performs its
specific processing on the data until the data reaches the top
layer. The top layer processes the data and sends the data to
an application program. A comstack manager typically starts
the communication stack and maintains its stack during its
lifetime.

In one exemplary embodiment, the communication stack
of the ADC device platform 100 utilizes a seven-layered
communication protocol, including an application layer
1301, a presentation layer 1302, a session layer 1303, a
transport layer 1304, a network layer 1305, a data link layer
1307 and a physical layer 1308. Included in the application
layers 1301 are ADC device platform applications 1309 and
the Winsock 1.1 API plus additions for legacy applications
1310. The presentation layer 1302 and session layer 1303
may include the Terminal Message Format (“TMF”) proto-
col 1320 and UDP+ protocols 1321, the Trivial File Transfer
Protocol (“TFTP”) protocol 1311 and the SNMP master
agent 1229. The TCP protocol 1312 is included in the
application layer 1301, the presentation layer 1302, the
session layer 1303, the transport layer 1304, and the network
layer 1305. The UDP layer 1313 resides primarily in the
transport layer 1304. IP, ICMP, and ARP 1315 reside within
the network layer 1305. IP refers to the well-known Internet
Protocol. The Internet Control Message Protocol (“ICMP”)
provides diagnostic functions and can send error packets to
hosts regarding message transmission. The Address Reso-
lution Protocol (“ARP”) is a low-level protocol utilized by
TCP/IP that obtains a physical address when only a logical
address is known. UDP/IP 1322 combines UDP with IP and
provides communications spanning from the session layer
1303 to the transport layer 1304.

Network Driver Interface Specification (“NDIS”) Version
4.0 1323, provides hardware and protocol independence for
network drivers utilized by the ADC device platform 100.
NDIS, of which version 4.0 may be used, offers a device
driver standard that allows for running multiple protocols on
the same network adapter.

Legacy radio driver 1324 refers to pre-existing radio
driver protocols that may be utilized within the ADC device
platform 100. Open Radio Interface 1325 provides radio
driver interfaces that are customizable across radio devices.
An Ethernet driver 1326 enables Ethernet communications
for the ADC device platform 100. The Ethernet provides a
local area network (“LAN”) that connects computing ecle-
ments together within the same building or campus. The
Ethernet is a physical link and data link protocol, reflecting
the two lowest layers of the OSI model. Point-to-Point

10

15

20

25

30

35

40

45

50

55

60

65

22

Protocol (“PPP”) 1327 is a data link protocol that provides
a well-known method for transmitting IP frames over a
circuit. The PPP 1327 may communicate with a WindowsCE
built-in serial port driver 1328 that further processes com-
munications into the physical layer 1308.

A WindowsCE Original Equipment Manufacturer
(“OEM”) Adaptation Layer (“OAL”) 1329 represents a
service provided by the WindowsCE operating system for
the ADC device platform 100 that translates communica-
tions into a format required by a given OEM device. Many
low-level hardware components on the ADC device plat-
form 100 may be provided by various OEMs, and the
WindowsCE operating system provides a method for com-
municating to the various OEM devices.

Legacy radio interface 1330 provides a match at the
physical layer 1308 for the legacy radio driver 1324.
Similarly, Open Radio Hardware Interfaces 1331 provides a
match at the physical layer 1308 for the Open Radio
Interface Protocol Driver 1325. Ethernet controller 1332
matches with the Ethernet Driver 1326, and Serial Port
(COMI) 1333 matches with the WindowsCE built-in serial
driver 1328.

The invention may operate in conjunction with a virtual
wedge, a dynamic wedge, and a system for intelligently
routing data. An exemplary virtual wedge is described in
U.S. application Ser. No. 09/239,558, entitled “Automatic
Data Collection (“ADC”) Device That Includes A Virtual
Wedge That Routes ADC Data To Application Programs,”
filed on Jan. 29, 1999, and assigned to a common assignee.
An exemplary dynamic wedge is described in U.S. applica-
tion Ser. No. 09/240,425, entitled “Automatic Data Collec-
tion (“ADC”) Device That Dynamically Wedges Data Trans-
mitted To Data Customers,” filed on Jan. 29, 1999, and
assigned to a common assignee. An exemplary system for
intelligently routing data to different applications is
described in U.S. application Ser. No. 09/240,194, entitled
“Automatic Data Collection Device That Intelligently
Switches Data Based On Data Type,” filed on Jan. 29, 1999,
and assigned to a common assignee.

The ADC device platform 102 may be applied in con-
nection with systems and methods for more accurate bar
code scanning. Exemplary systems are more clearly
described in a patent application entitled “Method for
Decoding Bar Code Symbols by Declaring Erasures of
Element Widths Based on Soft Decision of Measured
Widths,” U.S. application Ser. No. 09/007,277, filed on Jan.
14, 1998, and issued as U.S. Pat. No. 6,102,295, on Aug. 15,
2000, and U.S. Pat. Nos. 5,676,473, 5,777,309, 5,539,191,
5,514,858 and 5,553,084, all assigned to a common
assignee.

The ADC device platform 100 may also be applied in
conjunction with improved scanning devices and proce-
dures. One applicable approach is more clearly described in
a patent application entitled “Method of Autodiscriminating
in Symbology Reader Employing Prioritized and Updated
Table of Symbologies,” U.S. application Ser. No. 09/006,
693, filed on Jan. 14, 1998, and assigned to a common
assignee.

Aspects of the invention provide a system and method for
controlling several ADC device platforms. The invention is
particularly applicable to instrumented ADC device
platforms, including hand-held devices, but is also appli-
cable to other computing systems as well. Under aspects of
the invention, a remote computing system having browsing
software receives Hypertext Markup Language (“HTML”)
documents, Dynamic Hypertext Mark-Up Language

US 6,356,949 B1

23

(“DHTML”) documents, Extensible Mark-Up Language
(“XML”) documents, and/or other documents containing
ADC device computing applications over the World Wide
Web. The remote computing system, such as the remote
computing system 104, uses these ADC device computing
applications to communicate with a network of ADC plat-
form devices. The SNMP master agent 1229 communicates
with the remote computing system 104, and a translator
translates SNMP-formatted data sent to the ADC device
platform 100 into a format suitable for reception by its ADC
devices. Another translator translates data received from the
ADC device into the SNMP format for transmission to the
remote computing system. The SNMP master agent com-
municates with the remote computing system using the TCP,
UDP/IP, or UDP+protocols. While the SNMP protocol
specifies that it uses UDP, a variant of the SNMP protocol
may be used with TCP.

The ADC platform device may also utilize a wireless
communications system for all or a portion of its commu-
nications with the remote computing system. Embodiments
of the invention provide a data communications network that
uses Internet technology to deliver data from ADC devices
to local and remote applications.

The ADC device network is scaleable from a minimal
system having a few ADC device platforms to a large system
with hundreds of ADC device platforms connected in a
network. The minimal system requires only a low-cost
personal computer (“PC”) based web browser, while the
larger system may utilize an existing communications infra-
structure having a mixture of ADC devices.

According to one embodiment of the invention, the data
communications network may use Java applets as the user
interface to communicate data requests, including directions
to the ADC data grid, to ADC device platforms. Java is an
object-oriented programming language similar to C++. Java
was designed to be secure and platform neutral, meaning
that Java code may run on any computing platform. Java is
a useful language for programming applications for the
World Wide Web since users access the web from many
different types of computers. Java is especially well adapted
for use in programming small applications, or applets, for
use in the World Wide Web. A Java applet may be loaded and
run by an already running Java application, such as a web
browser. Java applets may be downloaded and run by any
web browser capable of interpreting Java, such as Microsoft
Internet Explorer, Netscape Navigator, and Hot Java.

Although specific embodiments of, and examples for, the
invention are described herein for illustrative purposes,
various equivalent modifications are possible within the
scope of the invention, as will be recognized by those skilled
in the relevant art. The teachings provided herein of the
invention can be applied to other data symbol imaging
systems, not necessarily the exemplary ADC device plat-
form having ADC devices described above. Various exem-
plary data symbol enablement systems, and accordingly,
various other device input and output enablement systems
can be employed under the invention. While the invention
discusses bar code symbologies, the invention can similarly
read visual indicia of other stored images. The ADC device
platform may operate with protocols and languages in
addition to those specifically disclosed herein. For example,
the ADC device platform is not limited to operations using
HTTP, HTML, DHTML, XML, UDP, TCP/IP, FTP, SNMP,
and TFTP but is equally applicable to other similar lan-
guages and protocols. Similarly, applications used within the
ADC device platform, such as the ADC data server, may be
developed using an object oriented programming method-

10

25

30

40

45

55

60

65

24

ology or using any other programming methodology that
results in a computing system having equivalent function-
ality.

Aspects of the invention can be applied to not only
reading machine-readable symbols and other images, but
also to transmitting such images to external devices, such as
computerized servers and printers. The embodiments of the
invention disclosed hereinabove have been discussed pri-
marily with regard to hand-hand devices, such as hand-held
data collection terminals. However, the invention finds equal
applicability in stationary data collection terminals, such as
a permanently mounted device, and in desktop personal
computers.

All of the above U.S. patents and applications are incor-
porated by reference.

These and other changes can be made to the invention in
light of the above detailed description. In general, in the
following claims, the terms used should not be construed to
limit the invention to the specific embodiments disclosed in
the specification and the claims, but should be construed to
include all ADC device platforms, data collection terminals,
and data symbol imaging systems that operate under the
claims set forth hereinbelow. Accordingly, the invention is
not limited by the disclosure, but instead its scope is to be
determined entirely by the following claims.

What is claimed is:

1. A method for routing a data set having characteristics,
comprising:

receiving a data routing instruction for the at least one

automatic data collection (“ADC”) device from at least
one client application;

analyzing the data routing instruction to determine if the

data routing instruction specifies a data routing mecha-
nism; and

storing the data routing instruction in an output mecha-

nism grid if the data routing instruction specifies a data
output mechanism.

2. The method of claim 1, further comprising:

receiving the data set from the at least one ADC device for

routing to the at least one client application; and
examining the output mechanism grid to identify the data
output mechanism for routing data from the at least one
ADC device to the at least one client application.
3. The method of claim 1, further comprising:

receiving the data set from the at least one ADC device for
routing to the at least one client application;

examining the output mechanism grid to identify the data
output mechanism for routing data from the at least one
ADC device to the at least one client application; and

selecting a default output mechanism if the output mecha-
nism grid does not identify an output mechanism for
routing data from the at least one ADC device to the at
least one client application.

4. The method of claim 1, further comprising:

receiving the data set from the at least one ADC device for
routing to the at least one client application;

examining the output mechanism grid to identify the data
output mechanism for routing data from the at least one
ADC device to the at least one client application; and

routing the data set to the at least one client application
using the identified data output mechanism.

5. The method of claim 1, further comprising:

receiving the data set from the at least one ADC device for
routing to the at least one client application; and

US 6,356,949 B1

25

examining the output mechanism grid to identify the data
output mechanism for routing data from the at least one
ADC device to the at least one client application,
wherein the output mechanism grid for routing data
from the at least one ADC device to the at least one
client application includes as data output mechanisms
at least one of pipes, remote procedure calls (“RPC”),
sockets, network Basic Input/Output System
(“NetBIOS”), mail slots, network Dynamic Data
Exchange (“NetDDE”), and shared memory.

6. The method of claim 1, further comprising:

receiving the data set from the at least one ADC device for
routing to the at least one client application; and

examining the output mechanism grid to identify the data
output mechanism for routing data from the at least one
ADC device to the at least one client application,
wherein the data set is received by an ADC data server
in an ADC device platform that contains the at least one
ADC device, wherein the ADC data server also
receives the data routing instruction for the at least one
ADC device from the at least one client application.

7. The method of claim 1, further comprising:

receiving the data set from the at least one ADC device for
routing to the at least one client application; and

examining the output mechanism grid to identify the data
output mechanism for routing data from the at least one
ADC device to the at least one client application,
wherein the data set comprises one of bar code data,
radio frequency (“RF”) tag data, resonator data, Smart-
Card data, magnetic stripe data, optical character rec-
ognition (“OCR”) data, text data, ASCII data, AIMI-
ECI data, two-dimensional data, dipole device data,
and speech input data.

8. The method of claim 1, further comprising:

analyzing the data routing instruction to determine if the
data routing instruction identifies a data type that may
be received by the at least one client application from
the at least one ADC device; and

storing the data routing instruction in an ADC data grid if
the data routing instruction identifies a data type that
may be received by the at least one client application.

9. The method of claim 1, further comprising:

analyzing the data routing instruction to determine if the
data routing instruction identifies a data type that may
be received by the at least one client application from
the at least one ADC device;

storing the data routing instruction in an ADC data grid if
the data routing instruction identifies a data type that
may be received by the at least one client application;

receiving the data set having characteristics from the at
least one ADC device;

identifying the characteristics of the data set; and

examining the ADC data grid to determine if the at least
one client application should receive the data set by
comparing the data routing instructions stored for the at
least one client application in the ADC data grid with
the identified characteristics of the data set.

10. The method of claim 1, further comprising:

analyzing the data routing instruction to determine if the
data routing instruction identifies a data type that may
be received by the at least one client application from
the at least one ADC device;

storing the data routing instruction in an ADC data grid if
the data routing instruction identifies a data type that
may be received by the at least one client application;
and

10

15

20

25

30

35

40

45

50

55

60

65

26

routing the data set to the at least one client application.

11. The method of claim 1, further comprising:

analyzing the data routing instruction to determine if the

data routing instruction identifies a data type that may
be received by the at least one client application from
the at least one ADC device;

storing the data routing instruction in an ADC data grid if

the data routing instruction identifies a data type that
may be received by the at least one client application;
and

identifying at least another client application to receive

the data set using the identified characteristics.

12. The method of claim 1, further comprising:

analyzing the data routing instruction to determine if the

data routing instruction identifies a data type that may
be received by the at least one client application from
the at least one ADC device;

storing the data routing instruction in an ADC data grid if

the data routing instruction identifies a data type that
may be received by the at least one client application;
and

identifying at least another client application to receive

the data set using the identified characteristics, wherein
the at least one client application resides in an ADC
device platform that contains the at least one ADC
device and the at least another client application resides
on a remote computing system.

13. The method of claim 1, further comprising:

analyzing the data routing instruction to determine if the

data routing instruction identifies a data type that may
be received by the at least one client application from
the at least one ADC device;

storing the data routing instruction in an ADC data grid if

the data routing instruction identifies a data type that
may be received by the at least one client application;
and

identifying at least another client application to receive

the data set using the identified characteristics, wherein
the at least one ADC device resides in an ADC device
platform, the at least one client application resides on
a remote computing system, and the at least another
client application resides on another remote computing
system.

14. The method of claim 1 wherein the at least one client
application resides on a remote computing system, the
method further comprising communicating with the remote
computing system using one of the Transmission Control
Protocol (“TCP”), the User Datagram Protocol (“UDP”),
and the User Datagram Protocol Plus (“UDP+”).

15. The method of claim 1, further comprising commu-
nicating with the at least one client application over at least
one of an intranet, an internet, a local area network, a wide
arca network, and the World Wide Web.

16. The method of claim 1 wherein the at least one ADC
device is one of a bar code reader, a radio frequency (“RF”)
tag reader, a resonator reader, a SmartCard reader, a mag-
netic stripe reader, an optical character recognition (“OCR”)
reader, a two-dimensional data reader, a dipole device
reader, and a speech input recognizing device.

17. The method of claim 1, further comprising:

receiving a data reading instruction from the at least one

client application for the at least one ADC device;
sending the data reading instruction to the at least one
ADC device; and

receiving the data set from the at least one ADC device

that performs the data reading instruction.

US 6,356,949 B1

27

18. The method of claim 1, further comprising:

receiving a data reading instruction from the at least one
client application for the at least one ADC device;

sending the data reading instruction to the at least one
ADC device; and

receiving the data set from the at least one ADC device
that performs the data reading instruction, wherein the
data set is received by an ADC data server that also
receives the data reading instruction from the at least
one client application and directs the translation of the
data reading instruction into a native format of the at
least one ADC device.
19. The method of claim 1, further comprising:
receiving a data reading instruction from the at least one
client application for the at least one ADC device;

sending the data reading instruction to the at least one
ADC device; and

receiving the data set from the at least one ADC device
that performs the data reading instruction, wherein the
data set is received by an ADC data server that also
receives the data reading instruction from the at least
one client application and wherein the ADC data server
directs a protocol handler and a device handler to
translate the data reading instruction into a native
format of the at least one ADC device.

20. A system for routing a plurality of data sets, compris-
ing:

an automatic data collection (“ADC”) data server that

receives data sets having data characteristics from a
plurality of ADC devices;

an output mechanism grid that contains routing mecha-

nism instructions for at least one client application of a
plurality of client applications; and

an output method organizer that attempts to locate a

routing mechanism instruction for each client applica-
tion of the plurality of client applications that will
receive a data set of the plurality of data sets from the
ADC data server.

21. The system of claim 20, further comprising a data
router that routes at least one data set of the plurality of data
sets to at least one client application of the plurality of client
applications using an output mechanism located in a routing
mechanism instruction in the output mechanism grid.

22. The system of claim 20, further comprising a data
router that routes at least one data set of the plurality of data
sets to at least one client application of the plurality of client
applications using an output mechanism located in a routing
mechanism instruction in the output mechanism grid and
wherein the output mechanism is one of pipes, remote
procedure calls (“RPC”), sockets, mail slots, network Basic
Input/Output System (“NetBIOS”), network Dynamic Data
Exchange (“NetDDE”), and shared memory.

23. The system of claim 20 wherein the ADC data server
resides in an ADC device platform that contains the plurality
of ADC devices.

24. The system of claim 20 wherein each data set of the
plurality of data sets comprises one of bar code data, radio
frequency (“RF”) tag data, resonator data, SmartCard data,
magnetic stripe data, optical character recognition (“OCR”)
data, text data, ASCII data, AIMI-ECI data, two-dimensional
data, dipole device data, and speech input data.

25. The system of claim 20 wherein at least one ADC
device of the plurality of ADC devices is one of-a bar code
reader, a radio frequency (“RF”) tag reader, a resonator
reader, a SmartCard reader, a magnetic stripe reader, an
optical character recognition (“OCR”) reader, a two-

10

15

20

25

30

35

40

45

50

55

60

65

28

dimensional data reader, a dipole device reader, and a speech
input recognizing device.
26. The system of claim 20, further comprising:
an ADC data grid that contains data type requests for the
plurality of client applications; and

an ADC grid data matcher that identifies the data type of
each data set of the plurality of data sets and matches
the identified data type against the data type requests
for each client application of the plurality of client
applications in the ADC data grid to determine if one or
more than one client application should receive the data
set.

27. The system of claim 20, further comprising:

an ADC data grid that contains data type requests for the
plurality of client applications;

an ADC grid data matcher that identifies the data type of
each data set of the plurality of data sets and matches
the identified data type against the data type requests
for each client application of the plurality of client
applications in the ADC data grid to determine if one or
more than one client application should receive the data
set; and

a data router that routes a data set of the plurality of data
sets to at least one client application using an output
mechanism located for the at least one client applica-
tion in the output mechanism grid.

28. The system of claim 20, further comprising:

an ADC data grid that contains data type requests for the
plurality of client applications;

an ADC grid data matcher that identifies the data type of
each data set of the plurality of data sets and matches
the identified data type against the data type requests
for each client application of the plurality of client
applications in the ADC data grid to determine if one or
more than one client application should receive the data
set; and

a data router that routes a data set of the plurality of data
sets to at least one client application using an output
mechanism located for the at least one client applica-
tion in the output mechanism grid, wherein the output
mechanism for routing the data set to the at least one
client application is one of pipes, remote procedure
calls (“RPC”), sockets, mail slots, network basic input/
output system (“NetBIOS”), network dynamic data
exchange (“NetDDE”), and shared memory.

29. The system of claim 20, further comprising:

an ADC data grid that contains data type requests for the
plurality of client applications; and

an ADC grid data matcher that identifies the data type of
each data set of the plurality of data sets and matches
the identified data type against the data type requests
for each client application of the plurality of client
applications in the ADC data grid to determine if one or
more than one client application should receive the data
set, wherein the grid data matcher identifies more than
one client application of the plurality of client appli-
cations to receive the data set based upon examination
of the ADC data grid.

30. The system of claim 20 wherein at least one client
application to receive the data set resides in an ADC device
platform that contains the at least one ADC device and at
least another client application to receive the data set resides
on a remote computing system.

31. The system of claim 20 wherein the ADC data server
and the plurality of ADC devices reside in an ADC device

US 6,356,949 B1

29

platform, at least one client application to receive the data
set resides on a remote computing system, and at least
another client application to receive the data set resides in
another remote computing system.

32. The system of claim 20 wherein the ADC data server
and the plurality of ADC devices reside in an ADC device
platform, and the at least one client application to receive the
data set resides on a remote computing system, and the ADC
device platform communicates with the remote computing
system using one of the Transmission Control Protocol
(“TCP”), the User Datagram Protocol (“UDP”), and the
User Datagram Protocol Plus (“UDP+”).

33. The system of claim 20 wherein the ADC data server
and the plurality of ADC devices reside in an ADC device
platform, and the at least one client application to receive the
data set resides on a remote computing system, and com-
munications between the at least one client application and
the ADC device platform pass over at least one of an
intranet, an internet, a local arca network, a wide area
network, and the World Wide Web.

34. An automatic data collection (“ADC”) network that
routes data, comprising:

a plurality of ADC device platforms, such that at least one

ADC device platform comprises:

at least one ADC device;

an ADC data server that receives a plurality of data sets
having characteristics from the at least one ADC
device;

an output mechanism grid that contains routing mecha-

nism instructions for a plurality of client applications;
and

an output method organizer that attempts to locate a

routing mechanism instruction for each client applica-
tion that will receive a data set of the plurality of data
sets from the ADC data server.

35. The system of claim 34, further comprising a data
router in the at least one ADC device platform that routes a
data set of the plurality of data sets to a client application of
the plurality of client applications using an output mecha-
nism located in a routing mechanism instruction in the
output mechanism grid of the at least one ADC device
platform.

36. The system of claim 34 wherein the output mechanism
for routing a data set to at least one client application is one
of pipes, remote procedure calls (“RPC”), sockets, mail
slots, network basic input/output system (“NetBIOS”), net-
work dynamic data exchange (“NetDDE”), and shared
memory.

37. The system of claim 34 wherein at least one data set
of the plurality of data sets comprises one of bar code data,
radio frequency (“RF”) tag data, resonator data, SmartCard
data, magnetic stripe data, optical character recognition
(“OCR”) data, text data, ASCII data, AIMI-ECI data, two-
dimensional data, dipole device data, and speech input data.

38. The system of claim 34 wherein the at least one ADC
device of at least one ADC device platform is one of a bar
code reader, a radio frequency (“RF”) tag reader, a resonator
reader, a SmartCard reader, a magnetic stripe reader, an
optical character recognition (“OCR”) reader, a two-
dimensional data reader, a dipole device reader, and a speech
input recognizing device.

39. The system of claim 34 wherein the at least one ADC
device platform further comprises:

an ADC data grid that contains data type requests for the

plurality of client applications; and

an ADC grid data matcher that identifies the data type of

each data set received from the ADC device and

10

15

30

35

40

45

50

55

60

65

30

matches the identified data types against the data type
requests for each client application of the plurality of
client applications in the ADC data grid to determine if
one or more than one client application should receive
the data set.
40. The system of claim 34 wherein the at least one ADC
device platform further comprises:

an ADC data grid that contains data type requests for the
plurality of client applications;

an ADC grid data matcher that identifies the data type of
each data set received from the ADC device and
matches the identified data types against the data type
requests for each client application of the plurality of
client applications in the ADC data grid to determine if
one or more than one client application should receive
the data set; and

a data router that routes a data set of the data sets to at
least one client application using an output mechanism
located for the at least one client application in the
output mechanism grid.

41. The system of claim 34 wherein the at least one ADC

device platform further comprises:

an ADC data grid that contains data type requests for the
plurality of client applications;

an ADC grid data matcher that identifies the data type of
each data set received from the ADC device and
matches the identified data types against the data type
requests for each client application of the plurality of
client applications in the ADC data grid to determine if
one or more than one client application should receive
the data set; and

a data router that routes a data set of the data sets to at
least one client application using an output mechanism
located for the at least one client application in the
output mechanism grid, wherein the output mechanism
for routing the data set to the at least one client
application is one of pipes, remote procedure calls
(“RPC”), sockets, mail slots, network basic input/
output system (“NetBIOS”), network dynamic data
exchange (“NetDDE”), and shared memory.

42. The system of claim 34 wherein the at least one ADC

device platform further comprises:

an ADC data grid that contains data type requests for the
plurality of client applications; and

an ADC grid data matcher that identifies the data type of
each data set received from the ADC device and
matches the identified data types against the data type
requests for each client application of the plurality of
client applications in the ADC data grid to determine if
one or more than one client application should receive
the data set, wherein the grid data matcher identifies
more than one client application of the plurality of
client applications to receive a data set based upon
examination of the ADC data grid.

43. The system of claim 34 wherein at least one ADC data

device platform further comprises:

an ADC data grid that contains data type requests for the
plurality of client applications; and

an ADC grid data matcher that identifies the data type of
each data set received from the ADC device and
matches the identified data types against the data type
requests for each client application of the plurality of
client applications in the ADC data grid to determine if
one or more than one client application should receive
the data set, wherein the grid data matcher identifies

US 6,356,949 B1

31

more than one client application of the plurality of
client applications to receive a data set based upon
examination of the ADC data grid, and wherein at least
one identified client application resides in the ADC

32

requests for each client application of the plurality of
client applications in the ADC data grid to determine if
one or more than one client application should receive
the data set,

device platform and at least another identified client 5
application resides on a remote computing system.

44. The system of claim 34 wherein at least one ADC

device platform further comprises:

an ADC data grid that contains data type requests for the
plurality of client applications; and 10

an ADC grid data matcher that identifies the data type of
each data set received from the ADC device and
matches the identified data types against the data type
requests for each client application of the plurality of
client applications in the ADC data grid to determine if
one or more than one client application should receive
the data set,

wherein the grid data matcher identifies more than one
client application of the plurality of client applications

wherein the the at least one identified client application
resides on a remote computing system and the ADC
device platform communicates with the remote com-
puting system using one of the Transmission Control
Protocol (“TCP”), the User Datagram Protocol
(“UDP”), and the User Datagram Protocol Plus
(“UDP+").
46. The system of claim 34 wherein the at least one ADC
device platform further comprises:
15 an ADC data grid that contains data type requests for the
plurality of client applications; and
an ADC grid data matcher that identifies the data type of
each data set received from the ADC device and

-~ matches the identified data types against the data type

to receive a data set based upon examination of the
ADC data grid and wherein the at least one identified
client application resides on a remote computing sys-
tem and at least another identified client application
resides in another remote computing system.

25

requests for each client application of the plurality of
client applications in the ADC data grid to determine if
one or more than one client application should receive
the data set, wherein the at least one identified client
application resides on a remote computing system and

45. The system of claim 34 wherein the at least one ADC
device platform further comprises:
an ADC data grid that contains data type requests for the
plurality of client applications; and
an ADC grid data matcher that identifies the data type of 30
each data set received from the ADC device and
matches the identified data types against the data type L

communications between the at least one identified
client application and the ADC device platform pass
over at least one of an intranet, an internet, a local area
network, a wide area network, and the World Wide
Web.

