US006408403B1
a2 United States Patent (10) Patent No.: US 6,408,403 B1
Rodrigues et al. 45) Date of Patent: *Jun. 18, 2002
9
(54) METHOD FOR INTEGRATING AUTOMATED 5,522,073 A 5/1996 Courant et al. 395/700
SOFTWARE TESTING WITH SOFTWARE 5,615,333 A 3/1997 Juettner et al. 395/183.14
DEVELOPMENT 5,671,415 A 9/1997 Hossainccoeuvunnee. 395/701
5,745,767 A * 4/1998 Rosen et al. 395/704
(75) Inventors: James Perry Rodrigues, Kirkland,; ?;2’2?}12) gﬁggg idhglil/lsazsalo 395/:1328};431
Orville Jay Potter, IV, Redmond, both 5970145 A % 10/1999 McMAnis ..c.o.vveeenn... 380/23
of WA (US) 6,067,639 A * 5/2000 Rodrigues et al. 714/38
(73) Assignee: Microsoft Corporation, Redmond, WA * cited by examiner
(US) Primary Examiner—Dieu-Minh Le
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Banner & Witcoft, Lid.

(21)
(22)

(63)

(51)
(52)
(58)

(56)

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent 1s subject to a terminal dis-

claimer.

Appl. No.: 09/526,246

Filed: Mar. 15, 2000

Related U.S. Application Data

Continuation of application No. 08/552,483, filed on Nov. 9,
1995, now Pat. No. 6,067,639.

US.CL ..,
Field of Search

............................ HO2H 3/05
................................... 714/38

..................... 714/38, 39, 40;
717/1, 4, 6, 10

References Cited

U.S. PATENT DOCUMENTS

5450586 A 9/1995
5475843 A 12/1995
5.485.615 A 1/1996
5490249 A 2/1996
5513316 A 4/1996

and

i Application Requiraments

Kuzara et al. 395/275.5
Halwviatti et al. 395/700
wWennmyreeeeeennen. 395/700
Miller ...covevenenennnn. 395/183.02
Rodrigues et al. 395/183.14

(57) ABSTRACT

A computer operable method for integrating and automating
test procedures within a computer application program.
Instantiated test operation objects of an object class defined
by the present invention correspond to functions to be tested
within the computer application program. The test operation
objects are instantiated by calls to functions in a test opera-
tion runtime library (DLL). The test operation objects
include 1nterface method functions which execute the
intended test operation and simulate any required data, file,
or memory I/O. Other aspects of the methods of the present
invention provide rules which permit decisions as to the
applicability of each test operation given the state of the
application program or the context of the test operation
sequence. The various test operation objects are selected to
perform a sequence of test steps. In one mode of operation,
the methods of the present invention randomly select among
all the 1nstantiated test operation objects. In another mode of
operation, the methods of the present invention “playback™
a previously recorded sequence of test operation objects to
permit reproduction of failures in previous test sequences. In
a third mode of operation, the methods of the present
invention permit a user to modity or create “playback” files
to customize a test case for a particular focus.

3 Claims, 12 Drawing Sheets

Development and Quality
Assurance/Test Teams

f200

—

Functional Specification

—

Application Development
Including Test Operation

Object Definitions

v

Verification and
Regression Test

Against Qid
Problems

|
204J / 206

Too Many
Problems?

Test Application /

To Reveal New
Problems

210 214

e

Too Many Release Application
Problems? To Users

Y
«—

\ 4 212

Report Open '/

Problems To
Developers

m—

s1adojsAs(y
0] Swa|qo.ld
uadQ Loday

chl

US 6,408,403 Bl

s10SM 0} ,Sweqold

Auep 00}

uoneojiddy esesjoy

4!

Sheet 1 of 12

eonpoidoy 0)
sdels |leje(

Swa|qoJsd
MBN |B8ABY 0]
uoneolddy 1se |

901

Jun. 18, 2002

SWe}qo.td

PIO isuieby
1s9] uo|ssaiboy

1402 .\
(ainmonans wesboud
jo abpaimouy inoyum)

wes| }ssj/eoueinssy Aujenp

(LHY HOldd

U.S. Patent

)

!

AN & AmmmAERA) el

Ol

UOedUBA puy

juswdojaasq :o_umo__an:q.

No_.lg

uoijea|ivedg jeuonoung pue

sjueLLs.

oSI\/

inbay uonesddy

(8i1njonuys weiboud
}O abpajmouy yim)
Wweaj juswdojaaag

US 6,408,403 B1

Sheet 2 of 12

Jun. 18, 2002

U.S. Patent

S16SMN O
uonesi|ddy eses|oy

s1ado|aAs(]

0] Sws8|qoid
usedQ odey

¢le

80¢

wwEw_noE
Auepw 00}

Swe|qoid
MON |eaAey O]

.\v uones)jddy 156

swee| 1s8]/aoueinssy
Aljenp pue juswdojeasq

¢ 9Ol

;,SW8jqoid
Auepw oo}

sws|qold
PIO Isuieby

1S9 | uolIsseibay

pue UoHBOILIBA

suoniuieq 199Iq0
uoneladQ 1sa] Hutpnjou
juswdojeas(q uoineolddy

NONI\,

uoijesyyioedg jeuonoun pue

sjuswalinbey uoneoijddy

ooNI\,

US 6,408,403 Bl

Sheet 3 of 12

Jun. 18, 2002

U.S. Patent

80¢

luawuosiaug Bupindwon

weiboid uones)ddy

90¢ .\w

asuodsay

nwps
10819@

Alddy

S100 1L s8] pajuslQ 1diiog

seji4 6o

}NSoY /1S9
20€ \

S8|14 1duog

(LHV HOIHd) € ")

9ling 1S9
_ o00¢

juswuonaug bunndwon

US 6,408,403 B1

o\
v
S
=
4
-
D
&
A=
7
pOY \
=
—
—
&
8’
v
=
—
-
S8j14 b0 }nsey
10 yoeqgAe|d
cOv

U.S. Patent

weiboid uoneoyddy

(17Q) Areuqi 100lq0
suofnetsdQ 1s6 |

v Ol

o)

90P

so|i4 YorqgAe|d

10 8}Ing 188
A/. 00V

U.S. Patent Jun. 18, 2002 Sheet 5 of 12 US 6,408,403 B1

Normal
Application
/ Initialization FIG. 5

Instantiate
All Test
Operation
Objects

Begin Testing
Immediately?

Normal
Application
Processing

User Request
To Start
Testing?

N / 512

Random
Auto-test

/ 516

Y Playback
Auto-test

Random
Auto-test
Mode?

Playback
Auto-test
Mode?

518

Manual
Playback
Creation

U.S. Patent Jun. 18, 2002 Sheet 6 of 12 US 6,408,403 B1

600 Prompt User
\ - To Adjust
Test Weights

602 Generate Weighted
s Selection Table

Prompt User For
Random Seed

Prompt User For

Error Threshold
And Test Count

608
\ Y
Threshold
Exceeded?
610 \
" Test Count
Exhausted?
N
O

./ FIG. 6A

U.S. Patent Jun. 18, 2002 Sheet 7 of 12 US 6,408,403 B1

Adjust Weighted
Selection Table
For Any Changed

Randomly Select
Next Test Operation

Record Selection
In Playback File

618 |
\ Execute Test

Operation

Record Result
~In Log File

Erroneous
Result?

624 "\ | Increment
- Error Count

626 "\ | Decrement

Test Count

Ve FIG. 6B

512

U.S. Patent Jun. 18, 2002 Sheet 8 of 12 US 6,408,403 B1

Prompt User for
Playback File

More Test N
Operations In
Playback File?

Execute Next
Test Operation

Erroneous
Result?

Record Result
In Log File

0 =~ FIG. 7

U.S. Patent Jun. 18, 2002 Sheet 9 of 12 US 6,408,403 B1

Prompt User

For New File or

Prompt User
To Select Test

Operation to
Add/Delete/Edit

Add/Delete/Edit
Selected Test

Done?

Save Playback
File

US 6,408,403 B1

Sheet 10 of 12

Jun. 18, 2002

U.S. Patent

PE6

uono8le JETA uonemndiue
OL6 !! Hend
806 906

N

ybrop
yBrap
YBiom
YBIam
‘ybram
‘YBIaM

llllllllllll

aised
ajealjdng

o1eas) X

C Pm/_uu_ Jybiop dnoury

o)t

06

P96

c96

096

856
0G6

12518

US 6,408,403 B1

Sheet 11 of 12

Jun. 18, 2002

U.S. Patent

80}

9¢014 120 ce0l OE0}

8201

veol UOQBULIOJI] JOLIZ AYNS 1801 1988H | opeunicyu Jouig Em«m_m._m%

2201
:A10)0811Q pIeZIM
:suojjesadQ Jo JSquinn
:poes paziwopuey
‘ploysaiyl ainjieq o|buig

c06

FEOIH

YAR 12481 ccll 0CL1 8LLL

US 6,408,403 B1

__ Yo || eoues 911 EHE

‘lj9Ae] 109)9S
UMOT 8NN ™ saheq men ewei ‘sadeys 1oeies

@\
» ‘Plemdjoeg puas ‘sadeyg 199}99
= E ‘paemio Buug ‘sadeys 109108
a . Mjoeg o) puss ‘sedeys 109]8S
" 4dd. quo.4 o} buug ‘sedeys 109199
> ‘dnoibup ‘sadeys 1090
7 H ‘dnosy ‘sedeys 109108
OLLL ZLilL 'Y 108jesun .awma._m 109198
— i 100jes ‘sadeys 100108
= I Az ‘Slld 100193
S - ‘88019 ‘aji4 109|198
% . E 'MaN ‘ajid 10898
- . ‘91919 ‘UP3 19919S
= 90L1 0L} "Rdog 4IP3 10eies

‘Ado) ‘Yp3 P9jes

-adeys meN ejear ‘sadeys 100jes n S1E51dna P 3 199108
"MapN ‘9ji] 199198 $| edeys meN ajess) ‘sadeyg j1091eS
2011 joeqgie]d weung 004} :suopesed(sjqejieAy

U.S. Patent

US 6,403,403 Bl

1

METHOD FOR INTEGRATING AUTOMATED
SOFTWARE TESTING WITH SOFTWARE
DEVELOPMENT

RELATED APPLICATTONS

This application 1s a continuation of Rodrigues et al. U.S.
Ser. No. 08/552,483, filed Nov. 9, 1995, which 1ssued as
U.S. Pat. No. 6,067,639 on May 23, 2000.

FIELD OF THE INVENTION

The present invention relates to the field of computer
software development and testing, and 1n particular, to a
method for integrating automated software testing into a
product as 1t 1s being developed to thereby simplify subse-
quent software product testing.

PROBLEM

It has been common in the computer software arts that
software product development was a distinct and separate
process from software product testing. In the standard soft-
ware product development lifecycle, development engineers
would iteratively develop and refine a software product
according to requirement or functional specifications. The
development engineers frequently would test the product
under development either 1n an ad-hoc manner or in a more
rigorous manner. In either case, when the product was
deemed to be completed by the development group of
engineers, the software product was turned over to the
testing process, usually a separate set of engineers from the
group that developed the software product. Most, if not all,
of the testing process utilized in the development phase
would be discarded and the test engineers would begin anew
evaluating the software product as against 1ts corresponding
product specifications.

In a typical test environment, the test engineers are
provided with little or no internal information regarding the
structure and design of the code comprising the software
product. The testing effort would then proceed 1 a “black
box” manner by applying test data (an external stimulus) and
observing the output of the software product for proper
response. In 1its crudest form, a test engineer determines
(“dreams up”) potentially interesting test inputs and applies
them to the software product while observing the output
behavior of the software product for proper operation. This
form of manual testing permits wide flexibility for the test
engineer 1n creating input stimuli but provides little assis-
tance to the test engineer in reproducing problems found
during the test sequence. Manual test requires the test
engineer to carefully note the sequence of test inputs which
led to a specific problem test result.

Test engineers have developed or utilized a number of
tools to assist 1n such “black box™ testing. To automate the
above discussed manual test process, scripting and macro
languages are frequently used. The script/macro tool allows
some degree of automation 1n the test sequence to aid in
reproducing intermittent failures. A macro tool permits some
added flexibility in the use of variables to customize the
operation of the script based on externally supplied variable
inputs. Some software products (e.g. word processing pro-
grams or spreadsheet programs) offer built-in macro features
to reproduce sequences of user imput keystrokes. Other
program user interface (UI) environments (such as the
Xwindows programming environment) provide for redirec-
tion of a program’s 1nput from a script/macro file and thus
may automate the testing of specific user keystroke
sequences.

10

15

20

25

30

35

40

45

50

55

60

65

2

Simple “BAT” files in the MS-DOS® environment or
“shell scripts” 1 the UNIX® environment are exemplary of
such scripting tools used to partially automate the software
product testing process. Macro facilities in the “BAT™ file or
“shell script” interpreters and other macro replacement
programs such as “m4” or “perl” in the UNIX® environment
are exemplary of macro facilities used to enhance the
scripting facilities 1n automating software product testing.

However, such scripting/macro based testing tools still
provide little or no assistance to the test engineer 1n observ-
ing the software product output to automatically detect
success and failure of each test. Collection and analysis of
the test results remains largely a manual procedure. Corre-
lation of the gathered test output with the timing and
operation of the software product 1s difficult 1f not 1mpos-

sible.

An additional problem with scripting/macro tools arises in
that the tool itself as well as the test scripts themselves must
be ported to each computing environment in which the
software product 1s to be tested. For example, a particular
operation 1n a PC based Microsoft Windows® application
may be tested by simulating an “OPEN” menu operation
while a similar function may require an “OK” menu opera-
tion 1n an Apple Macintosh® computing environment. The
test scripts would have to change to test the same function
in these two exemplary computing environments. In other
words, the testing of underlying functions of an application
may have to change as the user interface changes over a
variety of computing environments. This creates an addi-
fional burden 1n porting and inaintaining the test tools and
test scripts along with the software products. In addition, the
porting and maintenance of the scripting/macro tools and
test cases can be a source of additional errors which may be
erroneously attributed to the failure of the software product
under test.

Scripting/macro based test tools also tend to vary depend-
ing upon the external stimuli needs of each software product
under test. The user interface for the test engineer using
“black box™ automated test tools tends to vary as the needs
of each software product vary. Test engineers therefore must
potentially learn a new user interface mode of operation for
cach software product to be tested.

All such “black box™ testing methods, with or without the
aid of automated scripting/macro testing tools, are typically
performed without knowledge of the software product’s
internal code structure. This lack of structural knowledge
can make testing more cumbersome and time consuming.
The lack of structural knowledge precludes certain styles of
testing which may focus on particular error prone aspects of
the software product revealed only by knowledge of the
software product’s internal structure. Sometimes, for
example, an error in one operation of the software product
may not be externally observable in the output of the
software product until subsequent operations are performed.
The combination of the operations may eventually reveal the
problem 1n an external manifestation, but the sequence of
event may be lengthy back to the actual cause of the
problem. Thus the use of external stimuli (“black box™) test
methods, even 1n association with various automated test
tools, does not permit the test engineer to exercise judge-
ment with respect to problems more easily located through
testing with knowledge of the software product’s internal
code structure.

In addition, as software products evolve with ever increas-
ing complexity, the burden of testing 1s being shifted more
toward the development teams. It 1s stmply 1impossible with

US 6,403,403 Bl

3

“black box” testing techniques to exhaustively test all pos-
sible inputs (external stimuli) of many software products
regardless of the size of the testing staff. Even testing of a
large portion of the possible inputs 1s a difficult task in many
cases. Theretfore, the software development/testing lifecycle
has begun to shift more of the testing efforts onto the
responsibility of the development staff. For example, 1t 1s
more frequent now that “acceptance testing”(testing for

fundamental functionality) is made a part of the responsi-
bility of the development staff. An added benefit of shifting
some test burden to the development group 1s realized 1n the
knowledge of internal code structure of the software prod-
uct. The code structure knowledge of the development group
may be applied to focus the testing effort on test sequences
and scenarios most likely to create problems. In addition, the
developers may construct the test cases to detect the failure
in the test sequence as early as possible. It 1s a problem for
developers to create a standardized test interface for the
automated performance of test sequences 1n a manner that
permits easy reproduction of the failed test sequences.

It 1s apparent from the above discussion that a need exists
for an automated testing tool which permits a standardized
interface for the generation and execution of test cases,
which permits random sequences of testing, which permits
casy reproduction of failed test sequences, and which auto-
matically senses the success or failure of each test step.

SOLUTION

The present invention solves the above identified prob-
lems and others to thereby advance the state of the useful
arts by providing an easy to use, coding standard and user
interface for a software developer to integrate testing of a
software product 1nto the development of the product. The
testing application program interface (test API) is used by an
application program developer to integrate a standardized
test interface into the software product 1n its development
phase. Use of the test API by the application program
invokes standard functions in a dynamic linked library
(DLL) to initiate a standard test user interface when the
application program is run. The test tools are mtegrated 1nto
the application program and are therefore ported to any new

computing environment by simply porting the application
program to that environment. The development engineer,
possibly 1n cooperation with the test engineers, thereby
designs the test capability into the application program from
its inception. These test hooks, combined with the standard,
casy to use, graphical user mterface of the test tools of the
present mnvention, permit any engineer in the product devel-
opment team to test the product. Development engineers
may more effectively test the application program during its
development phase to reduce the number of problems dis-
covered later in the product’s lifecycle. Test engineers may
apply the same easy to use graphical interface to more
thoroughly test the functionality of the product.

The test API functions 1n the DLL provide a consistent,
friendly, easy to use interface for testing of the application
program. The DLL test functions may be operated in a
random mode to generate pseudo-random test sequences.
The DLL test functions automate recording of the pseudo-
random seed and the corresponding sequence of test steps
for easier reproduction of problems generated 1n the random
sequence. The DLL functions can be used to automatically
determine the success or failure of the corresponding test
step by sensing a return value from the invocation of a
corresponding sequence of execution 1n the application
program. In addition, the application program may directly
invoke other DLL functions to record an application failure.
This alternative method 1s referred to herein as the assertion
method.

10

15

20

25

30

35

40

45

50

55

60

65

4

The application programmer determines the operations to
be tested 1n the application program and instantiates a test
operation object (of a predefined test API object class)
corresponding to each operation to be tested. The test
operation object 1dentifies an execute interface method
(provided by the application programmer) to be invoked to
execute the desired operation. Other interface methods of the
test operation object identify functions which are to be
performed to simulate the generation of input data and the
acceptance of output data 1n response to operation of the
execute 1nterface method. For example, one interface
method provides functions to be imnvoked for the manual or
automatic generation of mput data to test the operation.
Another interface method of the test operation object pro-
vides functions to be 1nvoked 1n response to I/O requests of
the operation under test. Another interface method of the test
operation object defines a set of rules to permit decisions to
be, made 1n the 1invocation of the test object.

The application program 1s designed by the development
engineers with the test operation objects defined as part of
the application program. The application program is then
compiled and linked with the test tool library (DLL) to
provide the standard object class manipulation test methods
of the present invention. By defining the test operation
objects as discussed above, the application programmer has
provided information (in the form of a collection of instan-
tiated objects) useful to the test methods of the present
invention to invoke each test operation and detect success or
failure of each tested operation. Since the test operations are
designed 1nto the application program, and the library func-
fions which implement the test operation classes of the
present mvention are available 1 a variety of computing
environments, the application program may be more easily
tested 1n many environments without the need to port unique
test tools to each new computing environment. The test tools
can be readily available 1n any computing environment to
which the development stafl chooses to port the application
program. In addition, the test tools of the present invention,
unlike scripting and macro methods of the past, do not
require the development or testing teams to port the test
cases between the various computing environments on
which the program 1s to be tested. The test tools of the
present invention are available for all platforms on which the
application program may be run. The test suites are recorded
in a portable manner by the test tools of the present invention
in so-called playback files.

The application program 1s designed by the application
programmer to mvoke the test tool at an appropriate stage 1n
the runtime-startup or processing of the application pro-
oram. The test tool may then be operated i one of three
modes: namely, random automated test operation selection,
playback automated test operation selection, or manual
playback creation mode.

In the random automated test selection mode, the test
methods of the present mvention pseudo randomly select
from among the set of instantiated test operation objects
defined by the application programmer. As each test opera-
tion object 1s randomly selected, the execute function
method associated with the object 1s invoked to perform the
developer’s designed test function. The random selections
are logged 1n a playback file to permit later reproduction of
a failed sequence. In addition, the results of each execute
function method invocation are logged in a file by the
methods of the present invention so that a sequence may be
reproduced if 1t produces a problem in the application
program under test. This process continues randomly select-
ing test operation objects for which the corresponding

US 6,403,403 Bl

S

execute function 1s mnvoked until directed to stop by a user
or other termination conditions are met.

In the playback automated test operation, the test opera-
tfion selections made 1n a previous test sequence are replayed
from the playback file created during an earlier performance
of the test sequence. This mode of operation 1s used, for
example, to permit reproduction of test sequences which led
o erroneous results 1 previous 1nvocations.

The manual playback creation mode of operation permits
a user of the present invention to create or edit a playback
file. This mode allows the user finer control over the test
sequencing to more rapidly debug an application program.

The methods of the present invention enable automation
of the testing of an application program while mtegrating the
test cases with the program development. This imtegration of
the test case and program development permits more thor-
ough analysis and regression of the application program.
The automation aspects of the test methods of the present
invention permit easier, unattended test operation to more
cifectively test an application program.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flowchart depicting the lifecycle flow of an
application program through development and test as pres-
ently known 1n the art;

FIG. 2 1s a flowchart depicting the lifecycle flow of an
application program through development and test as
improved by the tools and methods of the present invention;

FIG. 3 1s a block diagram depicting the relationship
between script oriented external test tools and an application
program as known 1in the art;

FIG. 4 1s a block diagram depicting the relationship
between script oriented external test tools and an application
program as improved by the tools and methods of the present
mvention;

FIG. 5 1s a flowchart depicting the control flow of an
application program with test operation objects embedded
therein 1n accord with the present invention;

FIG. 6A 1s a flowchart showing additional detail of the
random test operation element of FIG. §;

FIG. 6B 1s a flowchart showing additional detail of the
random test operation of FIG. §;

FIG. 7 1s a flowchart showing additional detail of the
playback test operation of FIG. 5;

FIG. 8 1s a flowchart showing additional detail of the
manual test operation of FIG. 5;

FIG. 9 1s a screen display showing an exemplary user
interface which permits the user to define group and test
operation weights for the random test operations of FIG. 5;

FIG. 10 1s a screen display showing an exemplary user
interface which permits the user to define options for the
random test operations of FIG. 5; and

FIG. 11 1s a screen display showing an exemplary user
interface which permits the user to customize a playback test
sequence for the playback test operations of FIG. §.

DETAILED DESCRIPTION OF THE
INVENTION
OVERVIEW—PRIOR ART:

FIG. 1 describes the overall flow of a typical software
development and test life cycle for an application program
product. A vertical dashed line in the middle of FIG. 1
delineates tasks performed by a development team on the
left side of the dashed line, and tasks performed by a quality

10

15

20

25

30

35

40

45

50

55

60

65

6

assurance or a testing team on the right side of the dashed
line. It 1s axiomatic that the development team has extensive
knowledge of the internal structure of the application pro-
oram. By contrast, it 1S common 1n present software devel-
opment and test environments that the quality assurance or
testing team operates using “black box” techniques
(applying stimuli and observing results without such knowl-
edge of the structure of the application program). In this
typical software development and test environment, the
development team helps determine the requirements and
functional specification of the application program as
depicted 1n element 100. In element 102, the development
team develops appropriate programs and data structures to
implement the requirements and functional specifications. In
conjunction with the development thereot, the development
team verifies or validates the program against the require-
ments and functional specifications. In this typical applica-
tion program development process, the development team
has thus completed its task and provides the application
program to the quality assurance or testing team for inde-
pendent testing and verification of the application program.

In element 104, the quality assurance or testing team
performs a regression test to verily that previously reported
and fixed problems have not recurred in this new version of
the application program. Next, at element 106, the quality
assurance or testing team performs new testing of the
application program to reveal potential new problems aris-
ing 1n the current version of the application program. Due to
the nature of the prior testing tools, the test team must
initiate measures at element 108 (often manual) to document
the steps required to reproduce the new problems discov-
ered.

At element 110, the quality assurance or testing team
determines whether or not the number and severity of
revealed problems are too high to permit release of the
application program to potential users. If 1t 1s determined
that the number and severity of problems revealed 1s not too
high, the quality assurance or testing team will release the
application program to potential users as depicted 1n element
114. If the number or severity of the problems revealed 1s too
high, the quality assurance or testing team does not release
the application program to potential users, but rather reports
the open problems to the development team as depicted in
clement 112. In parallel with release of the application
program as depicted in element 114, the quality assurance or
testing team will also report the open problems to the
developers as shown by element 112. With the report of open
problems returned to the development team, the develop-
ment team repeats 1ts previous efforts i element 102 to
re-design the application program to resolve problems
reported by the quality assurance or testing team. This cycle,
clements 102-112, repeats until the quality assurance or
testing team finds no remaining problems in the application
program worthy of reporting to the development team.

FIG. 3 depicts a typical computing environment 308 1n
which the quality assurance or testing team performs their
testing function. A typical testing approach mvolves the use
of a script oriented test tool 304 to apply external stimuli to
application program 306. The application program receives
the externally applied stimuli as a simulated user input and
generates an appropriate response by performing its desig-
nated function on that provided input. The script oriented
test tool 304 detects the response generated by the applica-
tion program 306 to verify proper operation of the applica-
tion program 306 1n response to the applied stimuli. Script
oriented test tool 304 may receive 1nputs from test suite or
script files 300, which describe a sequence of test steps to be

US 6,403,403 Bl

7

executed. The test tool 304 also logs the test results and
progress 1nto log files 302 for further analysis.

Script oriented test tool 304, typical of current test
procedures, 1s external to application program 306. Due to
this limitation, script oriented test tool 304 can only apply
external stimuli that are expected, and accepted, as external
user 1nputs by the application user program 306. No inter-
mediate levels of functionality testing below that which 1s
made visible to the user interface i1s possible with this
external testing approach. Similarly, script oriented test tool
304 can only detect responses from application program 306
that are made externally visible by the application program.
Script oriented test tool 304 1s thus limited in its internal
knowledge of the structure and design of the application
program 306 and limited to only those stimuli and responses
that are provided to the external user mterface of application
program 306. For example, a typical response of an appli-
cation program 306 may be no more than the update of a
display screen to a user interface. Such a response may be
detected by script oriented test tool 304 only by capturing
the screen dump and storing it for subsequent manual review
by a test operator. In this manner, automation of the testing,
procedures 1s made more difficult because the detection of
the application program 306 response 1s frequently difficult
to automate.

Hand generated testing 1s a variant of the test tool com-
puting environment depicted i FIG. 3. In a hand generated
test environment, a test engineer hand generates a desired
external stimulus rather than receiving a stimulus from a
pre-defined script file 300. Such hand generated testing
limits the reproducability and automation of the test proce-
dures 1n terms of the generation of external stimuli. The test
engincer must be certain that all steps which lead up to
production of a problem are noted so that the problem may
be reproduced. So called “macro” languages are yet another
variant of the test procedure depicted mn FIG. 3. Macro
language test tools are similar to the script oriented test tool
304 but with reduced capabilities for detecting and recording,
the response from application program 306. In essence,
macro language test tools provide a shorthand notation for
defining a test script of external stimuli to be applied in
sequence.

The well known application program development test
cycle and associated tools depicted i FIGS. 1 and 3,
therefore, have several weaknesses as compared to the
techniques disclosed by the present invention. Specifically,
script oriented test tool 304 1s only capable of testing those
functions made externally visible by the application program
306. Similarly, detection of responses generated by appli-
cation program 306 1s limited to those responses made
visible by the application program. Some such responses
may be difficult to capture or detect in any automated way
by script oriented test tool 304. An additional problem with
the script oriented test tool 304, of FIG. 3, arises in the need
to port the test tool 304 to each new computing environment
308. The application program 306 development team nor-
mally ports the application program 306 to several different
computing environments 308. In addition, either the quality
assurance or testing team or the development team must port
the script oriented test tool 304 and/or the script files 300 to
the same collection of computing environments 308 1nde-
pendent of the efforts to port the application program 306.
This 1mposes an additional work load upon the product
development and test 1n addition to the normal load for
developing the product and identifying problems in the
application program 306.

10

15

20

25

30

35

40

45

50

55

60

65

3

OVERVIEW—PRESENT INVENTION:

The testing tools and methods of the present invention
involve embedding of test operations within the structure of
the application program during development. By so embed-
ding test operations within the application program, the
development team (with the aid and consultation of the test
team) determines appropriate functions and operations to be
tested. In addition, the development team determines the
expected proper response for each identified test operation
embedded within the application program. The testing tools
and methods of the present invention further provide a
standardized, easy to use, graphical, user interface for the
performance of test operations on the applications program.
By embedding test operations within the application
program, complete automation of test procedures can be
achieved both 1n provision of stimuli by calling functions,
and 1n the capture of test results by verifying the return code
value of a called test operation function or by direct assertion
function calls of the application program to detect failures.
These automated test procedures may be used throughout
the development portion of the software life cycle by the
development team or by the test team. This integration of the
testing of the application program with its development
climinates the distinct division of labor typical of prior
product testing approaches. Knowledge of the program
structure 1s no longer required to effectively and robustly test
the application program. The development team and the test
team may act in concert as a unified group to assure quality
in the application program product.

FIG. 2 depicts a software development and test process
which may utilize the tools and methods of the present
invention. Unlike the process depicted in FIG. 1, there 1s no
vertical dashed line indicating the separate responsibilities
of the development team and those of the quality assurance
or testing team. Since there 1s no longer the need for strict
division of responsibilities under the methods of the present
imvention, the two teams are referred to under the methods
of the present invention as the product development group.
The product development group, by operation of elements
200 and 202, defines the requirement specifications for the
application program and develops appropriate program and
data structures to implement those requirements. In element
202, the product development group embeds test operation
object definitions within the program structure of the appli-
cation program under development. These test operations
object definitions are derived from object class definitions
provided by the tools and methods of the present invention.
By embedding the test operation object definitions within
the application program (in element 202), the product devel-
opment group aids 1n the testing of the application program
by providing interfaces for testing functionality not other-
wise visible external to the application program structure.
This embedding of test operation objects allows automation
of the testing procedure for generating test stimuli as well as
automated capture and analysis of the test results. In
addition, the embedding of the test object definitions permits
a broader range of test functionality to be provided as
compared to the external testing approach depicted in FIGS.
1 and 3. By operation of elements 204 and 206, the product
development group performs regression testing of the appli-
cation program by use of the test tools and methods of the
present invention as embedded within the application pro-
gram by the test operation object definitions. In elements
204 and 206, the product development group determines
whether too many problems are revealed through a verifi-
cation and regression testing. If too many problems are so
revealed, the product development group repeats the steps ot

US 6,403,403 Bl

9

clements 202-206. The product development group next
tests the application 1 elements 208 and 210 to determine 1t
too many new problems have arisen in the current version of
the application program. If the application program 1s deter-
mined to be sufficiently problem free by operation of ele-
ment 210, then the program 1s released to application users
as duplicated 1 element 214. In either case, all newly
discovered problems are reported for the development group
to consider as shown 1n element 212. The reported open
problems returned to the product development group to
repeat the program development cycle 1n hopes of repairing
the problems.

The tools and methods of the present invention permit the
shift in testing paradigm depicted as between FIGS. 1 and 2.
Whereas under prior approaches all testing, regression
testing, as well as new testing, was the responsibility of a
distinct quality assurance and testing team, the tools and
methods of the present invention permit highly automated
testing to be performed at any time in the application
program development lifecycle.

The tools and methods of the present invention are shown
in a block diagram of FIG. 4. Application program 404 is
operable within computing environment 408. Embedded
within application program 404 are test operation objects
406 adapted to permit automated testing of functions within
application program 404. The test operation objects 406 are
derived (by the application programmer developers) from an
object class provided mm a programming library of the
present mvention. The library 1s provided in the form of a
dynamic link library (DLL) to be invoked by application
program 404. The test operations object library 406 receives
pre-recorded pseudo-random test suite files or playback files
400, and logs all testing procedures to playback files and
results to log files 402. As shown 1n FIG. 4, the tools and
methods of the present mnvention embed the test operations
406 within the application program 404 at the time of its
development by the product development group. By embed-
ding the test operation objects library (DLL) 406 within
application program for 404, the developers may expose
more functionality for testing than 1s otherwise possible in
prior test methods which exercise only externally visible
user interface functions. In addition, the results of each test
operation may be automatically verified by validation of the
return code value from the invocation of each test operation
object. An additional benefit of the test tools and methods of
the present mvention 1s derived from the fact that porting of
the application program to a particular computing environ-
ment 408 automatically performs the required porting of the
test operations embedded within the application program.
There 1s no additional effort required to port testing tools to
cach computing environment along with the application
program 1tself.

TEST TOOL OPERATIONS:

FIG. 5 1s a flowchart of the operation of an application
program which has embedded the test tools and methods of
the present invention. Element 500 represents the normal
initialization procedures for the application program. These
operations include whatever data and code mitialization 1s
required to properly perform the intended function of the
application program. Element 502 1s next operable to 1nstan-
tiate all the test operation objects defined by the product
development group (and derived from the object class
definition provided by the DLL). The instantiation of the test
operation objects 1nvolves creating the objects and the
assoclated interface functions and making them known to
the test tools which actually perform the testing sequences.
In addition, as discussed below, element 502 1s operable to

10

15

20

25

30

35

40

45

50

55

60

65

10

define groups of related objects for simplifying the user
interface to the test tool. Instantiating each test operation
object provides the definition of the objects to be tested by
the testing tools of the present invention. A table 1s built
within the test tools of the present invention in which each
entry corresponds to one of the defined test operation object.
As discussed below 1n further detail, grouping of related
objects and weighting of the various objects are utilized in
the automated testing procedures to select appropriate tests
to be 1nvoked.

Element 504 determines whether the user has requested
that testing begin immediately or be deferred until some
subsequent time 1n the processing of the applicable program.
If the testing is to begin immediately, processing continues
below with element 510. If in the alternative, testing 1s
deferred until some subsequent time, processing continues
with elements 506 and 508 repetitively until it 1s determined
by element 508 that the user has requested the commence-
ment of testing procedures. Until that time, element 506
represents all normal processing of the application program
performing its intended function. The determination of
whether to begin testing immediately or to defer until a later,
user specified, time 1s a matter of design choice. One of
ordinary skill in the art will recognize the potential value in
deferring the start of testing until a particular state of the
application program is created (by manual operation of the
program). Many equivalent design choices may be made by
those practicing the present invention to implement a desired
delay 1n the commencement of a test sequence.

When testing procedures are begun, elements 510 and 514
are operable to determine which of three possible modes of
testing operation are to be performed. The test tools of the
present 1invention may be operated in a random auto-test
mode, a playback auto-test mode, or a manual playback
creation mode. Element 510 i1s operable to determine if
random auto-test mode has been selected. If so, element 512
1s next operable to perform the random auto-test procedures.
If not, then element 514 1s operable to determine 1if the
playback auto-test mode has been selected. If so, element
516 1s operable to perform playback auto-test operations.
Otherwise, element 518 1s operable to perform manual
playback creation procedures. Once begun, elements 512,
516, and 518 are operable until completion of the testing
procedures.

FIG. 6A depicts a tlowchart of the detailed operation of
random auto-test element 512 of FIG. 5. In the random
auto-test mode, test operation objects are randomly selected
for invocation to test the application program. The user may
provide weighting values to increase the frequency of cer-
tain groups of tests being selected as compared to other
groups of tests as will be discussed i1n additional detail
below. Element 600 1s operable to prompt the user for input
used to adjust the default weighting values applied to each
test operation object. Based on the default weighting values,
plus any adjustments entered by the user in operation of
clement 600, clement 602 i1s next operable to generate
welghted selection tables used for randomly selecting each
of the test operation objects according to the weighting
provided by the user.

A weighting table specifies a range of random number
values which correspond to each entry in the table. The
ranges of possible random numbers 1s equal to the total of
the weight values for all entries 1n the corresponding table.
A weighting table 1s first generated for the current group
welght values to determine which group will be selected.
When selecting a test operation object, a first random
number 1s generated 1n the range of zero through the total of

US 6,403,403 Bl

11

all group weights (minus one). The group whose assigned
range of numbers encompass the randomly generated num-
ber 1s then selected. After the group is randomly selected, a
welghted selection table 1s generated for the test operation
objects according to the current weight values for test
operation objects 1n the selected group. A second random
number 1s then generated to select from the test operation
objects defined as members of the selected group. The test
operation object whose assigned range of numbers encom-
pass the second randomly generated number 1s then selected.
For example, if test objects “A” and “B” are 1n group “X”
and test objects “C” and “D” are 1n group “Y ", and the object
and group weights are as follows:

Object/Group Group Weight Object Weight
X 60
Y 30
A 20
B 10
C 100
D 150

Then the group weighted selection table would retlect the
ogroup weights as follows:

Group Random Number Range
X 0-59
Y 60-89

The test operations weighted selection table if group X were
randomly selected would appear as follows:

Group X Object Random Number Range

A 0-19
B 20-29

The test operations weighted selection table 1f group Y were
randomly selected would appear as follows:

Group X Object Random Number Range

C 0-99
D 100-249

Element 604 1s next to operable to prompt the user to enter
a random seed value. The random selection 1n the random
auto-test mode 1s performed via pseudo-random number
generation techniques. A sequence of “random” numbers
ogenerated by such a pseudo-random number generator tech-
nique may be repeated if the random number generator 1s
provided with the same seed value. Such techniques are well
known to those of ordinary skill in the art and need not be
discussed further. In order to assure reproducability of any
problems found, the random number seed value used to
previously produce the problem may be manually reentered
by the user so as to reproduce an 1dentical “random”
sequence of test operations. Element 606 1s next operable to
prompt the user for input parameter values indicating the
threshold for the number of errors allowed and the total
count for the number of test operations to be performed. The

10

15

20

25

30

35

40

45

50

55

60

65

12

threshold and count values are used to determine the length
of time the test procedure will be run and a threshold Iimat
at which testing will be halted. If the number of problems
revealed 1s below the threshold value testing will proceed,
otherwise testing 1s halted when the number of errors
exceeds the threshold value. Similarly, the total test count
value 1s used to determine the number of random test
operation objects to be invoked in the random auto-test
mode.

Elements 608—626 arc performed repetitively until testing
procedures are halted. Element 608 1s operable to determine
whether the specified error threshold has been exceeded. It
so, testing operations are halted and the test function has
completed. If not, element 610 1s next operable to determine
whether the total count of test operations has been
exhausted. If so, testing 1s completed. If not, processing
continues by selecting another test operation object mvoca-
tion.

For each test operation object invocation, elements
612—-626 perform the actual test operation. Element 612 1s
first operable to adjust the weighted selection table for any
changes 1n the weighting values. Changes 1n the weighting
values are the means by which rules, discussed below 1n
additional detail, may alter the testing strategy as the test
process proceeds. Element 614 1s next operable to generate
a pseudo-random number value for use in the weighted
selection table to select the next test operation object. The
pseudo-random number value may be used as an index value
into the weighted selection tables as described above, or
otherwise utilized with data structures, well known by those
of ordinarily skill in the art, 1n a manner indicative of the
welghted selections. Element 616 1s next operable to record
the selected test operation object 1n a playback file. A
playback file may be utilized in a subsequent test procedure
to reproduce a problem revealed 1n random test sequencing.
The selected test operation object 1s recorded 1n the playback
files before the test 1s performed to assure that the playback
file records each test 1n sequence before the test operation
execution potentially hangs the application program
(indicative of a problem in the application program). The
test procedures and methods of the present invention also
permit system exception handling to be intercepted by the
test methods to detect unexpected results 1n the test opera-
tion object invocation. This capability of the present inven-
tion depends upon the computing environment capabilities
on which the application program (with the test methods
embedded) is run.

Element 618 1s next operable to invoke the execute
interface function of the selected test operation object 1n
order to execute the test procedures defined by the product
development group corresponding, to this selected test
operation object. The execute function i1s defined by the
product development group to perform whatever functional
processing 1s appropriate to test the desired function corre-
sponding to the test operation object. Details of an execute
function are discussed below with respect to exemplary test
operation objects. The result’s of the execution interface
function 1s recorded by operation of element 620 1n a result
log file. An execute interface function may indicate its
success or failure by returning a specific result code as the
function value or by calling an assertion function in the
library methods of the present invention to indicate an
erroneous test result. The result log file may be inspected
later to determine whether the test sequence failed or
succeeded, and 1in addition, may be used to determine at
which step 1n the test procedures, as indicated 1n the play-
back file, the test sequence failed. Element 622 1s operable

US 6,403,403 Bl
13 14

to determine whether the test execute function result repre- user to select a particular pre-existing playback file (for
sents a successtul or failed invocation of the execute inter- editing) or to create a new playback file. Next, element 802
face tunction. If the execute interface function invocation prompts the user to identify a test operation object from a
resulted in an error, element 624 is next operable to mcre- menu of all defined and 1nstantiated test operation objects.
ment the error counter. If the execute interface function 5 Flement 804 is next operable to add the selected test
resulted 1n a successtul completion, then the error counter 1s operation object to the current playback file (alternatively,

not incremented and operation of element 624 1s skipped.
Element 626 1s finally operable to decrement the total test
count. The test process then continues by looping back to
clements 608 and 610 which verify that test processing 10
should continue or should be halted based on the error count
and the total test count remaining,.

FIG. 7 depicts a flowchart providing additional details of
the operation of elements 516 of FIG. 5, which performs

playback auto-test mode processing. Element 700 of FIG. 7 15 g, 14 mags storage associated with the present invention.
1s first operable to prompt the user to enter the name of a

previously recorded playback file. The playback file con- 1EST OPERAIION OBJECTS:

tains information used by the methods of the present mven- Test operation objects are objects derived trom a standard
tfion to reproduce a previously recorded test sequence. The C++ class definition provided by the library (DLL). The
playback auto-test mode 1s most typically used to reproduce 20 object class may be used by the product development group

the user may i1dentify a test operation object to be deleted
from the playback file, to be edited, or to be moved to
another position in the playback file). Element 806 deter-
mines whether the user wishes to further edit the playback
file or whether all changes are done. If further changes are
desired, execution continues by looping back to element
802. If no further changes are desired, the method completes
with processing by element 808 to save the new playback

a problem previously produced in a sequence of test steps to derive specific definitions and 1nstantiations of test opera-
(such as the pseudo-random auto-test mode or manual tion objects. The test tools of the present invention define a
playback creation mode discussed above) and recorded in a minimum of four interface function methods for use by the
playback file. Test sequence reproducability is key to the testing tools 1n performing the required test operation. The
product development group in locating and repairing pro- 25 product development group members define their own test
eramming errors (bugs) causing the reported problem. operation object class which implements at a minimum the
Elements 704-710 are next operable repetitively until execute interface methods described above. The other three
testing procedures have been completed. Element 704 is of the four basic interface methods are provided with default
operable to determine whether additional test operation definitions in the object class. The programmer may use the
objects remain to be processed from the playback file. Each 30 standard object definitions of the three other interface
entry 1n the playback file represents the invocation of a methods, or may replace them (override them) as appropri-
selected test operation object. Element 704 then determines ate for the particular objects test goals. The specific func-
whether additional entries are yet to be processed in a tionality within each of the four basic interface functions is
selected playback file. If no further test operation objects provided by the product development group engineer to
remain unprocessed, processing of the playback auto-test 35 actually perform the required test operation and return a
mode is completed and testing halts. If additional entries success or failure result. The basic four interface functions
remain 1n the currently selected playback file, element 706 are: execution, data mput, file and memory 1/0, and rules.
1s next operable to invoke the execute interface function to The execute interface function must be provided in the
perform the next selected test operation. derived class object. There 1s no default implementation of
Element 708 1s operable to determine whether the result 40 an execute function because the execute function contains
of the previous execute mterface function idicated success all of the code necessary to perform a particular test opera-
or failure. If the execute interface function returned a tion. The execute interface function performs only the
successiul completion code, processing continues by loop- precise function calls required to execute the desired test
ing back to element 704 to thereby continue the playback operation function. Any input or output requirements are
auto-test mode by selecting the next test operation from the 45 handled through the data input or file and memory I/O
playback file. Conversely, 1f the execute interface function interface functions. The following 1s a stmple example of an
invocation indicates an erroneous result, element 710 1s next execute function used to perform an open file operation.

DWORD COpenFile::Execute()

{
// Log will write the provided string to the logfile and return FALSE 1if the
// operation should skip execution.
if (Log(m__strOperationName))
{
GetApplication()->OpenFile(m__strFileName);
h
return Error(); // Return success or failure.
h
operable to record the erroneous result 1n a results log file. This exemplary execute function (the Execute function of
Processing then continues by looping back to element 704 to the COpenFile test operation object) simulates a users
complete the playback auto-test mode processing of the selection of a file/open menu item exactly as though the user
selected playback file. has selected the file/open menu item by operation of the
FIG. 8 is a flowchart providing additional detail of the 65 application program.
operation of manual playback creation mode element 518 of At least two functions may be defined as part of the data

FIG. 5. Element 800 of FIG. 8 1s first operable to prompt the input 1nterface method. These functions are invoked 1ndi-

US 6,403,403 Bl

15

rectly by the invocation of the execute interface function
when data input 1s required. A first function 1n the data input
method can automatically generate a desired input value. A
second function 1n the data mput interface method allows
manual input of a data value by prompting the test user. The
following are example functions implementing a typical
automatic generation, and manual, data input function.

BOOL COpenFile::Generate()
1
CFileList *pFileList = NULL;
// Ask the application for a list of files with a certain extension.
pDileList = GetApplication()->FindFiles(**.txt”);
// If there are none, then fail.
if (pFileList()->Empty())
return FALSE;
// Pick one of the files randomly from the list.
nPickedFile = Random(pFileList()->NumberOfFiles());
// Get the name of the picked file and save it.
m__strFileName = pFileList()->GetFileName(nPickedFile);
return TRUE;
;
BOOL COpenFile::Manual()
{
CFileDialog dlgFileDialog;
BOOL bRet = FALSE;
// Bring up a dialog box asking the user for a file name.
if (IDOK = = dlgFileDialog.DoModal())
{
// If the user clicks ‘OK’ save the new file name,
// otherwise FALSE will be returned and the edit/create
// operation will be canceled;
m__strFileName = dlgFileDialog.GetFileName();
bRet = TRUE;
h
return bRet;
;

In general, the Generate function 1s used by the testing
tools to create pseudo-random test data input values. Other
methods besides random generation may be used 1n a
Generate function to automatically create appropriate test
values. For example, sequencing through a variety of test
values from low to high may be appropriate in some test
cases. The automatically generated values are also logged 1n
the playback file so that any problems revealed by the test

sequence with specific input values may be easily repro-
duced.

The exemplary Manual input function presents exemplary
code used to display a dialog box 1n which a test user of the

application may enter data input values to proceed in the test
process. As 1n the Generate exemplary function, any data
input value received 1s logged 1n the playback file so that a
test sequence may be easily reproduced.

The file and memory I/O function interface method per-
mits simulation of input data values retrieved from tempo-
rary files or memory buffers. Such file or buffered I/0O
requests generated by invocation of the execute function of

5

10

15

20

25

30

35

40

45

50

16

the test operation object are satisfied by simulating the
writing and reading of values to and from files or memory
buifers by the application program. By simulating these
operations, the values used may be captured and thereby
reproduced 1n later invocations of the playback file (i.e. to
reproduce a test sequence which resulted in a failure).

The rules interface method comprises a set of functions
which determine the propriety of running a particular test
operation function, or group of test operation functions in
light of the current context of the application program, or the
context of the test processing. The rules interface method 1s
discussed below 1n additional detail.

TEST OPERAITTION OBJECT GROUPS:

As a convenience to the testing user of an application
program with the test tools embedded according to the
present invention, functions are provided 1n the test opera-
tion object library (DLL) of the present invention to permit
a development engineer to associate related test operation
objects 1nto “groups”. Function calls 1n the DLL permit a
development engineer to create new group definitions. Each
group becomes associated with a unique group identifier. A
textual name may be associated with each group for use in
prompting a test user to enter parameters associated with the
group. Function calls within the DLL used to define each test
operation object include a parameter to 1dentify the pre-
defined group with which the test operation object 1s to be
associated.

Each of the groups defined by the development engineer
may be associated with a weighting value. Weighting values
are used 1n conjunction with the pseudo-random auto-test
mode described above to adjust the frequency distribution of
random calls to the various test operation objects. The
welghting value 1s used to determine the relative number of
calls to test operation objects within one group as distinct
from the number of calls to test operation objects associated
with another group. In other words, the development engi-
neer may define one group to be “randomly” selected more
frequently than 1s another group. In addition to the group
welghting, each test operation object within a group may be
welghted further to determine its relative frequency of
invocation as compared to each other test operation object in
the same group.

EMBEDDING TEST OBJECTS:

The test objects defined by the product development team
must be defined and instantiated 1n the 1nitialization code of
the application program as shown in element 502 of FIG. §.
The following C++ code sample 1s exemplary of an
approach to embedding the test object definition and instan-
fiation in the application program. In the following exem-
plary code, the test methods and structures of the present
invention are referred to by the Microsoft trade name
TestWizard. It 1s presumed 1n the exemplary code below that
the appropriate header file(s) have been included to provide
the required object class definitions.

// Create the test suite object which defines the parameters of the pseudo-random
// auto-test mode of operation. This object defines the groups of test operations

// and the relative weights among the groups and operations.

m__pTestSuite = new CTestSuite(MAX__GROUP, MAX__ OPERATION, “c:\\wiz”);
// Create the TestWizard object - the heart of the methods and structure of the

// present invention.

m__pTestWizard = new ClestWizard;

// Define five groups and their respective weights in the test suite object

// (initially, default values are used for the group weights) in tho test suite object.
// The five groups are:

// CREATEGROUP

// FILEGROUP

US 6,403,403 Bl

17

-continued

[MANIPGROUP
// LAYERGROUP
// SELECTIONGROUP

m__pTestSuite->SetGroupWeight(CREATEGROUP, DEFAULT _WEIGHT);

m__pTestSuite->SetGroupWeight(FILEGROUP, DEFAULT_WEIGHT);
m__pTestSuite->SetGroupWeight(MANIPGROUP, DEFAULT_WEIGHT);
m__pTestSuite->SetGroupWeight(LAYERGROUP, DEFAULT_WEIGHT);

m__pTestSuite->SetGroupWeight(SELECTIONGROUP, DEFAULT_WEIGHT);

?? ae

m__pTestWizard->SetTestSuite(m__pTestSuite, “.sui”, “.wiz”);
m__pTestWizard->SetApplicationName(“DemoApp™);
m__pTestWizard->SetPlaybackExtension(“.wiz”);

// Get access to the TestWizard User Interface object
m__pTestWizard->GetTestWizardUI{& ptestWizUI);

// Define the pages to be displayed in the UI along with the OPTIONS page

ptestWizUI->AddPage(new CCreatePage(ptestWizUI));
ptestWizUI->AddPage(new CFilePage(ptestWizUI));
ptestWizUI->AddPage(new CManipulationPage(ptestWizUI));
ptestWizUI->AddPage(new CLayerPage(ptestWizUI));
ptestWizUI->AddPage(new CSelection(ptestWizUI));

// Add test operation objects to the FILE group. The test operations are:
// NEWOP (use the CNewFile test operation object)

// OPENOP (NotYet Implemented)

// CLOSEOP (use the CCloseFile test operation object)

// SAVEOP (use the CSaveFile test operation object)

// SAVEASOP (Not Yet Implemented)

13

m__pTestSuite->SetOperation(FILEGROUP, NEWOP, new (SKETCHNEWGROUP)

CNewFile(m__pTestWizard));
m__pTestSuite->SetOperation.(FILEGROUP, OPENOP, new
CNYIOperation(m__pTestWizard));

m__pTestSuite->SetOperation (FILEGROUP, CLOSEOP, new (SKETCHNEWGROUP)

CCloseFile(m__pTestwizard));

m__pTestSuite->SetOperation(FILEGROUP, SAVEOP, new (SKETCHNEWGROUP)

CSaveFile(m__pTestWizard));
m__pTestSuite->SetOperation(FILEGROUP, SAVEASOP, new
CNYIOperation(m__pTestWizard));
// Invoke the UI to display the user interface and begin testing.

m__pTestWizard->invokeUI();

The above, exemplary intialization code may be 1nserted
in the application program at any desirable position in the
application. The 1mnvocation of the TestWizard User interface
(to commence testing operations) may be inserted in the
application at any desirable position including: at startup of
the application as shown above, following operation of some
particular function, as an option in the standard user inter-
face of the application (i.e. in a menu item of the application
program), or at any other desirable point in the operation of
the program.

The SetOperation function calls specily the test operation
object (third parameter) to be associated with the group and

35

40

45

of the present invention (and included by appropriate header
files in the exemplary code above). The CNewFile,
CCloseFile, and CSaveFile test operation objects are derived
from the COperation object class. The CNYIOperation
subclass of the COPERATION class 1s defined by the

methods and structures of the present invention to provide a
default test operation object as a place holder for functions
not yet implemented by the development group.

A COPERATION class object may be derived from the
base class 1n accord with the following C++ code sample:

CNewFile::CNewFile (CTestWizard *pTestWizard) : COperation (pTestWizard)

1
h

operation specified by the first two parameters. The test
operation objects are derived from a COPERATION test
operation object class defined by the methods and structures

// Body of code to implement a new file operation

The execute interface method function must be 1mple-
mented 1 every derived object. A skeletal exemplary
execute function might appear as follows:

DWORD CNewFile::Execute()

{

CString strMessage;
strMessage.Format(“File New Called\n™);

US 6,403,403 Bl

19

-continued

if(Log(strMessage))

20

AfxGetMainWnd()->SendMessage(WM_COMMAND, ID_ FILE_ NEW);

return Error();

;

One of ordinary skill in the art will recognize that the
above exemplary code segments are intended only as
demonstrative of the structure of actual code used to 1mple-
ment and utilize the features of the present invention. Many
assumptions regarding variable types and scopes are made 1n
the above code segments. One of ordinary skill in the art will
readily recognize the intended meaning of the code sample,
namely: exemplary pseudo-code suggestive of the intended

use of the methods and structures of the present invention.
PSEUDO-RANDOM AUTO-TEST MODE USER INTER-
FACE:

FIG. 9 1s an exemplary display screen used 1n the test tools
and methods of the present invention to permit the test user
to define the weight values used for each test operation
object and for each group of test operation objects. The set
of test operation objects and their groupings are defined by
the product development group when the objects are embed-
ded in the source code of the application program (as
discussed above with respect to FIGS. 2 and 4. Label 900 of
FIG. 9, discussed 1n detail below with respect to FIG. 10,
indicates the hidden “OPTIONS” display screen used to set
global option values for the pseudo-random auto-test mode
operation. In FIG. 9, four exemplary groups have been

defined as indicated by the labels 902-910. Specifically the
groups are named: “CREATION/DELETION” (label 902),
“FILE” (label 904), “MANIPULATION” (label 906),
“LAYER” (label 908), AND “SELECTION” (label 910).

The display screen of FIG. 9 1s an exemplary screen for
entry of weighting values by the test user to be associated
with the test group named “CREATION/DELETION.” The
ogroup weight value entered 1n field 912 sets the group weight
for this test operation group relative to all other test opera-
tion groups defined by the product development group. For
example, if the other four groups (labeled “FILE”,
“MANIPULATION”, “LAYER”, and “SELECTION”) have
ogroup weights of 75, 25, 100, and 125, respectively, then the
test operations in this test group (“CREATION/
DELETION”) will be selected (50/(50+75+25+100+125))
times or 13.33% of the pseudo-random selections.

Within each test group, each test operation may be indi-
vidually weighted and enabled/disabled. In the
“CREATION/DELETION” test group of FIG. 9, there are
six test operations labeled: “CREATE”, “DUPLICATE”,
“PASTE”, “CUT”, “COPY”, and “DELETE.” These six test
operations may be individually enabled or disabled by
checking or clearing the associated check box, 954-964,
respectively. In addition, each of these six test operation may
be mdividually weighted by entering a weight value in the
assoclated weight field, 814-924, respectively. The enabled
test operations within the group will be pseudo-randomly
selected according to the ratio of their respective weights
whenever their containing group, “CREATION/
DELETION”, 1s selected. In other words, the “CREATE”
test operation will be selected 50/(50+10+25) times, or
58.82% of the times when the “CREATION/DELETION”
ogroup 1s selected. Since the weighting of the group 1is
multiplied by the test operation weight, the “CREATE” test
operation will be selected 7.84% of the time among all
defined and enabled test operation objects.

10

15

20

25

30

35

40

45

50

55

60

65

Button fields 926-932 are used to save and retrieve the
values and settings entered 1n the above discussed fields
(912-924 and 954-964) for future reference. Use of buttons
such as these are well known to those of ordinary skill in the
art and need not be discussed further.

Button field 934 begins the pseudo-random auto-test
mode operations as defined by the parameters entered 1n the

above discussed fields (912-924 and 954-964). FIGS. 5-8,
discussed above, present the detailed operation of the
pseudo-random auto-test mode.

FIG. 10 1s an exemplary display screen used to prompt the
test user of the present invention to enter parameters
(options) used in the pseudo-random auto-test mode of
operation. Label 900 of FIG. 10 indicates the semantic use
of the screen display for entry of “OPTIONS” 1n the running
of the pseudo-random auto-test mode. Labels 902-910, as
discussed above with reference to FIG. 9, indicate the names
of exemplary groups of test operation objects as defined by
the development.

Fields on the “OPTIONS” screen of FIG. 10 are used to
define parameters which control the operation of the pseudo-
random auto-test mode of the present invention. Field 1012
1s used to enter the overall error or failure threshold value.
This value determines the maximum number of erroneous
results permitted of all test operation invocations before the
pseudo-random auto-test mode 1s terminated. Use of this
overall threshold value 1s discussed above with respect to
clement 608 of FIG. 6A and elements 622 and 624 of FIG.
6B. Ficld 1014 of FIG. 10 1s used to enter a single failure
threshold value for use in the methods of the present
invention as discussed above with reference to FIGS. 5-8.
The single failure threshold value 1s used to determine
whether any particular test operation has exceeded this
failure threshold. The test tools and methods of the present
invention account for the number of test operation failures
assoclated with the invocation of each test operation object
as well as the total number of test failures. This threshold
value 1s used 1n a manner similar to that of the overall test
failure threshold to terminate the invocation of a particular
test operation object 1n the pseudo-random auto-test mode of
operation. As shown in FIG. 10, threshold values of zero (or
less) will terminate the pseudo-random auto test mode (field
1012) or the continued invocation of a particular test (field
1014) as soon as any failure occurs in the invocation of a test
operation object.

Field 1016 is used to enter the random number generator
seed value for the start of the pseudo-random test selection.
To reproduce a particular “random” test sequence, the user
may enter the same seed value as used 1n a previous run of
that test sequence. Field 1018 1s used to enter the total
number of test operation objects to be invoked for the
pseudo-random test sequence. The pseudo-random auto-test
mode will terminate operation after this number of test
operation objects are invoked (regardless of the success or
failure of the test operation). Field 1020 specifies the direc-
fory on a mass storage device associated with the computing
environment running the test. Files used in the operation of
the pseudo-random auto-test mode (playback and result log
files, etc.) will be stored in this directory for later reference.

US 6,403,403 Bl

21

Check box field 1022 1s used to enable the persistent
storage of single operation threshold values and error counts
from previous invocations of test operations to accumulate
the error counters. When field 1022 1s checked, test opera-
tions which previously produced erroneous results exceed-
ing the designated threshold value are skipped. Otherwise,
all test operations are invoked normally. This feature 1s
useful to proceed beyond known problems 1n a test sequence
to reveal other new problems. This “persistent” error 1nfor-
mation 1s retained and accumulated through all test opera-
fion invocations and through a plurality of test sequence
runs. Field 1024 1s a button which, when selected
(“clicked”) by the user, will clear the persistent log of
erroneous results to again permit testing of all operations in
a test sequence of the pseudo-random auto-test mode.

Field 1026 1s used to enter a maximum group/operation
welght value. This maximum value 1s used to automatically
ogenerate weighted values for all groups and for all opera-
tions within a group when button 1028 1s clicked.

Button fields 1030-1036 are used to save and retrieve the
values and settings entered 1n the above discussed fields
(1012-1028) for future reference. Use of buttons such as
these are well known to those of ordinary skill in the art and
need not be discussed further.

Button field 1038 begins the pseudo-random auto-test
mode operations as defined by the parameters entered in the
above discussed fields (1012—-1028). FIGS. 5-8, discussed
above, present the detailed operation of the pseudo-random
auto-test mode.

PLAYBACK FILE EDITING USER INTERFACE:

FIG. 11 1s an exemplary display screen designed to permit
a test user to edit the contents of a previously recorded
playback file. In the playback file creation mode of
operation, a test user edit a previously recorded playback file
to customize the test sequence, or create a new test sequence.
In the screen display of FIG. 11, a list of available test
operations 1100 1s positioned on the left side of the screen.
A list of the test operations currently selected for the test
sequence, the current script 1102, appears on the right side
of the screen. A user may highlight (“clickon™) a desired test
operation from the list of available test operations, then click
on the “ADD” button 1104 to add the highlighted test
operation to the current playback 1102. Conversely, the user
may highlight a test operation in the current script 1102 and
click the “REMOYVE” button 1106 to remove the highlighted
test operation from the current script 1102.

In addition to the “ADD” and “REMOVE” functions, a
highlighted test operation 1n the current playback 1102 may
be skipped by clicking the “DISABLE” button 1108. A
pause 1n the test sequence may be added to the current script
by highlighting a test operation in the current script 1102 and
clicking the “BREAK” button 1110. This marks the high-
lighted test operation such that the operation may pause
before executing.

Any test operation in the current playback 1102 may be
altered by highlighting the test operation and clicking on the
“EDIT” button 1112.

Test operations 1n the current list 1102 may be moved up
or down in the current list 1102 relative to other test

operations by highlighting the test operation to be moved
and then clicking on the “MOVE UP” button 1114 or

“MOVE DOWN? button 1116.

10

15

20

25

30

35

40

45

50

55

60

22

Button fields 1118-1126 are used to save and retrieve the
values and settings entered 1n the above discussed fields

(1100-1102) for future reference. Use of buttons such as

these are well known to those of ordinary skill in the art and
need not be discussed further.

RULES:

As shown 1n FIG. 6B, element 612 1s operable to adjust
the weight selection tables used 1n pseudo-random auto-test
mode for any changed weights. Rules as used herein, are
functions which are invoked 1n association with the invo-
cation of the execute interface function wherein the rules
function modify the current weight value for one or more
test operation objects or groups. By modifying the weight
value of a particular test operation object or a particular
group, the rules function may alter the frequency with which
certain test execute interface functions are invoked. The
conditions 1n which the rules function will modify a weight
value for a selected test operation object or group, may be
completely defined by the code implementing the rules
function as written by the product development group.

Rules, as defined herein, may be used for example, to
reduce the frequency of a particular test operation depending
on the current state of operation of the application program,
or for example, depending upon the current state of progress
in running the test application program. Changing the fre-
quency of invocation of a particular test operation object or
group may include, for example, reducing its frequency of
invocation to zero (i.e. “not available”). For example, func-
tions which perform an edit menu copy or paste function
may be valid only when a file 1s “open” 1n the context of the
application program. Rule functions may be used to assure
that the execute interface functions for the copy or paste test
operation objects will never be called until after the test
operation object execute mterface function for the files/open
menu operation 1s invoked successtully.

The rules interface functions for each test operation object
are 1nvoked to adjust the weighted selection table before the
next random selection 1s made 1n the flowcharts of FIGS. 6A

and 6B.

What 1s claimed 1s:
1. A software product having an application program
including:

application program objects operational when executed
by a computing environment to direct the computing
environment to perform an application function;

test objects embedded within the application program and
operational when executed by the computing environ-
ment to direct the computing environment to test the
application program objects; and

a storage medium operational to store the application

program objects and the test objects.

2. The software product of claim 1 wherein the test objects
are derived from a dynamic link library invoked by the
application program.

3. The software product of claim 2 wherein the test objects
are operational when executed by the computing environ-
ment to direct the computing environment to randomly and
automatically test the application program objects.

s o e e 3

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description/Claims

