
US006470378B1

(12) United States Patent (10) Patent N0.2 US 6,470,378 B1
Tracton et al. (45) Date of Patent: Oct. 22, 2002

(54) DYNAMIC CONTENT CUSTOMIZATION IN (56) References Cited
A CLIENTSERVER ENVIRONMENT

U.S. PATENT DOCUMENTS

(75) Inventors: Kenneth Tracton, Sunnyvale; Kosar
5,588,148 A * 12/1996 Landis et a1. 707/1

Jam San Jose; Walter Shands, Soquel, 5,953,506 A * 9/1999 Kalra et a1. 709/231

all Of CA(Us) 6,043,837 A * 3/2000 Driscoll, Jr. et a1. 348/36
6,167,441 A * 12/2000 Himmel 709/217

(73) Assigneei Intel Corporation, Santa Clara, CA 6,260,021 B1 * 7/2001 Wong et a1. 705/2
US

() * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 Primary Examiner—Mehmet B. Geckil
U.S.C. 154(b) by 0 days. (74) Attorney, A gent, 0r Firm—Steven D. Yates

(21) Appl. No.: 09/283,114 (57) ABSTRACT
- _ The invention provides for servicing a client. A request is

(22) Flled' Mar‘ 31’ 1999 received from a client having certain capabilities. This
(51) Int. Cl.7 G06F 15/16 request is automatically satis?ed in a manner tailored to the

(52) US. Cl.

(58) Field of Search
_ 709/203; 709/235 capabilities of the client.

......... .. 709/227, 228,

709/230, 231, 233, 235, 203 19 Claims, 7 Drawing Sheets

r100
SERVER

f122
—— HlGH-BANDWIDTH SOURCE

(124
—— MEDlUM-BANDWIDTH SOURCE

r126
— LOW-BANDWIDTH SOURCE

(118 116
— WEB SERVER ()

A20
— WEB PAGE CONTENT

104

r102
CLIENT r106

PROCESSOR(S)

r108
MEMORY

110

DATA STORAGE I
114 r112

NETWORK APPLICATION ‘)

U.S. Patent 0a. 22, 2002 Sheet 1 0f 7 US 6,470,378 B1

/‘ 56
SERVER ------ - - 1-5-4 ----- -- CLIENT

\ 50 \T/ \ 52

r 68
SERVER ------ “1-6-4 ----- —— CLIENT

\ 6O \TFE/ \ 62

r 86

m
SERVER _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ CLIENT

K76 I
\ 70 ‘\TI/ / \ 72

ll
/@ 76

l

REGISTRY

U.S. Patent 0a. 22, 2002 Sheet 2 0f 7 US 6,470,378 B1

r100
SERVER

r122
HIGH-BANDWIDTH SOURCE

r124
MEDIUM-BANDWIDTH SOURCE

r126
LOW-BANDWIDTH SOURCE

K118
WEB SERVER

116

r120
WEB PAGE CONTENT

I04

[102 INTERNET

CLIENT K106

PROCESSOR(S)

/108
MEMORY

1 I 0

DATA STORAGE I
r112

NETWORK APPLICATION

Fl G.4

U.S. Patent Oct. 22, 2002 Sheet 3 0f 7

RECEIvE CONNECT J60

{I
sEND HTML WITH ‘62
EMBEDDED TAG

RECEIvE HTML J66

RETRIEvE DATA AS Q58
INDICATED IN TAG

MAKE PROFILE J70

SEND PRDFILE 172
T0 SERVER

SCALE CoNTENT ‘74
ACCORDING TO

PROFILE

SEND SCALED ‘76
CONTENT T0 CLIENT

FIG. 5

US 6,470,378 B1

U.S. Patent 0a. 22, 2002 Sheet 4 0f 7 US 6,470,378 B1

200 202

<b0dy><scrlpt language="JavaScript"> K1204
<!

var HIGHSPEED = ‘<META HTTP-EQUlV="Refresh" CONTENT="O; “1206

URL=HighContentHomePage.htm">‘ 208

var MEDSPEED = ‘<META HTTP-EQUlV="Refresh" CONTENT="O;’\/

URL=MedC0ntentH0mePage.htm">' 210
var LOWSPEED = ‘<META HTTP—EQUlV="Refresh" CONTENT="0;’\/

URL=LowContentH0mePage.htm">'
var ver = navigatonappverslon; @1212

if (navlgator.appName=="Netscape" && navigator.appversion.charAt(0)>="5")
{ var clkspd = hardware.clockSpeed; a

216/» if (clkspd >= 300) N218 214
var arch = hardwarearchitecture;

220 mmily = arch.charAt(33);’\, 222
224 ’\/ if(family >= 6)

22M d0cument.write(HIGHSPEED);
else if(family = 5)

d0cument.write(MEDSPEED);
228 /'_, else

230 d0cument.write (LOWSPEED);

g l
232 else d0cument.write(LOWSPEED);

8 l
else d0cument.write(LOWSPEED);
<!-- end script -->

FIG. 6

U.S. Patent Oct. 22, 2002 Sheet 5 0f 7 US 6,470,378 B1

100
SERVER ,V

250
ORIGINAL SOURCE /\/

I 252
SCALER ’\/

L 118
WEB SERVER w

116
/_\./

104
INTERNET

114

102
/'\/"

CLIENT

106
PROCESSOR(S) ’-_/

108
MEMORY /\

110
STORAGE ’”_/

112
NETWORK APPLICATION /_\~/

FIG. 7

U.S. Patent 0a. 22, 2002 Sheet 6 0f 7 US 6,470,378 B1

/' 302

SERVER \ >
316 REGISTRY J00

314
310

CLIENT 1 CLIENT 2 m CLIENT N

\ 304 \ 306 \ 308

FIG. 8

U.S. Patent Oct. 22, 2002 Sheet 7 0f 7 US 6,470,378 B1

402
/'\/

COMPUTING OEvICE 432
A/

J04 N 406 OPERATING SYSTEM 434

PROCESSOR A/

408 /, APPLICATION PROGRAMS
J ‘a’, " I

MEMORY 4"" I’ 436
RAM A2422 ,1’ DATA A/

424 ’
ROM /\/ 1

426 410/

428

L REMOVABLE
430 sTORAGE 414

L OPTICAL/LASER
STORAGE

A5116 438 /'\/
vIOEO OUTPUT OEvICE

418 440
INTERFACE PORTS A’ INPUT OEvICE A’

| 446
MODEM N 444

|_
420 NETWORK A’

~ I— 442
NETWORK INTERFACE A,

REMOTE
COMPUTING OEvICE

FIG. 9

US 6,470,378 B1
1

DYNAMIC CONTENT CUSTOMIZATION IN
A CLIENTSERVER ENVIRONMENT

FIELD OF THE INVENTION

The invention relates to the ?eld of networking. In
particular, the invention relates to scaling netWork content
according to data-recipient characteristics such as process
ing ability and client-to-server netWork throughput.

GLOSSARY

The folloWing glossary of terms is intended to clarify the
meaning of acronyms, terms or phrases used in the descrip
tion and claims that folloW. This section is not meant to be
exhaustive. Unless otherWise indicated, these explanations
augment, not supplant, term usage. Please note that some of
these terms, even though not designated, may be trade
marks, and these marks are the property of their respective
oWners.

Processor or microprocessor means the Central Process
ing Unit (CPU) of a computing device. Examples include the
folloWing processors and equivalents: the DEC Alpha, a
RISC (Reduced Instruction Set Computer) processor from
Digital Equipment Corporation of Maynard, Mass.;
PoWerPC, a RISC processor jointly designed by Motorola of
Schaumberg, Ill., IBM of Armonk, NY, and Apple Com
puter of Cupertino, Calif.; AMD processors from Advanced
Micro Devices of Sunnyvale, Calif.; Cyrix processors by
Cyrix of Richardson, Tex.; MIPS processors from MIPS
Technologies, Inc.; and, Intel architecture processors from
Intel Co. of Santa Clara, Calif., Which include the 80286,
80386, 80486, Pentium® processors, and their variants,
equivalents, and successors.
ISDN means Integrated Services Digital NetWork and

equivalents. Frame Relay means technology for implement
ing Wide Area NetWorking LAN means Local Area
NetWork. JTC means Joint Technical Committee, a stan
dardiZation body including the ISO (International Organi
Zation for Standardization) and IEC (International Electro
technical Commission), organiZations responsible for
creating and maintaining international standards. TCP/IP
means Transmission Control Protocol over Internet

Protocol, and includes related protocols such as ICMP, the
Internet Control Message Protocol extension to TCP/IP. IPX
means InternetWork Packet eXchange, and includes related
protocols such as SPX (Sequenced Packet Exchange), a
transport layer protocol built on top of IPX. AppleTalk
generally refers to netWorking protocols used by Apple
Computer systems.
SGML means Standard Generalized Markup Language

and equivalents, an ISO de?ned language for representing
relationships betWeen a document’s content and structure.
HTML means Hypertext Markup Language and equivalents,
a document format based on SMGL that uses “tags” to ?ag
formatting and structure. FTP means File Transfer Protocol,
a client-server protocol (and application program) for ?le
transfer over a netWork. Gopher and WAIS represent
examples of searchable distributed document retrieval sys
tems for locating data including text, images, sounds, etc.

PCI means Peripheral Component Interconnect, a particu
lar example of high-performance buses for coupling periph
erals to a computing device and its processor. AGP means
Accelerated Graphics Port. VESA means the VESA Local
Bus de?ned by the Video Electronics Standards Association.
ISA means Industry Standard Architecture, EISA means
Extended Industry-Standard Architecture, and MCA means
Micro Channel Architecture.

10

15

20

25

30

35

40

45

55

60

65

2
Client means a computing device or computer program

(executing on a computing device) that requests services
from a server. Server means a computing device, or com
puter program executing on a computing device, that pro
vides some service to client programs or client systems. The
client and server communicate over a communication link
(e.g., a netWork). Communication is according to a protocol,
Which may be a message based protocol. The server may
operate continuously, or be initialiZed and unloaded as
needed (e.g., through manual invocation or by a program
loader in response to client connection attempts). There may
be several clients and servers, each taking on the role of
client or server, depending on context.

In typical client-server environments, a server maintains
information in local storage for eventual retrieval by clients.
In small netWorks, such as an of?ce intranet, one can control
the characteristics of the computers being netWorked
together, and ensure clients have adequate processing
resources and netWork throughput to process data sent by the
server. With the advent of loW-cost public-access netWorks,
such as the Internet, it has become increasingly common to
netWork together many different computer architectures.
NoW, unknoWn clients of unknoWn capabilities can connect
to the server, and it is no longer feasible to regulate the
characteristics of the incoming client. (Although this
description focuses on Internet-based client-server
communication, the principles herein apply to other net
Working contexts as Well.)

For example, the server may have a Web page containing
a link to complex video data that requires signi?cant client
resources to process. But, the server cannot control contact
from an underpoWered client having insuf?cient resources to
process server data. When such a client tries to receive and
process the data, it Will be unable to effectively do so (e.g.,
playback Will not be smooth); such processing failures are
generally blamed on the server, and alienate current and
potential customers.

To avoid such problems, as a stop-gap measure, servers
have been con?gured to provide a contacting client the
option of electing to receive data from different sources,
Where each selection is based on the client’s theoretical
netWork link speed. For example, a client might be presented
With a Web page indicating “Click here if you have a T1 line
to the Internet,” or “Click here for 128K ISDN,” or “Click
here if you have a 56K connection,” etc. (Note that the terms
“client” and “server” actually refer to computing devices,
and references to client or server actions, such as “selecting”
Web page items, it intended to refer to a user, control
program, or alternate input source that in fact manipulates
the computing device to effect the indicated result.)
One problem With this stop-gap solution is that it does not

address Whether the client has support for processing the
received data, e.g., the netWork link is fast enough, but the
client lacks suf?cient memory or processing poWer to digest
the received data. A second problem is the assumption that
the client actually knoWs its netWork link speed. In corporate
environments, clients frequently access netWorks through
distant ?reWalls, and it can be unclear Whether they are
connecting through Frame Relay, ISDN dial-out, intranet, or
to a “smart” system that dynamically selects a “fastest” of
several netWork routes. A third, subtler problem, is that
assuming the client knoWs its theoretical netWork link speed,
this information is unhelpful if the client’s realiZable data
throughput to the server is different. That is, if the client has
a T1 link to the Internet, but the effective throughput is only
56 K-bits (b 56K), then selecting the T1 source option Will
result in poor performance.

US 6,470,378 B1
3

What is needed, then, is a Way for the server to accurately
determine the client’s system con?guration (e.g., processor
speed, memory con?guration, etc.), effective netWork speed,
at the time of contact from the client. This Would allow the
server to tailor its output to meet the capabilities of each
incoming client.

SUMMARY

The invention provides for servicing a client. A request is
received from a client having certain capabilities. This
request is automatically satis?ed in a manner tailored to the
capabilities of the client.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shoWs a typical server-client netWork communi
cation con?guration.

FIG. 2 shoWs a second server-client netWork communi
cation con?guration.

FIG. 3 shoWs a third server-client netWork communica
tion con?guration.

FIG. 4 shoWs a fourth server-client netWork communica
tion con?guration.

FIG. 5 is a ?oWchart of a server determining client
characteristics, in accordance With one embodiment.

FIG. 6 illustrates example Web page content for client
side redirection to scaled content according to client
characteristics, in accordance With one embodiment.

FIG. 7 illustrates FIG. 2 client-server con?guration Where
the server performs on-the-?y scaling of data for transmis
sion to a client, in accordance With one embodiment.

FIG. 8 shoWs use of a central registry for storing client
characteristic pro?les, in accordance With one embodiment.

FIG. 9 shoWs an example operating environment for the
invention.

DETAILED DESCRIPTION

FIG. 1 shoWs a typical client-server con?guration, in
Which a server 50 and client 52 are in communication over

a netWork 54. As shoWn, the server receives a request 56 for
data from the client. In response, the server automatically
responds With a capability-tailored reply 58. There can be
great bene?t in tailoring data sent to the client When it is
knoWn, for example, that the client does or does not have
certain codecs (compressors/de-compressors), processing
poWer, netWork bandWidth, etc.

Traditionally, the Way to effect tailored distribution of
data Was to require the client to manually elect one of several
possible replies, according to the client’s determination of
its oWn capabilities. As illustrated, instead of requiring client
52 determination of appropriate data, the server 50 instead
automatically sends customiZed results 58.

FIG. 2 shoWs a client-server con?guration, in Which a
server 60 and client 62 are in communication over a netWork

64. As shoWn, the server sends a query 66 to the client,
requesting the client to identify its capabilities. In response
to the query 66, the client sends to the server a characteristic
pro?le 68 indicating to the server the client’s available
computing resources (e.g., codecs, processing poWer, etc.)
and netWork bandWidth. Such an interrogation/response
system alloWs the server to prepare or direct the client to
appropriate resources (e.g., FIG. 1 capability-tailored
response 58).

FIG. 3 shoWs a client-server-registry con?guration, in
Which a server 70, client 72, and central registry 74 are in

10

15

25

35

45

55

65

4
communication over a netWork 76. As shoWn, the server
sends a query 78 to the client, requesting the client to
identify its capabilities. In response to the query 78, the
client sends to the server a client identi?er 80. This identi?er
80 identi?es the client, and may be encrypted so that the
server can not ascertain the client’s identity, and only the
central registry 74 can decode the client identi?er 80. The
server then forWards 82 the identi?er to the registry, and in
response thereto, the registry 74 sends the server a charac
teristic pro?le 84 to the server 70. In response to receiving
the pro?le, the server 70 can noW provide the client 72 With
capability-tailored data 86 While simultaneously alloWing
the client to anonymously transact With the server.

FIG. 4 illustrates a typical con?guration of a server 100 in
communication With a client 102 via the Internet 104. As
shoWn, the client has one or more processors 106, memory
storage 108 of some capacity (see FIG. 9 item 408), data
storage 110 of some capacity (see FIG. 9 items 410, 412,
414), and a netWork application 112, such as an Web
broWser. As shoWn, the client is communicating With the
server over a netWork connection 114 to the Internet 104.
(Note that the illustrated components of the client and server
con?gurations are illustrative.)
The server 100 is communicating With the client 102 over

a netWork connection 116 to the Internet 104. The server is
executing a Web server 118 netWork application program
that is providing Web page content 120 to the client. In this
FIG. 4 embodiment, the server has three different source
content streams 122, 124,126, corresponding to source con
tent that has been scaled to correspond to typical incoming
client characteristics.

For example, assume an original source content is stored
as a Moving Pictures Expert Group (MPEG)-2 encoding of
a neWs report. The MPEG standard (ISO/IEC JTC 1/SC29/
WG11), has several coding formats. These include the
MPEG-1 (JTC1.29.05.01), MPEG-2 (JTC1.29.05.02),
MPEG-4 (JTC1.29.13), and others. Each coding method is
de?ned With respect to an expected realiZable client netWork
throughput. MPEG-2 expects the client to have a netWork
link speed of up to 40 M-bits/sec, and is used herein to
represent an unscaled 122 version of the report. MPEG-1
expects a netWork link speed of 1.5 M-bits/sec, and is used
herein to represent scaled data 124 suitable for retrieval over
a medium-speed netWork link. MPEG-4 expects a loW
bit-rate of about 64 K-bits/sec (e.g., a single-channel digital
ISDN link, or 56K-modem), and is used herein to represent
scaled data 126 suitable for retrieval over loW-speed net
Work link.

When a client contacts the server, and selects an item on
a Web page corresponding to the presentation, it is preferable
that the server ensure that the client can realistically retrieve
and display the selected information. Determining Which
source content to make available to the client is a someWhat
complex task. Traditionally, servers notify the client of
available sources 122, 124, 126, and the client is made
responsible for selecting an appropriate source. Typically,
the client is prompted to choose according to the speed of the
client’s netWork connection 114 to the Internet. In the
context of Web broWsers (client netWork application 112)
and Web servers 118, choices are presented by Web links to
the different sources 122, 124, 126.
One problem With this technique is assuming that link

speed accurately re?ects the client’s ability to process con
tent information 120 sent by the server. As discussed above,
the different MPEG coding standards place different pro
cessing burdens on the client, each predicated on the client

US 6,470,378 B1
5

being able to process data received at a certain rate.
Consequently, it is not helpful if the client has a T1 network
link 114, but cannot process the data because it suffers from
an under-poWered processor, limited memory, limited disk
storage, or other limited resource. These limited resources
may be due to physical limitation, or simply client load (e.g.,
the number of other tasks operating). Limited resources can
require that the client be sent data at a sloWer rate, or a
simpler encoding format utiliZed, to alloW the client to keep
up With received data. (Conversely, it is not helpful if the
client has the processing ability, but the netWork link 114
speed is too sloW, forcing the client to stall from buffer
under-runs.)

FIG. 5 shoWs a method, in accordance With one embodi
ment of the present invention, for avoiding requiring a client
102 to choose an appropriate data-stream. It is assumed the
client 102 netWork application 112 is an Web broWser, and
the server 100 utiliZes a Web server 118 to deliver scaled
content to the client. AbroWser receives Web page data from
a server. AWeb page is generally composed of textual data,
Where some text is presented in a special format that is
interpreted by the contacting application 112 as directives
for taking some desired action. Most such directives concern
formatting preferences, structural de?nitions (e.g., a table),
and links to resources in server storage (see FIG. 9 items
410, 412, 414) or elseWhere on the netWork. Directives can
also be programming language statements that are to be
interpreted or executed by the contacting application 112.
For Web broWser applications in particular, common lan
guages include Java, J avaScript, J ++, Visual Basic, ActiveX.
When a client contacts a server, the server’s Web server

receives a connection request 160. In response to the con
nection request, the server (typically) sends 162 the client
HTML formatted data. Embedded Within this data are pro
gramming instructions to cause the client to create a char
acteristic pro?le containing the client’s processing ability
and netWork con?guration, and to send the pro?le to the
server. So, When the broWser receives 166 the instructions,
it processes 168 the embedded instructions, Which in turn
call routines built into the broWser. Note that security models
imposed on processing Internet data generally prevent Web
broWsers from directly executing code received from a
server. Thus, it is required that the data (e.g., JavaScript
code) call knoWn to be safe built-in routines. In alternate
non-broWser contexts, or When security is disabled, this
tWo-tiered approach may not be necessary, and the code may
be directly executed.

Thus, after executing the code, and the desired client data
retrieved 168, a client characteristic pro?le is generated 170.
This pro?le is then sent 172 to the server. In one
embodiment, the client data includes detailed information
about the client architecture and netWork con?guration. For
example, the pro?le can include processor data such as
number of processors, speeds, types, cache and memory
management, stepping, special-purpose instructions (e.g.,
2D/3D rendering support, or high-end mathematics), as Well
as netWork theoretical-speed, actual-throughput, type (e.g.,
TCP/IP, IPX, AppleTalk), routing data, ?reWall latency, etc.
On receipt of this data, the server can appropriately scale
174 the original source content according to client
capabilities, netWork speed, and other abilities/restrictions
indicated in the pro?le. The scaled content is then sent 176
to the client. HoWever, there are circumstances Where a
server might not Want to dynamically scale data, and instead
Wants to direct the client to certain Web locations depending
on the client’s characteristic pro?le.

FIG. 6 shoWs an example Web page that, When received
and processed by the client broWser, causes the client

10

15

25

35

45

55

65

6
broWser to be redirected toWards an appropriate data source.
In this example, the client does not send a characteristic
pro?le back to the server. Instead, the server has pre
prepared several version of an original source material, and
embedded selection logic into the Web page, Where this logic
directs the client’s broWser to an appropriate source based
on testing the client capabilities.
ShoWn is a sample HTTP encoded Web page containing

embedded program code. AWeb page is typically composed
of different sections, Where tags mark the beginning and
ending (if required) of a section. For example, items 200 and
202 represent the start and end of an empty “title” section.
The sample code uses JavaScript for illustrative purposes,
and it should be understood that other scripting and non
scripting (e.g., binary-type) languages can be used instead.

Item 204 tells the client application program 112 to expect
JavaScript code, as opposed to an alternate language. Item
206 represents the introduction of a comment, Which actu
ally contains the JavaScript code to execute. Technically,
comments Were originally introduced to alloW a Web
designer to insert descriptive material about the Web page
Without having to Worry about that information being dis
played. As HTML standards evolved over time, comments
Were used to include neW language features, While still
maintaining compatibility With earlier netWork applications.
UnknoWn tags are ignored. If the application does not
recogniZe the JavaScript designation 204, then it Will not
knoW to process the commented material 206.

Items 206, 208, 210 are variable de?nitions corresponding
to an HTML “Refresh” command containing Uniform
Resource Locator (URL) designations for the high
bandWidth, medium-bandWidth, and loW-bandWidth sources
of FIG. 4 (items 122, 124, 126). The refresh command, When
presented to a broWser, Will cause the broWser to load the
speci?ed Web page URL, at a time delay of 0 (i.e., imme
diately on receiving the command).

Item 212 illustrates calling an embedded method. J avaS
cript is an object oriented type of language, and a “method”
is equivalent to calling a function or procedure in a non
object oriented language. Here a variable “ver” is de?ned to
contain the result of calling navigator.appVersion 212, Which
returns the creator of the client’s netWork application pro
gram 112 (FIG. 4).
The returned value is inspected 214 to ensure that the

application is a Netscape broWser having a version number
equal to or exceeding 5. For this example, it is assumed that
only Netscape broWser versions 5 and greater support the
ability to retrieve (FIG. 5 items 168) and send (FIG. 5 item
170) a client characteristic pro?le to the server 100.

Next, the script inspects the clock speed of the client
device 102. The server is attempting to determine Whether
the client has the raW horsepoWer to process high-bandWidth
content. Processors have many characteristics, but here the
server is only concerned With CPU speed and type. If the
CPU speed exceeds 300 MHZ 216, then another method is
called to identify the CPU type 218. (Note that the hard
Ware.architecture call Will return many details about the
client architecture, including CPU manufacturer, type,
family, stepping, features, etc.; these details are stored in the
“arch” 220 variable.) Item 222 contains an index operation
to identify the portion of “arch” indicating CPU family (e.g.,
Pentium®, Pentium® III, Pentium® III, etc.) Here the test is
directly dependent on knoWing that When “arch” contains
“ARCHITECTURE=Intel”, location 33 of “arch” contains
the CPU family. Different parsing techniques can be applied
according to the named architecture (e.g., Intel, MIPS,
Alpha, PoWerPC, unknoWn, etc.).

US 6,470,378 B1
7

Here, if 224 the family equals or exceeds 6, then it is
known that the client computing device has at least a
Pentium Pro® or Pentium II® architecture. Consequently
the client meets the server’s requirements for receiving the
high-bandWidth 122 content referenced in the HIGHSPEED
variable 206. (Note that if the server Was concerned about
available memory, the script could have included testing the
result of hardWare.ram, or perhaps hardWare.storage.)
Similarly, if 226 the family equals 5, then it is knoWn that the
client computing device has a Pentium processorTM. Here,
the server has concluded that such a processor is underpoW
ered and only meets the server’s requirements for receiving
the medium-bandWidth 124 content referenced in the MED
SPEED variable 208.

If 228 the processor is neither a Pentium Pro®, Pentium
II®, or Pentium®, or if 230 the clock speed Was less than
300 MHZ, or if 232 the client’s netWork application 112 is
not a supported Web broWser, then the client Will be directed
toWards the loW-bandWidth 126 content referenced in the
LOWSPEED variable 210. The LOWSPEED page is
intended to alloW the server to prepare loW-complexity
content that is acceptable to a common-denominator of
incoming clients (e.g., assuming everyone has an Intel
80486 or equivalent processor and a netWork link speed of
at least 288K).

In addition, one can easily support other architectures,
such as text-only pagers or cellular-phone based broWsers,
by adding these architectures to the JavaScript code. Or, one
could provide targeted redirection, such as advertising, or
custom page data, based on the details provided by JavaS
cript method calls. For example, Web broWsers can be
designed to support a method called hardWare.identi?er,
Which Would return a (permanently or temporarily) unique
identi?er for the client.

FIG. 7 illustrates a server con?guration for performing
on-the-?y scaling of content to deliver to a client. As
discussed above, it is not necessary for the server to pre
compute different data-streams 122, 124, 126. Instead, the
server 100 can be con?gured to have an original source
content 250 to Which is applied a scaler 252 that dynamically
transforms, according to determined client characteristics
(e.g., by received pro?le FIG. 5) or local testing (FIG. 6)),
a source 250 into a format acceptable to the client 102. The
scaler 252 can be implemented to perform on-the-?y trans
formation of the source 250, as Well as more traditional
redirection of the client to pre-scaled resources. In the
illustrated embodiments, the hypothetical con?guration is a
server seeking to deliver a MPEG encoded neWs broadcast.
In this context, the role of the scaler 252 is to identify the
client characteristics, and the client netWork speed, and to
convert the data into a suitable format. Hence, an “unscaled”
MPEG-2 coding of the broadcast Will be re-coded as an
MPEG-1 or MPEG-4 broadcast, as needed.

Note that the term “scaling” includes more than simply
changing video formats - it also means reprocessing the
original source content 250 to alloW display of the video
stream on a loW-resolution decoder. Preferably, the original
source is stored as a scalable bit stream (see, e.g., MPEG-2),
Which provides for spatial, signal to noise (SNR), temporal,
data partitioning, and hybrid scalability, alloWing the server
different options for quickly sending suitable data to the
client. For example, the original source can be encoded With
spatial scalability, Where a loW-resolution (for loW
bandWidth clients) data stream is encoded along With a
higher-resolution version. When a loW-resolution client con
tacts the server, the server can quickly de-multiplex the
source and present only the loW-resolution data. Other

10

15

25

35

45

55

65

8
adjustments to the source data include reducing display siZe,
color depth, level of detail, etc. Note, hoWever, that the
server can be con?gured to fall-back to providing presenting
pre-scaled resources (e.g., FIG. 5) if the server is tempo
rarily overloaded.

FIG. 8 illustrates a client-server con?guration utiliZing a
central registry 300. As noted above for FIG. 6, netWork
application programs can be con?gured to accept a hardWa
re.identi?er (or equivalent) instruction alloWing the client’s
identity to be tracked. Such tracking can serve many useful
purposes, but it may also raise privacy concerns. The FIG.
8 embodiment advantageously addresses this issue.
ShoWn is a typical Internet context, in Which a server 302

is serving requests from multiple client computing devices
(denoted Client 1 . . . N) 304, 306, 308. The role of the
registry is to store and forWard client characteristic pro?les.
As discussed above, different pieces of information about a
client are collected together and collectively referred to as
the client’s characteristic pro?le. In FIG. 5, the server Was
explicitly sent this characteristic pro?le, and in FIG. 6, the
server sent code to the client for client-side processing of the
pro?le data.

In the context of a central registry 300, all discernible
client information of interest is collected and stored in a
pro?le. In one embodiment, the pro?le has tWo portions, an
identity portion, and a characteristics portion. This pro?le is
then transmitted 310 by the client to the registry 300 over the
client’s netWork link, and the registry stores the pro?le in
local registry storage 312. Each client pro?le should be
indexed according to some unique identi?er for the client.
As discussed, a hardWare.identi?er method may be used,
Where such a method Will provide a highly-unique (e.g.,
statistically improbable that it Will be duplicated) identi?er
for the client. Such an identi?er may be based on a unique
processor identi?cation value, a netWorking card identi?er
(e.g., a MAC address), a Globally Unique Identi?er (GUID)
generated from Component Object Model (COM)
programming, or equivalents.
When a client contacts the server, the server Will have

embedded into a Web page directive causing the client to
transmit 314 an encrypted form of the client’s hardWare
.identi?er value to the server. The identi?er Will preferably
have been encrypted With a public key cryptosystem, using
a public key for the registry. The server then forWards 316
the encrypted identi?er to the registry, and in response the
registry 300 decrypts the identi?er, retrieves the client’s
(here Client N, item 308) pro?le from storage 312 and sends
318 only the characteristics portion of the pro?le to the
server 302. In this fashion, the server is still able to cus
tomiZe netWork delivery of content according to client
characteristics, While alloWing the client to remain anony
mous to the server. Note that netWork connections betWeen
Server, Registry, and Clients 1 . . . N, such as links to a

commonly-accessible netWork, are not illustrated.
FIG. 9 and the folloWing discussion are intended to

provide a brief, general description of a suitable computing
environment in Which the invention may be practiced. The
invention may be described by reference to different high
level program modules and/or loW-level hardWare contexts.
Those skilled in the art Will realiZe that program module
references can be interchanged With loW-level instructions.
Program modules include procedures, functions,

programs, components, data structures, and the like, that
perform particular tasks or implement particular abstract
data types. The modules may be incorporated into single and
multi-processor computing systems, as Well as hand-held

US 6,470,378 B1
9

devices and controllable consumer devices. It is understood
that modules may be implemented on a single computing
device, or processed over a distributed netWork
environment, Where modules can be located in both local
and remote memory storage devices.

An example system for practicing the invention includes
a computing device 402 having system bus 404 for coupling
together various components Within the computing device.
The system bus 404 may be any of several types of bus
structure including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of
conventional bus architectures such as PCI, AGP, VESA,
Microchannel, ISA and EISA, to name a feW. Note that only
a single bus is illustrated, although plural buses typically
achieve performance bene?ts. Typically, attached to the bus
404 are a processor 406, a memory 408, storage devices
(e.g., ?xed 410, removable 412, optical/laser 414), a video
interface 416, input/output interface ports 418, and a net
Work interface 420.

The processor 406 may be any of various commercially
available processors, including Intel architecture processors,
or the DEC Alpha, PoWerPC, programmable gate arrays,
signal processors, or the like. Dual, quad processors, and
other multi-processor architectures also can be used. The
system memory includes random access memory (RAM)
422, and static or re-programmable read only memory
(ROM) 424. A basic input/output system (BIOS), stored in
ROM, contains routines for information transfer betWeen
device 402 components or device initialiZation.

The ?xed storage 410 generally refers to hard drive and
other semi-permanently attached media, Whereas removable
storage 412 generally refers to a storage device that employs
removable media such as a ?oppy diskette is removably
inserted. The optical/laser storage 414 include devices based
on CD-ROM, DVD, or CD-RW technology, and are usually
coupled to the system bus 404 through a device interface
426, 428, 430. The storage systems and associated
computer-readable media provide storage of data and
executable instructions for the computing device 402. Note
that other storage options include magnetic cassettes, tapes,
?ash memory cards, memory sticks, digital video disks, and
the like.

The exemplary computing device 402 can store and
execute a number of program modules Within the RAM 22,
ROM 424, and storage devices 410, 412, 414. Typical
program modules include an operating system 432, appli
cation programs 434 (e.g., a Web broWser or netWork appli
cation program), etc., and application data 436. Program
module or other system output can be processed by the video
system 416 (e.g., a 2D and/or 3D graphics rendering device),
Which is coupled to the system bus 404 and an output device
438. Typical output devices include monitors, ?at-panels
displays, liquid-crystal displays, and recording devices such
as video-cassette recorders.

Auser of the computing device 402 is typically a person
interacting With the computing device through manipulation
of an input device 440. Common input devices include a
keyboard, mouse, tablet, touch-sensitive surface, digital pen,
joystick, microphone, game pad, satellite dish, etc. One can
also provide input through manipulation of a virtual reality
environment, or through processing the output from a data
?le or another computing device.

The computing device 402 is expected to operate in a
netWorked environment using logical connections to one or
more remote computing devices. One such remote comput
ing device 442 may be a Web server or other program

10

15

25

35

45

55

65

10
module utiliZing a netWork application protocol (e.g., HTTP,
FTP, Gopher, WAIS), a router, a peer device or other
common netWork node, and typically includes many or all of
the elements discussed for the computing device 402. The
computing device 402 has a netWork interface 420 (e.g., an
Ethernet card) coupled to the system bus 404, to alloW
communication With the remote device 442. Both the local
computing device 402 and the remote computing device 442
can be communicatively coupled to a netWork 444 by a
WAN, LAN, GateWay, Internet, or other public or private
data-pathWay. It Will be appreciated that other communica
tion links betWeen the computing devices, such as through
a modem 446 coupled to an interface port 418, may also be
used.

In accordance With the practices of persons skilled in the
art of computer hardWare and softWare programming, the
present invention is described With reference to acts and
symbolic representations of operations that are sometimes
referred to as being computer-executed. It Will be appreci
ated that the acts and symbolically represented operations
include the manipulation by the processor 406 of electrical
signals representing data bits Which causes a resulting
transformation or reduction of the electrical signal
representation, and the maintenance of data bits at memory
locations in the memory 408 and storage systems 410, 412,
414, so as to recon?gure or otherWise alter the computer
system’s operation and/or processing of signals. The
memory locations Where data bits are maintained are physi
cal locations having particular electrical, magnetic, or opti
cal properties corresponding to the data bits.

Having described and illustrated the principles of my
invention With reference to an illustrated embodiment, it Will
be recogniZed that the illustrated embodiment can be modi
?ed in arrangement and detail Without departing from such
principles.

For example, While the foregoing description focused—
for expository convenience—on client-server communica
tion over the Internet, and determining client processor,
memory and storage con?guration, it Will be recogniZed that
the same techniques and analyses can be applied to arbitrary
netWorks and other client characteristics that can affect
client data-processing performance. In vieW of the Wide
variety of netWorks and client con?gurations, the detailed
embodiments are intended to be illustrative only, and should
not be taken as limiting the scope of the invention.

Rather, What is claimed as the invention, is all such
modi?cations as may come Within the scope and spirit of the
folloWing claims and equivalents thereto:
What is claimed is:
1. A Web server, comprising:
a ?rst set of program instructions, Which When executed

by the Web server, results in the Web server performing:
receiving an identi?er from a client;
transmitting the identi?er to a central registry contain

ing characteristic pro?les for plural clients;
receiving a characteristic pro?le from the central reg

istry that includes a processing potential for the
client; and

a second set of program instructions, Which When
executed by the Web server, results in transmitting
content to the client over a netWork, such content
scaled according to the characteristic pro?le.

2. A method comprising:
receiving a request from a client comprising an identi?er

of the client;
transmitting the identi?er to a central registry containing

characteristic pro?les for plural clients;

US 6,470,378 B1
11

dynamically receiving a characteristic pro?le from the
central registry that includes a processing potential for
the client; and

transmitting content to the client over a netWork, such
content scaled according to the characteristic pro?le.

3. A method comprising:
receiving a request from a client comprising an identi?er

of the client;
transmitting the Identi?er to a central registry containing

characteristic pro?les for plural clients;
receiving a characteristic pro?le from the central registry

that includes a processing potential for the client; and
transmitting content to the client over a netWork, such

content scaled according to the characteristic pro?le.
4. An article of manufacture, comprising a machine

accessible medium having instructions encoded thereon for
enabling a processor to perform the operations of claim 3.

5. A method according to claim 3, Wherein the client
characteristic pro?le includes information selected from a
group consisting of: processor con?guration, available client
memory, available client disk space, and client netWork
connection speed.

6. An article of manufacture, comprising a machine
accessible medium having instructions associated thereWith,
Which When executed, results in performing the operations
of claim 3.

7. A method according to claim 3, further comprising:
requesting the client to transmit the client characteristic
pro?le to a server.

8. A method according to claim 7, Wherein requesting the
client to transmit the client characteristic pro?le includes:

determining client characteristics of interest to the server;
and

transmitting a code sequence to the client for processing
by the client, Where such code sequence instructs the
client to identify the client characteristics of interest to
the server.

9. A method according to claim 8, Wherein the code
sequence is programmed in a binary-type format immedi
ately executable by the client upon receipt of such sequence.

10. A method according to claim 8, Wherein the code
sequence is programmed in an interpretable format imme
diately executable by the client upon receipt of such
sequence.

11. Amethod according to claim 3, in Which characteristic
pro?les have tWo portions, a ?rst portion including the
processing potential for the client, and a second portion
including identity information for the client, the method
further comprising:

receiving from the central registry only the ?rst portion of
the characteristic pro?le, so that the client may anony
mously contact the server.

12. Amethod according to claim 11, Wherein the identi?er
comprises an encrypted identi?er for the client.

13. A method according to claim 3, Wherein scaling
content transmitted to the client comprises:

providing an unscaled source content;

10

15

25

35

45

55

12
determining client processing potential from the charac

teristic pro?le;
scaling the unscaled source content according to the client

processing potential; and
causing the scaled source content to be delivered to the

client over the netWork.
14. A method according to claim 13, in Which the client

connects to the server at a ?rst netWork address With a

netWork application program, and Wherein causing delivery
of the scaled source to the client is effected by redirecting the
netWork application program to a second netWork address.

15. A method according to claim 13, Wherein scaling the
unscaled source content is performed dynamically according
to the client processing potential.

16. A method according to claim 13, in Which scaling the
unscaled source content is performed in advance of client
contact With the server, the method further comprising:

determining a plurality of typical client characteristic
pro?les;

providing, for each of the plurality of typical pro?les, a
transmittable data stream by scaling the unscaled
source according to each such typical pro?le;

comparing the client characteristic pro?le to the plurality
of typical pro?les to identify a most-compatible char
acteristic pro?le; and

transmitting to the client the transmittable data stream
corresponding to the most-compatible pro?le.

17. Amethod according to claim 13, in Which the unscaled
source includes compressible and uncompressible portions,
and the client characteristic pro?le includes an indicator of
the client network-connection speed, the method further
comprising:

determining a scaling factor, for a compressible portion of
the unscaled source, according to the indicator of the
client network-connection speed; and

scaling the compressible portion by the scaling factor.
18. A method of distributing scalable content betWeen a

server in communication over a netWork With a client

computer having a processor, Where scalability includes
delivery of data having a complexity determined, In part, on
characteristics of the client, the method comprising:

determining a characteristic pro?le Including a processor
characteristic of the processor, and at least one item
selected from a group consisting of: available client
memory, available client disk space, client identi?er,
and client netWork connection speed;

providing the processor characteristic data to the server;
receiving scaled content from the server corresponding to

an original source content scaled according to the
processor characteristic;

transmitting the characteristic pro?le to a central registry
for later retrieval by the server.

19. A method according to claim 18, Wherein the scaled
content includes advertising targeted according to the client
identi?er.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,470,378 B1 Page 1 of 1
DATED : October 22, 2002
INVENTOR(S) : Tracton et at.

It is certified that error appears in the above-identi?ed patent and that said Letters Patent is
hereby corrected as shown below:

Column 2
Between line 13 and line 14, insert -- BACKGROUND --.

Line 66, before “56K”, delete “b”.

Column 11
Line 10, delete “Identifier”, insert -- identifier --.

Signed and Sealed this

Fifth Day of August, 2003

JAMES E. ROGAN
Director ofthe United States Patent and Trademark O?‘ice

