
US006038509A

Ulllted States Patent [19] [11] Patent Number: 6,038,509
Poppen et al. [45] Date of Patent: Mar. 14, 2000

[54] SYSTEM FOR RECALCULATING A PATH 5,752,217 5/1998 IshiZaki 701/201
5,774,073 6/1998 Maekawa et al. .

[75] Inventors: Richard Frederick Poppen, San Jose; 5,878,368 3/1999 DeGfaaf ------- -- ~
Rodney Jude Fernandez, Fremont, 5,893,081 4/1999 Poppen 701/201

both of Calif Primary Examiner—William A. Cuchlinski, Jr.
Assistant Examiner—Gertrude Arthur

[73] AssigneeZ Etak’ Inc'> Menlo Park’ Calif‘ Attorney, Agent, or Firm—Fliesler, Dubb, Meyer & Lovejoy
LLP

[21] Appl. No.: 09/012,062
[57] ABSTRACT

[22] Filed: Jan. 22, 1998 _ _ _ _
A typical path?nding system provides a user With a set of

[51] Int. C].7 G01C 21/00; 6066 7/78 directions for following a path from an origin to a destina
[52] US. Cl. 701/210; 701/26; 701/201; tion in a network. If the user deviates from the path, the

701/209 system for recalculating a path determines a neW path Which
[58] Field of Search 701/200, 23, 25, directs the user from the user’s neW location, Which is off the

701/26, 201, 208, 209, 210, 211, 221, 224; original path, to the destination. To decrease the amount of
340/990, 995, 988; 370/238, 255, 400 time needed to determine the neW path to the destination, the

system adds links to the netWork. Each of the added links
[56] References Cited connect nodes from the original path directly to the desti

U'S' PATENT DOCUMENTS nation. neW path is determined from the neW location to
the destination using the augmented netWork.

5,303,159 4/1994 Tamai et al. 701/210

5,652,706 7/1997 Morimoto et al. 701/210 52 Claims, 6 Drawing Sheets

query user 122

i
deiermine new origin

1 24

i
ougmeni neiwork 126

i
compuie pain 128

V

edi’r pain 130

U.S. Patent Mar. 14,2000 Sheet 1 0f 6 6,038,509

m
Peripherols

18
Memory

14
lnpu’r

Devices
20

Processor
12

Portable 1
Storage

22
Moss S’roroge

16 e h' rop rcs

Subsystem £5326
24

28,-)

60 5O

2 ,J g 100
7% 7+
64 288 N A
86 1 "7

~54 W E 106 104

b;

7-.
74 70 L52 102

FIG- 2A FIG. 2B

U.S. Patent Mar. 14,2000 Sheet 2 0f 6 6,038,509

m.mv_u_
m P w ._)0). m 0

w

w a). @A Vm @A Y q @A
n_. ._>_ O

0

m P 0 m

U.S. Patent Mar. 14,2000 Sheet 3 0f 6 6,038,509

FIG. 4 FIG. 5

iden’rify rejoining nodes
i 38

cieTermine new origin

query user 122

124 remove links 140

ougmen’r network 126 Choose k 1 42

oompu’re path 128

V

edi’r path 130

iimii links 152

link To
des’r? 14o yes

edi’r COST 150 add link and cos’r 148

U.S. Patent Mar. 14,2000 Sheet 4 0f 6 6,038,509

determine lower
bounds 180

FIG. 6 ‘L
determine upper

bounds 182

1,
choose a node not

chosen 1 84 ‘

compore chosen
node To other nodes

186

lower b >
any upper b’?

1 88

yes

remove link for chosen
node 192

L

more nodes?

1 9O

U.S. Patent Mar. 14,2000 Sheet 5 0f 6 6,038,509

U.S. Patent Mar. 14, 2000

build pOTh
216

stopping
oondi’rion
met?
2 i 4

Sheet 6 0f 6 6,038,509

iniiiolize
202

NO pick
—-) queue

204

remove

heod node
2 i 2

FIG. 8

ono’rher
odjocen’r
node?
206

edi’r list
and queue

210

6,038,509
1

SYSTEM FOR RECALCULATING A PATH

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed to a system for recal
culating a path in a network.

2. Description of the Related Art
Computers have revolutionized the idea of modeling

systems for enhanced study and use of the systems. One
example is the modeling of a system as a netWork. AnetWork
is de?ned in its most general sense as something that
includes a number of paths that interconnect or branch out.
Many systems that involve decisions can be modeled as a
netWork. For example, a manufacturing process or a system
of providing medical treatment can be modeled as a netWork
of decision points and actions betWeen decision points. A
netWork can be represented in electronic form and stored on
a processor readable storage medium so that softWare can be
created for using the netWork model to study or use the
system.

One example of a useful netWork that can be stored in
electronic form is an electronic map, Which includes geo
graphically referenced electronic data quantifying a
physical, social or economic system. The range of informa
tion included in electronic maps is unlimited; for example,
electronic maps could include distances betWeen elements,
travel time, lot numbers, tax information, tourist
information, processing time, Waiting time, etc.
Additionally, storing a map as an electronic ?le alloWs for
unlimited softWare applications to manipulate that data.

One advantage of the electronic map is that it can store
and determine costs associated With various portions of a
map. A cost is a variable that can be minimiZed or maxi
miZed. Note that the costs are not necessarily monetary
costs. Examples of costs include time, distance, tolls paid,
ease of turning, quality of scenery, etc. A more detailed
discussion of costs can be found in US. patent application
Ser. No. 08/756,263, Using Multiple Levels Of Costs ForA
Path?nding Computation, ?led Nov. 25, 1996, Richard F.
Poppen, and Us. patent application Ser. No. 08/581,169,
Cost Zones, ?led Dec. 29, 1995, Richard F. Poppen, both of
Which are incorporated herein by reference. Typically costs
are represented as integers; hoWever, costs can be repre
sented as real numbers.

Electronic maps, as Well as other netWorks, can be used
for path?nding, Which is a method for computing a route
betWeen an origin and a destination in the netWork. Some
systems compute recommended routes and guide (or report
to) the driver by highlighting the recommended route on a
map display, or by giving turn-by-turn directions, or other
suitable guidance means.

When a path?nding system is computing a recommended
route to a destination, it does so by ?nding the most desirable
route according to certain speci?ed criteria. These criteria
may be speci?ed by the driver, or may be set as defaults at
the time of manufacture. Often, a system Will be used to ?nd
a path that minimiZes (or maximiZes) some cost, for
example, driving time. A more detailed discussion of path
?nding is found in Us. patent application Ser. No. 08/802,
733, “Caching For Path?nding Computation,” ?led Feb. 20,
1997, Richard F. Poppen, et al. and US. patent application
Ser. No. 08/756,258, “Method For Determining Exits and
Entrances ForARegion InANetWork,” Filed Nov. 25, 1996,
Richard F. Poppen, both of Which are incorporated herein by
reference.

10

15

20

25

30

35

40

45

55

60

65

2
An electronic map that is used for path?nding must carry

information about the connectivity of a road netWork, that is,
information about the Ways in Which pieces of road do or do
not connect to each other, for example, Where there are
ordinary intersections, Where there are overpasses, Where
turns are restricted, and so on. For an area of any signi?cant
extent, this is a very large amount of information. An
electronic map can include tens or hundreds of megabytes of
data. In order to hold such vast quantities of data economi
cally and alloW a user to replace maps With updated copie’s
easily, many current path?nding system (Which includes
general purpose computers With path?nding softWare, auto
motive navigation systems or other map application
equipment) use CD-ROMs to store the electronic map data.

Although CD-ROMs hold a great deal of data, accessing
that data can be relatively sloW. For example, a typical
CD-ROM drive used for automotive path?nding may take
on the order of 1/3 of a second for each read access. If a
path?nding system had to Wait 1/3 of a second every time it
needed data, the time needed to compute a path Would not
be acceptable to a user. Auser of a navigational path?nding
system stored in a car typically demands very fast response
times When requesting a path because a user currently
driving in the car needs to knoW Which Way to turn. For these
reasons, it is very important to minimiZe the number of disk
accesses required to compute a path. It is noted that some
systems may use peripheral devices other than CD-ROMs,
for example, hard disks, ?oppy disks, solid state memory,
etc. These other storage devices suffer similar access time
limitations.
One attempt to minimiZe the number of disk accesses

required to compute a path includes grouping map data into
clusters, that is, grouping together on a CD-ROM (or other
storage device) information about sets of road segments
often used in the same path computation. For example, a
number of consecutive segments of the same street, road
segments that cross each other or road segments that lead to
a highWay may be stored in a single cluster. Note that these
clusters need not be geographically based. Information
about roads on tWo sides of a river in an area that is not close
to a bridge Would probably not be stored in the same cluster
since the roads Would not be used in relation to each other
during path calculation even though they may be quite close
to each other geographically. Information about highWays
over a Wide area are good candidates to be stored together
in one cluster because a path computation typically explores
the connections of highWays With other highWays. There are
many Ways to cluster data to increase performance. One
example of clustering data can be found in Us. patent
application Ser. No. 08/245,690, Method for Clustering
Multi-Dimensional Data, ?led May 18, 1994, Poppen et al.,
incorporated herein by reference. When clustering is used
With a suitable cache methodology, the time for path?nding
is saved because information needed by the path?nding
computation is often already in the cache (or main memory)
having been read as part of a cluster Which includes data
already used.

Caching is a Well-knoWn process of saving records
recently read in order to reduce the number of disk/memory
accesses. One of the most Well knoWn forms of caching
includes using a small memory local to a processor called a
cache memory. Certain data recently used is typically stored
in the cache memory, With access to the cache memory being
quicker than access to main memory. In this example, the
cache memory caches data betWeen main memory and a
processor.

Another example of caching is to cache data betWeen a
storage device and main memory. An alternative to using a

6,038,509
3

cache memory separate from main memory is to use a
portion of main memory as the cache memory. When data is
read from the storage device it is typically kept in the cache
memory portion (hereinafter called “cache”) of the main
memory for a certain amount of time so that later access to
that data Will be quicker than accessing the storage device.
The portion of the memory allocated as the cache Will hold
a number of records of data along With an indication of hoW
recently each record has been used. When the program needs
to read a given record, the program ?rst looks in the cache
for the record. If the record is in the cache, the program uses
the information stored in the cache rather than reading the
disk ?le again. If the record is not in the cache, and there is
enough unused space in the cache to hold the record, the
record is read into the cache and then used by the program.
If the record is not in the cache and there is not enough
unused space in the cache to hold the record, the least
recently used record or records are discarded to provide
sufficient room to hold the neW record. A record of data
could include one or more clusters of data or another suitable
arrangement of data. If map data is clustered in such a Way
that information regarding a given road segment is often
used shortly after the use of information regarding another
road segment in the same cluster there Will be a signi?cant
speed improvement in the path?nding process because the
number of accesses to the CD-ROM Will be decreased.

Even With the improvements discussed above, path cal
culation can be a relatively lengthy process and the users of
a path?nding system generally do not Want to Wait very long
for a path to be calculated.

Furthermore, it is not uncommon for a user to deviate
from a planned route or path that Was determined by a
path?nding system. The deviation may be made by mistake
(e.g. forgetting to make a turn), deliberately (e.g. avoiding a
traf?c jam) or by necessity (eg a turn or Way is temporarily
forbidden due to construction). When a user of a path?nding
system deviates from a prior computed path, the user is
likely to Want the path?nding system to compute a neW
recommended route from the user’s neW location to the
original destination (called recalculating the path). At such
times, the user typically has less patience than usual for a
sloW path?nding computation. For eXample, the initial path
?nding calculation may have been performed While a driver
is getting ready to start a trip, but the path re-calculation
takes place While the driver is moving, and, possibly, dis
oriented or stressed.

Therefore, a system is needed that reduces the amount of
time needed to re-calculate a path in a netWork When the user
has deviated from a prior computed path.

SUMMARY OF THE INVENTION

The present invention, roughly described, provides for a
system for ?nding a neW path from a neW origin to a
destination in a netWork using an electronic representation
of the netWork after a deviation from an original path to the
destination. The original path includes original nodes and
original links. The systems augments the electronic repre
sentation of the netWork by adding neW links that directly
connect a subset of the original nodes to the destination.
After augmenting the electronic representation of the
netWork, the system determines the neW path from the neW
origin to the destination using the augmented electronic
representation of the netWork. The neW path is reported to
the user of the system. In one embodiment, the system edits
the neW path to only include travel along links that Were in
the original network.

10

15

25

35

45

55

65

4
The system can be implemented using softWare and/or

hardWare. For eXample, the system can include softWare
stored on a processor readable storage medium. One imple
mentation of the system includes one or more processor
readable storage media for storing the electronic represen
tation of the netWork, a processor and a display. The
processor is programmed to augment the netWork and deter
mine the neW path.

These and other objects and advantages of the invention
Will appear more clearly from the folloWing detailed
description in Which the preferred embodiment of the inven
tion has been set forth in conjunction With the draWings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of one eXemplar hardWare
architecture that can be used to practice the present inven
tion.

FIG. 2A is an eXample of a directed graph representing a
part of an electronic map.

FIG. 2B is a second eXample of a directed graph repre
senting a part of a netWork.

FIG. 3 is a directed graph of a netWork used for eXample
purposes to help eXplain the current invention.

FIG. 4 is a How chart describing the method of recalcu
lating a path.

FIG. 5 is a How chart describing the step of augmenting
a netWork.

FIG. 6 is a How chart describing one embodiment for
limiting the number of neW links added to a netWork.

FIG. 7 is a directed graph shoWing the netWork of FIG. 3
after the netWork has been augmented.

FIG. 8 is a How chart describing an exemplar method for
computing a path.

DETAILED DESCRIPTION

The system for recalculating a path may be implemented
in hardWare and/or softWare. In one implementation, the
system for recalculating a path may comprise a dedicated
processor including processor instructions for performing
the functions described herein. Circuits may also be devel
oped to perform the functions described herein. In one
embodiment, the system for recalculating a path is part of a
path?nding system. The path?nding system can be a general
purpose computer With path?nding (or recalculation) soft
Ware or a navigation system. EXamples of navigation sys
tems are described in US. Pat. No. 4,796,191, Vehicle
Navigation System and Method; US. Pat. No. 4,914,605,
Map Display Apparatus and Method; US. Pat. No. 5,311,
195, Combined Relative and Absolute Positioning Method
and Apparatus; and US. patent application Ser. No. 08/747,
161, Navigation System Using GPS Data, all of Which are
incorporated herein by reference. In another
implementation, the system for recalculating a path includes
a plurality of computer executable instructions for imple
mentation on a general purpose computer system. Prior to
loading into a general purpose computer system, the soft
Ware may reside as encoded information on a computer

readable medium, such as a magnetic ?oppy disk, magnetic
tape, and compact disc read only memory (CD-ROM).

FIG. 1 illustrates a high level block diagram of a general
purpose computer system in Which the system for recalcu
lating a path of the present invention may be implemented.
Acomputer system 10 contains a processor unit 12 and main
memory 14. Processor unit 12 may contain a single

6,038,509
5

microprocessor, or may contain a plurality of microproces
sors for con?guring the computer system 10 as a multi
processor system. Main memory 14 stores, in part, instruc
tions and data for execution by processor unit 12. If the
system for recalculating a path of the present invention is
Wholly or partially implemented in softWare, main memory
12 stores the executable code When in operation. Main
memory 12 may include banks of dynamic random access
memory (DRAM) as Well as high speed cache memory.

Computer system 10 further includes a mass storage
device 16, peripheral device(s) 18, input device(s) 20, por
table storage medium drive(s) 22, a graphics subsystem 24
and an output display 26. For purposes of simplicity, the
components in computer system 10 are shoWn in FIG. 1 as
being connected via a single bus 28. HoWever, computer
system 10 may be connected through one or more data
transport means. For example, processor unit 12 and main
memory 14 may be connected via a local microprocessor
bus, and the mass storage device 16, peripheral device(s) 18,
portable storage medium drive(s) 22, graphics subsystem 24
may be connected via one or more input/output (I/O) buses.
Mass storage device 16, Which may be implemented With a
magnetic disk drive or an optical disk drive, is a non-volatile
storage device for storing data and instructions for use by
processor unit 12. In one embodiment, mass storage device
16 stores the system softWare for recalculating a path for
purposes of loading to main memory 14.

Portable storage medium drive 22 operates in conjunction
With a portable non-volatile storage medium, such as a
?oppy disk, to input and output data and code to and from
the computer system 10. In one embodiment, the system
softWare for recalculating a path is stored on such a portable
medium, and is input to the computer system 10 via the
portable storage medium drive 22. Peripheral device(s) 18
may include any type of computer support device, such as an
input/output (I/O) interface, to add additional functionality
to the computer system 10. For example, peripheral device
(s) 10 may include a netWork interface card for interfacing
computer system 10 to a netWork, a modem, etc.

Input device(s) 20 provide a portion of the user interface
for a user of computer system 10. Input device(s) 20 may
include an alpha-numeric keypad for inputting alpha
numeric and other key information, or a cursor control
device, such as a mouse, a trackball, stylus, or cursor
direction keys. In order to display textual and graphical
information, computer system 10 contains graphics sub
system 24 and the output display 26. Output display 26 may
include a cathode ray tube (CRT) display, liquid crystal
display (LCD) or other suitable display device. Graphics
subsystem 24 receives textual and graphical information,
and processes the information for output to output display
26. Output display 26 can be used to report the results a path
recalculation. The components contained in computer sys
tem 10 are those typically found in general purpose com
puter systems, and are intended to represent a broad category
of such computer components that are Well knoWn in the art.
The system of FIG. 1 illustrates one platform Which can be
used for the present invention. Numerous other platforms
can also suf?ce, such as Macintosh-based platforms avail
able from Apple Computer, Inc., platforms With different bus
con?gurations, netWorked platforms, multi-processor
platforms, other personal computers, Workstations,
mainframes, navigation systems, and so on.

The present invention is directed to a system for recal
culating a path in a netWork. One example of a netWork
suitable for use With the present invention is an electronic
map of roads. For example purposes only, the present

10

15

25

35

45

55

65

6
invention Will be discussed With reference to an electronic
map. HoWever, the principles of the current invention apply
to other netWorks.
An electronic map of roads is stored in one or more

computer ?les Which include the data necessary to construct
a map. This data could include longitude and latitude data,
addresses, distances, road information, turning restrictions,
driving times, highWay exit numbers, descriptions of com
mercial uses of properties, etc. Although the above listed
information can be found in an electronic map, it is possible
to create an electronic map With only a subset of the above
listed information or With other information. The computer
?les representing an electronic map are stored on a processor
readable storage medium.

Generally, an electronic map (or other netWork) to be used
for path?nding can be represented as a graph. A graph is a
collection of nodes and edges. Nodes are objects that have
properties and indicate decision points on the graph. An edge
is a connection betWeen tWo nodes. A path from node A to
node B in a graph is described as a list of nodes such that
there is an edge from each node in the list to the next. A
directed graph is a graph in Which each edge has a single
direction associated With it. There may be tWo edges
betWeen a given pair of nodes, one in each direction. In a
directed graph, edges are referred to as links. A Weighted
graph is a graph in Which each link (or edge) has a cost
associated With it. Alternatives includes associating the costs
With the nodes, With the nodes and links, or associating costs
With another element of the graph. An undirected graph is a
graph Where each link is bidirectional. An undirected graph
can be thought of as a directed graph Where each link
represents tWo links With the same end points but different
directions.

FIG. 2A shoWs an exemplar directed graph Which shoWs
eastbound one-Way street 50 and tWo-Way street 52, both
intersecting With tWo-Way street 54. Street 50 intersects With
street 54 at intersection 60. Street 52 intersects With street 54
at intersection 70. At intersection 60 are tWo nodes, 62 and
64. The head of the node is a circle. The rear of the node is
a straight-line tail. The circle represents Where the node is
located and the tail represents Where a traveler Would come
from to reach that node. The node symbol is displaced from
the actual intersection for purposes of visibility. For
example, node 62 represents travel northbound on street 54
toWard intersection 60. Node 64 represents travel eastbound
on road 50 toWard intersection 60. There is no node at
intersection 60 to represent Westbound travel on street 50
because street 50 is an eastbound one-Way street. Thus, a
traveler proceeding north on road 54 and reaching intersec
tion 60 can only make a right turn. Node 72 represents
arriving at intersection 70 by traveling south on street 54.
Node 74 represents arriving at intersection 70 by traveling
east on road 52. Node 76 represents arriving at intersection
70 by traveling West on road 52.

Links represent a path betWeen nodes. For example, from
node 64 a traveler can make a right turn at intersection 60 to
enter road 54 or can proceed straight on road 50. Link 86
represents travel starting on road 50 facing east, making a
right turn at intersection 60 and proceeding south on road 54.
Thus, link 86 connects node 64 to node 72. Link 88 connects
node 64 to the next node on street 50 (not shoWn on FIG.
2A) and represents travel east along road 50, proceeding
straight through intersection 60 Without turning. Link 89
represents travel starting from road 54 facing north, making
a right turn at intersection 60 and proceeding east on road
50; therefore, link 89 connects node 62 to the next node on
street 50 (not shoWn on FIG. 2A). FIG. 2A only shoWs links

6,038,509
7

draWn for nodes 62 and 64. If links are draWn for all nodes,
the directed graph Would become too crowded and Would be
dif?cult to read. Thus, the directed graph is simpli?ed and
redraWn as in FIG. 2B.

In FIG. 2B, all the nodes at the same intersection are
collapsed into one node to make the following explanation
simpler. (In actual use, the present invention can make use
of a graph similar to FIG. 2A or FIG. 2B.) Thus, node 100
represents nodes 64 and 62. Node 102 represents nodes 72,
74 and 76. Note that the tails of the nodes are not draWn. The
links are used to indicate directions of alloWable travel. Link
104 indicates travel from intersection 70 to intersection 60
and link 106 indicates travel from intersection 60 to inter
section 70. Turn restrictions and one-Way streets are repre
sented by the presence or absence of a link.

The directed graph of FIG. 2B is used to symbolically
understand the data structure stored in a processor readable
storage medium. Aprocessor readable storage medium does
not actually store an image of a directed graph. Rather, a data
structure is stored. In one embodiment, each entry in the data
structure represents a node. For each node, the data structure
stores the location of the node (e.g., latitude and longitude),
a list of neighboring nodes (nodes Which can be traveled to
via one link) and the various costs associated With getting to
the neighboring nodes. It is contemplated that the present
invention Will Work With many suitable data structures
different from the one described. Furthermore, the invention
need not be used With a directed graph. The present inven
tion can be used With the entire map database, other
netWorks, or any other suitable subset of information.
Furthermore, one or more entries in a data structure can be
grouped together in a cluster of data. Although clusters can
improve performance, the present invention can be used
Without clusters.

One implementation of the present invention can be used
With a path?nding system that includes means for determin
ing a path in a netWork. When the user of the path?nding
system leaves the planned route, the present invention can be
used to recalculate a neW route from the user’s present
location to the original identi?ed destination. For eXample,
FIG. 3 shoWs a directed graph representing a netWork.
Assume for purposes of eXample, that FIG. 3 depicts an
electronic map of roads to be used by a driver With a
path?nding/navigation system on board the driver’s auto
mobile. Assume that the path?nding system has previously
determined a path from an origin O (eg the driver’s home)
to a destination D (e.g. shopping center). The previously
computed path Was reported as OABCEFGHD, Which rep
resents travel from node O to node A, node A to node B,
node B to node C, node C to node E, node E to node F, node
F to node G, node G to node H, and node H to node D. FIG.
3 shoWs each of the nodes With links betWeen the nodes.
Next to each link is a number representing the cost of
traversing that link. As discussed above, the cost can rep
resent time, distance, etc. For eXample, the cost of traveling
from node O to node A is 2. The cost of traveling along the
path OABCEFGHD is 22.

Suppose that While the driver of the automobile Was
traveling along the path OABCEFGHD, the driver deviated
from the path by turning right When arriving at node B and,
thus, traveling from node B to node J rather than traveling
from node B to node C. The driver may have done this by
mistake, the driver may have done this intentionally because
the driver heard on the radio that there Was a traf?c jam near
node C or construction may have closed the link (eg road)
betWeen node B and node C forcing the driver to make a
right turn When arriving at node B. The driver may then

10

15

25

35

45

55

65

8
continue until reaching node K. Upon arrival at node K, the
driver realiZes that he or she is lost and needs the system to
determine hoW that driver should proceed to the destination
D from node K. At that point, the present invention is used
to quickly recalculate the path to the destination.

FIG. 4 is a How chart describing the method for recalcu
lating a path. The ?rst step shoWn in FIG. 4 is to query the
user/driver 122. This step, Which is optional, can be per
formed during the path recalculation process, at the time the
system is turned on or during a time set up or con?guration
process. In one implementation, step 122 includes the user
indicating to the system that the user has deviated from the
path. Alternatively, that determination can be made auto
matically by a navigation system. Step 122 also includes
determining setup parameters.

In order for the system to calculate a neW path, the system
must knoW Where the neW path begins. Thus, in step 124, a
neW origin is determined. In the eXample of FIG. 3, the
driver requested a neW path While the driver Was at node K.
Thus, the system may determine that the neW origin is node
K. In other embodiments, the user can instruct the system as
to What the neW origin should be or the system can deter
mine the neW origin to be some estimated distance aWay
from the user’s current position so that the user Will be at the
estimated neW origin When the method for recalculating a
path is completed. After the neW origin is determined, the
system uses the information stored about the previously
computed path to temporarily augment the netWork in step
126. Using the augmented netWork, the system computes a
path from the neW origin to the originally identi?ed desti
nation (step 128). In one embodiment, after the path is
determined the system Will edit the neWly calculated path in
step 130 so that the path only includes travel along links that
Were part of the netWork prior to step 126.

FIG. 5 further describes the step of augmenting the
netWork 126. The ?rst step in augmenting the netWork is to
identify the rejoining nodes. The rejoining nodes are those
nodes that are part of the original path that Were not visited
prior to the user’s deviation from the original path. In the
eXample above, the nodes on the path under consideration
are nodes O, A, B, C, E, F, G, H and D. The user visited
nodes O, A and B prior to the deviation. The user did not
visit nodes C, E, F, G, H or D. Therefore, the rejoining nodes
are nodes C, E, F, G, H and D.

In step 140 of FIG. 5, one or more links can be removed
from the netWork. This step is optional. In some
implementations, it is desirable to forbid the neWly calcu
lated route to include the link that the user originally failed
to traverse. In the eXample above the user failed to traverse
the link from B to C. If this link is undesirable (eg because
of a traf?c jam or construction) it Would be a bad idea for the
system to direct the driver back to the same problem. Thus,
in one embodiment the link that the user failed to traverse (in
this case B to C) Would be removed from the augmented
netWork. In another embodiment, the system determines the
neXt node after the deviation. That node in the above
eXample is node C. The system Would then remove all links
to node C. In another embodiment, the system queries the
user in (eg step 122) Whether to avoid the links (e.g. roads)
into the node after the deviation (e.g. node C). For purposes
of the eXample discussed throughout this description, the
system in step 140 Will remove the link the user failed to
traverse (e.g. B to C). In one implementation of the present
invention the step of removing the link could include
actually removing the information about the link from the
database, adding information to the database signaling that
the link should be ignored, adding similar information to an
additional ?le or other suitable method.

6,038,509
9

FIG. 7 shows the augmented network corresponding to
the network in FIG. 3 after the steps of FIG. 5 have been
performed. That is if the input to step 126 of FIG. 4 is the
netWork of FIG. 3, the output of step 126 is the augmented
netWork of FIG. 7. Since in step 140, the system removed the
link for traversing from node B to node C, the augmented
netWork of FIG. 7 does not include the link from node B to
node C.

In step 142 the system chooses a value for the constant k,
Which is used to bias the path recalculation toWard the
original path more or less strongly. The constant k is chosen
such that k is greater than or equal to 0 and less than or equal
to 1. The costs of the added links are then computed by
multiplying the cost by the constant k.
When k=1, the costs of the added links are exactly the

same as the cost of travel in the unaugmented road netWork.
In this case, the added links just provide “express” connec
tions from the points in the original path to the original
destination. These express connections alloW the path?nding
calculation to ?nd a path much more quickly than in the
unaugmented netWork, but With little or no preference for
the original route.
When k=0, the path computation tries to ?nd the loWest

cost route back to a rejoining node on the original path, since
the cost from such a node to the destination is treated as 0.
In some applications, this may be desirable. The designer of
the system may believe that the driver Will feel most
comfortable When directed back to the originally displayed
path as expeditiously as possible. Moreover, because usually
very little calculation is required to ?nd a path back to the
previous route from a point very near it, the path computa
tion is performed relatively quickly. Intermediate values of
k (0<k<1) produce intermediate behavior.

In general, the smaller k is, the sooner the neWly calcu
lated route Will rejoin the old one, and the faster the
calculation Will be. The larger k is, the more the neWly
calculated route Will resemble the result of a path?nding
calculation on the unmodi?ed road netWork, but the longer
the calculation Will take. Note that if any value of k other
than 1 is used, a path calculation Will no longer really
compute the loWest cost route to the destination. Instead, the
path calculation Will make some compromise betWeen mini
miZing cost and getting back to the previously calculated
route as quickly as possible.

In one embodiment, k is selected during the manufactur
ing of the system. In other embodiments, k is selected during
poWer up of the system by the user, at the time of the path
recalculation, or during a set up/con?guration phase of the
system. In some applications, it is useful to alloW the value
of k to be under the control of the user. Typically, this Will
be With a setting (eg in step 122 of FIG. 4) for selecting
betWeen (1) better path quality and sloWer path recalculation
(larger values of k) or (2) poorer path quality and faster path
recalculation (smaller values of k). Alternatively, the setting
may be described as selecting betWeen a strong preference
for the original path (smaller values of k) or a Weaker
preference of the original path (larger values of k). In other
application, it may be desirable for the value of k to be
adjusted automatically by the system. For example, the
system may increase the value of k When recent experience
indicates that sloWer path recalculation can be tolerated (for
example, because recent recalculations have taken less than
some speci?ed time limit) and decrease the value of k When
recent path recalculation has taken too long.

In step 144 the system looks at Whether there are any more
rejoining nodes that haven’t been considered. At the ?rst

15

25

35

45

55

65

10
iteration of this loop, none of the nodes have been consid
ered; therefore, all the rejoining nodes are still remaining. Of
the remaining rejoining nodes, the system chooses the nodes
in the order that they Will be traveled to during the originally
calculated path. Thus, the ?rst instance of performing step
146, the system Would consider node C in the above
example. In step 146, the system determines Whether there
is any link directly connecting the particular rejoining node
under consideration to the destination. Looking at FIG. 3,
the system Would determine that there is no link from node
C directly to node D. Thus, in step 148, the system adds a
link to the augmented netWork from C to D and determines
a cost for that link. The cost corresponding to the neW link
is equal to k multiplied by the cost of traveling from node C
to the destination along the originally calculated path CEF
GHD. The cost of traveling CEFGHD is equal to 9 +1+2+
2+2=16. Assuming that k=1, the cost of the neW link is 16.

After adding the neW link from node C to node D the
system loops back to step 144 and determines Whether there
are any more rejoining nodes to consider. In the present
example, the system has ?ve more rejoining nodes. In step
146, the system determines that rejoining node E does not
include a link directly to destination D, therefore, a neW link
is added from node E directly to destination D With a cost of
7(k=1 multiplied by 1+2+2+2). Looking at FIG. 7, the neW
link connecting node E to destination D, having a cost of 7,
is depicted by reference numeral 192.

After adding the neW link 192 With its corresponding cost
to the augmented netWork, the system loops back to step 144
and determines Whether there are any more rejoining nodes
to consider. In the present example, the system has four more
rejoining nodes to consider. In step 146, the system deter
mines that rejoining node F does not include a link directly
to destination D, therefore a neW link is added from F
directly to D With a cost of 6. FIG. 4 shoWs the link 194
connecting node F directly to node D With a corresponding
cost of 6. The method of FIG. 5 Will also add a link 196,
having a corresponding cost of 4, connecting node G directly
to destination D.

After adding link 196, the system (in step 144) determines
that node H has not been considered yet. In step 146, the
system determines that there is a link from node H directly
to destination D. Therefore the system performs step 150
Which includes editing the cost of the link from node H
directly to node D. The original link had a cost of 2. That
cost is edited by multiplying that cost by the constant k. In
the present example, the constant k is equal to 1; therefore,
the neW edited cost is equal to k><(original cost)=1><2=2. The
neW cost is added to the augmented netWork and the system
loops back to step 144. Thus, the nodes Whose correspond
ing costs Will be edited in step 150 includes nodes have a
link directly to the destination and that have not been visited
prior to the deviation from the original path.

At this point in the example, the only remaining node is
D. Since the cost of traveling from D to itself is Zero,
multiplying by k Will also be Zero. The system then loops
back to step 144. When the system determines that there are
no more rejoining nodes to consider in step 144, the system
performs step 152 Which is the process of limiting the links
added to the augmented netWork.

The process of limiting the links in the augmented net
Work of step 152 is optional and need not be performed for
the current invention to be useful. HoWever, in some
implementations, adding very many links to the netWork
may unreasonably sloW doWn the process of computing the
neW path (step 128). Thus, it may be useful to minimiZe or

6,038,509
11

limit the number of links added by the present invention.
One method for limiting the number of links is to only alloW
links to be added from those nodes that are Within some
distance dmax of the neW origin. The value of dmwc is
determined experimentally such that speed and quality of
result is satisfactory.

FIG. 6 is a ?oW chart depicting a second method for
limiting the links (step 152). The ?rst step is to determine a
loWer bound for each of the rejoining nodes (step 180). The
loWer bounds for a node N, is:

Where d(O‘,Nl-) is the direct distance (“as the croW ?ies”)
from O‘ (the neW origin, e.g. node K) to node N, and Ci is
the cost of traveling along the original path from N- to the
destination.

Prior to determining the loWer bounds, constants Imin and
Imax, Which are considered minimum and maximum
impedances, are obtained such that it is reasonable to expect
that the COST (P, Q)—the cost of the best path from a point
P to a point Q—satis?es the inequality Imin><d(P, Q)§COST
(P, Q)§Imax><d (P, Q), Where d (P, Q) denotes the direct
distance “as the croW ?ies” from P to Q.

If the cost being minimiZed is an estimate of driving time,
a good value for Imin is the inverse of the highest speed limit,
since it should not be legally possible to get from P to Q
faster than by taking a straight road at the greatest legal
speed limit. Similarly, if the cost being minimiZed is driving
distance, then Imin in should be 1 since it is impossible to get
from P to Q by traveling a distance less than a distance
betWeen them. The constant Imin converts the cost to units of
distance.

Imax is derived by experience. If experience shoWs that
most of the time the cost to ?nd a path betWeen tWo points
A, B is §J><d(A,B), then J is a suitable value for Imax.

These minimum maximum impedances Would typically
be computed or estimated as constants When the system is
being designed, but it is possible for the system itself to
derive them at run time.

In step 182, the system determines the upper bounds for
each of the rejoining nodes. For a speci?c rejoining node N],
the upper bounds is computed as:

Where d(O‘,Nl-) is the direct distance (“as the croW ?ies”)
from O‘ to Ni.

Table 1 shoWs the computed upper and loWer bounds for
the rejoining nodes (other than the destination) of the
example using FIGS. 3 and 7. For a node N, the column
labeled “distance” represents d(O‘,Nl-)(estimated for
example purposes) and the column labeled “modi?ed cost”
represents the value k><Cl-.

TABLE 1

Node Distance Modi?ed Cost Lower Bound Upper Bound

C 6 16 22 28
E 7 7 14 21
F 8 6 14 22
G 10 4 14 24
H 13 2 15 28

In step 184, the system chooses a node in the set of
rejoining nodes under consideration (e.g. nodes C, E, F, G
and H) that have not been chosen already. The loWer bounds
for the chosen node is compared to the upper bounds for all

5

15

25

35

45

55

65

12
of the other nodes in the set being considered. That is, the
loWer bound for node C is compared to the upper bounds for
nodes E, F, G, H. In step 188, it is determined Whether this
loWer bounds is greater than any of the upper bounds. In the
present example, the loWer bounds for C is 22 and the upper
bound for E is 21. If the loWer bounds is greater than any of
the upper bounds, the system performs step 192 Which
includes removing the link that Was added during step 148
from the chosen node to the destination. In the present
example, the link added that connected node C directly to
destination D Would be removed from the augmented net
Work. The system then determines in step 190 Whether there
are any more nodes to consider in the set of rejoining nodes.
In the present example, the system must still consider nodes
E, F, G and H. In step 184 the system chooses node F and
compares the loWer bound of node F to the upper bounds of
node C, F, G, and H. Since the loWer bound for node F is not
greater than any of the upper bounds, the system does not
perform step 192. Steps 184 and 186 are further performed
for nodes G and H. Finally in step 190, When the system
determines that all the nodes have been considered, step 152
is completed. Note that in FIG. 5 the step of limiting the
links 152 is performed at the end of the method. In other
embodiments, the step of limiting the links may be per
formed at an earlier time. For example, if step 152 includes
limiting the links added to only those nodes that are Within
distance dmax from the neW origin, then that step can be
performed as part of step 148.

After step 152 is performed, the augmented netWork has
been created. FIG. 7 shoWs the augmented netWork. Refer
ring back to FIG. 4, the system then computes a path in step
128 from the neW origin to the destination using the aug
mented netWork. FIG. 8 is a ?oW chart describing the details
of computing a path in step 128.
The path?nding computation of FIG. 8, Which is based at

least in part on the Work of Edsger W. Dijkstra, is only one
of many path?nding methods that can be used With the
present invention. One reference that discusses Dijkstra’s
method is M. N. S. SWamy and K. Thulasiraman, Graphs,
Networks, and Algorithms, John Wiley & Sons (1981). In
step 202, the system initialiZes the path?nding computation.
That is, the system stores the origin and destination of the
path and sets up tWo queues: an origin priority queue and a
destination priority queue. The origin priority queue consists
of an ordered list of nodes, to each of Which a path from the
origin is knoWn, and a key for each node. The queue is sorted
according to the key. There are various alternatives for
determining the key. In one alternative, the key is the loWest
knoWn cost of traveling from the origin to the node. An
alternative key includes the sum of the knoWn shortest
distance from the origin to the node plus an estimated cost
of traveling from the node to the destination. There are
various alternatives for estimating the cost for traveling from
the node to the destination Which are suitable for this
method. One example includes multiplying the direct “as
the-croW-?ies” distance by the estimated cost per unit dis
tance. That is, disregarding the nodes and links, determining
the physical distance betWeen the node and the destination
and multiplying that distance by an estimated cost per unit
distance.
The destination priority queue consists of an ordered list

of nodes, from each of Which a path to the destination is
knoWn, and a key for each node. The queue is sorted
according to the key. There are many alternatives for deter
mining a destination key. One alternative includes using the
knoWn loWest cost path from the node to the destination. An
alternative key includes using the sum of the knoWn cost

6,038,509
13

from the node to the destination plus an estimated cost from
the origin to the node. The key described above for the origin
priority queue Which utilizes the estimated remaining costs
produces an exploration from the origin that is biased in the
direction of the destination. Similarly, an exploration from
the destination is biased in the direction of the origin. Other
suitable methods of computing a key are Within the scope of
the present invention.

Additionally, the system sets up an origin visited list and
a destination visited list. The origin visited list maintains a
list of all nodes to Which paths from the origin are knoWn,
the loWest cost for traveling from the origin to the node, and
the previous node along the path With that loWest cost. The
destination visited list stores the name of each node for
Which paths to the destination are knoWn, the knoWn loWest
cost for traveling from the node to the destination, and the
identity of the next node along the path to the destination
With that loWest cost. After the initialiZation step 202 is
completed, the origin priority queue and the origin visited
list include the origin, and the destination priority queue and
the destination visited list include the destination.

Once the system is initialiZed, the system chooses a queue
according to a rule in step 204. There are many rules of
picking a queue Which are suitable for the present invention.
In one system, the queue containing the element With the
smallest key is chosen, With ties broken arbitrarily. In
another system, the queue containing the lesser number of
elements is chosen. Other examples of rules for choosing a
queue include alternating betWeen queues; choosing the
origin queue for a certain number of iterations (or a time
period), sWitching to the destination queue for a certain
number of iterations, sWitching back to the origin queue for
a certain number of iterations, etc. Since the queues are
sorted by keys, the node With the smallest key Will be at the
head of the queue (also called the front or the top of the
queue). This node is called the “head node.” In the example
discussed beloW, the method for picking a queue Will be to
alternate starting With the origin priority queue.

In step 206 the system looks for all nodes Which are
adjacent nodes to the head node of the chosen queue. Since
the system has just started, the only node in the origin
priority queue is the origin. The adjacent nodes are those
nodes Which can be traveled to from the head node Without
going through any other nodes. The adjacent nodes for the
neW origin K are nodes J, N and L. Since there are three
adjacent nodes, the system arbitrarily picks one adjacent
node. In step 208 the system determines Whether there is a
loWer cost knoWn on the visited list or the priority queue for
the adjacent node picked. That is, the system determines the
cost of traveling from the head node to the adjacent node and
adds that cost to the cost already knoWn for the head node.
In this case, the adjacent node picked is node J, the cost of
traveling from the origin to node J is 6. Since the path?nding
computation has just started, node J is not on the visited list
or the origin priority queue so there is no knoWn cost. Since
there is no knoWn cost, in step 210 the system edits the
visited list and the priority queue to add node J and its cost.
The method loops back to step 206 to determine Whether any
additional adjacent nodes have not been considered. In this
case there are tWo adjacent nodes that have not been
considered: N and L.

In step 208, the system determines Whether there is a
loWer cost knoWn for node L. The cost for traveling from
origin K to node L is 6 and node L does not appear on the
priority queue or the visited list. In step 210, node L is added
to the priority queue and the visited list. The system loops
back to step 206 and considers node N. Since there is no

10

15

25

35

45

55

65

14
knoWn cost loWer than the cost of traversing directly from
origin K to node N, Which is 4, node N is added to the
priority queue and the visited list. The system loops back to
step 206 and determines that there are no adjacent nodes;
therefore, in step 212 the head node, Which is currently the
origin, is removed from the priority queue. Table 1 re?ects
the contents of the origin priority queue and the visited list
at this point in the path?nding computation. There are three
nodes on the origin priority queue: J, N and L. Their keys
represent the cost of traveling from the origin to that node.
The visited list has three columns: Node, Cost and Prev. The
node column lists the node identi?cation, the cost column
lists the loWest knoWn cost of traveling from the origin to
that node and the Prev column lists the previous node along
the path from the origin to the listed node When traveling
along the path utiliZing the loWest knoWn cost. The order
that the nodes are listed in the visited list can be any order
that makes it easy to search the list. For example, the nodes
can be listed in alphabetical order. In one implementation,
the nodes are named by numerical codes and the visited list
is a hash table.

TABLE 2

Origin Priority Queue Origin Visited List

Node Key Node Cost Prev

N 4 J 6 K
J 6 K O —

L 6 L 6 K
N 4 K

In step 214 the system determines Whether a stopping
condition has occurred. There are many stopping conditions
Which are suitable for the present invention, for example,
stopping When a node has been the head node on both the
origin priority queue and the destination priority queue.
Another stopping condition, Which is the stopping condition
used in this example, is stopping When the cost of traveling
from the origin to the head node in the origin priority queue
plus the cost of traveling from the head node of the desti
nation priority queue to the destination is greater than or
equal to the total cost of the best connection node. A
connection node is the node that appears on the destination
visited list and the origin visited list. Total cost of a con
nection node is the cost from the origin to the connection
node plus the cost from the connection node to the destina
tion. The best connection node is the connection node With
the loWest total cost. In the present case there is no connec
tion nodes so the stopping condition fails and, in step 204,
the system picks a queue.
As discussed above, the queue selection algorithm in the

present example is alternating; therefore, the system picks
the destination queue. In step 206 the system determines
Whether there are any nodes adjacent to the destination D. In
the augmented netWork of FIG. 7, there are four adjacent
nodes E, F, G and H. In step 208, the system looks at node
E and determines Whether there is a loWer knoWn cost. Since
there is not, in step 210 the destination priority queue and
visited list are edited to add node E and its cost of 7. The
method loops back to step 206 Which determines that there
is another adjacent node, node F. In step 208, the system
determines that there is not a loWer cost knoWn for F. In step
210, the destination priority queue and the destination vis
ited list are edited to add node F and its costs of 6. The
method loops back to step 206 Which determines that there
is another adjacent node, node G. In step 208, the system
determines that there is not a loWer cost knoWn for G. In step

6,038,509
15

210, the destination priority queue and the destination vis
ited list are edited to add node G and its cost of 4. The
method loops back to step 206 Which determines that there
is another adjacent node, node H. In step 208, the system
determines that there is not a loWer cost knoWn for H. In step
210, the destination priority queue and the destination vis
ited list are edited to add node H and its cost of 2. In step
206, the system determines there are no more adjacent nodes
and node D is removed from the destination priority queue
in step 212. Table 3 re?ects the state of the destination
priority queue and visited list at this point in the method. The
column labeled Next list the next node along the path from
the listed node to the destination When traveling along the
path utiliZing the loWest cost knoWn.

TABLE 3

Dest. Priority Queue Dest. Visited List

Node Key Node Cost Next

H 2 D O —

G 4 E 7 D
F 6 F 6 D
E 7 G 4 D

H 2 D

Since there are no connection nodes, the stopping condi
tion fails (step 214) and the system picks the origin priority
queue (step 204). From Table 2, it can be seen that the head
node on the origin priority queue is node N. In step 206, the
system determines that there are tWo adjacent nodes to node
N (other than the origin): nodes M and Q. In step 208, the
system determines that there is not a loWer cost knoWn for
node M. In step 210, the origin priority queue and the origin
visited list are edited to add node M and its cost of 7. The
method loops back to step 206 Which determines that there
is another adjacent node, node Q. In step 208, the system
determines that there is not a loWer cost knoWn for node Q.
In step 210, the origin priority queue and the origin visited
list are edited to add node Q and its cost of 6. In step 206,
the system determines there are no more adjacent nodes to
node N and node N is removed from the origin priority
queue in step 212. Table 4 re?ects the current state of the
origin priority queue and the visited list after node N Was
removed from the priority queue (step 212).

TABLE 4

Origin Priority Queue Origin Visited List

Node Key Node Cost Prev

J 6 J 6 K
L 6 K O —

Q 6 L 6 K
M 7 M 7 N

N 4 K
Q 6 N

At this point, the stopping condition fails because there is
no connection node and the system picks the destination
queue (step 204). In step 206, the system looks for nodes
adjacent to the head node on the destination queue. Since the
head node is node H, the only adjacent node (other than D)
is node G. The cost of traveling from G to H is 2, thus, the
cost traveling from G to H to D is 4. In step 208, the system
determines that there is a cost of traveling from G to D of 4
already knoWn; therefore there is no reason to edit the visited
list. In step 206 the system determines that there is not
another adjacent node and H is removed from the priority

10

15

25

35

45

55

65

16
queue in step 212. Table 5 re?ects the state of the destination
priority queue and visited list at this point in the method.

TABLE 5

Dest. Priority Queue Dest. Visited List

Node Key Node Cost Next

G 4 D O —

F 6 E 7 D
E 7 F 6 D

G 4 D
H 2 D

Since there are no connection nodes, the stopping condi
tion fails (step 214) and the system picks the origin priority
queue (step 204). From Table 4, it can be seen that the head
node on the origin priority queue is node J. In step 206, the
system determines that there is one adjacent node (other than
the origin): node B. In step 208, the system determines that
there is not a loWer cost knoWn for node B. In step 210, the
origin priority queue and the origin visited list are edited to
add node B and its cost of 12. In step 206 the system
determines there are no more adjacent nodes and node J is

removed from the origin priority queue in step 212. Table 6
re?ects the current state of the origin priority queue and the
visited list after node J Was removed from the priority queue

(step 212).

TABLE 6

Origin Priority Queue Origin Visited List

Node Key Node Cost Prev

L 6 B 12 I
Q 6 J 6 K
M 7 K O —

B 12 L 6 K
M 7 N
N 4 K
Q 6 N

The stopping condition fails because there is no connec
tion node. The system then picks the destination queue (step
204). In step 206, the system looks for nodes adjacent to the
head node on the destination queue. Since the head node is

node G, the adjacent nodes (other than H) are F and R. The
cost of traveling FGHD is 6. In step 208, the system
determines that there is a cost of traveling from F to D of 6
already knoWn; therefore the visited list is not edited. In step
206, the system determines that there is another adjacent
node: node R. The cost of traveling RGHD is 6. There is no
loWer cost knoWn; therefore, R is added to the destination
priority queue and visited list. Node G is removed from the
priority queue in step 212. Table 7 re?ects the state of the
destination priority queue and visited list at this point in the
method.

TABLE 7

Dest. Priority Queue Dest. Visited List

Node Key Node Cost Next

F 6 D O —

R 6 E 7

6,038,509
17

TABLE 7-continued

Dest. Priority Queue Dest. Visited List

Node Key Node Cost NeXt

E 7

Since there are no connection nodes, the stopping condi
tion fails (step 214) and the system picks the origin priority
queue (step 204). From Table 4, it can be seen that the head
node on the origin priority queue is node L. In step 206, the
system determines that there is one adjacent node (other than
the origin): node T. In step 208, the system determines that
there is not a lower cost knoWn for node T. In step 210, the
origin priority queue and the origin visited list are edited to
add node T and its cost of 10. In step 206, the system
determines there are no more adjacent nodes and node L is
removed from the origin priority queue in step 212. Table 8
re?ects the current state of the origin priority queue and the
visited list after node L Was removed from the priority queue
(step 212).

TABLE 8

Origin Priority Queue Origin Visited List

Node Key Node Cost Prev

Q 6 B 12 J
M 7 J 6 K
T 10 K O —

B 12 L 6 K
M 7 N
N 4 K
Q 6 N
T 10 L

Because there is no connection node the stopping condi
tion fails and the system picks the destination queue (step
204). In step 206, the system determines that there are tWo
adjacent nodes: node E and node P. The cost of traveling
from node E to the destination D is 7. In step 208, the system
determines that there is a cost of traveling from E to D of 7
already knoWn; therefore the visited list is not edited. In step
206, the system determines that there is another adjacent
node: node P. The cost of traveling from node P to the
destination D is 9. There is no loWer cost knoWn; therefore,
P is added to the destination priority queue and visited list.
Node F is removed from the priority queue in step 212. Table
9 re?ects the state of the destination priority queue and
visited list at this point in the method.

TABLE 9

Dest. Priority Queue Dest. Visited List

Node Key Node Cost NeXt

R 6 D O —

E 7 E 7 D
P 9 F 6 D

G 4 D
H 2 D
P 9 F
R 6 G

Since there are no connection nodes, the stopping condi
tion fails (step 214) and the system picks the origin priority

10

15

25

35

45

55

65

18
queue (step 204). From Table 8, it can be seen that the head
node on the origin priority queue is node Q. In step 206, the
system determines that there are tWo adjacent nodes: P and
R. The system ?rst considers node P. In step 208, the system
determines that there is not a loWer cost knoWn for node P

in the origin visited list. In step 210, the origin priority queue
and the origin visited list are edited to add node P and its cost
of 9. In step 206, the system determines there is another
adjacent node: node R. In step 208, the system determines
that there is not a loWer cost knoWn for node R in the origin
visited list. In step 210, the origin priority queue and the
origin visited list are edited to add node R and its cost of 8.
In step 206, the system determines that there are no more
adjacent nodes and node Q is removed from the origin
priority queue in step 212. Table 10 re?ects the current state
of the origin priority queue and the visited list after node Q
Was removed from the priority queue (step 212).

TABLE 10

Origin Priority Queue Origin Visited List

Node Key Node Cost Prev

M 7 B 12 J
R 8 J 6 K
P 9 K O —

T 10 L 6 K
B 12 M 7 N

N 4 K
P 9 Q
Q 6 N
R 8 Q
T 10 L

In step 214, the system determines Whether the stopping
condition has been met. At this point there are tWo connec
tion nodes. Nodes P and R are on the visited lists for the

origin and the destination. The total cost for node P is 18.
That is, the cost from traveling from the origin to node P is
9 and from node P to the destination is 9. The total cost for
node R is 14. Since node R has the loWest total costs, node
R is the best connection node. Various alternatives Within the
scope of the present invention may utilize other de?nitions
of “best connection node.” The cost of traveling from the
origin to the head node M on the origin priority queue is 7.
The cost of traveling from the head node R of the destination
priority queue to the destination is 6. Therefore, the cost of
traveling to and from the head nodes is 13, Which is less than
the total cost of the best cost connection node. Thus, the
stopping condition fails, the system loops back to step 204
and the destination queue is considered.

In step 206 the system looks for adjacent nodes to the
head node R. The ?rst adjacent node considered is node Q.
The cost of traveling from node Q to destination D is 8.
There is no loWer cost knoWn; therefore, Q is added to the
destination priority queue and visited list. In step 206, the
system determines that there is another adjacent node: node
S. The cost of traveling from node S to the destination D is
8. There is no loWer cost knoWn; therefore, S is added to the
destination priority queue and visited list. Node R is
removed from the priority queue in step 212. Table 11
re?ects the state of the destination priority queue and visited
list after node R is removed from the priority queue.

6,038,509

TABLE 11

Dest. Priority Queue Dest. Visited List

Node Key Node Cost Next

E 7 D O —

Q 8 E 7 D
S 8 F 6 D
P 9 G 4 D

H 2 D
P 9 F
Q 8 R
R 6 G
S 8 R

There are three connection nodes: Q, R and P. Nodes Q
and R have a total cost of 14 and P has a total cost of 18.
Thus, Q and R are considered the best connection nodes. The
cost of traveling from the origin to the head node M on the
origin priority queue is 7. The cost of traveling from the head
node E of the destination priority queue to the destination is
7. Therefore, the cost of traveling to and from the head nodes
is 14, Which is equal to the total cost of the best cost
connection node. Thus, the stopping condition is met and the
system builds the path in step 216.

The step of building the path is as follows. A rule selects
some connection node. One such rule is to choose the best
connection node. The selected connection node Z is looked
up in the origin visited list and the previous node Y1 on the
path from the origin is found. If Y1 is not the origin, then Y1
is looked up in the visited list and the previous node Y2 is
found. This continues until the origin is reached. Suppose
the origin is reached as node Yv. Similarly, Z is looked up
in the destination visited list and the next node W1 is found.
If W1 is not the destination, then W1 is looked up in the
visited list. This continues until the destination is reached.
Suppose the destination is reached as node Wx. At this point
the path from the origin to the destination is knoWn: it is the
path from Yv (the origin) to Yv_1, to Yv_2, . . . , to Y2, to Y1,
to Z, to W1, . . . , to Wx(the destination).

In the present example, nodes Q and R Were both the best
connection nodes. The system arbitrarily picks node Q.
Looking at the visited list in Table 10, the best knoWn cost
of traveling from the origin K to node Q involves traveling
from node N to node Q. Thus, the path being built Will travel
from N to Q. The system then ?nds node N in the visited list
and determines that the best path to node N is directly from
the origin K. At this point the path built includes traveling
from K to N to Q. After the system reaches the origin, the
system builds a path from the connection node to the
destination. Looking at the visited list in Table 11, the best
path from Q to the destination involves traveling from Q to
R. Thus, R is added to the path. The visited list also indicates
that the best path from R to D is involves traveling from
node R to node G. Thus, G is added to the path. The visited
list also indicates that the best path from G to D is directly
from G to D. Thus, the path built from the augmented
netWork is KNQRGD.

Note that in the above example, k=1. If k Were reduced to
0.5 the path calculated in step 128 Would be KNMED. That
is, because k modi?ed the cost, the path?nding computation
Was biased to ?nd a quicker route back to the original path.

Looking back at FIG. 4, after the system computes a path
in the augmented netWork the system edits the computed
path in step 130. The system inspects the path created by
step 128 and attempts to identify any links in that path that
Were added during step 126 (hereinafter called “added
links”). If the system ?nds any such added links in the neWly

10

15

20

25

30

35

40

45

55

60

65

20
calculated path, the system determines the tWo end nodes of
the added link. The system looks to the original path created
for the user (prior to the user’s deviation from that original
path) to ?nd the original path betWeen the end nodes of the
added link. The added link is then replaced by the original
path betWeen the end nodes of the added link so that the neW
path Which is the output of the system for recalculating a
path only includes travel along links that Were in the netWork
prior to the step of augmenting the netWork.

For example, the path built in the augmented netWork in
the example above Was KNQRGD. That path is possible in
the augmented netWork because a link Was added to the
augmented netWork that alloWed travel directly from node G
to node D. But in the original netWork, there is no link
betWeen G and D. The original path betWeen nodes G and D
Was GHD. Thus, in the example above, the link from G to
D is replaced by tWo links: a ?rst link from G to H and a
second link from H to D. Thus, the path is edited or reWritten
as KNQRGHD, Which is reported to the user.
The data that comprises the electronic map (or electronic

representation of the netWork) is generally stored in one or
more ?les on a CD-ROM or other suitable media. At run

time, some or all of the ?les can be copied (partially or
entirely) to the local memory for the hardWare system. When
the system augments the netWork, the system can edit the
?les or data copied to the local memory, edit the original ?les
or data stored on other media (if possible) or create neW ?les
to be stored locally or on other media. Thus, the augmented
netWork is represented by the neWly created ?les (if any), the
edited ?les (if any) and/or the applicable original ?les.
One means for decreasing the time needed for computing

or recomputing a path includes caching data. For example,
a portion of memory 14 (FIG. 1) Will be dedicated to act as
a cache for path?nding purposes. When the system looks at
adjacent nodes in step 206 (FIG. 8), it needs to access data
for that node. The system Will ?rst look in the cache portion
of memory 14. If the node information is found in memory
14, the system reads that information and proceeds to carry
out the steps in the method. If the data is not found in the
cache portion of memory 18, then the system Will access the
electronic map database Which may be on a CD-ROM. Other
processor readable storage media suf?ciently local to the
processor can also be used to cache data.

In some systems, the path?nding computation is speeded
up by not considering all nodes to Which a head node is
connected to. Rather, the exploration is limited to certain
neighboring nodes. One such method classi?es nodes
according to the importance of the roads on Which they
occur, and progressively restricts the use of neighboring
nodes as a distance from the origin (or to the destination)
increases. For example, if the cost measure being used is an
estimate of driving time, the exploration might not use
residential-level roads more than tWo minutes’ driving time
from the origin or destination, nor use arterial-level roads
more than ten minutes’ driving time from the origin or
destination, and so on.
The foregoing detailed description of the invention has

been presented for purposes of illustration and description.
It is not intended to be exhaustive or to limit the invention
to the precise form disclosed, and obviously many modi?
cations and variations are possible in light of the above
teaching. The described embodiments Were chosen in order
to best explain the principles of the invention and its
practical application to thereby enable others skilled in the
art to best utiliZe the invention in various embodiments and
With various modi?cations as are suited to the particular use
contemplated. It is intended that the scope of the invention
be de?ned by the claims appended hereto.

6,038,509
21

We claim:
1. A method of ?nding a neW path from a neW origin to

a destination in a network using an electronic representation
of said netWork after a deviation from an original path to
said destination, said original path including original nodes
and original links, comprising the steps of:

augmenting said electronic representation of said netWork
by adding neW links to said electronic representation of
said netWork, said neW links directly connecting a
subset of said original nodes to said destination; and

determining said neW path from said neW origin to said
destination using said electronic representation of said
netWork With said neW links.

2. A method according to claim 1, Wherein:
said electronic representation of said netWork being stored

in a ?rst set of one or more processor readable ?les and
said neW links stored in a second set of one or more

processor readable ?les.
3. A method according to claim 1, further including the

step of:
editing said neW path to only include travel along original

links.
4. A method according to claim 1, further including the

step of:
reporting said neW path.
5. A method according to claim 1, further including the

step of:
determining said neW origin.
6. A method according to claim 5, Wherein:
said step of determining said neW origin estimates said
neW origin to be a location Where a user Will be at a
future time.

7. A method according to claim 1, Wherein:
said subset of said original nodes being rejoining nodes.
8. A method according to claim 1, Wherein:
said step of augmenting includes identifying rejoining

nodes, each of said neW links being connected from one
of said rejoining nodes to said destination.

9. A method according to claim 1, Wherein:
each node of said subset of said original nodes does not

have a direct link to said destination prior to said step
of augmenting.

10. A method according to claim 1, Wherein:
each node of said subset of said original nodes does not

have a direct link to said destination prior to said step
of augmenting and is Within a predetermined distance
from said neW origin.

11. A method according to claim 1, Wherein:
said subset being de?ned to include original nodes having

a loWer bounds Which is less than any upper bounds of
original nodes that do not have a link directly to said
destination.

12. A method according to claim 1, further including the
step of:

receiving operator input, Wherein said deviation from said
original path occurring after travel to a ?rst node and
before travel to a second node and said step of deter
mining said neW path does not utiliZe a link represent
ing a path to said second node in response to said
operator input.

13. A method according to claim 1, Wherein:
an original node having an original link directly to said

destination and not being visited prior to said deviation
has a corresponding costs for traversing said original
link;

10

15

45

55

65

22
said step of augmenting includes editing said correspond

ing cost.
14. A method according to claim 1, Wherein:
said step of augmenting includes assigning costs to said
neW links.

15. A method according to claim 14, Wherein:
each neW link being associated With an original node; and
said assigned cost for a particular neW link being equal to

a constant multiplied by a cost of traveling betWeen
said associated original node and said destination along
said original path.

16. A method according to claim 15, Wherein:
said cost is travel time.
17. A method according to claim 15, Wherein:
said cost is distance.
18. A method according to claim 15, Wherein:
said constant is equal to one.
19. A method according to claim 15, Wherein:
said constant is greater than or equal to Zero; and

said constant is less than or equal to one.
20. A method according to claim 15, further including the

steps of receiving operator input; and
determining said constant based on said operator input.
21. A method according to claim 1, Wherein:
said step of augmenting includes removing an original

link.
22. A method according to claim 21, further including the

step of:
receiving operator input, said step of removing an original

link being based on said operator input.
23. A method according to claim 1, further including the

steps of:
identifying rejoining nodes, each of said neW links being

connected from one of said rejoining nodes to said
destination;

editing said neW path to only include travel along original
links; and

reporting said neW path;
Wherein said electronic representation of a netWork is an

electronic map, said step of augmenting includes
assigning costs to said neW links, each neW link being
associated With an original node, said assigned cost for
a particular neW link being equal to a constant multi
plied by a cost of traveling betWeen said associated
original node and said destination along said original
path, and said constant is greater than or equal to Zero
and less than or equal to one.

24. A method according to claim 1, Wherein:
said electronic representation of a netWork is an electronic

map.
25. A method according to claim 24, further including the

step of:
editing said neW path to only include travel along original

links.
26. A method according to claim 24, Wherein:
said step of augmenting includes assigning costs to said
neW links.

27. A method according to claim 26, Wherein:
each neW link being associated With an original node; and
said assigned cost for a particular neW link being equal to

a constant multiplied by a cost of traveling betWeen
said associated original node and said destination along
said original path.

6,038,509
23

28. A method of ?nding a neW path from a neW origin to
a destination in a network using an electronic representation
of said netWork after a deviation from an original path to
said destination, said original path including original nodes
and original links, comprising the steps of:

augmenting said electronic representation of said netWork
by adding neW links to said electronic representation of
said netWork, said neW links directly connecting a
subset of said original nodes to said destination; and

determining said neW path from said neW origin to said
destination using said electronic representation of said
netWork With said neW links, said deviation from said
original path occurring after travel to a ?rst node and
before travel to a second nodes, said step of determin
ing said neW path does not utiliZe a link representing
travel from said ?rst node to said second node.

29. A processor readable storage medium having proces
sor readable program code embodied on said processor
readable storage medium, said processor readable program
code for programming a processor to perform a method for
?nding a neW path from a neW origin to a destination in a
netWork using an electronic representation of said netWork
after a deviation from an original path to said destination,
said original path including original nodes and original
links, said method comprising the steps of:

augmenting said electronic representation of said netWork
by adding neW links to said electronic representation of
said netWork, said neW links directly connecting a
subset of said original nodes to said destination; and

determining said neW path from said neW origin to said
destination using said electronic representation of said
netWork With said neW links.

30. A processor readable storage medium according to
claim 29, Wherein, said method further includes the step of:

editing said neW path to only include travel along original
links.

31. A processor readable storage medium according to
claim 29, Wherein, said method further includes the step of:

reporting said neW path.
32. A processor readable storage medium according to

claim 29, Wherein, said method further includes the step of:
determining said neW origin.
33. A processor readable storage medium according to

claim 29, Wherein:
each node of said subset of said original nodes does not

have a direct link to said destination prior to said step
of augmenting.

34. A processor readable storage medium according to
claim 29, Wherein:

each node of said subset of said original nodes does not
have a direct link to said destination prior to said step
of augmenting and is Within a predetermined distance
from said neW origin.

35. A processor readable storage medium according to
claim 29, Wherein:

said subset being de?ned to include original nodes having
a loWer bounds Which is less than any upper bounds of
original nodes that do not have a link directly to said
destination.

36. A processor readable storage medium according to
claim 29, Wherein, said method further includes the step of:

receiving operator input, Wherein said deviation from said
original path occurring after travel to a ?rst node and
before travel to a second node and said step of deter
mining said neW path does not utiliZe a link represent

10

15

25

35

45

55

65

24
ing a path to said second node in response to said
operator input.

37. A processor readable storage medium according to
claim 29, Wherein:

said step of augmenting includes assigning costs to said
neW links.

38. A processor readable storage medium according to
claim 37, Wherein:

each neW link being associated With an original node; and
said assigned cost for a particular neW link being equal to

a constant multiplied by a cost of traveling betWeen
said associated original node and said destination along
said original path.

39. A processor readable storage medium according to
claim 29, Wherein:

said electronic representation of a netWork is an electronic
map.

40. A processor readable storage medium according to
claim 39, Wherein, said method further includes the steps of:

identifying rejoining nodes, each of said neW links being
connected from one of said rejoining nodes to said
destination,

editing said neW path to only include travel along original
links; and

reporting said neW path;
Wherein said step of augmenting includes assigning costs

to said neW links, each neW link being associated With
an original node, said assigned cost for a particular neW
link being equal to a constant multiplied by a cost of
traveling betWeen said associated original node and
said destination along said original path, and said
constant is greater than or equal to Zero and less than or
equal to one.

41. A processor readable storage medium according to
claim 39, Wherein, said method further includes the step of:

editing said neW path to only include travel along original
links.

42. A processor readable storage medium according to
claim 39, Wherein:

said step of determining includes assigning costs to said
neW links.

43. A processor readable storage medium according to
claim 39, Wherein:

each neW link being associated With an original node; and
said assigned cost for a particular neW link being equal to

a constant multiplied by a cost of traveling betWeen
said associated original node and said destination along
said original path.

44. A system for ?nding a neW path from a neW origin to
a destination in a netWork using an electronic representation
of said netWork after a deviation from an original path to
said destination, said original path including original nodes
and original links, comprising:
means for augmenting said electronic representation of

said netWork by adding neW links to said electronic
representation of said netWork, said neW links directly
connecting a subset of said original nodes to said
destination; and

means for determining said neW path from said neW origin
to said destination using said electronic representation
of said netWork With said neW links.

45. A system according to claim 44, further including:
means for reporting said neW path, said electronic repre

sentation of said netWork being an electronic map.

6,038,509
25

46. A system for ?nding a neW path from a neW origin to
a destination in a network using an electronic representation
of said netWork after a deviation from an original path to
said destination, said original path including original nodes
and original links, comprising:

one or more processor readable storage mediums for

storing said electronic representation of said netWork;
and

a processor, in communication With said one or more

processor readable mediums, said processor pro
grammed to:
augment said electronic representation of said netWork
by adding neW links to said electronic representation
of said netWork, said neW links directly connecting a
subset of said original nodes to said destination, and

determine said neW path from said neW origin to said
destination using said electronic representation of
said netWork With said neW links.

47. A system according to claim 46, Wherein:
said electronic representation of said netWork is an elec

tronic map.

10

15

26
48. A system according to claim 47, further including:
a display, in communication With said processor, for

reporting said neW path.
49. A system according to claim 47, Wherein:
said processor further programmed to edit said neW path

to only include travel along original links.
50. A system according to claim 47, Wherein:
each node of said subset of said original nodes does not

have a direct link to said destination prior to adding said
neW links.

51. A system according to claim 47, Wherein:
said deviation from said original path occurring after

travel to a ?rst node and before travel to a second node;
and

said neW path does not include a link representing travel
from said ?rst node to said second node.

52. A system according to claim 47, Wherein:
said processor further programmed to assign costs to said
neW links.

