United States Patent
Williams
[54] COMBINED LINEAR AND TWODIMENSIONAL BAR CODE STRUCTURE

Inventor: Theodore C. Williams, Acton, Mass.
Assignee: Uniform Code Council, Inc., Dayton, Ohio

Appl. No.: 08/843,075
Filed: Apr. 30, 1997
Int. Cl. ${ }^{6}$ \qquad G06K 19/06
U.S. Cl.

235/494; 235/462.08; 235/462.09;
235/462.1
Field of Search \qquad 235/494, 462.08, 235/462.09, 462.1

References Cited

U.S. PATENT DOCUMENTS

5,304,787	4/1994	Wang 235/462
5,357,094	10/1994	Baldwin 235/462.1
5,446,791	8/1995	Wooley et al. 381/118
5,490,217	2/1996	Wang et al. 380/51
5,572,010	11/1996	Petrie 235/494
5,600,119	2/1997	Dvorkis et al. 235/462.1
5,627,900	5/1997	Wooley et al. 381/118
5,726,435	3/1998	Hara et al. 235/462.1

5,773,806
6/1998 Longacre, Jr. \qquad 235/462.1

OTHER PUBLICATIONS

IDS Feb '99, Deb Navas, "New Marking Options for Electronics", pp. 30-41.
Primary Examiner-Donald Hajec
Assistant Examiner-Douglas X. Rodriguez
Attorney, Agent, or Firm-Iandiorio \& Teska

[57]

ABSTRACT
A combined linear and two-dimensional bar code structure containing encoding information therein. There is a linear bar code structure portion including a series of bars and spaces each bar and space made up of at least one module. There is also a two-dimensional bar code structure portion located adjacent to the top or bottom of the linear bar code portion. The two-dimensional bar code structure portion has a plurality of elements wherein each element has a predefined relationship with the modules of the linear bar code structure portion for determining the placement of the twodimensional bar code structure elements. The predefined relationship may include making each element's width equal to the width of the modules of the linear bar code structure portion and aligning each element of the two-dimensional bar code structure with a module.

17 Claims, 2 Drawing Sheets

FIG. I
PRIOR ART

FIG. $2 A$
which is compatible with existing bar code structures such as the EAN/UPC or UCC/EAN bar codes.

This invention results from the realization that in many cases where primary product information data is encoded in 5 a linear bar code structure and supplemental product information data is encoded in a two-dimensional bar code structure, the linear bar code structure itself can be used as a finder pattern, orientation pattern, and horizontal reference pattern for the two-dimensional bar code structure thus eliminating the significant overhead associated with prior art two-dimensional bar code structure designs and resulting in an integral, high capacity, high density bar code structure.

This invention features a combined linear and twodimensional bar code structure containing encoding information therein. There is a linear bar code structure portion including a series of bars and spaces, each bar and space comprising at least one module. There is also a twodimensional bar code structure portion located adjacent to the top or bottom of the linear bar code portion. The two-dimensional bar code structure portion has a, plurality of elements wherein each element has a predefined relationship with the modules of the linear bar code structure portion for determining the placement of the two-dimensional bar code structure elements.

In the preferred embodiment, the predefined relationship includes making each element's width equal to the width of the modules of the linear bar code structure portion and aligning each element of the two-dimensional bar code structure portion with a module.

For increasing the vertical resolution, each element has a height which is one and one half to three times larger than the width of the element.

The two-dimensional bar code structure portion prefer35 ably includes a vertical reference distance identifier pattern such as three sets of opposing contrast elements, each set including two opposing contrast elements, each opposing set being of opposite polarity. The first set is typically located above the first module of the linear bar code structure portion, the second set is typically located above the middle module of the linear bar code structure portion, and the third set is typically located above the last module of the linear bar code structure portion.

DISCLOSURE OF PREFERRED EMBODIMENT

Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
FIG. 1 is a top view of a prior art two-dimensional bar code structure and its associated finder pattern;
FIG. 2A is a top view of the combined linear and two-dimensional bar code structure of this invention; and
FIG. 2B is a top view of one particular two-dimensional bar code symbol area of the two-dimensional bar code structure portion of the combined bar code structure shown in FIG. 2A.

Prior art two-dimensional bar codes include symbol area 10, FIG. 1, made up of typically two hundred and twenty individual square or rectangular elements such as element 12. Each element has a predefined width x and a predefined height y as shown for element $\mathbf{1 2}$. Element $\mathbf{1 2}$ is dark and the pattern formed by the other dark elements form the "T" shaped symbol 13 shown in FIG. 1 within symbol area 10.

In order for the bar code scanner to distinguish symbol 13 from other markings, to determine the physical orientation
of each symbol, and to determine the location of each element of symbol $\mathbf{1 3}$ so it can sample its light or dark state, finder pattern 14 is required. Finder pattern 14 includes "L" shaped region 16 which allows the scanner to recognize symbol 13 as a two-dimensional bar code symbol and to determine the physical orientation of symbol 13. Elements 18 and 20 allow the bar code scanner to determine the physical location of each individual element of symbol 13 (such as element 12) so the bar code scanner can properly sample the state of each individual element making up symbol 13.

As discussed in the Background of Invention above, finder pattern 14 takes up a significant amount of space thus defeating the goal of a high capacity, high density symbology.

In accordance with this invention, however, finder pattern 14 is not required. Instead, the combined linear and twodimensional bar code structure of this invention includes linear bar code structure portion 30, FIG. 2A, including a series of bars such as bars 32 and 34 , and spaces such as space $\mathbf{3 6}$ and space 38 . Linear bar code structure $\mathbf{3 0}$ may be a UPC-A bar code containing twelve digits of information to identify a particular product. Bar 34 is one module wide and therefore the smallest width bar possible. Bar 32, on the other hand, is several modules in width. The same is true for the difference in width between space 38 and space 36.

In this invention, two-dimensional bar code structure portion 40 is located on the top or bottom of linear bar code portion $\mathbf{3 0}$ but preferably at the top as shown in FIG. 2A so it does not interfere with the human readable data located at the bottom as shown at 42. Two-dimensional bar code structure $\mathbf{4 0}$ can typically encode up to thirty eight digits and/or control characters. It contains one hundred thirty six bits of data, seventy two bits of error correction, four bits of format data, and six bits used in three vertical reference patterns making up a vertical reference distance identifier pattern $\mathbf{5 1}$ discussed in more detail below. Two-dimensional bar code structure $\mathbf{4 0}$ has two rows but could have as many as sixteen rows.

In order to correctly orient and locate each element such as element 44, FIG. 2B, of the individual symbols making up two-dimensional bar code structure portion 40, FIG. 2A, each element 44 has a predefined relationship with the modules of linear bar code structure portion $\mathbf{3 0}$.

In the preferred embodiment, there is a relationship between each element 44 of two-dimensional bar code structure portion 40 and the modules of linear bar code structure portion 30. Each element, such as element 44 of two dimensional bar code structure portion $\mathbf{4 0}$ has a width equal to the width of a module of linear bar code structure portion $\mathbf{3 0}$ and is directly aligned with a module. Thus, each data element of two-dimensional bar code structure portion 40 has a width which is the same as the width of each individual module of linear bar code structure $\mathbf{3 0}$ and each element is aligned on top of a module of linear bar code structure portion $\mathbf{4 0}$. This allows the scanner to determine the center of an element 44 to sample its black or white state or, in other words, provides a horizontal reference distance.

Each data element 44 of two-dimensional bar code structure portion 40 also preferably has a height which is greater than its width for increasing the vertical resolution of the two-dimensional bar code structure. Thus, each element preferably has a height of one and one half to three times its width.

In this way, the only overhead associated with the combined linear and two-dimensional bar code structure of this
invention is linear bar code structure portion $\mathbf{3 0}$ (which is present in most cases anyway) and some type of a vertical reference distance identifier pattern 51. In the preferred embodiment, pattern $\mathbf{5 1}$ includes sets of opposing contrast elements such as set $\mathbf{5 0}$, set $\mathbf{5 2}$, and set $\mathbf{5 4}$. Each set includes opposing contrast elements such as elements $\mathbf{5 6}$ and 58 of set 50 , elements 60 and 62 of set 52 , and elements 64 and 66 of set 54. Preferably, first set $\mathbf{5 0}$ is located above first module $\mathbf{7 0}$ of linear bar code structure portion 30, set $\mathbf{5 2}$ is located above middle module 72, and set $\mathbf{5 4}$ is located above last module 74. Each adjacent set is of opposite polarity as shown. Thus, set $\mathbf{5 0}$ includes dark element $\mathbf{5 8}$ on top of light element 56, while set 52 includes light element 60 on top of dark element 62. This vertical reference distance identifier pattern provides the scanner with a vertical reference distance for two-dimensional bar code structure portion 40.
The scanner is able to recognize each individual symbol area of the two dimensional structure portion $\mathbf{4 0}$ by programming it to read information above the linear bar code structure portion 30. The orientation of the two-dimensional bar code structure and the horizontal reference position is fixed because each element is the same width as a module and is aligned with the top of a module of the linear bar code structure portion. In this way, the combined linear and two-dimensional bar code structure of this invention does not have the overhead associated with the prior art finder, orientation, and horizontal position reference patterns, is compatible with existing scanners, and is compatible with existing bar code structures.

Although specific features of this invention are shown in some drawings and not others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention.

Other embodiments will occur to those skilled in the art and are within the following claims:

What is claimed is:

1. A combined linear and two-dimensional bar code structure containing encoding information therein comprising:
a linear bar code structure portion including a series of bars and spaces each bar and space comprising at least one module; and
a two-dimensional bar code structure portion located adjacent to the top or bottom of the linear bar code portion, said two-dimensional bar code structure portion comprising:
a plurality of elements wherein each element has a predefined relationship with the modules of the linear bar code structure portion for determining the placement of the two-dimensional bar code structure elements.
2. The combined linear and two-dimensional bar code structure of claim 1 in which the predefined relationship includes each element having a width equal to the width of the modules of the linear bar code structure portion and each element of the two-dimensional bar code structure portion being aligned with a said module.
3. The combined linear and two-dimensional bar code structure of claim 2 in which each element has a height which is n times larger than the width of the element for increasing the vertical resolution of the two-dimensional bar code structure portion.
4. The combined linear and two-dimensional bar code structure of claim 3 in which $n=2$.
5. The combined linear and two-dimensional bar code structure of claim $\mathbf{3}$ in which $n=3$.
6. The combined linear and two-dimensional bar code structure of claim 1 in which said two-dimensional bar code structure portion further includes a vertical reference distance identifier pattern.
7. The combined linear and two-dimensional bar code 5 structure of claim 6 in which said vertical reference distance identifier pattern includes at least one set of opposing contrast elements.
8. The combined linear and two-dimensional bar code structure of claim 7 in which there are two opposing contrast elements in each set.
9. The combined linear and two-dimensional bar code structure of claim 7 in which there are m sets of opposing contrast elements, each set located above a module of the linear bar code structure, each adjacent set being of opposite polarity.
10. The combined linear and two-dimensional bar code structure of claim 9 in which $m=3$ and the first set is located above the first module of the linear bar code structure portion, the second set is located above the middle module of the linear bar code structure portion, and the third set is located above the last module of the linear bar code structure portion.
11. A combined linear and two-dimensional bar code structure containing encoded information therein comprising:
a linear bar code structure portion including a series of bars and spaces each comprising at least one module; and
a two-dimensional bar code structure portion located adjacent to the linear bar code portion, said twodimensional bar code structure portion comprising:
a plurality of elements wherein each element has a width equal to the width of a module and each element is aligned with a module for determining the placement of the two-dimensional bar code structure elements.
12. A combined linear and two-dimensional bar code structure containing encoded information therein comprising:
a linear bar code structure portion including a series of bars and spaces each comprising at least one module; and
a two-dimensional bar code structure portion located adjacent to the linear bar code portion, said twodimensional bar code structure portion comprising:
a plurality of elements wherein each element has a predefined relationship with the modules of the linear bar code structure portion for determining a placement of the two-dimensional bar code structure elements, and
a vertical reference distance identifier pattern.
13. The combined linear and two-dimensional bar code 5 structure of claim 12 in which the predefined relationship includes each element having a width equal to the width of the modules of the linear bar code structure portion, each element of the two-dimensional bar code structure portion being aligned with a said module.
14. The combined linear and two-dimensional bar code structure of claim 12 in which said vertical reference distance identifier pattern includes at least one set of opposing contrast elements.
15. The combined linear and two-dimensional bar code

contrast elements in each set.

16. The combined linear and two-dimensional bar code structure of claim 14 in which there are m sets of opposing contrast elements, each set located above a module of the line ar bar code structure, each adjacent set being of opposite polarity.
17. The combined linear and two-dimensional bar code structure of claim 16 in which $\mathrm{m}=3$ and the first set is located above the first module of the linear bar code structure of the linear bar code structure portion, and the third set is located above the last module of the line ar bar code structure portion.
