
United States Patent [191
USOO5768492A

Patent Number: 5,768,492 [11]

Schumer [45] Date of Patent: Jun. 16, 1998

[54] DIGITIZER INTERFACE 4,821,029 4/1989 Logan et a1. . 345/173
4,827,410 5/1989 Corren 345/179

[76] Inventor: Alfred L. Schumer. 20522 NE. 66th 4933514 6/1990 B°w°f$ ---- -- 173/13
St“ Rcdmonm Wash 98053 5,049,862 9/1991 Dan et a1. 345/179

[21] Appl. No.: 634,065 Primary Examiner-Regina Liang
[22] File‘? Apr 18 1996 Attorney, Agent, or Firm—Graybeal Jackson Haley LLP

. . ,

_ _ [57] ABSTRACT
Related U.S. Appllcatlon Data

A digitizer interface that translates the digitizer-speci?c
[60] Continuation of Ser,‘ No. 448,654, May 24, 1995, aban- reports into virtual areas of the digitizer which may be

‘113g?’ :1"? 25d“ dlvlslo“ of set N‘’- 716305’ J““- 17- divided into speci?c regions or virtual tablets. Each region
’ a an on ' permits the speci?cation of individual coordinate systems or

[51] Int. Cl.6 G09G 5/00 stored sequences of commands. The interface may be imple
[52] [1,3, C], 345/173 mented on a host computer, in the digitizer. or in interme
[53] Field of Search 345/173. 174. dim clcclmnics- The interface allows reports from digitiz

345/17g_ 179‘ 175_ 176_ 177; 178/13_ 19_ ers of dilfering data output formats to be translated into a
20; 395 /g32_ 883_ 385. 392_ 893 standard format internal to the interface thereby isolating the

host processor from a given digitizer‘s attributes. The inter
[56] References Cited face may be con?gured to operate many digitizers from a

single host.
U.S. PATENT DOCUMENTS

4,451,895 5/1984 Sliwkowski 345/156 14 Claims, 13 Drawing Sheets

2 F‘

‘ l 1 If 1 l l

\ , 1 If‘

111:1 | /r———f: ‘ / \ /
llllllllll L , l _, . 1

Single-User Network 1

US. Patent Jun. 16, 1998 Sheet 1 0f 13 5,768,492

2
I

m m. d!
mi... Fag, f?

Y

Single-User Network

FIGO 11

US. Patent Jun. 16,1998 Sheet 2 of 13 5,768,492

US. Patent Jun. 16, 1998 Sheet 3 0f 13 5,768,492

22 / Re ion

S/M

Tablet Scale '1“ l8

Device / '2

US. Patent Jun. 16, 1998 Sheet 4 of 13 5,768,492

'————-—. Coordinates?

Status Event Adjust
Bit? ' Packet Signs

Error Process
Packet Coordinates

I

Response Process
Packet Events '--——-‘

IFKGO 4

US. Patent Jun. 16, 1998 Sheet 5 0f 13 5,768,492

_ _ _ _ _ _ _ _ _ _ _ _

US. Patent Jun. 16, 1998 Sheet 7 0f 13 5,768,492

NNm

US. Patent Jun. 16, 1998 Sheet 8 of 13 5,768,492

O
NOE

NO HO

w:

I 1 \. lmmemlemdnaulkmom

I I rnMHHMZ lmpdolm>ddm

mw:

mdoiumq mlmmmdad lumzmmm
L

OE

5,768,492 Jun. 16, 1998 Sheet 9 0f 13 US. Patent

US. Patent Jun. 16,1998 Sheet 10 0f 13 5,768,492

Initialize
System V

Procedure
Command?

Read Read
Host Procedure

Command Command

7

Process
Command

i

i FHGO M)

US. Patent Jun. 16, 1998 Sheet 11 0f 13 5,768,492

W FIG, M

US. Patent Jun. 16, 1998 Sheet 12 of 13 5,768,492

Deoodn mum

Valid
No , Region PL“

Evem?

LY“ Yes
Device Copy
To 'r-‘bm X'-l____, m“

Command Que

Finamgim 1 Macro Ya Queue
From mm ‘ Recording? -———~'~> Mnau

Cocldinm Event

No

7
V

N° EmblcHost <
—> ,H Um

Y“ I FHGOHZ

\\/ _/ ‘

U.S. Patent Jun. 16, 1998 Sheet 13 0f 13 5,768,492

206 /
Display (0)

f 222

90 Degrees (6)

\

‘ 270 Degrees [5)

0 Degrees (8')

\

180 Degrees (7)

204

FIG, 13

5.768.492
l

DIGITIZER INTERFACE

This application is a continuation of application Ser. No.
08/448.654. ?led May 24. 1995. now abandoned. which is a
divisional application of application Ser. No. 07/716305.
?led Jun. 17. 1991. now abandoned. the bene?t of the ?ling
dates of which are hereby claimed under 35 USC 120.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates in general to digitizing or data
tablets (“digitizers”) and in particular to interfacing digitiz
ers to host computers. their operating systems and applica
tion programs.

2. Background Art
Digitizers are computer peripherals that translate a user’s

hand motion into digital coordinates suitable for use by a
computer system. This translation is performed within an X.
Y and possibly Z coordinate system within the device
comprising an electronic grid over which is placed a trans
ducer. This transducer may be pen-shaped (“stylus"). rect
angular or elliptical (“cursor” or “puck”) containing one or
more buttons. A microprocessor within the digitizer trans
lates the position of the transducer on the grid into digital
coordinates and reports its location and button status to the
host computer via a communications link which is typically
a stream of serial bits.

Information transmitted to the host computer is encapsu
lated in a speci?c format comprising multiple characters of
data which are grouped into the button information and
coordinates. Each transmission of this information is
referred to as a “report." Reports are sent either continuously
or upon satisfaction of some de?ned combination of button
states or distance moved. The rate at which reports are sent
from the digitizer to the host computer varies considerably
depending upon the particular digitizer. the speci?cation of
the button states or programmed con?guration and may
range up to several hundred times per second.

In addition to transmitting coordinate data to the host
computer. digitizers often accept commands from the host
computer governing the operating characteristics of the
digitizer. These commands are usually encoded in individual
characters which collectively comprise a command and its
arguments. Examples of such commands include scaling the
digitizers axis to an absolute value or resolution in counts
per unit of measurement. selecting the rate at which reports
are transmitted or specifying the type or format of informa
tion sent with each report.
Upon receipt of each character of data from the digitizer.

the host system is interrupted from the task it was engaged
in and processes the data by combining it with previous data
characters until a complete report has been received. It then
translates this data and takes appropriate action depending
on the information contained in the report. e. g. button
presses or releases or coordinate values. Such actions may
include moving a visible cursor on the video display
attached to the host computer or selecting some action
depending on the location and status of one or more buttons.

Digitizers are frequently used to draw information into an
application program or select some application command
via a button press or release. The determination of which
action to perform is decided within the host computer by
translating the button state and location of the cursor into
known areas of the video display or digitizing tablet. If the
action is based on translation of the action to a location

20

25

35

45

50

55

65

2
within the video display. it is often referred to as a “menu
selection.” Alternatively. if the translation is performed
based on a location within the digitizer. it is referred to as a
“template command.” This latter method often requires a
“template" or physical menu positioned over the digitizer
and depicting speci?c locations as menus or graphical
images.

Regardless of the method used for translating the action.
considerable computing time by the host processor is
required which is often directly related to the number of
locations within the video display or digitizer which must be
tested and translated. This computing time reduces the
amount of computing available to the host operating system
or its application programs. Furthermore. in the event the
translation is based upon locations within the digitizer.
information pertaining to the speci?c digitizer such as its
physical size and con?guration must be used in the trans
lation which often constrains the translation to a speci?c
digitizer and requires a different methodology for each
digitizer size and type.

Heretofore. efforts to provide template translations have
been restricted to a small number of template areas and
implemented as a series of computer instructions speci?c to
the digitizer and the actual location of each menu location on
the digitizer surface. These instructions may be executed by
the microprocessor within the digitizer or by the host
processor through the use of a dedicated translation appli
cation program. When done this way. these methods are
referred to as “hard-coded” templates and are determined at
the time of digitizer manufacture or creation of the appli
cation program or template. Once created. these instructions
are dependent upon the known digitizer attributes and the
locations to be translated. Hence. they cannot be changed
without redesigning the digitizer or recreating the applica
tion program on the host processor.

Hard-coded templates necessarily restrict template trans
lation activities to the time of digitizer manufacture or
creation of the application program by experienced com
puter professionals and do not afford the typical computer
user the ability to modify or even create their own templates.
Furthermore. such templates are restricted to the speci?c
digitizer. are often expensive to develop or purchase and
require considerable host processor computing time result
ing in lower system throughput manifested by slower appli
cation response time.

SUMMARY OF THE INVENTION

The principal object of the present invention is to provide
a method of de?ning. manipulating and processing large
numbers of template locations on a digitizer in a manner
which signi?cantly reduces host processor computation. The
templates may be created and changed dynamically by
computer users and application programs and the application
progams are not restricted to any speci?c digitizer or host
processor.

In ful?llment and implementation of the previously
recited object. a primary feature of the invention resides in
the de?nition and methodology of an advanced digitizer
interface (the “Interface") which allows the dynamic cre
ation and manipulation of template areas non-speci?c to any
digitizer or host processor. Embedded in this Interface is a
de?ned methodology for translating digitizer-speci?c
reports into virtual areas of the digitizer which are accessed
as speci?c numbered regions. Each of these regions may
possess various attributes which collectively permit the
speci?cation of individual coordinate systems or stored
sequences of commands.

5 .768.492
3

An additional feature of the invention includes a device
independent Interface to the digitizer which isolates the
computer user or application program from a given digitiz
er’s attributes and permits creation of one set of instructions
which may be executed across any number of digitizers or
host processor systems. The invention includes a tablet
addressing feature which allows many tablets to be con
nected to a single computer or a network of computers and
operated independently of each other.

Finally. the preferred embodiment of the invention uti
lizes a dedicated microprocessor to implement this advanced
digitizer Interface which signi?cantly improves host proces
sor throughput and application response time (the “Circuit”).
This microprocessor may be implemented as either an
input-output processor for the host system. dedicated exter
nal controller or a replacement to the digitizer microproces
sor itself; the choice of which is governed by cost and
performance considerations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the single-user and network con?gura
tions embodied in the present invention;

FIG. 2 illustrates the relationships among the conceptual
digitizer layers embodied in the present invention;

FIG. 3 illustrates the relationships among the three coor
dinate systems embodied in the present invention;

FIG. 4 is a ?owchart depicting a packet decoding process;
FIG. 5 is a block schematic of four circuits for the present

invention.
FIG. 6 is a schematic of the Central Processing Unit

circuit for the present invention.
FIG. 7 is a schematic of the Serial Input/ Output circuit for

the present invention.
FIG. 8 is a schematic of the Programmed Input/Output

circuit for the present invention.
FIG. 9 is a schematic of the Bus Interface Unit circuit for

the present invention.
FIG. 10 is a ?owchart depicting the main program loop of

the present invention;
FIG. 11 is a ?owchart depicting command execution unit

of the present invention;
FIG. 12 is a ?owchart depicting interrupt event processing

of the present invention;
FIG. 13 illustrates an example template menuing system

created with present invention;

DESCRIPTION OF THE lNVENTION

The description of the invention encompasses four sec
tions including: a description of the Interface. the preferred
embodiment implemented as discrete microprocessor
circuit. the ?rmware instructions to the preferred embodi
ment and ?nally an example of using the Interface within an
application context. The Intm'face details the conceptual
methodology and speci?c command structure while the
circuit description discloses one possible implementation for
an IBM PC/AT personal computer. The ?rmware description
includes block ?owcharts of computer instructions for com
bining the Interface and microprocessor circuit and the
application example demonstrates their use in creating a
template menuing system.

Interface Description
Con?gurations

Referring to FIG. 1. the Interface supports two con?gu
rations: single-user 2 and network 4. The single-user 2

15

20

25

30

35

410

45

55

65

4
con?guration supports one digitizer per system while the
network con?guration 4 supports up to sixteen digitizers
inter-connected to a single host system. An important feature
of the Interface is the ability to execute Interface commands
without modi?cation across either con?guration through the
use of tablet addresses (see Packet Protocol below).
The single-user con?guration 2 of the Interface may be

implemented as a discrete microprocessor circuit as
described below (see “Circuit”) or within the microproces
sor of the digitizer connected directly to a host processor via
an BIA-232 serial communications link.
The network con?guration 4 of the Interface may be

implemented across a number of well-known. industry
standard network topologies and architectures. However. the
preferred embodiment utilizes the nine-bit serial communi
cations mode inherent in the microprocessor of the circuit
(as described below) utilizing the topology and architecture
of the BITBUS Interconnect Serial Control Bus across an
EIA-485 serial communications link. This serial bus stan
dard is well-lmown and fully described in “The BITBUS
Interconnect Serial Control Bus Speci?cation” (Intel
Corporation. 1988). The BIA-485 serial communications
standard is fully described in “Standard for Electrical Char
acteristics of Generators and Receivers for Use in Balanced
Digital Multipoint Systems" (Electronics Industry
Association. 1983).
Logical Layers

Referring to FIG. 2. the Interface supports three logical
layers which provide an increasing level of abstraction from
the actual digitizer: device 6. tablet 8 and region 10.
The device layer 6 represents the physical device or

digitizer whose properties are established at the time of
manufacture. Since digitizers vary greatly both in terms of
physical characteristics and output formats. the device layer
provides the ?rst level of abstraction by translating both the
formats and physical characteristics into a device
independent format internal to the Interface. The device
layer may be queried for certain attributes but cannot be
changed.
The tablet layer 8 provides the ?rst true level of abstrac

tion to an application program and is consistent across all
devices. It is the logical level at which device-independent
control over the Interface is exercised and incorporates a
device-independent coordinate system which may be scaled
by an application program and within which regions are
created
The region layer 10 provides the highest level of abstrac

tion to the application program and from which all user
events are generated. The region layer consists of discrete
areas de?ned within the tablet layer which may be assigned
speci?c attributes such as event masks. de?nable coordinate
systems or stored sequences of Interface commands
executed upon some user-event.
Coordinate Systems
A “coordinate system” is used to identify a point relative

to a horizontal. vertical and occasional Z-axis. All coordi
nate systems have an origin and may be transformed. scaled
or rotated. Each point on a tablet can be located by means
of a unique pair of X and Y coordinates. Referring to FIG.
3. the Interface supports three such coordinate systems:
device 12. tablet l4 and regional 16.
The device coordinate system 12 is dependent upon the

physical properties of each digitizer and cannot be changed
by an application program. However. properties of the
device coordinate system can be queried including the
device axis. extents and resolution.
The tablet coordinate system 14 is super-imposed on all

devices that the Interface supports and is used to de?ne

5.768.492
5

regional coordinate systems and upon which all tablet geom
etries are calculated. The tablet coordinate system extents
may be scaled 18 either by explicitly setting the extents or
implicitly by setting the resolution in lines per inch. The
tablet coordinate system may not be transformed or rotated
and cannot be changed once one or more regions have been
de?ned.

Regional coordinate systems 16 (also referred to as local
coordinate systems) are the most powerful and versatile
coordinate systems supported by the Interface and may be
scaled 20. transformed 22 or rotated 24. Prior to use. they
must be explicitly created by specifying the bounding rect
angle in tablet coordinates and may be destroyed explicitly
by closing each region or implicitly when closing the tablet.
Once created. a regional coordinate system may be scaled

by changing the extents or resolution. transformed by mov
ing the origin or rotated by specifying a counter-clockwise
rotation factor in degrees. Each of these properties may also
be queried. generating response packets whose format is
dependent on the information requested.
Packet Protocol

All communication between the Interface and host pro
cessor is accomplished via packets which comprise two or
more 16-bit words. Each packet is delineated and synchro
nized through the use of a phasing bit in the most
signi?cant-bit of each word. This phase bit is a logical-one
at the start of each packet and zero for each successive
packet word. This allows both the Interface and host pro
cessor to detect the start of each packet from a stream of data
as well as the recognition of invalid packets.
The size and format of each packet depends on the packet

type of which the preferred embodiment of the Interface
supports three: command. response and event packets. Com
mand packets are transmitted from the host processor to the
Interface and contain both commands and arguments. Upon
execution of the command. the Interface sends a response
packet back to the host processor containing both an error
code and arguments. if appropriate. Finally. event packets
are generated by the Interface in response to user-actions
such as button presses. button releases or movement of the
cursor within a speci?c region.
The three layers of the Interface accept commands. gen

erate responses and. in the case of regions. generate events
based on a 15-bit addressing scheme embedded in each
packet. The address is always contained in the second word
of each packet regardless of packet type and is formatted as

TABLET R REGION

where:
T Tablet group bit (bit 14) indicating the address is

directed to a group of tablets the number of which is
contained in the tablet address.

TABLET Tablet address (bits 10-13) indicating the
address of the tablet or group to which a command or
response is directed or generated.

R Region group bit (bit 9) indicating the address is
directed to a group of regions the number of which is
contained in the region address.

REGION Region address (bits 0-8) indicating the address
of the region or group to which a command or response
is directed or an event generated.

This addressing scheme is analogous to a post of?ce box
address in which the tablet address refers to the post o?ice
and the region address to the particular box. In this regard.
commands and responses at the tablet layer require only the

5

15

25

35

45

50

55

65

6
tablet address—the region address ignored. Similarly. region
commands. responses and events require both the tablet and
region address.
Commands addressed to the device layer are speci?ed

with a tablet address. rather than device address. in order to
facilitate the allocation of multiple logical tablets per physi
cal device. This allocation may be performed by appropriate
commands from the host processor and requires partitioning
the physical device into one or more logical areas. Each area
responds to commands directed to a particular tablet and
generates event packets using tablet addresses for which
which they have been see Interface Description: Event
Processing below).
The format of a command packet issued to the Interface

from the host processor is as follows:

an O COMIMAND 0

T TABLET R

(ARGUMENT 1)
(ARGUMENT 2)
(ARGUMENT a)
(ARGUMENT 4)

REGION

OOOOO
Where:

P Phase bit (bit 15) which is set for the ?rst packet word
and clear for all other words.

COMMAND Numerical command identi?er (bits 7-13)
corresponding to one of the Interface commands.

T Tablet group (bit 15) address.
TABLET Tablet address (bits 10-13) to which the com
mand is issued.

R Region group (bit 9) address.
REGION Region address (bits 0-8) to which the com
mand is issued—zero if command addresses only the
tablet.

ARGUMENT 1 Optional argument dependent on the
command speci?ed. Not present if the command does
not take one or more arguments.

ARGUMENT 2 Optional argument dependent on the
command speci?ed. Not present if the command does
not take two or more arguments.

ARGUMENT 3 Optional argument dependent on the
command speci?ed. Not present if the command does
not take three or more arguments.

ARGUMENT 4 Optional argument dependent on the
command speci?ed. Not present if the command does
not take four or more arguments.

Command packets comprise between two and six words.
Extra arguments to command packets are ignored while
insuf?cient arguments result in packet rejection by the
Interface. Typically. a host processor device driver will
format the packet correctly for an application program
though this capability can be over-ridden.

Response packets can take one of two form.s—command
acknowledgement or command response—depending on the
particular command and whether it executed successfully.
Response packets are formatted as follows:

P s COMMAND RESULT

0 0 TABLET R REGION
0 (ARGUMENT 1)
o (ARGUMENT 2)

5.768.492

-continued

P s COMMAND RESULT

o (ARGUMENT 3)
n (ARGUMENT 4)

where:

P Phase bit (bit 15) which is set for the ?rst packet word
and clear for all other words.

S Status bit (bit 14) which is set for a response packet.
COMMAND Numerical command identi?er (bits 7-13)

corresponding to one of the Interface commands.

RESULT Result code (bits 0-6) which is zero if the
command executed successfully or an error code if not.

TABLET Tablet address (bits 10-13) to which the com
mand is issued.

R Region group (bit 9) address.
REGION Region address (bits 0-8) to which the com
mand is issued-—-zero if command addresses only the
tablet.

ARGUMENT 1 Optional argument dependent on the
command specified. Not present if the command does
not return one or more arguments or an error occurred.

ARGUMENT 2 Optional argument dependent on the
command speci?ed. Not present if the command does
not return two or more arguments or an error occurred.

ARGUMENT 3 Optional argument dependent on the
command speci?ed. Not present if the command does
not return three or more arguments or an error occurred.

ARGUMENT 4 Optional argument dependent on the
command speci?ed. Not present if the command does
not return four or more arguments or an error occurred.

Commands which execute successfully and do not request
information from the Interface never return their
arguments—only the command and result codes in the ?rst
packet word and the address to which the command was
directed in the second. The packet size for these packets is
always two words.

Similarly. commands which execute and result in an error
never return arguments regardless of the command type
only the command and non-zero result code in the ?rst
packet word and the address to which the command was
directed in the second. The packet size for these packets is
always two words.

Finally. commands which request information from the
Interface and execute successfully return the command and
zero result code in the ?rst packet word. the address to which
the command was directed in the second and one or more
arguments in the successive packet words. The packet size
for these packets is dependent upon the particular command
and comprise between three to six words.
The most common packets encountered are event packets

which are generated from the region layer in response to
some user-action such as pressing or releasing a button and
moving the cursor. Event packets take two forms depending
on whether coordinate data has been enabled. The format for
event packets is as follows:

P S X Y 0 O R C UP DOWN

o o ranuzr 0 moron

o (x COORDINATE)
0 (Y COORDINATE)

20

25

35

45

55

65

8
where:
P Phase bit (bit 15) which is set for the ?rst packet word

and clear for all other words.

S Status bit (bit 14) which is clear for an event packet.
X Sign bit (bit 13) for the X coordinate (if present).
Y Sign bit (bit 12) for the Y coordinate (if present).
R Coordinates (bit 9) are relative from the last valid event.
C Coordinates present (bit 8); used in conjunction with

relative bit.
UP Button(s) l-4 were released (bits 1. 3. 5. and 7

respectively).
DOWN Button(s) l-4 were pressed (bits 0. 2. 4. and 6

respectively).
TABLET Tablet address (bits 10-13) issuing the event.
REGION Region address (bits 0-8) issuing the event.
X COORDINATE If coordinate bit set in ?rst packet

word. contains the X coordinate where the event
occurred.

Y COORDINATE If coordinate bit set in ?rst packet
word. contains the Y coordinate where the event
occurred.

Unlike response or command packets. event packets do
not contain command or error codes but instead a bit mask
indicating the type of events which occurred and whether the
packet contains coordinate data. Event packets are only
generated from within regions and therefore the region
address is always valid. The packet size for event packets is
dependent on whether coordinates are present and can
comprise either two or four words.
Packet Decoding

Referring to FIG. 4. one possible method of the packet
decoding for a host processor is illustrated. The processing
loop begins with the receipt of a packet word which is ?rst
checked for the presence of the phasing bit in the most
signi?cant bit. If it is set. the second most-signi?cant bit is
then checked to determine whether the remaining packet
words constitute an event or command response packet.

If the status bit is set. the packet is a command response
and the error code is tested for a non-zero value. A zero error
code indicates the command requested executed success
fully and the arguments. if requested by command context.
are present and may be interpreted. Otherwise. an error
occurred. the arguments are not present and the command
code should be examined to determine which command did
not execute. Error packets always return the command and
error code in the ?rst packet word. and the address of the
command in the second.

If the status bit is clear. the packet is an event packet
which contains the event in the remaining bits of the ?rst
packet word. the address of the packet in the second packet
word and the X and Y coordinates. if present. in the third and
four packet words. The Coordinate bit (bit 8) will be set in
the ?rst packet word (event word) if the coordinates are
present and the Relative bit (bit 9) will be set if the
coordinates are relative to the last reported position. The
coordinate values are further modi?ed with the presence of
the X and Y sign bits (bits 13 and 12) in the event word if
the coordinates are negative.

Decoding the coordinates of the event packet requires
testing for the presence of the Coordinate bit in the event
word. If absent. the remaining coordinate tests and adjust
ments are skipped. Then. the sign bit for each coordinate
value (X and Y) are tested and. if set. require setting the
most-signi?cant bit in each coordinate word to indicate the
coordinate is negative in two’s complement binary notation.

5 .768.492
9

Command Set

The command set of the Interface can be grouped into ?ve
major categories: control. coordinates. events. macros and
procedures. which are summarized as follows:

CONTROL Control commands govern the creation and
operation of each layer such as initializing the physical
device. controlling tablet layer properties or the ?ow of
information to the host processor.

COORDINATES Coordinate commands govern the coor
dinate system properties of each layer such as
transformation. scaling. and rotation in addition to the
creation of regions at the region layer.

EVENTS Event commands govern the types of user
actions which trigger an event within a given region
and are applicable only at the region layer.

MACROS Macro commands govern the capture. play
back and release of region events and are applicable
only at the tablet layer.

PROCEDURES Procedure commands govern the capture
and subsequent execution of commands within a given
region and encompass the embedded programming
language of the Interface.

Macros and Stored Procedures are powerful extensions to
the Interface which permit the storage and retrieval of events
and commands. respectively. They encompass all packet
types of the Interface and are mutually exclusive in that
regions with Stored Procedures may not be included in
macros.

Macros are used to record user-generated events such as
button presses and releases or the movement of the cursor
within a region for which a Stored Procedure has not been
de?ned. Once recorded. macros may be “replayed” through
the packet queue and delivered to the host processor any
number of times.
Macros record and play events only within regions which:

1) are activated by some user-action such as a button press.
button release or cursor movement; 2) satisfy the event mask
de?ned for that region; 3) are enabled; and 4) do not contain
a Stored Procedure. The type and size of packet recorded
depends on whether coordinate reporting is enabled.

Stored Procedures are used to record Interface command
sequences within a region which are subsequently executed
upon the following conditions: 1) the region is activated by
some user-action such as a button press. button release or
cursor movement; 2) the event satis?es the event mask
de?ned for that region; 3) the region is enabled; and 4) a
Stored Procedure has been de?ned.

Since regions are often used to signal user commands to
an application program. macros may trigger multiple com
mands to the application each time they are replayed. This
is in contrast to Stored Procedures which execute stored
commands without application intervention.
Many commands are applicable only to speci?c layers

and govern the context in which the command is executed.
Command groups and the layers to which they apply are as
follows:

DEVICE TABLET REGION

C ONTROL

Reset Open Open
Flush Close Close
Version Enable Get
Open Disable Move

25

35

50

55

65

-continued

DEVICE TABLET REGION

Close Set Group Enable
Get Group Disable

Set Group
Get Group

COORDINATES

Get Axis Set Extents Set Extents
Get Extents Get Extents Get Extents
Get Resolution Set Resolution Set Resolution

Get Resolution Get Resolution
Set Origin
Get Origin
Set Rotation
Get Rotation

EVENTS

Set Mask
Get Mask

MACROS

Open
Bid
Play
Close
PROCEDURES

Eiable Reports Open
Disable Reports End

Execute
Close

Each command of the Interface is listed below along with
a description of its action. packet formats and arguments.
errors returned and related commands.

1. Reset Device

Performs a hardware reset to the Interface which closes
the current device and clears all queues.

Command Packet

TABLET 0 0

Response Packet

ERROR CODE

'ILABIET O 0

Errors Returned

Reset executed successfully. Interface CPU malfunction.
Interface ROM checksum failed. Interface memory mal
function or Interface program I/O malfunction.

Related Commands
Flush Device and Close Device.

2. Flush Device

Clears the packet queue removing packets queued but not
yet delivered.
Command Packet

1H 0

TABLET 0 0

5.768.492
11 12

Response Packet Response Packet

P s 1H ERROR CODE P s 4H ERROR CODE

0 0 TABLET 0 0 5 0 0 TABIET 0 0
0 x AXIS (2 MIL)
0 Y AXIS (2 MIL)

Errors Returned

Packet queue ?ushed successfully. Errors Rsmmcd

Rdamd comnds 10 Device axis returned successfully or device not open.
Reset Def/1C6“ Related Commands

3' Get verso“ _ _ _ Get Device Extents and Get Device Resolution.
Returns the Interface ?rmware V€TS1OI1 1n the third packet 6‘ Get Dcvice Extems

Word‘ Returns the current device extents. or counts per axis. in
Command Packet 15 2 mil increments. The horizontal extent is returned in the

third packet Word and the vertical extent in the fourth packet
word.

P 2H 0 Command Packet

0 T TABLET 0 0
20

P 0 5H 0
Response Packet

0 T TABLET 0 0

P S m ERROR CODE 25 Response Packet

0 TABLET 0 0
0 VERSION

P s 5H ERROR CODE

Errors Returned 30 0 0 TABLET 0 ML 0

VCISIOI] returned successfully. 8 MIL;
Related Commands

Reset Device.
4. Open Device Errors .Remmed _

. . . . Device extents returned successfully or device not open.
Opens the dev1ce for the device number contained in the 35 R med Commands

third packet word. 6
d P km Get Device Axis and Get Device Resolution.

Comma“ ac 7. Get Device Resolution

Returns the current device resolution in counts per inch.
P 3H 0 40 The horizontal resolution is returned in the third packet word

and the vertical resolution in the fourth packet word.

3 T “311$; CE NUMgER 0 Command Packet

Response Packet 45 P 61'‘ 0

O T TABLET 0 0

P s 3H ERROR CODE
Response Packet

0 0 TABLET 0 o

50

Errors Returned P 5 6“ ERROR CODE

Device opened successfully. device already open or 0 0 TABLET 0 0
device number not supported 0 x RESOLUTION
Related Commands 55 0 Y RESOLUTION

Reset Device and Close Device.
5. Get Device Axis El'l'ol‘s Rcturllcd

Returns the physical device size in 2 mil inch inqcm¢m5_ Device resolution returned successfully or device not
The horizontal size is returned in the third packet word and open‘
the vertical size in the fourth paclmt word. 60 Related Commands
Command packet Get Device Axis and Get Device Extents.

8. Close Device
Closes and invalidates the current device. Tablet must be

P 43 0 closed prior to this call.

0 T TABLET 0 0 65 Command Packet

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Description
	Page 31 - Description
	Page 32 - Description
	Page 33 - Description
	Page 34 - Description
	Page 35 - Description
	Page 36 - Description
	Page 37 - Description
	Page 38 - Description
	Page 39 - Description/Claims
	Page 40 - Claims

