
US005812992A

United States Patent [19] [11] Patent Number: 5,812,992
de Vries [45] Date of Patent: Sep. 22, 1998

[54] METHOD AND SYSTEM FOR TRAINING A De Vries B., Gradient—Based Adaptation of Network Struc
NEURAL NETWORK WITH ADAPTIVE
WEIGHT UPDATING AND ADAPTIVE
PRUNING IN PRINCIPAL COMPONENT
SPACE

[75] Inventor: Aalbert de Vries, Lawrence Township,
Mercer County, NJ.

[73] Assignee: David Sarno?' Research Center Inc.,
Princeton, N].

[21] Appl. No.: 848,202

[22] Filed: Apr. 29, 1997

Related US. Application Data

[63] Continuation of Ser. No. 448,770, May 24, 1995, aban
doned.

[51] Int. Cl.6 G06F 15/18

[52] US. Cl. 706/25; 706/15; 706/16;
706/21

[58] Field of Search 395/21, 22, 23,
395/24; 706/15, 16, 25, 26, 21

[56] References Cited

U.S. PATENT DOCUMENTS

5,052,043 9/1991 Gaborski 382/157

5,129,039 7/1992 Hiraiwa 395/24

5,140,670 8/1992 Chua e161. 395/24
5,159,660 10/1992 Lu 61:11. 395/22

5,168,262 12/1992 Okayama 340/523
5,175,678 12/1992 Frerichs et al. 364/148
5,253,329 10/1993 Villarreal et al. . 395/23
5,268,834 12/1993 Sanner et al. 364/151
5,280,564 1/1994 Shiomietal. 395/23
5,282,261 1/1994 Skeirik 395/22

5,371,834 12/1994 Tawel 395/23

5,636,326 6/1997 Stork et al. 395/21

OTHER PUBLICATIONS

Chen H. and Liu R., An On—Line Unsupervised Learning
Machine for Adaptive Feature Extraction, IEEE trans. on
Circuits and Systems II, vol. 41, No. 2, pp. 87—98, (1994).

ture, International Conference on Arti?cial Neural Networks
94, Sorrento, Italy, (May 1994).
King S.Y., and Diamantaras K., A neural Network Learning
algorithm for Adaptive Principal Component Extraction
(APEX), Proc. of IEEE Int’l Conf. on Acoustics, Speech and
Signal Processing (ICASSP), pp. 861—864, (1990).
Levin, A., and Leen T., and Moody J ., Fast Pruning Using
Principal Components, Advances in Neural Information
Processing Systems (NIPS) 6, pp. 35—42, Morgan Kauf
mann Publishers, (1994).
Levin et al., “Fast Pruning Using Principal Components,”
Advances in Neural Information Processing Systems (NIPS)
6, pp. 35—42, 1994.
Kung, S.Y. and Diamantaras, K., “A Neural Network Learn
ing Algorithm for Adaptive Principal Component Extraction
(APEX)”, Proc. of IEEE Int’l Conf. on Acoustics, Speech
and Signal Processing (ICASSP), pp. 861—864, 1990.
Levin, A., and Leen, T. and Moody, J ., “Fast Pruning Using
Principal Components”, Advances in Neural Information
Processing Systems (NIPS) 6, pp. 35—42, 1994.

Primary Examiner—Tariq R. Ha?z
Assistant Examiner—Jason W. Rhodes
Attorney, Agent, or Firm—William J. Burke

[57] ABSTRACT

A signal processing system and method for accomplishing
signal processing using a neural network that incorporates
adaptive weight updating and adaptive pruning for tracking
non-stationary signal is presented. The method updates the
structural parameters of the neural network in principal
component space (eigenspace) for every new available input
sample. The non-stationary signal is recursively transformed
into a matrix of eigenvectors with a corresponding matrix of
eigenvalues. The method applies principal component prun
ing consisting of deleting the eigenmodes corresponding to
the smallest saliencies, where a sum of the smallest salien
cies is less than a prede?ned threshold level. Removing
eigenmodes with low saliencies reduces the effective num
ber of parameters and generally improves generalization.
The output is then computed by using the remaining eigen
modes and the weights of the neural network are updated
using adaptive ?ltering techniques.

21 Claims, 5 Drawing Sheets

(210 f 21 1 220
/ L 221

INPUT DATA LEARNING SECTION

DATA RECEIVING
SECTION

(224 226 228
I/O ' I (230

DATA INPUT 7? ' ' '
r“ STORAGE PATTERN W OUTPUT

212 SECTION P : PATTERN PROCESSOR

I : 0P
_ W .

214 ‘J :b

L MONITOR KEYBOARD
222

\ J L SIGNAL SIGNAL
RECEIVING PROCESSING 240 L250
SECTION SECTION

U.S. Patent Sep. 22, 1998 Sheet 1 of5 5,812,992

INPUT SIGNAL PATTERN

j\.110

116\% \g)/ = 180

OUTPUT SIGNAL LEARNING RULES

_ ERROR

FIG. 1
PRIOR ART

5,812,992

/

U.S. Patent Sep. 22, 1998 Sheet 2 of5

x5

f

6 E8385 MZEDE 5&8

a 295% NE ZEEE MQEOB \L
5%: <20

@NN 8N wmm

A

A

r

56

M v >v 295% M M

wzsmowm E5

v

U.S. Patent Sep. 22, 1998 Sheet 3 0f 5 5,812,992
ADAPTIVE EIGENPRUNING
AND ADAPTIVE WEIGHT

“A310

II

EIGEN-DECOMPOSE THE COVARIANCE
MATRIX OF gct INTO THE EIGENVECTOR
MATRIX Qt AND EIGENVALUE MATRIX At

UPDATING METHOD
(Q)

A320

II

COMPUTE it, THE KARHUNEN-LOEVE
EXPANSION OF 4, A330

II

COMPUTE THE UNPRUNED OUTPUT yr "A340

II

COMPUTE THE SALIENCE VECTOR st,
IDENTIFY H,
COMPUTE THE PRUNING VECTOR

A350

390 II

COMPUTE THE FILTER (OR NEURAL NET
LAYER) OUTPUT y, A360

v

UPDATE THE WEIGHT MATRIX Wt BY
TRANSFORM DOMAIN ADAPTIVE
FILTERING A370

YES

NO

END

FIG. 3

380

U.S. Patent Sep.22,1998 Sheet 4 of5 5,812,992

4

AW

Q Q Q

OUTPUT it

DESIRED LEARNING _

d, RROR RULE
Q 1‘

FIG. 4

350

~- COMPUTE NP

wawa y’ R
330 WI 340

_ lit gt Wt Y!‘ 2_ ‘y!

A
1" —>ADAPTIVE \Qr —

PC TDAF g d
r» EXTRACT At Q gt -¢

QH’AH D 320 370

U.S. Patent Sep. 22, 1998 Sheet 5 of5 5,812,992

HAS x,-1 BEEN
PREVIOUSLY EIGEN
DECOMPOSED

ER(Am?
D

PTYM UA\x/_ YW # H C U V N + “a m 1. R R t UA M WWW: RCDM.

S E Y m

0 |

2 TE 6 gnNu f OA
PM M A 0V CO EC D_E N EW nluF E0

MATRIX Rt = mtg]

v

EIGEN-DECOMPOSE Rm
TO EXTRACT Q, AND A,

V

EN D

CONTINUE

5,812,992
1

METHOD AND SYSTEM FOR TRAINING A
NEURAL NETWORK WITH ADAPTIVE
WEIGHT UPDATING AND ADAPTIVE
PRUNING IN PRINCIPAL COMPONENT

SPACE

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of patent application
Ser. No. 08/448,770 entitled “METHOD AND SYSTEM
FOR TRAINING A NEURAL NETWORK WITH ADAP
TIVE WEIGHT UPDATING AND ADAPTIVE PRUNING
IN PRINCIPAL COMPONENT SPACE” ?led on May 24,
1995, noW abandoned.

The present invention relates generally to the ?eld of
neural information processing and, more particularly, to a
signal processing system and method for accomplishing
signal processing With a neural netWork that incorporates
adaptive Weight updating and adaptive pruning for tracking
non-stationary signals.

BACKGROUND OF THE INVENTION

Over the years, neural netWork modeling has been devel
oped to solve problems ranging from natural language
understanding to visual processing. A neural netWork is a
computational model composed of neurons (or simply
nodes) and connections betWeen the nodes. The strength of
each connection is expressed by a numerical value called a
Weight, Which can be modi?ed. Similarly, the “?ring” of
each node is associated With a threshold numerical value,
Which is referred to as the nodes’ activation. The activation
of a given node is based on the activations of the nodes that
have connections directed at that node and the Weights on
those connections. In general, a neural netWork incorporates
some special nodes called input nodes With their activation
externally set, While other nodes are distinguished as output
nodes.

In contrast to conventional computers, Which are pro
grammed to perform speci?c tasks, most neural netWorks
can be taught, or trained. As such, a rule that updates the
activations is typically referred to as the update rule.
Similarly, learning in a neural netWork is generally accom
plished using a learning rule to adjust the Weights.

Atypical neural netWork model has a set of input patterns
and a set of output patterns. The role of the neural netWork
is to perform a function that associates each input pattern
With an output pattern. A learning process, such as “error
back-propagation”, uses the statistical properties of a train
ing set of input/output patterns to generaliZe outputs from
neW inputs.

Error back-propagation is a supervised learning process
through Which a neural netWork learns optimal Weights.
Error back-propagation compares the responses of the out
put nodes to a desired response, and adjusts the Weights in
the netWork so that if the same input is presented to the
netWork again, the netWork’s response Will be closer to the
desired response.

Referring to FIG. 1, the learning rule of error back
propagation is applied to a multi-layer neural netWork
having an input layer 130, an intermediate layer or so-called
hidden layer 140 and an output layer 150. The output values
of all nodes nh 112 in the input layer 130 are distributed as
an input value to each of the node ni 114 in the intermediate
layer 140. The output value of each of the nodes in the
intermediate layer 140 is distributed as an input value to

10

15

25

35

45

55

65

2
every node n]- 116 in the output layer 150. Each node n]- 116
produces a value Which is the total sum net of output values
Oi of a node ni coupled to the output node n]- by a coupling
Weight Wj-i, transformed by a predetermined function f. This
same concept applies to the intermediate node ni 114 With
respect to input node nh 112. In other Words, When the values
Within a pattern p are provided as an input value to each node
nh 112, an output value Opi and Opj- for each node ni 114 and
n]- 116 respectively, can be expressed by the folloWing
formulas:

Hence, the netWork acquires output value Opj- of the
output node n]- 116 of the output layer 150 by sequentially
computing the output values of the input n]- 116, each
corresponding to a node from the input layer 130 toWards the
output layer 150.

(1)

The process of learning in accordance With error back
propagation consists of updating coupling Weights Wj-i and
Wm, so that the total sum Ep of the square errors betWeen the
output value Opj- of each node of the output layer 150 on
applying the input pattern p and the desired output tpj, is
minimiZed. Hence, the total netWork error E for the input
pattern p is de?ned by:

This algorithm is sequentially applied from the output layer
150 back toWard the input layer 130. The netWork error With
respect to any Weight, e.g. Weight Wj-i, is given by the
gradient 6Ep/6Wji of the total netWork error Ep With respect
to a change in that Weight. Hence, the error 6].) for each
output node n]- 116 can be determined as a function of the
corresponding actual value Opj- and target value tpj- and the
difference therebetWeen for that node, as folloWs:

and for an intermediate node ni 114, as follows:

After the neural errors are determined, these errors are
propagated, via leads 170, back toWard the netWork input
nodes.
The coupling Weights of both the output layer 150 and the

intermediate layer 140 are adjusted according to the folloW
ing learning rules 180 for n]- 116:

(5)

and for each intermediate node ni 114:

itpi

In the above formulas, 11 represents the rate of learning,
Which is a constant, and it determines hoW fast the netWork
Weights converge during netWork training. Coefficient a
represents a stabiliZation factor for reducing the error oscil
lations and accelerating the convergence thereof. Both coef
?cients 11 and 0t can be empirically determined from the
number of nodes, layers, input values or output values. This
Weight adjustment process is repeated until the patterns in

5,812,992
3

the training set are exhausted or When the ?nal error value
falls below a prede?ned upper bound Emax. For a detailed
explanation of error back-propagation in neural networks,
see S. Haykin, Neural Networks, IEEE Press, (1994).

HoWever, error back-propagation is limited in that this
technique does not provide any information concerning the
optimal number of nodes in the neural netWork. For
example, if the neural netWork has a prede?ned number of
nodes, the error back-propagation Will continue to update
the Weights for all nodes regardless of Whether all the nodes
are necessary to achieve the desired response. The effect to
the output of having too many nodes Will be “over?tting”,
Which leads to poor performance on an out-of-sample data
set. Conversely, if the number of nodes de?ning the netWork
is too feW, the neural netWork Will not be optimal because
the netWork Will be missing vital information.

To address this netWork optimiZation issue, techniques
have been developed to assess the need to add or remove a
node from a neural netWork. HoWever, these techniques are
generally not Well suited for signals Whose statistical prop
erties change over time. Such signals are knoWn as “non
stationary signals”. For example, if a node is added to a
neural netWork, it Will require several time steps to acquire
the necessary information to train the Weight for this neW
node. Since the statistical properties of non-stationary sig
nals may change rapidly, the neural netWork may no longer
be of optimal siZe by the time the neW node is trained.

Real World signals such as ?nancial, physiological and
geographical data often are non-stationary. Because the
number of parameters in a netWork is a crucial factor in it’s
ability to generaliZe, it is the goal of an appropriate model
to track the non-stationary signals by adaptively (on-line)
updating its parameters. Ideally, this means updating, in
response to changes in the input signal, “structural param
eters” such as the effective number of hidden nodes
(intermediate layer nodes) Within the netWork.

HoWever, traditional methods generally do not provide
this capability. For a non-stationary signal, it is not appro
priate to ?x the model parameters after training on a repre
sentative data set.

In addition, Weight updates make use of the gradient
(GE/6W) of the error E With respect to the Weights. Generally,
this gradient can be directly computed from the neural
netWork by an error back-propagation process. HoWever,
such a gradient cannot be computed With respect to the
number of nodes. Since these parameters are in the form of
integers, it Would not be possible to compute the gradient of
the error With respect to parameters, Which are required for
gradient-based optimiZation methods.

Therefore, a need exists in the art for a system and method
capable of adaptively updating the structural parameter of a
neural netWork for every neW available sample of data for
tracking non-stationary signals.

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantages asso
ciated With the prior art by providing a signal processing
system and method that updates structural parameters of the
neural netWork system. Speci?cally, the invention updates
the structural parameters of the neural netWork in principal
component space for every neW available input sample. The
method of the present invention referred generally as adap
tive eigenpruning and adaptive Weight updating, consists of
six steps Which are applied to each neW available sample of
the input signal. Since the present invention can be applied
to any layer of a neural netWork, the term input signal may
represent an input signal to an input layer of a neural
netWork or an input signal to a hidden layer of a neural
network.

10

15

25

35

45

55

65

4
The ?rst step transforms a non-stationary signal (input

signal) to principal component space Where the non
stationary signal is transformed into a matrix of eigenvectors
With a corresponding matrix of eigenvalues. In statistical
literature, this ?rst step is knoWn as performing a principal
component analysis (PCA) on the signal. This is a transfor
mation that projects the input signal into a different space
used to determine the resonance of the input signal.

HoWever, performing a principal component transforma
tion directly on every neW signal input is computationally
expensive, so that once a transformation is completed, the
inventive method employs recursive estimation techniques
for estimating eigenvectors and eigenvalues. The adaptive
principal component extraction or the LEArning
machine for adaptive feature extraction via Principal com
ponent analysis (LEAP) are just tWo examples of such
extraction techniques.
The second step transforms the non-stationary input sig

nal (in general, a vector signal) to its principal component
space (Which is hereinafter referred to as “eigenspace”). The
goal of this transformation is to make the components of the
input signal mutually orthogonal. The advantage of such a
representation is that the effects of the orthogonal compo
nents (the “eigenmodes”) of the input signal on the ?lter or
neural netWork output signal can be analyZed individually
Without taking the other eigenmodes into account.

In the third step, the method computes an “unpruned”
output signal by multiplying the orthogonaliZed input signal
With the ?lter or neural netWork Weight matrix.

In the fourth step, the method selects components of the
Weighted input signal for pruning from the output signal.
The selection procedure identi?es the eigenmodes that are
revealed in eigenspace to be of minimal in?uence on the
output signal of the system. This step is derives an upper
bound on the modeling error introduced by deleting the
eigenmodes. This error upperbound is de?ned as the
saliency for the ith eigenmode.

In the ?fth step, the method completes the “eigenpruning”
by subtracting eigenmodes With small saliencies from the
output signal. Since eigenpruning and recomputing the error
upperbounds are performed for each neW input sample, this
method is knoWn as adaptive eigenpruning. Removing
eigenmodes reduces the effective number of parameters and
generally improves generaliZation, i.e., performance on an
out-of-sample data set.

Finally, the sixth step applies standard ?ltering techniques
such as the Transform Domain Adaptive Filtering (TDAF) to
update the Weights of the ?lter or neural netWork.

Speci?cally, the present invention applies the six steps
mechanism to every input sample, thereby adaptively updat
ing the Weights and effective number of nodes in a neural
netWork for every input sample of a non-stationary signal.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily
understood by considering the folloWing detailed descrip
tion in conjunction With the accompanying draWings, in
Which:

FIG. 1 is a block diagram of a neural netWork applying a
prior art error back propagation process;

FIG. 2 is a block diagram of a signal processing system
that contains a neural netWork that embodies the teachings
of the present invention;

FIG. 3 is a ?oWchart shoWing the process of adaptive
Weight updating and adaptive eigenpruning;

5,812,992
5

FIG. 4 is a block diagram of a neural network applying a
spectral decomposition of 2;

FIG. 5 is a block diagram of FIG. 3 shoWing the process
of adaptive Weight updating and adaptive eigenpruning; and

FIG. 6 is a block diagram for the mechanism of recursive
estimation of the eigenvalue and eigenvector matrices.

DETAILED DESCRIPTION

After considering the following description, those skilled
in the art Will realiZe that the teachings of this invention can
be readily utiliZed to predict non-stationary signals
(including, but not limited to ?nancial signals). In general,
this invention discloses a method and system for updating a
layer in a neural netWork by adaptively updating the Weights
and effective number of nodes of the netWork. This is
accomplished by applying the concept of adaptive eigen
pruning to a neural netWork.

FIG. 2 depicts a signal processing system that utiliZes the
present inventions. This general signal processing system
consists of a signal receiving section 210, a signal process
ing section 220, a processor 230, a monitor 240 and a
keyboard 250.

Signal receiving section 210 serves to receive input data
signals, such as ?nancial data. Signal receiving section 210
consists of a data receiving section 211, a data storage
section 212, and input/output (I/O) sWitch 214. Data receiv
ing section 211 may include a number of devices such as a
modem and an analog-to-digital converter. A modem is a
Well-knoWn device that comprises a modulator and a
demodulator for sending and receiving binary data over a
telephone line, While an analog-to-digital converter converts
analog signals into a digital form. Hence, input signals are
received “on-line” through signal receiving section 210 and,
if necessary, are converted to a digital form.

The data storage section 212 serves to store input signals
received by data receiving section 211. Data storage section
212 may incorporate a number of devices such as a disk
drive, semiconductor memory or other storage media. These
storage devices provide a method for applying a delay to the
input signals and store input signals for processing at a later
time. Finally, the stored input signals are presented to the
signal processing section 220 through input/output sWitch
214, Which channels the input signal from signal receiving
section 210 to signal processing section 220. The I/ O sWitch
214 also channels the input signals betWeen data receiving
section 211 and data storage section 212.

The signal processing system of the present invention
includes a signal processing section 220 for producing an
output signal Op from input signal patterns p. The signal
processing section 220 consists of a neural netWork 222 With
a learning section 221. The neural netWork 222 includes at
least an input layer 224 and an output layer 228. The neural
netWork may optionally include a number of intermediate
layers 226 (also knoWn as hidden layers). Each layer
includes at least one node.

Adesired (target) output signal tp and the output signal Op
are applied to learning section 221. Applying a learning
signal as described beloW, learning section 221 causes neural
netWork 222 to undergo learning by updating the parameters
W in such a manner that each W is sequentially and repeat
edly updated.

The neural netWork 222 of signal processing section 220
computes, in accordance With the sequences of steps shoWn
by the How charts of FIG. 3 and 6, an output signal Op from
an input pattern p. Output signal Op is an output value that

10

15

25

35

45

55

65

6
correlates to a prediction of the value of input pattern p for
n samples ahead.

The processor 230 of the signal processing system
receives the output signal Op and performs additional data
processing such as determining the direction or trend of the
input pattern p. Furthermore, the processor 230 is coupled to
a monitor 240 and a keyboard 250 for displaying data and
receiving inputs respectively.
The method of adaptively updating the dimensions of a

neural netWork for every neW available input sample of data
for tracking non-stationary signals are described With refer
ence to method 300 of FIG. 3. Method 300 starts by taking
an input vector xt=[x1(t), x2(t), . . . , xn(t)]T 310 and
transforms it into principal component space in step 320.
This step multiplies the vector of elements representing the
input signal by a matrix so as to transform the coordinates
in Which the vector is represented to ones that display the
maximum variance along their axes, thus removing corre
lations betWeen pairs of coordinates.

To illustrate, the method assumes a signal plus noise
model With the signal generated by a function linear in the
Weights Which can be represented by yt=Wo xt+er This, in
turn, is modeled by:

Axr=Wn (7)

Depending on the particular application, xf may represent
one of a number of different signals, including an input
vector signal, an output signal from a layer in a neural
netWork or a regression vector on y, itself. It should be noted
that throughout this speci?cation, vectors are represented
With an underscore, While matrices are represented by capi
tals.

HoWever, the dimension of xfmay be time varying, Which
makes it dif?cult to estimate the dimension of xi. Hence,
choosing a ?xed dimensional choice is inappropriate. The
covariance matrix of input x, is de?ned as Rt=E[x,xtT],
Which can be estimated by:

RI=EHZJMHMHT (8)

Mu is de?ned as a forgetting (decaying) factor Which
causes exponential decay of the temporal Weighing of xi in
R. Where the vector signals are non-stationary, p is less than
1. Speci?cally, the forgetting factor p is commonly chosen
in the interval 0.950<p<0.999.
The eigen-decomposition of Rt, also called principal

component extraction of xi, can be de?ned by:

Where Q,=[q1,q2, . . . , gm] is the n><n orthogonal eigenvector

matrix (the adjective orthogonal implies that QtQtT =1), and
A,=diag[Ex,2(t),Ext2(t), . . . , Exn2(t)] is a n><n diagonal

matrix of the eigenvalues of Rt. Hence, by solving for the
unique solution of Q and At, the inventive method achieves
eigen-decomposition. For a detailed discussion of this
decomposition, see eg S. Haykin,Aa'aptive Filter Theory,
Prentice-Hall, (1991, chapter 4). It should be noted that step
320 is only performed for tin. Namely, Q and At do not
exist When t<n.

HoWever, it is computationally expensive to calculate Q
and At for each neW signal input xi. Hence, the method
employs recursive estimation of the eigenvalues and eigen
vectors as described beloW With reference to process 600 of
FIG. 6.

Continuing With method 300 of FIG. 3, once Q and At
have been eigen-decomposed from the vector x,, the next

5,812,992
7

step applies principal component pruning (eigenpruning).
Eigenpruning is based upon the concept disclosed by Levin
et al. in Fast Pruning Using Principal Components,
Advances in Neural Information Processing Systems
(NIPS)6 pp. 35—42 (1994). This step consists of eliminating
eigenmodes that are revealed in eigenspace to have minimal
in?uence on the output of the system. In fact, the advantage
of eigenspace decomposition is that it offers the ability to
identify the independent contribution of each individual
eigenmode on the error of the netWork. The process of
eigenpruning is described beloW collectively in steps
330—370 in FIG. 3.

In step 330, x, is computed by:

(10)

The term x, is referred to as the Karhunen-Loeve expansion
of x,. The goal of this transformation is to bring x, to its
principal component space. This transformation is effec
tively a rotation of x,.

In step 340, 3,, the “unpruned” output of a layer of the
neural netWork is computed by:

2:141:52: (11)

If y, is a p><1 vector, then WIT is a p><n Weight matrix of a
layer in the neural netWork. WET is de?ned as WtT=[v1,
v2, . . . , vn], Where each X, is a p><1 vector. Hence, 3, can also

be expressed as y,=2,=,"y,§<,. This is knoWn as the spectral
decomposition of yr and is illustrated in the neural netWork
of FIG. 4. There are “n” vector terms (eigenmodes) in the
spectral sum. Since 2, 410 is in principal component space,
it can be demonstrated that each eigenmode X9}, 420 con
tributes independently to the error in the output 3, 430 in a
layer of the neural netWork. Using an available desired
output signal vector dt, the error is de?ned as gig-yr If y,
is from the output layer of a neural netWork, a desired output
signal Q, is usually available. If Y, holds activities for an
intermediate (or hidden) layer in a neural netWork, a desired
output signal d, can be estimated by the back-propagation
process. For a detailed exposition on computing desired
signals for the hidden layers of a neural netWork by means
of the back-propagation algorithm, see S. Haykin, Neural
Networks, IEEE Press, (1994, chapter 6).

The next step in the eigenpruning process is performed in
step 350 of FIG. 3. Eigenpruning is implemented by calcu
lating the “saliency” of each eigenmode. Saliency is a
quantity that measures the effect of the ith eigenmode on the
output error. Eigenpruning consists of deleting the corre
sponding eigenmodes With the smallest saliencies such that
the sum of the deleted saliencies is less than or equal to a
prede?ned percent of the total sum of the saliencies. Remov
ing eigenmodes With loW saliencies reduces the effective
number of parameters de?ning the netWork and improves
generaliZation. In the embodiment of the present invention,
one percent (1%) is chosen. Although this percentage Works
Well With the training data that Were used to train the neural
netWork, other heuristics could be used as Well.

There are three embodiments of the present invention
With regard to the calculation of saliency for each eigen
mode. In the ?rst embodiment, since the contribution of
X9}, to the error is independent from other eigenmodes, it
folloWs that the maximum squared error introduced by each

The saliency sl-(t) is an upper bound for the increase of the
squared error When X9}, is subtracted from yr.

10

15

25

35

45

65

8
In the second embodiment, saliency is alternatively

expressed as:

}i(t)=XtTXi;i2> 13)

Where xi2 is a loW-pass ?ltered version of if, namely
xi2(t)=nxi2(t—1)+(1—n)xi2(t), Where a is the forgetting factor
discussed above.

In the third embodiment of the present invention, saliency
is de?ned as:

5i=7\'i‘7iT‘7i> (14)

where k,- is the ith element on the diagonal of A,.
To illustrate, since Q, is orthonormal, Which implies

QtT=Qt_1, y, can be expressed as:

AXFWIQIQITEFWZFEREE (15)

Where Wt=WtQt and xt=QtTxr Both >2, and ii (denote the
ith column of Wt by 2) lie in the space spanned by the
columns of Q,. This third embodiment of saliency represents
the modeling error (yr-it)2 introduced by deleting the
contribution of the term iii, Lambda ()ti) is the ith eigen
value in the eigenvalue matrix A,.

The third embodiment of the present invention is different
from the other tWo embodiments in that, the third embodi
ment computes saliency by using the ith eigenvalue K,- from
the eigenvalue matrix At, Whereas the ?rst tWo embodiments
use the current input signal xi. The difference is that XL- is a
smoothed average of if.
With si calculated in step 350 for each eigenmode using

one of the three embodiments discussed above, the method
then identi?es a set of indices (II) of eigenmodes With
“small” saliencies. As discussed above, II may represent the
set of indices for Which the cumulative sum of the saliencies
is less than or equal to a prede?ned percent of the total sum
(over “n” eigenmodes) of the saliencies. When II has been
identi?ed, a p><1 pruning vector y; is computed as:

(16)

The pruning vector 3; represents the set of eigenmodes that
have minimal in?uence on the actual output signal of a layer
of the neural netWork. As such, this pruning vector ytp is
used in step 360 to calculate the actual output.

In step 360, the method computes the output y, of a layer
as:

(17)

Since 3, represents the “unpruned” output of a layer of the
neural netWork, then it folloWs that y,=Zl-€Hvixi, Where y, is
a pruned version of y, as computed in step 340. Step 360
effectively completes the eigenpruning process and gener
ates the output signal for a layer of the neural netWork.

Finally, in step 370 the method updates the Weights of the
neural netWork by using standard adaptive ?ltering tech
niques such as the Transform Domain Adaptive Filtering
(TDAF). If an error vector e,=g,-y, is available (or possibly
has been estimated by the back-propagation process), then
the Weights of the corresponding layer of the neural netWork
are updated by the folloWing formula:

Where 1] is a learning rate parameter and xt=QtTgr
It should be noted that other standard adaptive ?ltering

techniques exist and that the use of the TDAF algorithm in

5,812,992
9

the present invention is only illustrative. For a detailed
discussion of the Transform Domain Adaptive Filtering
(TDAF), see Marshall et al., The Use of Orthogonal Trans
forms for Improving Performance ofAdaptive Filters, IEEE
Transactions on Circuits and Systems, Vol.36, no.4, (1989).

After computing step 370, the method queries at step 380,
Whether additional input samples exist. If the query is
ansWered affirmatively, the process reverts back to step 320
along path 390 and the process of adaptive eigenpruning and
adaptive Weight updating is repeated for the next input
sample of the non-stationary signal. If the query is ansWered
negatively, the process ends. An alternative perspective of
the process 300 of FIG. 3 is provided in FIG. 5 in the form
of a block diagram.

In FIG. 3, the Weights and the effective number of nodes
of the neural netWork are updated for every available input
sample of a non-stationary signal. HoWever, the direct
computation of the matrices Q, and A, for every input vector
x, is inherently expensive, especially if n is a high number.
Hence, it is necessary to employ techniques that can be used
to recursively estimate the eigenvalues and eigenvectors.

There are tWo embodiments of the present invention for
recursive estimation of the eigenvector matrix Q, and eigen
value matrix A,. These embodiments incorporate different
extraction techniques and they are described With reference
to FIG. 6. As discussed, the eigen-decomposition of step 320
of FIG. 3 becomes computationally expensive When eigen
decomposition is computed directly for each neW input
sample. Hence, step 320 includes steps to recursively esti
mate the eigenvector matrix Q, and eigenvalue matrix A, as
neW input samples are received.

Referring to FIG. 6, in step 610, a decision is made as to
Whether direct eigen-decomposition should be performed.
This decision is based on Whether eigen-decomposition has
been performed for the previous input vector x,

In step 615, if eigen-decomposition has not been
performed, a decision is made as to Whether tin. As noted
above, When t<n, Q, and A, do not exist and eigen
decomposition is not available at this point. Since eigen
decomposition is performed on a n><n matrix of x,, this
causes the process to end at this point. If tin, then the
process proceeds to step 620, Which is the identical step as
described in step 320 for the direct eigen-decomposition of
x,

In the ?rst embodiment of the present invention, if Q, and
A, are available from the eigen-decomposition of the pre
vious signal input x,_1, then recursive estimation of Q, and
A, are computed With respect to the neW input sample x, by
updating the covariance matrix R, in step 630. By using the
covariance matrix R,_1, the covariance matrix R, can be
computed recursively as:

In step 640, an eigenspace decomposition on R, is then
subsequently performed to obtain Q, and A,.

The advantage of accurately tracking Q, and A, for the
purpose of estimating the eigenvalues and eigenvectors
recursively is signi?cant. This step dramatically reduces the
computational overhead of eigen-decomposing the neW vec
tor x, directly as disclosed above in step 320. The saving is
realiZed from having to only compute x,x,T Which is only the
product of a n><1 vector With a 1><n transpose vector. Using
the covariance matrix of R,_1 obtained from the previous
eigen-decomposition of x,_1, R, can be computed inexpen
sively.

To illustrate, the recursive eigenpruning process requires
the computation of the eigenvector matrix Q, and eigenvalue

10

15

20

25

30

35

40

45

50

55

60

65

10
matrix A, for each neW input sample. The straightforWard
method is to perform a standard eigen-decomposition of R,.
The number of elementary arithmetic manipulations (such as
multiplications and additions) required for the eigen
decomposition of R, is on the order of n3. This means that
if the dimension of R, is n><n (say n=100), it Will require n3
(1,000,000 for n=100) arithmetic manipulations to compute
the eigenvector matrix Q, and eigenvalue matrix A,. Clearly,
if these computations are performed for every input sample,
a large computational resource Will be required. HoWever,
With the use of extraction techniques, the saving in compu
tational steps equates approximately to reducing n3 compu
tational steps to that of n2 computational steps. As n
increases, this saving in computational steps becomes
extremely signi?cant.

In a second embodiment of the present invention, algo
rithms such as APEX or LEAP are used to directly compute
Q, and A, Without updating the covariance matrix R,. These
algorithms are described in detailed in the articles by Kung
S. Y., and Diamantaras., A Neural Network Learning Algo
rithm for Adaptive Principal Component Extraction, Proc.
of IEEE Conf. on Acoustic, Speech and signal Processing
(ICASSP), pp. 861—864, (1990) and Chen H. and Liu R.,An
On-line Unsupervised Learning Machine for Adaptive Fea
tare Extraction, IEEE trans. on Circuits and Systems II, vol.
41, no.2, pp. 87—98, (1994). Namely, given the ?rst m-1
principal components, the algorithm can produce the m-th
component iteratively. The use of these extraction tech
niques Will further reduce the total number of computational
steps by removing step 630, Where the covariance matrix R,
is recursively updated.

These algorithms have been developed to reduce the
computational load for the updating of Q, and A,. The key
to these “fast” eigen-decomposition algorithms is that Q, and
A, are updated for each input sample directly from the data
stream of x, Without computing R,. Both APEX and LEAP
are implemented in neural netWork hardWare and/or soft
Ware and their performance is comparable. Both methods
consist of tWo mechanisms. The ?rst mechanism computes
the correlations betWeen the various components of input
signal x, In APEX and LEAP, this mechanism is imple
mented by the “Hebbian” (“correlation”) updating rule. The
Hebbian algorithm ?nds the dominant correlations.
The second mechanism constrains the ?rst mechanism

such that the various correlations found by the Hebbian rule
are orthogonal to each other. APEX uses an orthogonaliZing
learning rule that is referred to as anti-Hebbian learning,
Whereas LEAP implements the orthogonaliZing process by
the Gram-Schmidt rule. The mechanisms for correlation
learning (Hebbian rule) and orthogonaliZation (anti-Hebbian
and Gram-Schmidt rule) are standard and Widely applied.

It should be noted that some of these algorithms Were
premised on the fact that the input signal is stationary.
HoWever, the advantage of applying these techniques to
non-stationary signals coupled With the concept of adaptive
eigenpruning is signi?cant. As discussed above, the concept
of eigenpruning provides an accurate method to update the
Weights and the effective number of nodes for a neural
netWork, but it is computationally expensive When applied
to a non-stationary signal for each input sample. Hence, the
use of extraction techniques provides a poWerful and ef?
cient solution to reduce the number of computational steps
necessary to implement the adaptive eigenpruning process
for a non-stationary signal.

Thus, a novel neural netWork for processing non
stationary signals has been disclosed. HoWever, many modi
?cations and variations of the present invention Will become
apparent to those skilled in the art.

5,812,992
11

Speci?cally, the method of the present invention is imple
mented completely in eigenspace. However, it is possible to
selectively modify various steps of process 300 in different
space. To illustrate, eigenpruning can be accomplished by
setting the values in a corresponding column in the eigen
vector matrix Q, to Zeros, Which correlates to eigenmodes
With small saliencies. After the eigenvector matrix Q(t) is
eigenpruned, the Weights of the netWork are updated. The
eigenpruned Weight matrix is computed as:

Where ep represents eigenpruned. Using the updated
Weight matrix Wep(t), a model output can be computed.

The model output is computed as:

Finally, the Weights of the neural netWork are updated using
standard adaptive ?ltering techniques such as the Least
Mean Squares (LMS). This ?ltering technique is used in
place of the TDAF and the Weights of the corresponding
layer of the neural netWork are updated by the folloWing
formula:

(21)

Where 1] is a learning rate parameter and ek is the error
signal. Hence, many modi?cations of the present invention
are possible.

The neural netWork according to the present invention
Was tested to perform a number of simulations. In one
simulation, the tick-by-tick values from May 1985 of the
U.S. dollar versus SWiss Franc exchange rate Were used as
the non-stationary input signal. This time series contains
successive tick values that Were separated by a feW minutes,
but the sampling period Was not a constant. The time series
Was processed to the extent that the maximal absolute value
Was rescaled to one and the mean value Was rescaled to Zero.

The goal is to predict the value of the exchange rate ?ve
ticks ahead, While making use of past values of the exchange
rate. The neural netWork Was trained using a training set of
1,000 samples and the next set of 1,000 samples Was used as
testing data. AtWo layer feedforWard netWork With 40 ‘tanh’
hidden nodes and one (1) linear output node Was employed.
In conjunction, a 10-dimensional vector x(t) =[y(t—5), y(t
6), . . . , y(t-14)]T Was used as an input and y(t) as a target

output. The goal of the netWork Was to predict the exchange
rate ?ve (5) ticks ahead, While making use of the exchange
rate of the last ten (10) ticks. The netWork Was loaded With
Weights W0, the Weights from the trained unpruned netWork,
and the Weights Were adapted on-line as the netWork moved
over the test data, While the netWork employed adaptive
Weight updating and adaptive eigenpruning. A learning rate
11=0.05 and forgetting factor >\,=0.98 Were chosen.

The results are very impressive. Instead of focusing on the
predicted values of the exchange rate, the fraction of cor
rectly estimated directions of the exchange rate Was com
puted. In other Words, the direction of the exchange rate Was
predicted. The direction of the exchange rate is computed as:

-1 if y(t) - y(t - 1) < -e (23)

dir(t) =

The area [-0, 0] is referred to as the deadZone. For 0=0, i.e.
no deadZone, the adaptive netWork correctly estimated 72%
of the exchange rate directional movements. In fact, When a

10

15

20

25

30

35

40

45

50

55

60

12
dead Zone of 0=0.017 is used, conditional on that a change
took place (dir(t)$€0), the adaptive netWork predicted 80%
of the exchange rate directional movements.

There has thus been shoWn and described a novel neural
netWork for processing non-stationary signals such as ?nan
cial data. Many changes, modi?cations, variations and other
uses and applications of the subject invention Will, hoWever,
become apparent to those skilled in the art after considering
this speci?cation and the accompanying draWings Which
disclose the embodiments thereof. All such changes,
modi?cations, variations and other uses and applications
Which do not depart from the spirit and scope of the
invention are deemed to be covered by the invention, Which
is to be limited only by the claims Which folloW.
What is claimed is:
1. A neural netWork having a plurality of Weights for

receiving a sequence of signal inputs x,,x,+1, x,+2 . . . , each

input xt comprising n signal components x1(t), x2(t—1), . . . ,
xn(t—(n—1)) and for generating an output signal that antici
pates the behavior of said input signal for a number of time
samples ahead, said neural netWork comprising:

transformation means for transforming a set of n signal
inputs into a set of principal components having a
saliency assigned to each of said principal component;

pruning means, coupled to said transformation means, for
pruning a number of said principal components that
correspond to the smallest saliencies, Where the number
of said principal components is limited by a sum of said
saliencies of said pruned principal components to be
less than or equal to a prede?ned threshold level,
leaving a remaining set of principal components;

?rst computing means, coupled to said pruning means, for
computing the output signal using said set of remaining
principal components: and

Wherein said neural netWork an updating means, coupled
to said ?rst computing means, for updating the Weights
of the neural netWork adaptively based on an error
betWeen a target output and the output signal.

2. A neural netWork having a plurality of Weights for
receiving a sequence of signal inputs x,,x,+1, xt+2. . . , each

input x, comprising n signal components x1(t), x2(t—1), . . . ,
xn(t—(n—1)) and for generating an output signal that antici
pates the behavior of said input signal for a number of time
samples ahead, said neural netWork comprising:

transformation means for transforming a set of n signal
inputs into a set of principal components having a
saliency assigned to each of said principal component:

pruning means coupled to said transformation means, for
pruning a number of said principal components that
correspond to the smallest saliencies, Where the number
of said principal components is limited by a sum of said
saliencies of said pruned principal components to be
less than or equal to a prede?ned threshold level,
leaving a remaining set of principal components;

?rst computing means, coupled to said pruning means, for
computing the output signal using said set of remaining
principal components: and

updating means, coupled to said ?rst computing means,
for updating the Weights of the neural netWork adap
tively based on an error betWeen a target output and the
output signal,

Wherein said transformation means includes an estimation
means for recursively estimating a current set of prin
cipal components from a set of principal components of
a previously transformed set of n signal inputs.

3. The neural netWork of claim 2, Wherein said estimation
means estimates said current set of principal components in
accordance to the formula

5,812,992
13

Where R,_1 is a covariance matrix of a previous set of n
signal inputs, R, is a covariance matrix of said current set of
n signal inputs, p is a predetermined constant, 3, is a current
input signal, and §,T is a transpose of said current input
signal.

4. The neural netWork of claim 2, Wherein said estimation
means estimates said current set of principal components by
directly calculating a matriX Q, and a matriX A,, Where Q, is
a matriX of eigenvectors and A, is a matriX of eigenvalues.

5. The neural netWork of claim 2, Wherein said saliencies
are calculated in accordance to the formula

Where ?, is the Karhunen-Loeve eXpansion of 3, and v,- is a
p><1 vector of W,T de?ned as W,T=[v1,v2, . . . , vn].

6. The neural netWork of claim 2, Wherein said saliencies
are calculated in accordance to the formula

Where ?, is the Karhunen-Loeve eXpansion of §_,, 2,- is a p><1
vector of W,T de?ned as W,T=[v1,v2, . . . , vn], 51,2 is de?ned
as i,-2(t)=pi,-2(t—1)+(1—p)§(,2(t) and p is a forgetting factor.

7. The neural netWork of claim 2, Wherein said saliencies
are calculated in accordance to the formula

Where)t, is the ith element on the diagonal of A, and v,- is a
p><1 vector of W,T de?ned as W,T=[v1,v2, . . . , vn].

8. The neural netWork of claim 2, Wherein said pruning
means includes:

second computing means for computing an output in
principal component space;

identifying means, coupled to said second computing
means, for identifying said principal components that
correspond to the smallest saliencies, Where a sum of
said smallest saliencies is less than a prede?ned thresh
old level; and

third computing means, coupled to said identifying
means, for computing a pruning vector from said
principal components that correspond to the smallest
saliencies, Where a sum of said smallest saliencies is
less than a prede?ned threshold level.

9. The neural netWork of claim 2, Wherein said pruning
means includes:

identifying means for identifying said principal compo
nents that correspond to the smallest saliencies, Where
a sum of said smallest saliencies is less than a pre
de?ned threshold level; and

fourth computing means, coupled to said identifying
means, for computing a Weight matriX in regular space
from said principal components that correspond to the
smallest saliencies, Where a sum of said smallest salien
cies is less than a prede?ned threshold level.

10. A method of signal processing, utiliZing a neural
netWork having a plurality of Weights, for receiving a
sequence of signal inputs X,, X,+1,X,+2 . . . , each input X,

comprising n signal components X1(t), X2(t—1), . . . , X,,(t—
(n—1)) and for generating an output signal that anticipates
the behavior of said input signal for a number of time
samples ahead, said method comprising the steps of:

(a) transforming a set of n signal inputs into a set of
principal components having a saliency assigned to
each of said principal component:

15

25

35

45

55

65

14
(b) pruning a number of said principal components that

correspond to the smallest saliencies, Where the number
of said pruned principal components is limited by a
sum of said saliencies of said pruned principal com
ponents to be less than or equal to a prede?ned thresh
old level, leaving a remaining set of principal compo
nents:

(c) computing said output signal using said remaining set
of principal components; and

(d) updating the Weights of the neural netWork adaptively
based on an error betWeen a target output and the output
signal.

11. A method of signal processing, utiliZing a neural
netWork having a plurality of Weights, for receiving a
sequence of signal inputs X,,X,+1,X,+2. . . each input X,
comprising n signal components X1(t),X2(t—1), . . . , X,,(t—

(n—1)) and for generating an output signal that anticipates
the behavior of said input signal for a number of time
samples ahead, said method comprising the steps of:

(a) transforming a set of n signal inputs into a set of
principal components having a saliency assigned to
each of said principal component;

(b) pruning a number of said principal components that
correspond to the smallest saliencies, Where the number
of said pruned principal components is limited by a
sum of said saliencies of said pruned principal com
ponents to be less than or equal to a prede?ned thresh
old level, leaving a remaining set of principal compo
nents:

(c) computing said output signal using said remaining set
of principal components: and

(d) updating the Weights of the network adaptively based
on an error betWeen a target output and the output
signal

Wherein said transformation step includes an estimation
step for recursively estimating a current set of principal
components from a set of principal components of a
previously transformed set of n signal inputs.

12. The method of claim 11, further comprising the step
of:

(f) repeating steps (a)—(d) for each neW signal input.
13. The method of claim 11, Wherein said estimation step

estimates said current set of principal components in accor
dance to the formula

Where R,_1 is a covariance matriX of a previous set of n
signal inputs, R, is a covariance matriX of said current set of
n signal inputs, p is a predetermined constant, K, is a current
input signal, and g, T is a transpose of said current input
signal.

14. The method of claim 11 Wherein said estimating step
estimates said current set of principal components by
directly calculating a matriX Q, and a matriX A,, Where Q, is
a matriX of eigenvectors and A, is a matriX of eigenvalues.

15. The method of claim 11, Wherein said saliencies are
calculated in accordance to the formula

Where 3, is the Karhunen-Loeve eXpansion of g, and v,- is a
p><1 vector of W,T de?ned as W,T=[v1,v2, . . . , vn].

16. The method of claim 11, Wherein said saliencies are
calculated in accordance to the formula

5,812,992
15

Where 3, is the Karhunen-Loeve expansion of gt, vi is a p><1
vector of WET de?ned as WtT=[y1,v2, . . . , vn], ii 2 is de?ned

as §i2(t)=p§i2(t—1)+(1—p)§(i2(t) and p is a forgetting factor.
17. The method of claim 11, Wherein said saliencies are

calculated in accordance to the formula

5i=}"i‘7iT‘7i>

Where XL- is the ith element on the diagonal of Ar and vi is a
p><1 vector of W; de?ned as WtT=[v1,y2, . . . , VJ].

18. The method of claim 11, Wherein said pruning step
includes the steps of:

computing an output in principal component space;
identifying said principal components that correspond to

the smallest saliencies, Where a sum of said smallest
saliencies is less than a prede?ned threshold level; and

computing a pruning vector from said principal compo
nents that correspond to the smallest saliencies, Where
a sum of said smallest saliencies is less than a pre
de?ned threshold level.

19. The method of claim 11, Wherein said pruning step
includes the steps of:

identifying said principal components that correspond to
the smallest saliencies, Where a sum of said smallest
saliencies is less than a prede?ned threshold level; and

computing a Weight matrix in regular space from said
principal components that correspond to the smallest
saliencies, Where a sum of said smallest saliencies is
less than a prede?ned threshold level.

20. A signal processing system having a neural netWork
for receiving a sequence of signal inputs 3,, 3H1, gHZ . . . ,

each input 3, comprising n signal components X1(t),
X2(t— 1), . . . , Xn(t—(n—1)) and generating an output signal that

10

15

25

16
anticipates the behavior of said input signal for a number of
time samples ahead, said neural netWork having a plurality
of hierarchically connected nodes forming a plurality of
layers, each of said layer consisting of at least one node, said
nodes being inter-connected With a plurality of Weights, said
signal processing system comprising:

transformation means for transforming a set of n signal
inputs into a set of principal components having a
saliency assigned to each of said principal component;

pruning means, coupled to said transformation means, for
pruning a number of said principal components that
correspond to the smallest saliencies, Where the number
of said pruned principal components is limited by a
sum of said saliencies of said pruned principal com
ponents to be less than or equal to a prede?ned thresh
old level, leaving a remaining set of principal compo
nents;

computing means, coupled to said pruning means, for
computing the output signal of a layer of the neural
netWork using said set of remaining principal compo
nents; and

updating means, coupled to said computing means, for
updating the Weights of the neural netWork adaptively
based on an error betWeen a target output and the output
signal.

21. The signal processing system of claim 20, Wherein
said transformation means includes an estimation means for

recursively estimating a current set of principal components
from a set of principal components of a previously trans
formed set of n signal inputs.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description/Claims
	Page 13 - Claims
	Page 14 - Claims

