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[57] ABSTRACT 

A signal processing system and method for accomplishing 
signal processing using a neural network that incorporates 
adaptive weight updating and adaptive pruning for tracking 
non-stationary signal is presented. The method updates the 
structural parameters of the neural network in principal 
component space (eigenspace) for every new available input 
sample. The non-stationary signal is recursively transformed 
into a matrix of eigenvectors with a corresponding matrix of 
eigenvalues. The method applies principal component prun 
ing consisting of deleting the eigenmodes corresponding to 
the smallest saliencies, where a sum of the smallest salien 
cies is less than a prede?ned threshold level. Removing 
eigenmodes with low saliencies reduces the effective num 
ber of parameters and generally improves generalization. 
The output is then computed by using the remaining eigen 
modes and the weights of the neural network are updated 
using adaptive ?ltering techniques. 

21 Claims, 5 Drawing Sheets 

(210 f 21 1 220 
/ L 221 

INPUT DATA LEARNING SECTION 

DATA RECEIVING 
SECTION 

(224 226 228 
I/O ' I (230 

DATA INPUT 7? ' ' ' 
r“ STORAGE PATTERN W OUTPUT 

212 SECTION P : PATTERN PROCESSOR 

I : 0P 
_ W . 

214 ‘J :b 

L MONITOR KEYBOARD 
222 

\ J L SIGNAL SIGNAL 
RECEIVING PROCESSING 240 L250 
SECTION SECTION 



U.S. Patent Sep. 22, 1998 Sheet 1 of5 5,812,992 

INPUT SIGNAL PATTERN 

j\.110 

116\% \g)/ = 180 

OUTPUT SIGNAL LEARNING RULES 

_ ERROR 

FIG. 1 
PRIOR ART 



5,812,992 

/ 

U.S. Patent Sep. 22, 1998 Sheet 2 of5 

x5 

f 

6 E8385 MZEDE 5&8 

a 295% NE ZEEE MQEOB \L 
5%: <20 

@NN 8N wmm 

A 

A 

r 

56 

M v >v 295% M M 

wzsmowm E5 

v 



U.S. Patent Sep. 22, 1998 Sheet 3 0f 5 5,812,992 
ADAPTIVE EIGENPRUNING 
AND ADAPTIVE WEIGHT 

“A310 

II 

EIGEN-DECOMPOSE THE COVARIANCE 
MATRIX OF gct INTO THE EIGENVECTOR 
MATRIX Qt AND EIGENVALUE MATRIX At 

UPDATING METHOD 
(Q) 

A320 

II 

COMPUTE it, THE KARHUNEN-LOEVE 
EXPANSION OF 4, A330 

II 

COMPUTE THE UNPRUNED OUTPUT yr "A340 

II 

COMPUTE THE SALIENCE VECTOR st, 
IDENTIFY H, 
COMPUTE THE PRUNING VECTOR 

A350 

390 II 

COMPUTE THE FILTER (OR NEURAL NET 
LAYER) OUTPUT y, A360 

v 

UPDATE THE WEIGHT MATRIX Wt BY 
TRANSFORM DOMAIN ADAPTIVE 
FILTERING A370 

YES 

NO 

END 

FIG. 3 

380 



U.S. Patent Sep.22,1998 Sheet 4 of5 5,812,992 

4 

AW 

Q Q .............. .. Q 

OUTPUT it 

DESIRED LEARNING _ 

d, RROR RULE 
Q 1‘ 

FIG. 4 

350 

~- COMPUTE NP 

wawa y’ R 
330 WI 340 

_ lit gt Wt Y!‘ 2_ ‘y! 

A 
1" —>ADAPTIVE \Qr — 

PC TDAF g d 
r» EXTRACT At Q gt -¢ 

QH’AH D 320 370 



U.S. Patent Sep. 22, 1998 Sheet 5 of5 5,812,992 

HAS x,-1 BEEN 
PREVIOUSLY EIGEN 
DECOMPOSED 

ER( Am? 
D 

PTYM UA\x/_ YW # H C U V N + “a m 1. R R t UA M WWW: RCDM. 

S E Y m 

0 | 

2 TE 6 gnNu f OA 
PM M A 0V CO EC D_E N EW nluF E0 

MATRIX Rt = mtg] 

v 

EIGEN-DECOMPOSE Rm 
TO EXTRACT Q, AND A, 

V 

EN D 

CONTINUE 



5,812,992 
1 

METHOD AND SYSTEM FOR TRAINING A 
NEURAL NETWORK WITH ADAPTIVE 
WEIGHT UPDATING AND ADAPTIVE 
PRUNING IN PRINCIPAL COMPONENT 

SPACE 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application is a continuation of patent application 
Ser. No. 08/448,770 entitled “METHOD AND SYSTEM 
FOR TRAINING A NEURAL NETWORK WITH ADAP 
TIVE WEIGHT UPDATING AND ADAPTIVE PRUNING 
IN PRINCIPAL COMPONENT SPACE” ?led on May 24, 
1995, noW abandoned. 

The present invention relates generally to the ?eld of 
neural information processing and, more particularly, to a 
signal processing system and method for accomplishing 
signal processing With a neural netWork that incorporates 
adaptive Weight updating and adaptive pruning for tracking 
non-stationary signals. 

BACKGROUND OF THE INVENTION 

Over the years, neural netWork modeling has been devel 
oped to solve problems ranging from natural language 
understanding to visual processing. A neural netWork is a 
computational model composed of neurons (or simply 
nodes) and connections betWeen the nodes. The strength of 
each connection is expressed by a numerical value called a 
Weight, Which can be modi?ed. Similarly, the “?ring” of 
each node is associated With a threshold numerical value, 
Which is referred to as the nodes’ activation. The activation 
of a given node is based on the activations of the nodes that 
have connections directed at that node and the Weights on 
those connections. In general, a neural netWork incorporates 
some special nodes called input nodes With their activation 
externally set, While other nodes are distinguished as output 
nodes. 

In contrast to conventional computers, Which are pro 
grammed to perform speci?c tasks, most neural netWorks 
can be taught, or trained. As such, a rule that updates the 
activations is typically referred to as the update rule. 
Similarly, learning in a neural netWork is generally accom 
plished using a learning rule to adjust the Weights. 

Atypical neural netWork model has a set of input patterns 
and a set of output patterns. The role of the neural netWork 
is to perform a function that associates each input pattern 
With an output pattern. A learning process, such as “error 
back-propagation”, uses the statistical properties of a train 
ing set of input/output patterns to generaliZe outputs from 
neW inputs. 

Error back-propagation is a supervised learning process 
through Which a neural netWork learns optimal Weights. 
Error back-propagation compares the responses of the out 
put nodes to a desired response, and adjusts the Weights in 
the netWork so that if the same input is presented to the 
netWork again, the netWork’s response Will be closer to the 
desired response. 

Referring to FIG. 1, the learning rule of error back 
propagation is applied to a multi-layer neural netWork 
having an input layer 130, an intermediate layer or so-called 
hidden layer 140 and an output layer 150. The output values 
of all nodes nh 112 in the input layer 130 are distributed as 
an input value to each of the node ni 114 in the intermediate 
layer 140. The output value of each of the nodes in the 
intermediate layer 140 is distributed as an input value to 
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2 
every node n]- 116 in the output layer 150. Each node n]- 116 
produces a value Which is the total sum net of output values 
Oi of a node ni coupled to the output node n]- by a coupling 
Weight Wj-i, transformed by a predetermined function f. This 
same concept applies to the intermediate node ni 114 With 
respect to input node nh 112. In other Words, When the values 
Within a pattern p are provided as an input value to each node 
nh 112, an output value Opi and Opj- for each node ni 114 and 
n]- 116 respectively, can be expressed by the folloWing 
formulas: 

Hence, the netWork acquires output value Opj- of the 
output node n]- 116 of the output layer 150 by sequentially 
computing the output values of the input n]- 116, each 
corresponding to a node from the input layer 130 toWards the 
output layer 150. 

(1) 

The process of learning in accordance With error back 
propagation consists of updating coupling Weights Wj-i and 
Wm, so that the total sum Ep of the square errors betWeen the 
output value Opj- of each node of the output layer 150 on 
applying the input pattern p and the desired output tpj, is 
minimiZed. Hence, the total netWork error E for the input 
pattern p is de?ned by: 

This algorithm is sequentially applied from the output layer 
150 back toWard the input layer 130. The netWork error With 
respect to any Weight, e.g. Weight Wj-i, is given by the 
gradient 6Ep/6Wji of the total netWork error Ep With respect 
to a change in that Weight. Hence, the error 6].) for each 
output node n]- 116 can be determined as a function of the 
corresponding actual value Opj- and target value tpj- and the 
difference therebetWeen for that node, as folloWs: 

and for an intermediate node ni 114, as follows: 

After the neural errors are determined, these errors are 
propagated, via leads 170, back toWard the netWork input 
nodes. 
The coupling Weights of both the output layer 150 and the 

intermediate layer 140 are adjusted according to the folloW 
ing learning rules 180 for n]- 116: 

(5) 

and for each intermediate node ni 114: 

itpi 

In the above formulas, 11 represents the rate of learning, 
Which is a constant, and it determines hoW fast the netWork 
Weights converge during netWork training. Coefficient a 
represents a stabiliZation factor for reducing the error oscil 
lations and accelerating the convergence thereof. Both coef 
?cients 11 and 0t can be empirically determined from the 
number of nodes, layers, input values or output values. This 
Weight adjustment process is repeated until the patterns in 
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the training set are exhausted or When the ?nal error value 
falls below a prede?ned upper bound Emax. For a detailed 
explanation of error back-propagation in neural networks, 
see S. Haykin, Neural Networks, IEEE Press, (1994). 

HoWever, error back-propagation is limited in that this 
technique does not provide any information concerning the 
optimal number of nodes in the neural netWork. For 
example, if the neural netWork has a prede?ned number of 
nodes, the error back-propagation Will continue to update 
the Weights for all nodes regardless of Whether all the nodes 
are necessary to achieve the desired response. The effect to 
the output of having too many nodes Will be “over?tting”, 
Which leads to poor performance on an out-of-sample data 
set. Conversely, if the number of nodes de?ning the netWork 
is too feW, the neural netWork Will not be optimal because 
the netWork Will be missing vital information. 

To address this netWork optimiZation issue, techniques 
have been developed to assess the need to add or remove a 
node from a neural netWork. HoWever, these techniques are 
generally not Well suited for signals Whose statistical prop 
erties change over time. Such signals are knoWn as “non 
stationary signals”. For example, if a node is added to a 
neural netWork, it Will require several time steps to acquire 
the necessary information to train the Weight for this neW 
node. Since the statistical properties of non-stationary sig 
nals may change rapidly, the neural netWork may no longer 
be of optimal siZe by the time the neW node is trained. 

Real World signals such as ?nancial, physiological and 
geographical data often are non-stationary. Because the 
number of parameters in a netWork is a crucial factor in it’s 
ability to generaliZe, it is the goal of an appropriate model 
to track the non-stationary signals by adaptively (on-line) 
updating its parameters. Ideally, this means updating, in 
response to changes in the input signal, “structural param 
eters” such as the effective number of hidden nodes 
(intermediate layer nodes) Within the netWork. 

HoWever, traditional methods generally do not provide 
this capability. For a non-stationary signal, it is not appro 
priate to ?x the model parameters after training on a repre 
sentative data set. 

In addition, Weight updates make use of the gradient 
(GE/6W) of the error E With respect to the Weights. Generally, 
this gradient can be directly computed from the neural 
netWork by an error back-propagation process. HoWever, 
such a gradient cannot be computed With respect to the 
number of nodes. Since these parameters are in the form of 
integers, it Would not be possible to compute the gradient of 
the error With respect to parameters, Which are required for 
gradient-based optimiZation methods. 

Therefore, a need exists in the art for a system and method 
capable of adaptively updating the structural parameter of a 
neural netWork for every neW available sample of data for 
tracking non-stationary signals. 

SUMMARY OF THE INVENTION 

The present invention overcomes the disadvantages asso 
ciated With the prior art by providing a signal processing 
system and method that updates structural parameters of the 
neural netWork system. Speci?cally, the invention updates 
the structural parameters of the neural netWork in principal 
component space for every neW available input sample. The 
method of the present invention referred generally as adap 
tive eigenpruning and adaptive Weight updating, consists of 
six steps Which are applied to each neW available sample of 
the input signal. Since the present invention can be applied 
to any layer of a neural netWork, the term input signal may 
represent an input signal to an input layer of a neural 
netWork or an input signal to a hidden layer of a neural 
network. 
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4 
The ?rst step transforms a non-stationary signal (input 

signal) to principal component space Where the non 
stationary signal is transformed into a matrix of eigenvectors 
With a corresponding matrix of eigenvalues. In statistical 
literature, this ?rst step is knoWn as performing a principal 
component analysis (PCA) on the signal. This is a transfor 
mation that projects the input signal into a different space 
used to determine the resonance of the input signal. 

HoWever, performing a principal component transforma 
tion directly on every neW signal input is computationally 
expensive, so that once a transformation is completed, the 
inventive method employs recursive estimation techniques 
for estimating eigenvectors and eigenvalues. The adaptive 
principal component extraction or the LEArning 
machine for adaptive feature extraction via Principal com 
ponent analysis (LEAP) are just tWo examples of such 
extraction techniques. 
The second step transforms the non-stationary input sig 

nal (in general, a vector signal) to its principal component 
space (Which is hereinafter referred to as “eigenspace”). The 
goal of this transformation is to make the components of the 
input signal mutually orthogonal. The advantage of such a 
representation is that the effects of the orthogonal compo 
nents (the “eigenmodes”) of the input signal on the ?lter or 
neural netWork output signal can be analyZed individually 
Without taking the other eigenmodes into account. 

In the third step, the method computes an “unpruned” 
output signal by multiplying the orthogonaliZed input signal 
With the ?lter or neural netWork Weight matrix. 

In the fourth step, the method selects components of the 
Weighted input signal for pruning from the output signal. 
The selection procedure identi?es the eigenmodes that are 
revealed in eigenspace to be of minimal in?uence on the 
output signal of the system. This step is derives an upper 
bound on the modeling error introduced by deleting the 
eigenmodes. This error upperbound is de?ned as the 
saliency for the ith eigenmode. 

In the ?fth step, the method completes the “eigenpruning” 
by subtracting eigenmodes With small saliencies from the 
output signal. Since eigenpruning and recomputing the error 
upperbounds are performed for each neW input sample, this 
method is knoWn as adaptive eigenpruning. Removing 
eigenmodes reduces the effective number of parameters and 
generally improves generaliZation, i.e., performance on an 
out-of-sample data set. 

Finally, the sixth step applies standard ?ltering techniques 
such as the Transform Domain Adaptive Filtering (TDAF) to 
update the Weights of the ?lter or neural netWork. 

Speci?cally, the present invention applies the six steps 
mechanism to every input sample, thereby adaptively updat 
ing the Weights and effective number of nodes in a neural 
netWork for every input sample of a non-stationary signal. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The teachings of the present invention can be readily 
understood by considering the folloWing detailed descrip 
tion in conjunction With the accompanying draWings, in 
Which: 

FIG. 1 is a block diagram of a neural netWork applying a 
prior art error back propagation process; 

FIG. 2 is a block diagram of a signal processing system 
that contains a neural netWork that embodies the teachings 
of the present invention; 

FIG. 3 is a ?oWchart shoWing the process of adaptive 
Weight updating and adaptive eigenpruning; 
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FIG. 4 is a block diagram of a neural network applying a 
spectral decomposition of 2; 

FIG. 5 is a block diagram of FIG. 3 shoWing the process 
of adaptive Weight updating and adaptive eigenpruning; and 

FIG. 6 is a block diagram for the mechanism of recursive 
estimation of the eigenvalue and eigenvector matrices. 

DETAILED DESCRIPTION 

After considering the following description, those skilled 
in the art Will realiZe that the teachings of this invention can 
be readily utiliZed to predict non-stationary signals 
(including, but not limited to ?nancial signals). In general, 
this invention discloses a method and system for updating a 
layer in a neural netWork by adaptively updating the Weights 
and effective number of nodes of the netWork. This is 
accomplished by applying the concept of adaptive eigen 
pruning to a neural netWork. 

FIG. 2 depicts a signal processing system that utiliZes the 
present inventions. This general signal processing system 
consists of a signal receiving section 210, a signal process 
ing section 220, a processor 230, a monitor 240 and a 
keyboard 250. 

Signal receiving section 210 serves to receive input data 
signals, such as ?nancial data. Signal receiving section 210 
consists of a data receiving section 211, a data storage 
section 212, and input/output (I/O) sWitch 214. Data receiv 
ing section 211 may include a number of devices such as a 
modem and an analog-to-digital converter. A modem is a 
Well-knoWn device that comprises a modulator and a 
demodulator for sending and receiving binary data over a 
telephone line, While an analog-to-digital converter converts 
analog signals into a digital form. Hence, input signals are 
received “on-line” through signal receiving section 210 and, 
if necessary, are converted to a digital form. 

The data storage section 212 serves to store input signals 
received by data receiving section 211. Data storage section 
212 may incorporate a number of devices such as a disk 
drive, semiconductor memory or other storage media. These 
storage devices provide a method for applying a delay to the 
input signals and store input signals for processing at a later 
time. Finally, the stored input signals are presented to the 
signal processing section 220 through input/output sWitch 
214, Which channels the input signal from signal receiving 
section 210 to signal processing section 220. The I/ O sWitch 
214 also channels the input signals betWeen data receiving 
section 211 and data storage section 212. 

The signal processing system of the present invention 
includes a signal processing section 220 for producing an 
output signal Op from input signal patterns p. The signal 
processing section 220 consists of a neural netWork 222 With 
a learning section 221. The neural netWork 222 includes at 
least an input layer 224 and an output layer 228. The neural 
netWork may optionally include a number of intermediate 
layers 226 (also knoWn as hidden layers). Each layer 
includes at least one node. 

Adesired (target) output signal tp and the output signal Op 
are applied to learning section 221. Applying a learning 
signal as described beloW, learning section 221 causes neural 
netWork 222 to undergo learning by updating the parameters 
W in such a manner that each W is sequentially and repeat 
edly updated. 

The neural netWork 222 of signal processing section 220 
computes, in accordance With the sequences of steps shoWn 
by the How charts of FIG. 3 and 6, an output signal Op from 
an input pattern p. Output signal Op is an output value that 
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6 
correlates to a prediction of the value of input pattern p for 
n samples ahead. 

The processor 230 of the signal processing system 
receives the output signal Op and performs additional data 
processing such as determining the direction or trend of the 
input pattern p. Furthermore, the processor 230 is coupled to 
a monitor 240 and a keyboard 250 for displaying data and 
receiving inputs respectively. 
The method of adaptively updating the dimensions of a 

neural netWork for every neW available input sample of data 
for tracking non-stationary signals are described With refer 
ence to method 300 of FIG. 3. Method 300 starts by taking 
an input vector xt=[x1(t), x2(t), . . . , xn(t)]T 310 and 
transforms it into principal component space in step 320. 
This step multiplies the vector of elements representing the 
input signal by a matrix so as to transform the coordinates 
in Which the vector is represented to ones that display the 
maximum variance along their axes, thus removing corre 
lations betWeen pairs of coordinates. 

To illustrate, the method assumes a signal plus noise 
model With the signal generated by a function linear in the 
Weights Which can be represented by yt=Wo xt+er This, in 
turn, is modeled by: 

Axr=Wn (7) 

Depending on the particular application, xf may represent 
one of a number of different signals, including an input 
vector signal, an output signal from a layer in a neural 
netWork or a regression vector on y, itself. It should be noted 
that throughout this speci?cation, vectors are represented 
With an underscore, While matrices are represented by capi 
tals. 

HoWever, the dimension of xfmay be time varying, Which 
makes it dif?cult to estimate the dimension of xi. Hence, 
choosing a ?xed dimensional choice is inappropriate. The 
covariance matrix of input x, is de?ned as Rt=E[x,xtT], 
Which can be estimated by: 

RI=EHZJMHMHT (8) 

Mu is de?ned as a forgetting (decaying) factor Which 
causes exponential decay of the temporal Weighing of xi in 
R. Where the vector signals are non-stationary, p is less than 
1. Speci?cally, the forgetting factor p is commonly chosen 
in the interval 0.950<p<0.999. 
The eigen-decomposition of Rt, also called principal 

component extraction of xi, can be de?ned by: 

Where Q,=[q1,q2, . . . , gm] is the n><n orthogonal eigenvector 

matrix (the adjective orthogonal implies that QtQtT =1), and 
A,=diag[Ex,2(t),Ext2(t), . . . , Exn2(t)] is a n><n diagonal 

matrix of the eigenvalues of Rt. Hence, by solving for the 
unique solution of Q and At, the inventive method achieves 
eigen-decomposition. For a detailed discussion of this 
decomposition, see eg S. Haykin,Aa'aptive Filter Theory, 
Prentice-Hall, (1991, chapter 4). It should be noted that step 
320 is only performed for tin. Namely, Q and At do not 
exist When t<n. 

HoWever, it is computationally expensive to calculate Q 
and At for each neW signal input xi. Hence, the method 
employs recursive estimation of the eigenvalues and eigen 
vectors as described beloW With reference to process 600 of 
FIG. 6. 

Continuing With method 300 of FIG. 3, once Q and At 
have been eigen-decomposed from the vector x,, the next 
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step applies principal component pruning (eigenpruning). 
Eigenpruning is based upon the concept disclosed by Levin 
et al. in Fast Pruning Using Principal Components, 
Advances in Neural Information Processing Systems 
(NIPS)6 pp. 35—42 (1994). This step consists of eliminating 
eigenmodes that are revealed in eigenspace to have minimal 
in?uence on the output of the system. In fact, the advantage 
of eigenspace decomposition is that it offers the ability to 
identify the independent contribution of each individual 
eigenmode on the error of the netWork. The process of 
eigenpruning is described beloW collectively in steps 
330—370 in FIG. 3. 

In step 330, x, is computed by: 

(10) 

The term x, is referred to as the Karhunen-Loeve expansion 
of x,. The goal of this transformation is to bring x, to its 
principal component space. This transformation is effec 
tively a rotation of x,. 

In step 340, 3,, the “unpruned” output of a layer of the 
neural netWork is computed by: 

2:141:52: (11) 

If y, is a p><1 vector, then WIT is a p><n Weight matrix of a 
layer in the neural netWork. WET is de?ned as WtT=[v1, 
v2, . . . , vn], Where each X, is a p><1 vector. Hence, 3, can also 

be expressed as y,=2,=,"y,§<,. This is knoWn as the spectral 
decomposition of yr and is illustrated in the neural netWork 
of FIG. 4. There are “n” vector terms (eigenmodes) in the 
spectral sum. Since 2, 410 is in principal component space, 
it can be demonstrated that each eigenmode X9}, 420 con 
tributes independently to the error in the output 3, 430 in a 
layer of the neural netWork. Using an available desired 
output signal vector dt, the error is de?ned as gig-yr If y, 
is from the output layer of a neural netWork, a desired output 
signal Q, is usually available. If Y, holds activities for an 
intermediate (or hidden) layer in a neural netWork, a desired 
output signal d, can be estimated by the back-propagation 
process. For a detailed exposition on computing desired 
signals for the hidden layers of a neural netWork by means 
of the back-propagation algorithm, see S. Haykin, Neural 
Networks, IEEE Press, (1994, chapter 6). 

The next step in the eigenpruning process is performed in 
step 350 of FIG. 3. Eigenpruning is implemented by calcu 
lating the “saliency” of each eigenmode. Saliency is a 
quantity that measures the effect of the ith eigenmode on the 
output error. Eigenpruning consists of deleting the corre 
sponding eigenmodes With the smallest saliencies such that 
the sum of the deleted saliencies is less than or equal to a 
prede?ned percent of the total sum of the saliencies. Remov 
ing eigenmodes With loW saliencies reduces the effective 
number of parameters de?ning the netWork and improves 
generaliZation. In the embodiment of the present invention, 
one percent (1%) is chosen. Although this percentage Works 
Well With the training data that Were used to train the neural 
netWork, other heuristics could be used as Well. 

There are three embodiments of the present invention 
With regard to the calculation of saliency for each eigen 
mode. In the ?rst embodiment, since the contribution of 
X9}, to the error is independent from other eigenmodes, it 
folloWs that the maximum squared error introduced by each 

The saliency sl-(t) is an upper bound for the increase of the 
squared error When X9}, is subtracted from yr. 
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In the second embodiment, saliency is alternatively 

expressed as: 

}i(t)=XtTXi;i2> 13) 

Where xi2 is a loW-pass ?ltered version of if, namely 
xi2(t)=nxi2(t—1)+(1—n)xi2(t), Where a is the forgetting factor 
discussed above. 

In the third embodiment of the present invention, saliency 
is de?ned as: 

5i=7\'i‘7iT‘7i> (14) 

where k,- is the ith element on the diagonal of A,. 
To illustrate, since Q, is orthonormal, Which implies 

QtT=Qt_1, y, can be expressed as: 

AXFWIQIQITEFWZFEREE (15) 

Where Wt=WtQt and xt=QtTxr Both >2, and ii (denote the 
ith column of Wt by 2) lie in the space spanned by the 
columns of Q,. This third embodiment of saliency represents 
the modeling error (yr-it)2 introduced by deleting the 
contribution of the term iii, Lambda ()ti) is the ith eigen 
value in the eigenvalue matrix A,. 

The third embodiment of the present invention is different 
from the other tWo embodiments in that, the third embodi 
ment computes saliency by using the ith eigenvalue K,- from 
the eigenvalue matrix At, Whereas the ?rst tWo embodiments 
use the current input signal xi. The difference is that XL- is a 
smoothed average of if. 
With si calculated in step 350 for each eigenmode using 

one of the three embodiments discussed above, the method 
then identi?es a set of indices (II) of eigenmodes With 
“small” saliencies. As discussed above, II may represent the 
set of indices for Which the cumulative sum of the saliencies 
is less than or equal to a prede?ned percent of the total sum 
(over “n” eigenmodes) of the saliencies. When II has been 
identi?ed, a p><1 pruning vector y; is computed as: 

(16) 

The pruning vector 3; represents the set of eigenmodes that 
have minimal in?uence on the actual output signal of a layer 
of the neural netWork. As such, this pruning vector ytp is 
used in step 360 to calculate the actual output. 

In step 360, the method computes the output y, of a layer 
as: 

(17) 

Since 3, represents the “unpruned” output of a layer of the 
neural netWork, then it folloWs that y,=Zl-€Hvixi, Where y, is 
a pruned version of y, as computed in step 340. Step 360 
effectively completes the eigenpruning process and gener 
ates the output signal for a layer of the neural netWork. 

Finally, in step 370 the method updates the Weights of the 
neural netWork by using standard adaptive ?ltering tech 
niques such as the Transform Domain Adaptive Filtering 
(TDAF). If an error vector e,=g,-y, is available (or possibly 
has been estimated by the back-propagation process), then 
the Weights of the corresponding layer of the neural netWork 
are updated by the folloWing formula: 

Where 1] is a learning rate parameter and xt=QtTgr 
It should be noted that other standard adaptive ?ltering 

techniques exist and that the use of the TDAF algorithm in 
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the present invention is only illustrative. For a detailed 
discussion of the Transform Domain Adaptive Filtering 
(TDAF), see Marshall et al., The Use of Orthogonal Trans 
forms for Improving Performance ofAdaptive Filters, IEEE 
Transactions on Circuits and Systems, Vol.36, no.4, (1989). 

After computing step 370, the method queries at step 380, 
Whether additional input samples exist. If the query is 
ansWered affirmatively, the process reverts back to step 320 
along path 390 and the process of adaptive eigenpruning and 
adaptive Weight updating is repeated for the next input 
sample of the non-stationary signal. If the query is ansWered 
negatively, the process ends. An alternative perspective of 
the process 300 of FIG. 3 is provided in FIG. 5 in the form 
of a block diagram. 

In FIG. 3, the Weights and the effective number of nodes 
of the neural netWork are updated for every available input 
sample of a non-stationary signal. HoWever, the direct 
computation of the matrices Q, and A, for every input vector 
x, is inherently expensive, especially if n is a high number. 
Hence, it is necessary to employ techniques that can be used 
to recursively estimate the eigenvalues and eigenvectors. 

There are tWo embodiments of the present invention for 
recursive estimation of the eigenvector matrix Q, and eigen 
value matrix A,. These embodiments incorporate different 
extraction techniques and they are described With reference 
to FIG. 6. As discussed, the eigen-decomposition of step 320 
of FIG. 3 becomes computationally expensive When eigen 
decomposition is computed directly for each neW input 
sample. Hence, step 320 includes steps to recursively esti 
mate the eigenvector matrix Q, and eigenvalue matrix A, as 
neW input samples are received. 

Referring to FIG. 6, in step 610, a decision is made as to 
Whether direct eigen-decomposition should be performed. 
This decision is based on Whether eigen-decomposition has 
been performed for the previous input vector x, 

In step 615, if eigen-decomposition has not been 
performed, a decision is made as to Whether tin. As noted 
above, When t<n, Q, and A, do not exist and eigen 
decomposition is not available at this point. Since eigen 
decomposition is performed on a n><n matrix of x,, this 
causes the process to end at this point. If tin, then the 
process proceeds to step 620, Which is the identical step as 
described in step 320 for the direct eigen-decomposition of 
x, 

In the ?rst embodiment of the present invention, if Q, and 
A, are available from the eigen-decomposition of the pre 
vious signal input x,_1, then recursive estimation of Q, and 
A, are computed With respect to the neW input sample x, by 
updating the covariance matrix R, in step 630. By using the 
covariance matrix R,_1, the covariance matrix R, can be 
computed recursively as: 

In step 640, an eigenspace decomposition on R, is then 
subsequently performed to obtain Q, and A,. 

The advantage of accurately tracking Q, and A, for the 
purpose of estimating the eigenvalues and eigenvectors 
recursively is signi?cant. This step dramatically reduces the 
computational overhead of eigen-decomposing the neW vec 
tor x, directly as disclosed above in step 320. The saving is 
realiZed from having to only compute x,x,T Which is only the 
product of a n><1 vector With a 1><n transpose vector. Using 
the covariance matrix of R,_1 obtained from the previous 
eigen-decomposition of x,_1, R, can be computed inexpen 
sively. 

To illustrate, the recursive eigenpruning process requires 
the computation of the eigenvector matrix Q, and eigenvalue 
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10 
matrix A, for each neW input sample. The straightforWard 
method is to perform a standard eigen-decomposition of R,. 
The number of elementary arithmetic manipulations (such as 
multiplications and additions) required for the eigen 
decomposition of R, is on the order of n3. This means that 
if the dimension of R, is n><n (say n=100), it Will require n3 
(1,000,000 for n=100) arithmetic manipulations to compute 
the eigenvector matrix Q, and eigenvalue matrix A,. Clearly, 
if these computations are performed for every input sample, 
a large computational resource Will be required. HoWever, 
With the use of extraction techniques, the saving in compu 
tational steps equates approximately to reducing n3 compu 
tational steps to that of n2 computational steps. As n 
increases, this saving in computational steps becomes 
extremely signi?cant. 

In a second embodiment of the present invention, algo 
rithms such as APEX or LEAP are used to directly compute 
Q, and A, Without updating the covariance matrix R,. These 
algorithms are described in detailed in the articles by Kung 
S. Y., and Diamantaras., A Neural Network Learning Algo 
rithm for Adaptive Principal Component Extraction, Proc. 
of IEEE Conf. on Acoustic, Speech and signal Processing 
(ICASSP), pp. 861—864, (1990) and Chen H. and Liu R.,An 
On-line Unsupervised Learning Machine for Adaptive Fea 
tare Extraction, IEEE trans. on Circuits and Systems II, vol. 
41, no.2, pp. 87—98, (1994). Namely, given the ?rst m-1 
principal components, the algorithm can produce the m-th 
component iteratively. The use of these extraction tech 
niques Will further reduce the total number of computational 
steps by removing step 630, Where the covariance matrix R, 
is recursively updated. 

These algorithms have been developed to reduce the 
computational load for the updating of Q, and A,. The key 
to these “fast” eigen-decomposition algorithms is that Q, and 
A, are updated for each input sample directly from the data 
stream of x, Without computing R,. Both APEX and LEAP 
are implemented in neural netWork hardWare and/or soft 
Ware and their performance is comparable. Both methods 
consist of tWo mechanisms. The ?rst mechanism computes 
the correlations betWeen the various components of input 
signal x, In APEX and LEAP, this mechanism is imple 
mented by the “Hebbian” (“correlation”) updating rule. The 
Hebbian algorithm ?nds the dominant correlations. 
The second mechanism constrains the ?rst mechanism 

such that the various correlations found by the Hebbian rule 
are orthogonal to each other. APEX uses an orthogonaliZing 
learning rule that is referred to as anti-Hebbian learning, 
Whereas LEAP implements the orthogonaliZing process by 
the Gram-Schmidt rule. The mechanisms for correlation 
learning (Hebbian rule) and orthogonaliZation (anti-Hebbian 
and Gram-Schmidt rule) are standard and Widely applied. 

It should be noted that some of these algorithms Were 
premised on the fact that the input signal is stationary. 
HoWever, the advantage of applying these techniques to 
non-stationary signals coupled With the concept of adaptive 
eigenpruning is signi?cant. As discussed above, the concept 
of eigenpruning provides an accurate method to update the 
Weights and the effective number of nodes for a neural 
netWork, but it is computationally expensive When applied 
to a non-stationary signal for each input sample. Hence, the 
use of extraction techniques provides a poWerful and ef? 
cient solution to reduce the number of computational steps 
necessary to implement the adaptive eigenpruning process 
for a non-stationary signal. 

Thus, a novel neural netWork for processing non 
stationary signals has been disclosed. HoWever, many modi 
?cations and variations of the present invention Will become 
apparent to those skilled in the art. 
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Speci?cally, the method of the present invention is imple 
mented completely in eigenspace. However, it is possible to 
selectively modify various steps of process 300 in different 
space. To illustrate, eigenpruning can be accomplished by 
setting the values in a corresponding column in the eigen 
vector matrix Q, to Zeros, Which correlates to eigenmodes 
With small saliencies. After the eigenvector matrix Q(t) is 
eigenpruned, the Weights of the netWork are updated. The 
eigenpruned Weight matrix is computed as: 

Where ep represents eigenpruned. Using the updated 
Weight matrix Wep(t), a model output can be computed. 

The model output is computed as: 

Finally, the Weights of the neural netWork are updated using 
standard adaptive ?ltering techniques such as the Least 
Mean Squares (LMS). This ?ltering technique is used in 
place of the TDAF and the Weights of the corresponding 
layer of the neural netWork are updated by the folloWing 
formula: 

(21) 

Where 1] is a learning rate parameter and ek is the error 
signal. Hence, many modi?cations of the present invention 
are possible. 

The neural netWork according to the present invention 
Was tested to perform a number of simulations. In one 
simulation, the tick-by-tick values from May 1985 of the 
U.S. dollar versus SWiss Franc exchange rate Were used as 
the non-stationary input signal. This time series contains 
successive tick values that Were separated by a feW minutes, 
but the sampling period Was not a constant. The time series 
Was processed to the extent that the maximal absolute value 
Was rescaled to one and the mean value Was rescaled to Zero. 

The goal is to predict the value of the exchange rate ?ve 
ticks ahead, While making use of past values of the exchange 
rate. The neural netWork Was trained using a training set of 
1,000 samples and the next set of 1,000 samples Was used as 
testing data. AtWo layer feedforWard netWork With 40 ‘tanh’ 
hidden nodes and one (1) linear output node Was employed. 
In conjunction, a 10-dimensional vector x(t) =[y(t—5), y(t 
6), . . . , y(t-14)]T Was used as an input and y(t) as a target 

output. The goal of the netWork Was to predict the exchange 
rate ?ve (5) ticks ahead, While making use of the exchange 
rate of the last ten (10) ticks. The netWork Was loaded With 
Weights W0, the Weights from the trained unpruned netWork, 
and the Weights Were adapted on-line as the netWork moved 
over the test data, While the netWork employed adaptive 
Weight updating and adaptive eigenpruning. A learning rate 
11=0.05 and forgetting factor >\,=0.98 Were chosen. 

The results are very impressive. Instead of focusing on the 
predicted values of the exchange rate, the fraction of cor 
rectly estimated directions of the exchange rate Was com 
puted. In other Words, the direction of the exchange rate Was 
predicted. The direction of the exchange rate is computed as: 

-1 if y(t) - y(t - 1) < -e (23) 

dir(t) = 

The area [-0, 0] is referred to as the deadZone. For 0=0, i.e. 
no deadZone, the adaptive netWork correctly estimated 72% 
of the exchange rate directional movements. In fact, When a 
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dead Zone of 0=0.017 is used, conditional on that a change 
took place (dir(t)$€0), the adaptive netWork predicted 80% 
of the exchange rate directional movements. 

There has thus been shoWn and described a novel neural 
netWork for processing non-stationary signals such as ?nan 
cial data. Many changes, modi?cations, variations and other 
uses and applications of the subject invention Will, hoWever, 
become apparent to those skilled in the art after considering 
this speci?cation and the accompanying draWings Which 
disclose the embodiments thereof. All such changes, 
modi?cations, variations and other uses and applications 
Which do not depart from the spirit and scope of the 
invention are deemed to be covered by the invention, Which 
is to be limited only by the claims Which folloW. 
What is claimed is: 
1. A neural netWork having a plurality of Weights for 

receiving a sequence of signal inputs x,,x,+1, x,+2 . . . , each 

input xt comprising n signal components x1(t), x2(t—1), . . . , 
xn(t—(n—1)) and for generating an output signal that antici 
pates the behavior of said input signal for a number of time 
samples ahead, said neural netWork comprising: 

transformation means for transforming a set of n signal 
inputs into a set of principal components having a 
saliency assigned to each of said principal component; 

pruning means, coupled to said transformation means, for 
pruning a number of said principal components that 
correspond to the smallest saliencies, Where the number 
of said principal components is limited by a sum of said 
saliencies of said pruned principal components to be 
less than or equal to a prede?ned threshold level, 
leaving a remaining set of principal components; 

?rst computing means, coupled to said pruning means, for 
computing the output signal using said set of remaining 
principal components: and 

Wherein said neural netWork an updating means, coupled 
to said ?rst computing means, for updating the Weights 
of the neural netWork adaptively based on an error 
betWeen a target output and the output signal. 

2. A neural netWork having a plurality of Weights for 
receiving a sequence of signal inputs x,,x,+1, xt+2. . . , each 

input x, comprising n signal components x1(t), x2(t—1), . . . , 
xn(t—(n—1)) and for generating an output signal that antici 
pates the behavior of said input signal for a number of time 
samples ahead, said neural netWork comprising: 

transformation means for transforming a set of n signal 
inputs into a set of principal components having a 
saliency assigned to each of said principal component: 

pruning means coupled to said transformation means, for 
pruning a number of said principal components that 
correspond to the smallest saliencies, Where the number 
of said principal components is limited by a sum of said 
saliencies of said pruned principal components to be 
less than or equal to a prede?ned threshold level, 
leaving a remaining set of principal components; 

?rst computing means, coupled to said pruning means, for 
computing the output signal using said set of remaining 
principal components: and 

updating means, coupled to said ?rst computing means, 
for updating the Weights of the neural netWork adap 
tively based on an error betWeen a target output and the 
output signal, 

Wherein said transformation means includes an estimation 
means for recursively estimating a current set of prin 
cipal components from a set of principal components of 
a previously transformed set of n signal inputs. 

3. The neural netWork of claim 2, Wherein said estimation 
means estimates said current set of principal components in 
accordance to the formula 



5,812,992 
13 

Where R,_1 is a covariance matrix of a previous set of n 
signal inputs, R, is a covariance matrix of said current set of 
n signal inputs, p is a predetermined constant, 3, is a current 
input signal, and §,T is a transpose of said current input 
signal. 

4. The neural netWork of claim 2, Wherein said estimation 
means estimates said current set of principal components by 
directly calculating a matriX Q, and a matriX A,, Where Q, is 
a matriX of eigenvectors and A, is a matriX of eigenvalues. 

5. The neural netWork of claim 2, Wherein said saliencies 
are calculated in accordance to the formula 

Where ?, is the Karhunen-Loeve eXpansion of 3, and v,- is a 
p><1 vector of W,T de?ned as W,T=[v1,v2, . . . , vn]. 

6. The neural netWork of claim 2, Wherein said saliencies 
are calculated in accordance to the formula 

Where ?, is the Karhunen-Loeve eXpansion of §_,, 2,- is a p><1 
vector of W,T de?ned as W,T=[v1,v2, . . . , vn], 51,2 is de?ned 
as i,-2(t)=pi,-2(t—1)+(1—p)§(,2(t) and p is a forgetting factor. 

7. The neural netWork of claim 2, Wherein said saliencies 
are calculated in accordance to the formula 

Where )t, is the ith element on the diagonal of A, and v,- is a 
p><1 vector of W,T de?ned as W,T=[v1,v2, . . . , vn]. 

8. The neural netWork of claim 2, Wherein said pruning 
means includes: 

second computing means for computing an output in 
principal component space; 

identifying means, coupled to said second computing 
means, for identifying said principal components that 
correspond to the smallest saliencies, Where a sum of 
said smallest saliencies is less than a prede?ned thresh 
old level; and 

third computing means, coupled to said identifying 
means, for computing a pruning vector from said 
principal components that correspond to the smallest 
saliencies, Where a sum of said smallest saliencies is 
less than a prede?ned threshold level. 

9. The neural netWork of claim 2, Wherein said pruning 
means includes: 

identifying means for identifying said principal compo 
nents that correspond to the smallest saliencies, Where 
a sum of said smallest saliencies is less than a pre 
de?ned threshold level; and 

fourth computing means, coupled to said identifying 
means, for computing a Weight matriX in regular space 
from said principal components that correspond to the 
smallest saliencies, Where a sum of said smallest salien 
cies is less than a prede?ned threshold level. 

10. A method of signal processing, utiliZing a neural 
netWork having a plurality of Weights, for receiving a 
sequence of signal inputs X,, X,+1,X,+2 . . . , each input X, 

comprising n signal components X1(t), X2(t—1), . . . , X,,(t— 
(n—1)) and for generating an output signal that anticipates 
the behavior of said input signal for a number of time 
samples ahead, said method comprising the steps of: 

(a) transforming a set of n signal inputs into a set of 
principal components having a saliency assigned to 
each of said principal component: 
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14 
(b) pruning a number of said principal components that 

correspond to the smallest saliencies, Where the number 
of said pruned principal components is limited by a 
sum of said saliencies of said pruned principal com 
ponents to be less than or equal to a prede?ned thresh 
old level, leaving a remaining set of principal compo 
nents: 

(c) computing said output signal using said remaining set 
of principal components; and 

(d) updating the Weights of the neural netWork adaptively 
based on an error betWeen a target output and the output 
signal. 

11. A method of signal processing, utiliZing a neural 
netWork having a plurality of Weights, for receiving a 
sequence of signal inputs X,,X,+1,X,+2. . . each input X, 
comprising n signal components X1(t),X2(t—1), . . . , X,,(t— 

(n—1)) and for generating an output signal that anticipates 
the behavior of said input signal for a number of time 
samples ahead, said method comprising the steps of: 

(a) transforming a set of n signal inputs into a set of 
principal components having a saliency assigned to 
each of said principal component; 

(b) pruning a number of said principal components that 
correspond to the smallest saliencies, Where the number 
of said pruned principal components is limited by a 
sum of said saliencies of said pruned principal com 
ponents to be less than or equal to a prede?ned thresh 
old level, leaving a remaining set of principal compo 
nents: 

(c) computing said output signal using said remaining set 
of principal components: and 

(d) updating the Weights of the network adaptively based 
on an error betWeen a target output and the output 
signal 

Wherein said transformation step includes an estimation 
step for recursively estimating a current set of principal 
components from a set of principal components of a 
previously transformed set of n signal inputs. 

12. The method of claim 11, further comprising the step 
of: 

(f) repeating steps (a)—(d) for each neW signal input. 
13. The method of claim 11, Wherein said estimation step 

estimates said current set of principal components in accor 
dance to the formula 

Where R,_1 is a covariance matriX of a previous set of n 
signal inputs, R, is a covariance matriX of said current set of 
n signal inputs, p is a predetermined constant, K, is a current 
input signal, and g, T is a transpose of said current input 
signal. 

14. The method of claim 11 Wherein said estimating step 
estimates said current set of principal components by 
directly calculating a matriX Q, and a matriX A,, Where Q, is 
a matriX of eigenvectors and A, is a matriX of eigenvalues. 

15. The method of claim 11, Wherein said saliencies are 
calculated in accordance to the formula 

Where 3, is the Karhunen-Loeve eXpansion of g, and v,- is a 
p><1 vector of W,T de?ned as W,T=[v1,v2, . . . , vn]. 

16. The method of claim 11, Wherein said saliencies are 
calculated in accordance to the formula 
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Where 3, is the Karhunen-Loeve expansion of gt, vi is a p><1 
vector of WET de?ned as WtT=[y1,v2, . . . , vn], ii 2 is de?ned 

as §i2(t)=p§i2(t—1)+(1—p)§(i2(t) and p is a forgetting factor. 
17. The method of claim 11, Wherein said saliencies are 

calculated in accordance to the formula 

5i=}"i‘7iT‘7i> 

Where XL- is the ith element on the diagonal of Ar and vi is a 
p><1 vector of W; de?ned as WtT=[v1,y2, . . . , VJ]. 

18. The method of claim 11, Wherein said pruning step 
includes the steps of: 

computing an output in principal component space; 
identifying said principal components that correspond to 

the smallest saliencies, Where a sum of said smallest 
saliencies is less than a prede?ned threshold level; and 

computing a pruning vector from said principal compo 
nents that correspond to the smallest saliencies, Where 
a sum of said smallest saliencies is less than a pre 
de?ned threshold level. 

19. The method of claim 11, Wherein said pruning step 
includes the steps of: 

identifying said principal components that correspond to 
the smallest saliencies, Where a sum of said smallest 
saliencies is less than a prede?ned threshold level; and 

computing a Weight matrix in regular space from said 
principal components that correspond to the smallest 
saliencies, Where a sum of said smallest saliencies is 
less than a prede?ned threshold level. 

20. A signal processing system having a neural netWork 
for receiving a sequence of signal inputs 3,, 3H1, gHZ . . . , 

each input 3, comprising n signal components X1(t), 
X2(t— 1), . . . , Xn(t—(n—1)) and generating an output signal that 

10 

15 

25 

16 
anticipates the behavior of said input signal for a number of 
time samples ahead, said neural netWork having a plurality 
of hierarchically connected nodes forming a plurality of 
layers, each of said layer consisting of at least one node, said 
nodes being inter-connected With a plurality of Weights, said 
signal processing system comprising: 

transformation means for transforming a set of n signal 
inputs into a set of principal components having a 
saliency assigned to each of said principal component; 

pruning means, coupled to said transformation means, for 
pruning a number of said principal components that 
correspond to the smallest saliencies, Where the number 
of said pruned principal components is limited by a 
sum of said saliencies of said pruned principal com 
ponents to be less than or equal to a prede?ned thresh 
old level, leaving a remaining set of principal compo 
nents; 

computing means, coupled to said pruning means, for 
computing the output signal of a layer of the neural 
netWork using said set of remaining principal compo 
nents; and 

updating means, coupled to said computing means, for 
updating the Weights of the neural netWork adaptively 
based on an error betWeen a target output and the output 
signal. 

21. The signal processing system of claim 20, Wherein 
said transformation means includes an estimation means for 

recursively estimating a current set of principal components 
from a set of principal components of a previously trans 
formed set of n signal inputs. 
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