
United States Patent [191
Dworzecki

llllllllllllllIlll
US005606695A

5,606,695
Feb. 25, 1997

[11] Patent Number:

[45] Date of Patent:

[54] METHOD OF SCHEDULING SUCCESSIVE
TASKS SUBJECT ONLY TO TllVIING
CONSTRAINTS

[75] Inventor: Jozef Dworzecki, Fontenay le Fleury,
France

[73] Assignee: Cegelec, Levallois Perret, France

[21] Appl. N6; 510,533

[22] Filed: Aug. 2, 1995

[30] Foreign Application Priority Data

Aug. 11, 1994 [FR] ‘ France 9409952

[51] Int. Cl.6 G06F 9/46

[52] U.S. Cl. 395/208; 364/DIG. l;
364/2818; 364/2816; 364/2817; 364/2813

[58] Field of Search 395/650; 364/2818,
364/2816, 281.7, 281.3

[56] References Cited

PUBLICATIONS

Zhao et al, Simple and Integrated Hevristics, Journal of
Systems and Software, vol. 7, pp. 195-205, 1987.
Yuan et al, A Decomposition Approach to Non-Preemptive
Scheduling in Hard Real—Time Systems, 1989, pp. 240—248.
Schwan et al, Dynamic Scheduling of Hard Real—Time
Tasks and Rea1—Time Thread S, IEEE Trans. on Software
Engn, vol. 18, No. 8 Aug. 1992.
Al-Mouhamed, Lower Bound on the Number of Processors
and Time for Scheduling Precedence Graphs with Commu
nications Costs, IEEE Transactions on Software Engnr. V816
N0. 12 Dec. 1990.
Stankovic et al, The Spring Kernel: A New Paradigm for
Real—Time Systems, IEEE Software, v;8, issue 3 May 1991,
pp. 62-72.
Lorts et al, Empirical Evalvation of Weighted and Prioritzed
Static Scheduling Hevristics for Real—Time Multiprocessing
Parallel and Distributed Real-Time Systems, Conf Date:
28—29 Apr. 1994, pp. 58—63.

zumumm-sbx'vr-Oo
P05 13:1‘
POS 12:5

1234567891011121314

Saksena et al, Temporal Analysis for Hard Real~Time
Scheduling, Computers & Communications, 1993 Int’l
Phoenix Conference, pp. 538-544.
IEEE Transaction on Software Engineering, vol. SE-l3, No.
5, May 1987, New York, US pp. 564—576, Wei Zhao et a1,
“Scheduling Tasks with Resource Requirements in Hard
Real-Time Systems”.
Real Time Systems, vol. 1, No. 1, Jun. 1989, Dordrecht, NL,
pp. 27-60; Brinkley Sprunt et al, “A Periodic Task Sched
uling for Hard—Real—Time Systems”.
Proceedings of the IEEE, vol. 82, No. 1, Jan. 1994, New
York, US, pp. 55—67, Krithi Ramamritham et al, “Schedul
ing Algorithms and Operating Systems Support for
Real-Time Systems”.

Primary Examiner—Kevin A. Kriess
Assistant Examiner-Lucien U. Toplu
Attorney, Agent, or Firm—Sughrue, Mion, Zinn, Macpeak &
Seas

[57] ABSTRACT

A method of scheduling successive tasks subject only to
timing constraints calculates for each task upper and lower
limits of the interval in which execution of that task must
start. It then constructs a ?rst series in which all the tasks are
scheduled in increasing order of their lower limit and a
second series in which all the asks are scheduled in increas
ing order of their upper limit, before constructing an initial
permutation by scheduling all the tasks in the order of the
?rst series and verifying if the initial permutation satis?es all
the constraints. If not all the constraints are satis?ed, the
method determines in the initial permutation the ?rst ill
placed task for which a constraint is not satis?ed and a
candidate task in the second series immediately preceding
the ill-placed task in the second series in the current per
mutation. It then veri?es that if the candidate task is shifted
in the current permutation to a position immediately after the
ill-placed task all the constraints applying to all the tasks
shifted in this way are then satis?ed.

' 1 Claim, 13 Drawing Sheets

mS

US. Patent Feb. 25, 1997 Sheet 1 of 13 5,606,695

F161

PRODUCTION
SYSTEM

OR

COMPUTER 111K, R L ,IK

PER

US. Patent Feb. 25, 1997 Sheet 2 0f 13 5,606,695

.»m5
100

60

m km‘, 50 F|G.2
30

m w 10 20

m _%
M2 ms nu ms m6

0

nu m2 m3 m4 m5 TAG

U.S. Patent Feb. 25, 1997 Sheet 5 of 13 5,606,695

FIG.8 l
DETERMINE MIN-SERIES a 21
MAX-SERIES “"5

l
VERIFY CURRENT PERMUTA
TION W‘E22

R S
r

LOOK FOR PRECEDING
TASK __ ,_ E 2 3

U

VERIFY Q
WELL-PLACED_ ,5 21.

1 1!

ts‘ vatmax A525
'6 u

n 1

E25‘, ‘end :‘max

t!
max /-E27

1
tmax >

Jl

tr'hn s trgnin ,{28 E29
(

Y x SHIFTQ ’

U.S. Patent Feb. 25, 1997 Sheet 8 0f 13 5,606,695

P513
PSI2
P511
P510
P59
P58
PS7
PS6
PS5
PS4
PS3
PS2
PS1

mS
01234567891011121314

FIG/18

ZLU‘UWTIII-QDX'UFOC)
m8

01234567891011121314

US. Patent Feb. 25, 1997 Sheet 9 0f 13 5,606,695

FIG.19

G
C
L
p
K
A
T
B

POSSzE
POS4=D

S
J
N

ms
0 1234567891011121314

US. Patent Feb. 25, 1997 Sheet 10 of 13 5,606,695

FIG.2O

GCLPKATB
:5

POS2=J

ED :2 s.“ S 00 PP
P053

1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

FIG.2’I

GCLD-KATB
POSSzJ
POS4=D
POS 3:E
P052 :5

m8
1234567891011121314 0

US. Patent

P0311:
P0510:

Feb. 25, 1997 Sheet 11 of 13 5,606,695

FIG.22

m8
0 1 234567891011121314

FIG.23

m8
0 1234567891011121314

US. Patent Feb. 25, 1997 Sheet 12 of 13 5,606,695

F I6. 24

s
POS12=C
POSHzT

ZU‘mULUJDX'OI
m8

01234567891011121314

US. Patent Feb. 25, 1997 Sheet 13 of 13 5,606,695

1:16.25

POS13:G
POS 122T

mS
O 1 2 '3 A 5 6 7 8 9 1O 11 12 13 14

FIG.26
POS13:T
P05 12:6

2 w m c: r_ w > x 11 r- 0

m5
0 1 2 3 4 5 6 7 8 9 1O 11 12 13 14

5,606,695
1

METHOD OF SCHEDULING SUCCESSIVE
TASKS SUBJECT ONLY TO TIMING

CONSTRAINTS

BACKGROUND OF THE INVENTION

1. Field of the Invention
The invention concerns a method of scheduling succes

sive tasks by means of a computer by determining a task
execution order and an execution start time for each task, no
two tasks ever being executed simultaneously. This sched
uling is based on a plurality of constraints that the tasks must
satisfy. This process is more particularly concerned with
applications in which there is only one type of constraint,
namely timing constraints: the execution of a task must
begin at a time within at least one predetermined time
interval relative to an absolute time reference. There are no
constraints applying directly to the order of the tasks. The
process naturally concerns also applications in which all
constraints can be regarded as equivalent to timing con
straints relative to an absolute reference.

The method of the invention is applicable in particular to
tasks that must be executed successively because they are
executed by single means capable of executing only one task
at a time, for example: a machine tool, a data bus, a team of
workers. In the ?eld of electronic data processing, the
method can be applied to the management of a plurality of
predetermined tasks to be executed successively in the same
processor or on the same bus. In the ?eld of industrial
process control, the method can be applied in particular to
the management of a so-called ?eld bus used to transmit
information successively in accordance with a predeter
mined series.

2. Description of the Prior Art
The prior art includes many scheduling methods:
so-called polynomial or critical path methods;
linear programming methods, especially the simplex

method on which the PROLOG III language is based;
dynamic programming methods that can be applied only

to relatively small problems; and
heuristic methods that use some algorithms employing the

above methods but further reduce the number of cases
to be veri?ed by simplifying certain constraints; the
resulting solution is then less than optimal.

The prior art methods have two drawbacks: they require
a long computation time since they systematically verify a
very large number of permutations before giving a solution.
The computation time is usually proportional to the factorial
of the number of tasks to be scheduled.
To schedule repetitive tasks the prior art methods deter

mine the duration of a macrocycle equal to the lowest
common multiple of all the task periods and the duration of
a microcycle equal to the highest common denominator of
all the task periods, and then look for a permutation of the
tasks such that all the constraints are satis?ed simulta
neously, trying out all possible permutations until one veri
fying this condition is found, the veri?cation being carried
out microcycle by microcycle. If a con?ict appears within a
microcycle the permutation currently being veri?ed is aban
doned and another is tried. The work done in connection
with veri?cation of that permutation during previous micro
cycles becomes of no utility since all the constraints previ
ously satis?ed are called into question again.
The prior art methods are therefore somewhat impractical

for use in industrial applications.

20

25

30

35

45

50

55

65

2
An object of the invention is to propose a scheduling

method that is free of these drawbacks so that a solution to
a static scheduling problem is obtained faster, and also to
enable dynamic scheduling problems to be handled, i.e. to
make it possible to carry out rescheduling as and when the
number of tasks to be scheduled and/or the constraints
applying to those tasks change. Dynamic scheduling can be
bene?cial in scheduling machining tasks on a machine tool,
for example, if the products to be manufactured are highly
diverse; for scheduling aircraft take-offs and landings on a
runway; for scheduling tasks on a data bus or processor; etc.

SUMMARY OF THE INVENTION

The invention consists in a method for scheduling suc
cessive tasks by means of a computer, said tasks being
subject only to timing constraints, a tinting constraint requir
ing that the execution start time be in at least one predeter
mined time interval relative to an absolute reference time;

said method comprising the following successive steps in
this order:
calculating for each task upper and lower limits of the

interval in which execution of that task must start;
constructing a ?rst series in which all the tasks are

scheduled in increasing order of their lower limit and
are scheduled in increasing order of their upper
limits when several tasks have a same lower limit;

constructing a second series in which all the tasks are
scheduled in increasing order of their upper limit and
are scheduled in decreasing order of their lower
limits when several tasks have a same upper limit
and diiferent lower limits; ,

constructing an initial permutation by scheduling all the
tasks in the order of the ?rst series;

verifying if said current permutation satis?es all the
constraints supplying to the tasks, the tasks being
considered one by one in the order corresponding to
said current permutation to check whether each task
satis?es all the constraints applying to said task;

concluding that the scheduling succeeds if all the
constraints are satis?ed;

otherwise, determining in said current permutation the
?rst ill-placed task for which a constraint is not
satis?ed;

determining in the second series a candidate task imme
diately following the ill-placed task in said second
series that also precedes the ill-placed task in the
current permutation, said candidate being a task
which has already been veri?ed, all the tasks fol
lowing said candidate task in said current permuta
tion being not considered as satisfying all the con
straints, any more;

verifying that if the candidate task is shifted to a
position immediately after the ill-placed task all the
constraints applying to all the tasks shifted in this
way are then satis?ed; and

if at least one constraint is not satis?ed, concluding that
the candidate task is not suitable and then determin
ing in the second series another candidate ask and
repeating the previous veri?cation; and, if this is not
possible, concluding that the scheduling fails;

if all the constraints are satis?ed, concluding that the
scheduling succeeds.

This method has the advantage of being particularly fast
since if the scheduling of a task fails it shifts one or more
tasks preceding the task in respect of which scheduling has
failed without systematically calling into question again all

5,606,695
3

the constraints already satis?ed, and therefore without call
ing into question again all of the work already done. This
signi?cantly reduces the computation time compared to any
method that systematically explores all scheduling possi
bilities.
The method is also faster than the prior art methods in the

case of repetitive tasks since the permutations are veri?ed in
a single microcycle. Finally, this method can be applied to
scheduling a system in which a plurality of tasks can be
carried out in parallel. It then consists in breaking the system
down into a plurality of subsystems in which the tasks must
all be executed successively and applying the method of the
invention to each of these subsystems.
The method of the invention will be more clearly under

stood and other features of the invention will emerge from
the following description of one embodiment of the inven
tion and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the block schematic of a system in which the
dynamic scheduling method of the invention is imple
mented.

FIGS. 2 and 3 show one step of the method of the
invention adapted to take into account the periodic nature of
certain tasks.

FIGS. 4 through 7 show the basic principles of the method
of the invention.

FIG. 8 shows the ?owchart of one embodiment of the
invention.

FIGS. 9 through 16 show timing diagrams illustrating the
use of the ?owchart shown in FIG. 8.

FIGS. 17 through 26 show one example of the use of the
method of the invention to schedule tasks.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The method of the invention can be used for static or
dynamic scheduling. Its reduction in computation time is
particularly advantageous in dynamic scheduling, however,
since it allows changing constraints and/or tasks to be dealt
with in real time.

FIG. 1 shows the block schematic of one embodiment of
the device implementing the method of the invention for
dynamic scheduling of industrial production tasks, for
example.
The device includes a computer OR connected to a

production system SY. The production system SY supplies
to an input of the computer OR the parameters needed to
determine a schedule: the identi?er ID K of each task and, if
appropriate, the period TK of each task and the de?nition R L
of each constraint to be satis?ed. These parameters are
supplied each time that a change occurs in the nature of the
task to be executed and/or in the constraints.

The computer then determines a new permutation PER
and the production system SY then executes the tasks in
accordance with that new permutation.

The tasks are usually executed by various devices of the
system SY. The computer OR must be programmed to
transmit to each device information indicating to it the times
at which it can execute a task. The person skilled in the art
will know how to program the computer OR to implement
the method of the invention and to transmit information to
each device and this programming will not be described
beyond the description of the method itself. Likewise, the

10

15

20

25

30

35

40

45

50

55

60

65

4
person skilled in the art will know what hardware to use to
connect a computer OR to a system SY comprising various
devices adapted to execute respective different tasks.
The method of the invention is not limited to static

scheduling applications. The same steps can perform
dynamic scheduling in real time.

Each constraint applies only to the execution start time,
which muse be within a given interval [tmim tmax]. Execution
can continue beyond the limit of an interval, but it muse
respect the ?xed duration. If a plurality of timing constraints
apply to the same task, they can be replaced by a single
constraint for which the interval [tmim tmax] is obtained from
the respective intervals of chose constraints by application
of the AND operator.
A preliminary step of the method of the invention reduces

the number of permutations to be veri?ed by verifying the
scheduling 'of tasks only during a microcycle which is the
highest common denominator of all the task repetition
periods. If a permutation is found such that if all the tasks are
executed within the same microcycle and satisfy all the
constraints, then that permutation will not lead to any
con?ict during any of the microcycles constituting a mac
rocycle, since the worst case scenario is that in which all the
tasks occur in the same microcycle because multiples of
their periods coincide.

FIG. 2 and 3 shows this preliminary step of the method of
the invention. Note that in the case where one or more tasks
are not to be regarded a priori as repetitive, it is su?icient to
assign them an arbitrary common period, but one that
facilitates the determination of a microcycle. It is therefore
sufficient to determine the value of the highest common
denominator of the period of the repetitive tasks and then to
choose a multiple of that value to constitute common periods
for all the non-repetitive tasks.

FIGS. 2 and 3 relate to the example in which six periodic
tasks T1 through T6 with respective periods of 10 ms, 20 ms,
30 ms, 40 ms, 50 ms and 40 ms have to be scheduled. The
execution time is the same for all the tasks and is equal to
1 ms.

In FIG. 2 the time intervals [tm,-,,, tmax] for each task are
shown cross-hatched.

These intervals are as follows:

TAl ltmin, tum] : [0, 4 ms] modulo l0 ms
TA2 [10, 13 ms] modulo 20 ms
TA3 [20, 23 ms] modulo 30 ms
TA4 [30, 32 ms] modulo 40 ms
TA5 [40, 4I ms] modulo 50 ms
TA6 [20, 22 ms] modulo 40 ms

These tasks have a macrocycle equal to the lowest com
mon multiple of their period, which is 600 ms. A macrocycle
can be divided into 60 microcycles each of 10 ms. Two
repetitive tasks can be in con?ict if they have to be executed
during the same microcycle. For example, the tasks TA1,
TA3 and TA6 must be executed during the same microcycle
[20 ms, 30 ms] then [120 ms, 140 ms], etc.
To determine a schedule that suits the worst case scenario,

it is suf?cient to consider a microcycle in which all tasks
without exception must be executed once. In practise, the
tasks do not all occur in the same microcycle. An imaginary
case in which this event occurs is considered below.

Time shifting can shift the execution time of each task
into the interval of the same microcycle [0, 10 ms]. It is
de?ned by the formula:

5,606,695
5

where
tam-“"3 is the imaginary execution start time of a task K;
tax is the real execution start time of the task K;
PGCD is the duration of a rnicrocycle, i.e. the highest
common denominator of the periods; and

k is an integer such that the imaginary execution start time
tsfi'mg of the task K is shifted into the required
rrricrocycle, in this instance the rrricrocycle [0, 10 ms].

The interval [Tm-"K, TmaxK] de?ned by all the constraints
applying to the task K is therefore also shifted by —k.PGCD.
The scheduling method of the invention is then applied in

this interval [0, 10 ms]. When a permutation satisfying all
the constraints has been determined, the actual execution
times t_,,K are deduced from the imaginary execution start
times using the formula:

t,,K=t_,,K""‘“8+k.PGCD modulo the period of the task K.

FIG. 3 shows the resulting scheduling of the tasks over the
interval 0 to 100 ms, the interval 100 ms to 600 ms not being
shown but being scheduled in a similar way. Each execution
interval is shown in black. Consider, for example, the
interval 20 ms to 30 ms in which there can be con?ict
between the tasks TA1, TA3 and TA6. The task TA1 is
executed in the interval 23 ms to 24 ms. The task TA3 is
executed in the interval 22 ms to 23 ms. The task TA6 is
executed in the interval 21 ms to 22 ms. Thus TA1 and TA3
or TA6 are never executed simultaneously, regardless of the
rnicrocycle in question, which is one of the 60 microcycles
constituting the macrocycle [0, 600 ms].

in an application in which some tasks can be executed
simultaneously, this preliminary step further consists in
grouping the tasks into a plurality of independent subsets, if
possible, each subset containing only tasks related by con
straints. Scheduling a plurality of subsets independently is
faster than scheduling a single more complex set.

FIGS. 4 through 7 show the basic principles of the method
of the invention for scheduling all the tasks of a set of tasks
in which the number of permutations to be veri?ed is
minimized. This procedure succeeds if it determines a
permutation constituting a schedule satisfying all the con
straints applying to the tasks in

FIG. 4 shows a timing diagram illustrating a ?rst basic
principle of the method of the invention. This ?rst basic
principle imposes priority execution of tasks for which the
time interval starts the soonest, i.e. with the smallest value
tmin. In practise the initial permutation of the tasks, i.e. the
?rst permutation to be veri?ed, is constituted by a series
MIN-SERIES, in which the tasks are arranged in increasing
order of their tm," values.
The rectangles IDA and IDB in FIG. 4 show time intervals

respectively assigned to the execution of a task A and to the
execution of a task B. Constraints require that execution of
task A start within an interval [tm-n", t,,,,,;‘] or at worst at
time t,,,,,,". They require execution of task B start within an
interval [tminB, tmaxB] or, at worst, at time TmaxB. In this
example t,,,,-,,’‘ is before tmmB. The ?rst basic principle is to
execute task A ?rst, shifting the interval in which this
execution occurs as close as possible to the lower limit t,,,,,,";
then executing task B during an interval IDB starting as
close as possible to the lower limit TminB without overlap
ping the interval IDA. In this example the interval IDA has
a duration 8'‘ which overlaps the interval [Tm-"B, TmaxB] and
consequently the intervals IDA and IDB will be as close
together as possible by choosing:

a_ A A 1:1 “train +5

20

25

30

35

45

50

55

60

65

6
FIG. 5 shows, for the same example, the consequences of

failure to apply this basic principle, i.e. of having task B
executed before task A. The execution interval IDB then
starts as soon as possible, i.e. at the lower limit of the
interval [Tm-KB, TmaxB]. The execution interval IDA should
start after the end of the execution interval IDB in order not
to overlap the interval IDB, but in the example the execution
interval IDB has a length such that it goes beyond the upper
limit t,,,,,,,’‘ of the interval in which starting execution of task
A is permitted. At best, task A could start at time ts,A=tmA,
but then the two execution intervals IDB and IDA overlap.
The overlap area is cross-hatched in FIG. 5.
The example thus shows that failing to respect the ?rst

basic principle increases the probability that some con
straints will not be satis?ed.

FIG. 6 shows a timing diagram illustrating a second basic
principle of the method of the invention. This basic principle
chooses the task to be given execution priority from a
plurality of tasks for which the lower limit tmm has the same
value. In this case, this second basic principle imposes
priority execution of the task for which the upper limit tnm
has the smallest value.

In example shown in FIG. 6, two tasks A and B have the
same lower limit tmmA=tmmB for the time interval in which
execution must start. Constraints imposed by the existence
of other execution intervals that are not shown prohibit
execution of tasks A and B before a time tO after tminA=tmmB
, in a time interval shown cross-hatched. Thus the execution
intervals IDA and IDB can only start from this time to. The
upper limit TmaxB for task B is greater than the upper limit
tm?" for task A. In accordance with the second basic
principle, task A takes priority for execution. Task B is then
executed from a time:

Thus the two execution intervals IDA and IDB occur one
after the other with no particular problem due to the upper
limit TmaxB.

FIG. 7 shows, for the same example, a con?ict that is
more likely to occur if the second basic principle is not
respected. Task B is executed ?rst, from time ts,” which
coincides with the end to of the prohibited interval shown by
the cross-hatching. Task A must then be executed from a
time ts,"=T,mrnB+ZSA to prevent the intervals IDA and IDB
overlapping, but this time tsf‘ would then be in a prohibited
area, shown cross-hatched in the ?gure after the upper limit
tmaxA of the interval in which execution should start. There
is therefore a constraint that is not satis?ed. This example
shows that failing to respect the second basic principle
increases the probability that some constraints will not be
satis?ed.

FIG. 8 shows a ?owchart of a preferred embodiment of
the method of the invention. It starts with a step E21 to
determine the series MIN-SERIES comprising all the tasks
scheduled in increasing order of their lower limit tmin. This
series will be used to apply the ?rst basic principle stated
above. To maximize the probability of ?nding quickly a
permutation that satis?es all the constraints applying to all
the tasks, the initial permutation is constituted by MIN
SERIES and the permutations veri?ed thereafter, in the
event of failure, are deduced from MIN-SERIES by succes
sive modi?cations.

Step E21 also determines the series MAX-SERIES com
prising all the tasks in increasing order of their upper limit
tmax. This series will be used to apply the second basic
principle stated above if the initial permutation has to be
modi?ed.

5,606,695
7

The next step E22 veri?es the current permutation, i.e.
veri?es if it satis?es all the constraints applying to all the
tasks. At the beginning of this step the current permutation
is the initial permutation determined by step E21.

This veri?cation consists in taking each successive task in
the order of the current permutation and verifying that the
execution interval [tsp tend] imposed by the position occu
pied by that task in the current permutation is compatible
with the time interval [tmw tmax] imposed by the constraints
that apply to that task. The task for which this veri?cation is
in progress is called the current task. If the result of the
veri?cation is positive for each of the tasks, this indicates
that the current permutation succeeds (S).

If the veri?cation ?nds at least one task whose position in
the permutation imposes starting execution at a time t,, that
is not in the time interval [tmI-H, tmax] imposed by the
constraints, that task is regarded as ill-placed since there is
a con?ict between two constraints. When step E22 ?nds a
task (X) that is the ?rst ill-placed task in the current
permutation, it draws the conclusion (R) that it is necessary
to look for a task that is a candidate for shifting to constitute
a new permutation. The method then executes a step E23
which looks for the task immediately following the current
task X in the series MAX-SERIES. If there is no such task,
step E23 fails (F).

If step E23 ?nds a candidate task Q immediately follow
ing the current task X in the series MAX-SERIES, the next
step E24 of the method veri?es that the task Q has already
been considered to be well-placed during an earlier step E21.
All the tasks considered to be well-placed are those which
have a position below that of the current task X, since the
veri?cation of step E22 is carried out according to increasing
positions in the current permutation. Consequently, step E24
simply veri?es that the candidate task Q precedes the current
task X in the current permutation. If step E24 determines
that the task Q was not considered to be well-placed, then
step E23 is repeated to ?nd another candidate task imme
diately following the task Q in MAX-SERIES.
On the other hand, if the candidate task Q was considered

to be well-placed, the next step E25 of the method compares
the execution start time tMQ of the task Q to the upper limit
tmaxx of the time interval corresponding to the current task
X.

If tMQZtmmX, the outcome is that denoted ot. The next step
is then a step E29 which shifts the task Q in the current
permutation to insert it between the current task X and the
task after the task X in the current permutation. The tasks
that were between Q and X, and the task X itself, are shifted
one position downwards to ?ll in the space left free by Q.
Consequently, the task Q subsequently occupies the position
that was previously that of X. The method then repeats step
E22 to verify if the new current permutation obtained in this
way satis?es all the constraints. Note that the task Q and all
the other tasks that followed it have been shifted. They can
no longer be considered to have been well-placed as they do
not necessarily satisfy all the constraints in their respective
new positions. The tasks below Q retain the same position,
and it is therefore not necessary to verify that they satisfy all
the constraints applying to them, and therefore the work of
verifying those constraints is not done again.

if tS,Q<t,,,,,xX, the outcome is that denoted E (see below)
and the next step of the method is step E26.

FIG. 9 shows the outcome or, for example. The execution
intervals are shown in dashed outline if a con?ict prevents
execution and in full outline otherwise.

Consider a task X in position PSi of the current permu
tation and a task Q considered to be well-placed and in

15

20

25

30

35

40

45

50

55

65

8
position PSj of the current permutation. The position PSi
imposes the start of execution of task X at a time ts, (PSi) that
is beyond the limit tmaxx. The position PSj imposes the start
of execution of task Q at a time ts, (PSi) which in this
example is beyond the time tmaxx. Since the time tnQ (PSi)
is beyond the time tmaxx, the limit tmaxQ is therefore a fortiori
greater than or equal to tmaxx and therefore has a chance of
being nQear ts, (PSi), the ideal being that ts, (PSi) falls short
of tmax .

FIG. 10 shows that by shifting the tasks Q and X
respectively into the positions PSi-1 and PSi, the robability
that the time ts, (PSi-1) falls in the interval [Tm-n , tmaxx] is
greater than the probability that the time ts, (PSi) had of
falling in this same interval, because ts, increases system
atically with the position PS. The ?gure shows that the end
tmaxx of the segment corresponding to task X has moved
closer to an execution interval, namely that which starts at
ts, (PSi-1), and therefore has a greater chance of intersecting
with that interval.
The end tmaxQ of the segment corresponding to the task Q

has a non-null chance of intercepting the rectangle repre
senting the execution interval starting at time t_,, (PSi).
Consequently, the new permutation has a greater chance
than the old one of satisfying all the constraints and it is
therefore bene?cial to try out this new permutation. In the
example shown, ts, (PSi-1) is beyond tmax and there is
therefore still a con?ict in respect of the task X. It is
therefore necessary to make one or more further modi?ca
tions to the current permutation.

In this example, ts, (PSi) is beyond tmaxQ and there is
therefore also a con?ict in respect of the task after the shift.
However, in other examples corresponding to the outcome ot
it may be that the constraints applying to X and those
applying to Q are satis?ed simultaneously. Consequently, it
is bene?cial to verify any new permutation corresponding to
the out come or.

In the case of the outcome &, on the other hand, further
veri?cations are needed before it is possible to conclude that
the task Q is a worthwhile candidate task. The next step of
the method is then step E26 that compares the time tendQ of
end of execution of the task Q to the upper limit tmaxX of the
interval in which execution of the task X must start. If
tendgétmaxx, the outcome is that denoted B and the next step
of the method is the step E30 which shifts the task Q to insert
it after the task X. The contrary outcome is that denoted
B. Other veri?cations are needed before it is possible to
conclude that the task Q is a worthwhile candidate task.

FIGS. 11 and 12 show the outcome FIG. 11 shows a
task X in the position PSi and a task Q in the position PSj
such that the outcome & and the outcome [3 apply: the time
tendQ of end of execution of the task Q, i.e. the time tend(PSi)
imposed by the position PSj of Q in the current permutation,
is beyond the time tmaxx.

FIG. 12 shows that by displacing the tasks Q and X to the
positions PSi-1 and PSi, respectively, the probability that the
time Is, (PSLI) falls in the interval [T mmx, tmaxx] is greater
than the probability that the time ts, (PSi) had of falling in
that same interval, because ts, increases systematically with
the position PS. What is more, the time tendQ =tend (PSi) is
beyond the limit tmxx and there is no con?ict. This means
that tmaxQ is either greater than tmaxx or slightly less than
tmaxx, being at most at a distance equal to the interval [tn
(PSj), tend (PSj)]. There is therefore little chance that tmaxQ
is greater than tmw,X and therefore in this case there is little
chance that tmaxQ will be beyond ts, (PSi) after the shift. It
is therefore worthwhile to try out a permutation correspond
ing to the outcome B, which will not necessarily be a waste
of time.

5,606,695

In the example shown in FIG. 12, the shifting of Q and X
is not sufficient for all the constraints on Q and X to be
satis?ed. The current permutation needs to be modi?ed a
little more.

In the case of the outcome B, step E27 compares the upper
limit tmaxQ of the time interval in which execution of task Q
must start to the upper limit tmaxx of the time interval in
which execution of task X must start. If tmaxQ >tmaxX, the
outcome is denoted T] and the next step of the method is then
a step E28. The contrary outcome is that denoted H and step
E23 is then repeated since there is no chance that the
candidate task Q is worthwhile.

FIGS. 13 and 14 show the outcome F] by means of an
example in which the limit tmaxQ is before the time tmaxx.

FIG. 13 shows the tasks X and Q shifted into the positions
PSi-1 and PSi, respectively. This ?gure shows that the time
tmaxQ is closer to the time ts, (PSi) than it was to the time tn
(PSj) but there is no chance of the task Q being executed
since tmaxQ is still farther from ts, (PSi) than tmaxQ was. Since
there is a 100% chance of the task Q being ill-placed, it is
not worthwhile to attempt any modi?cation of the current
permutation and for this reason the next step of the method
is a step E23 that looks for another candidate task for
shifting.

In the case of outcome T], step E28 compares the lower
limit tun-"Q of the interval in which execution of task Q must
start with the lower limit Tmmx of the time interval in which
the execution of task X must start.
The objective of this step E28 is to verify that the task Q

is before the current task X in the series MIN-SERIES so
that the task Q can be moved after the task X. Otherwise
(outcome 5) the next step of the method is a step E23 that
looks for another task that is a candidate for shifting.

In the case of the outcome X, the next step of the method
is a step E29 that shifts the task Q after the task X; step E22
is then repeated to verify if all the constraints applying to the
tasks of the current layer are satis?ed.

FIG. 15 shows an example in which the outcomes or, B, X,
T] apply simultaneously.

FIG. 16 shows the tasks X and Q shifted into the positions
PSi-l and PSi, respectively, in an example in which the
constraints are such that they are satis?ed after this shifting:
ts, (PSi) is in the interval [t Q tmaxg] and ts, (PSi-l) is in min ’

the interval [T X t X
FIGS. 17 through 26 show the implementation of step E2

for scheduling a layer comprising thirteen tasks: A, B, C, D,
E, G, J, K, L, N, P, S, T.

FIG. 17 shows on a time scale from 0 to 14 ms the
position of the execution intervals respectively correspond
ing to thirteen positions PS1 through PS13. The tasks are
executed in the order of the positions PS1 through P813 and
each execution interval has a duration equal to 1 ms.

Each task must satisfy one or more constraints that result
in a single constraint. The start of the execution interval
(cross-hatched rectangle in FIG. 17) must be in a given time
interval (bold segments in FIG. 18). In the worst case it can
begin at the upper limit.

Step E21 determines the series MIN~SERIES comprising
all the tasks of the current layer scheduled in increasing
order of their lower limit tmm.

MIN-SERIES=N, J, S, D, E, B, T, A, K, P, L, C, G.
In FIG. 18 the thirteen tasks are shown in the same order

as MIN~SERIES, along the ordinate axis. To maximize the
probability of quickly ?nding a permutation that satis?es all
the constraints applying to the tasks of the layer in question,
the so-called initial permutation veri?ed ?rst is that consist
ing of MIN-SERIES, and those veri?ed thereafter, in the

20

25

30

35

45

50

55

60

65

10
event of failure, are deduced from MIN-SERIES by succes—
sive modi?cations.

Step E21 further determines the series MAX-SERIES
comprising all the paths of the current layer scheduled in
order of increasing tmax values. This series will be used to
apply the second basic principle stated above if the initial
permutation has to be modi?ed. In this example:
MAX-SERIES=E, D, A, K, P, B, L, C, G, T, J, S, N
A step E22 then veri?es the current permutation, i.e.

veri?es if it satis?es all the constraints applying to the tasks
of the layer in question. At the start of step E2 the current
permutation is the initial permutation determined by step
E21.
The veri?cation is performed successively for each task,

in the order of the current permutation: N, J, S, D, E . . ., G.
If the result of the veri?cation is positive for a task, that task
is considered to be well-placed in the permutation, but its
position can be called into question again subsequently if
this is needed to satisfy other constraints.

Comparing FIGS. 17 and 18 shows that there is no
problem in executing the tasks N, J, S and D, respectively,
during the execution intervals shown in FIG. 17. They are
therefore all considered to be well-placed, the current per
mutation is:

N, J, S, D, E, B, T, A, K, P, L, C, G.
The tasks underlined are those considered to be well

placed.
FIG. 19 shows the ?rst con?ict encountered in verifying

the initial permutation. Cross-hatched rectangles in FIG. 19
represent execution intervals for which there is no con?ict
between the constraint and a dashed outline black rectangle
shows the execution interval that is causing a con?ict. It
corresponds to the position PS5 currently occupied by the
task E. This execution interval does not intersect the interval
in which the execution of the‘ task E must start. Step E23
therefore looks in the series MAX-SERIES for a task
following the task E, i.e. such that the limit tmax has a higher
value. '

MAX-SERIES=E, D, A, K, P, B, L, C, G, T, J, S, N
Step E23 ?nds the task D. Step E24 veri?es that it is

considered to be well-placed, by verifying that its position is
below the position of the current task E in the current
permutation. Step E25 then arrives at a conclusion a. Step
E26 then arrives at a conclusion [3. Step E29 then shifts D
into the position POSS and E moves back into the position
POS4. Step E22 veri?es that the constraints applying to E
and the subsequent tasks are satis?ed but ?nds that the
constraint applying to D are no longer satis?ed. The per
mutation tried out is not suitable. It is not retained at the new
current permutation. .

FIG. 19 shows that this modi?cation cannot succeed
because the interval corresponding to D has an upper limit
which is not higher than that of the interval corresponding to
E. They are in fact exactly the same. To prevent unnecessary
veri?cation of new permutations it is possible to take
precautions when constructing MAX-SERIES during step
E21:

If two tasks of the same layer have a common time
interval constraint [tmim tmax], it is possible to put them in
two different positions in the series MIN-SERIES that
constitutes the initial permutation and in the series MAX
SERIES. In the example shown in FIGS. 17 through 26 there
are at least two possibilities for constructing the series
MAX-SERIES since it is possible to perrnutate D and E:

D, E,A, K, P, B, L, C, G, T, J, S,N
E, D,A, K, P, B, L, C, G,T, J, S, N

5,606,695
11

It would have been preferable to choose the order E, D
that is the opposite of the order D, E in which they are taken
to constitute the initial permutation.

MIN-SERIES=N, J, S, D, E, B, T, A, K, P, L, C, G.
Step E23 then ?nds as successive candidate tasks the tasks

A, K, P, B, L, C, G, T, J and step E24 retains task J.
It can be shown that, as a general rule, if the masks of the

layer to be scheduled have to satisfy only timing constraints,
it is preferable to place in a reverse order all the tasks having
the same interval [tmim tmax] regardless of their number. On
the other hand, if both timing constraints and sequence
constraints apply, it is preferable to place them in the same
order.

Consider the remainder of this example, retaining the
initial choice of MAX-SERIES:

E, D, A, K, P, B, L, C, G, T, J, S, N
The current permutation is:

N, J, S, E, D, B, T, A, K, P, L, C, G.
After this unfortunate attempt to modify the permutation,

step E23 ?nds as successive candidate tasks the tasks A, K,
F, B, L, C, G, T and these are rejected by step E24 Step E23
then ?nds task J.

FIG. 20 shows this new attempt at modi?cation. Step E24
veri?es that task J is considered to be well-placed. Step E25
reaches the conclusion E. Step E26 reaches the conclusion
15. Step E27 and E28 arrive at the conclusions 1] and X.
Consequently step E29 places task J in position PS5 in place
of E. Task E, D and S move back one place: S to position
PS2, D to position PS3 and E to position PS4. The other
tasks do not change place.

Step E22 then veri?es that the tasks that have been shifted
satisfy all the constraints applying to them, starting with the
shifted task in the lowest position: S, then E, then D, then J.
It then veri?es that there is no con?ict between the succes
sive constraints for tasks B, T, A, K.

FIG. 21 shows the new current permutation. Note that the
execution interval for task K starts at the exact time which
is the end of the interval in which execution of task K should
start. There is no con?ict, but the constraints are satis?ed.
The current permutation is:

N, S, E, D, J, B, T, A, K, P, L, C, G.
FIG. 22 shows that a con?ict occurs for task P. Step E23

is then repeated to determine in the series MAX-SERIES the
task immediately following the task P. It ?nds task B. Step
E24 veri?es that task B is considered to be well-placed.
Steps E25 and E26 reach conclusions & and then Step E27
is then executed. This ?nds that TmaxB=tmaxP and conse
quently arrives at the conclusion Step E23 is then
repeated to ?nd another candidate task in the series MAX
SERIES. The segment representing the time interval corre
sponding to B would not intersect with the execution inter
val [9 ms, 10 ms] corresponding to the position POS10 if
task B were shifted to that position. Consequently, the
constraints that apply to B would not be satis?ed.

Step E23 then ?nds the successive tasks L, C, G but step
E24 rejects them as they are not considered to be well-placed
in the permutation. Finally, steps E23 and E24 ?nd task T.
Steps E25 through E28 successively arrive at the conclu
sions a, B, T], X. Step E29 shifts T to position POS10. Tasks
P, K, A move back into positions POS9, POSS, POS7,
respectively.

Step E22 then veri?es that the constraints applying to the
shifted tasks A, K, P, T and the subsequent tasks are satis?ed.
The new current permutation is:

N, S, E, D, J, B, A, K, P, T, L, C, G.
As shown in FIG. 23, step E22 then ?nds that the

constraints applying to task L are not satis?ed.

15

25

35

45

55

60

65

12
Step E23 then ?nds task T and step E24 veri?es that it is

considered to be well-placed. Step E25 and the subsequent
steps can then be executed. They arrive at conclusions 5,
B then T] and XX. Step E29 can then be executed. It places
task T in the position POS11 that was occupied by task L,
which moves back one place. Step E22 veri?es that the
constraints applying to the shifted tasks L and T are satis?ed.
Consequently, the current permutation becomes:

N, S, E, D, J, V, A, K, P, L, T, C, G.
As shown in FIG. 24, there is a con?ict between the

constraints applying to task C. Step E23 determines the task
following task C in the series MAX-SERIES. It ?nds task G
but step E24 ?nds that task G is not considered to be
well-placed in the permutation. Step E23 is repeated and
determines another task T preceding task C in the series
MAX-SERIES. Step E24 veri?es that task T is considered to
be well placed in the ermutation. Step E25 arrives that the
conclusion or since ts, =tmaxc. Step 29 is therefore executed
immediately and places task T after task C in the permuta
tion, which is the same thing as permutating the positions of
C and T. Step E22 then veri?es that all the constraints
applying to the shifted tasks C and T are satis?ed.
The new current permutation is:

N, S, E, D, J, B, A, K, P, L, C, T, G.
As shown in FIG. 25, step E22 ?nds that there is a con?ict

between the constraints applying to task G. Step E23 deter
mines a task T immediately following task G in the series
MAX-SERIES. Step E24 veri?es that task T is considered to
be well-placed in the permutation. Step E25 arrives at the
conclusion 0t since tS,T=tm,,xG. Step E29 places T after G in
the permutation, which is the same thing as permutating T
and G. Step E22 then veri?es that all the constraints apply
ing to the shifted tasks G and T are satis?ed. The new current
permutation is:

N, S, E, D, J, B, A, K, P, L, C, G, T.
All the tasks are considered to be well-placed because all

the constraints are satis?ed, as shown in FIG. 26, and
consequently step E22 succeeds (S).

There is claimed:
1. Method for scheduling successive tasks by means of a

computer, said tasks being subject only to timing constraints,
a timing constraint requiring that the execution start time be
in at least one predetermined time interval relative to an
absolute reference time;

said method comprising the following successive steps in
this order:

calculating for each task upper and lower limits of the
interval in which execution of that task must start;

constructing a ?rst series in which all said tasks are
scheduled in increasing order of their lower limit, and
are scheduled in increasing order of their upper limit
when several tasks have a same lower limit;

constructing a second series in which all said tasks are
scheduled in increasing order of their upper limit, and
are scheduled in decreasing order of their lower limits
when several tasks have a same upper limit and have
different lower limits;

constructing a current permutation, ?rst by scheduling all
said tasks in the order of said ?rst series;

verifying if said current permutation satis?es all said
constraints supplying to said tasks, the tasks being
considered one by one in the order corresponding to
said current permutation, to check whether each task
satis?es all the constraints applying to said task;

concluding that the scheduling succeeds if all said con
straints are satis?ed;

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description/Claims
	Page 21 - Claims

