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[57] ABSTRACT 

A method of scheduling successive tasks subject only to 
timing constraints calculates for each task upper and lower 
limits of the interval in which execution of that task must 
start. It then constructs a ?rst series in which all the tasks are 
scheduled in increasing order of their lower limit and a 
second series in which all the asks are scheduled in increas 
ing order of their upper limit, before constructing an initial 
permutation by scheduling all the tasks in the order of the 
?rst series and verifying if the initial permutation satis?es all 
the constraints. If not all the constraints are satis?ed, the 
method determines in the initial permutation the ?rst ill 
placed task for which a constraint is not satis?ed and a 
candidate task in the second series immediately preceding 
the ill-placed task in the second series in the current per 
mutation. It then veri?es that if the candidate task is shifted 
in the current permutation to a position immediately after the 
ill-placed task all the constraints applying to all the tasks 
shifted in this way are then satis?ed. 

' 1 Claim, 13 Drawing Sheets 
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METHOD OF SCHEDULING SUCCESSIVE 
TASKS SUBJECT ONLY TO TIMING 

CONSTRAINTS 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The invention concerns a method of scheduling succes 

sive tasks by means of a computer by determining a task 
execution order and an execution start time for each task, no 
two tasks ever being executed simultaneously. This sched 
uling is based on a plurality of constraints that the tasks must 
satisfy. This process is more particularly concerned with 
applications in which there is only one type of constraint, 
namely timing constraints: the execution of a task must 
begin at a time within at least one predetermined time 
interval relative to an absolute time reference. There are no 
constraints applying directly to the order of the tasks. The 
process naturally concerns also applications in which all 
constraints can be regarded as equivalent to timing con 
straints relative to an absolute reference. 

The method of the invention is applicable in particular to 
tasks that must be executed successively because they are 
executed by single means capable of executing only one task 
at a time, for example: a machine tool, a data bus, a team of 
workers. In the ?eld of electronic data processing, the 
method can be applied to the management of a plurality of 
predetermined tasks to be executed successively in the same 
processor or on the same bus. In the ?eld of industrial 
process control, the method can be applied in particular to 
the management of a so-called ?eld bus used to transmit 
information successively in accordance with a predeter 
mined series. 

2. Description of the Prior Art 
The prior art includes many scheduling methods: 
so-called polynomial or critical path methods; 
linear programming methods, especially the simplex 

method on which the PROLOG III language is based; 
dynamic programming methods that can be applied only 

to relatively small problems; and 
heuristic methods that use some algorithms employing the 

above methods but further reduce the number of cases 
to be veri?ed by simplifying certain constraints; the 
resulting solution is then less than optimal. 

The prior art methods have two drawbacks: they require 
a long computation time since they systematically verify a 
very large number of permutations before giving a solution. 
The computation time is usually proportional to the factorial 
of the number of tasks to be scheduled. 
To schedule repetitive tasks the prior art methods deter 

mine the duration of a macrocycle equal to the lowest 
common multiple of all the task periods and the duration of 
a microcycle equal to the highest common denominator of 
all the task periods, and then look for a permutation of the 
tasks such that all the constraints are satis?ed simulta 
neously, trying out all possible permutations until one veri 
fying this condition is found, the veri?cation being carried 
out microcycle by microcycle. If a con?ict appears within a 
microcycle the permutation currently being veri?ed is aban 
doned and another is tried. The work done in connection 
with veri?cation of that permutation during previous micro 
cycles becomes of no utility since all the constraints previ 
ously satis?ed are called into question again. 
The prior art methods are therefore somewhat impractical 

for use in industrial applications. 
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2 
An object of the invention is to propose a scheduling 

method that is free of these drawbacks so that a solution to 
a static scheduling problem is obtained faster, and also to 
enable dynamic scheduling problems to be handled, i.e. to 
make it possible to carry out rescheduling as and when the 
number of tasks to be scheduled and/or the constraints 
applying to those tasks change. Dynamic scheduling can be 
bene?cial in scheduling machining tasks on a machine tool, 
for example, if the products to be manufactured are highly 
diverse; for scheduling aircraft take-offs and landings on a 
runway; for scheduling tasks on a data bus or processor; etc. 

SUMMARY OF THE INVENTION 

The invention consists in a method for scheduling suc 
cessive tasks by means of a computer, said tasks being 
subject only to timing constraints, a tinting constraint requir 
ing that the execution start time be in at least one predeter 
mined time interval relative to an absolute reference time; 

said method comprising the following successive steps in 
this order: 
calculating for each task upper and lower limits of the 

interval in which execution of that task must start; 
constructing a ?rst series in which all the tasks are 

scheduled in increasing order of their lower limit and 
are scheduled in increasing order of their upper 
limits when several tasks have a same lower limit; 

constructing a second series in which all the tasks are 
scheduled in increasing order of their upper limit and 
are scheduled in decreasing order of their lower 
limits when several tasks have a same upper limit 
and diiferent lower limits; , 

constructing an initial permutation by scheduling all the 
tasks in the order of the ?rst series; 

verifying if said current permutation satis?es all the 
constraints supplying to the tasks, the tasks being 
considered one by one in the order corresponding to 
said current permutation to check whether each task 
satis?es all the constraints applying to said task; 

concluding that the scheduling succeeds if all the 
constraints are satis?ed; 

otherwise, determining in said current permutation the 
?rst ill-placed task for which a constraint is not 
satis?ed; 

determining in the second series a candidate task imme 
diately following the ill-placed task in said second 
series that also precedes the ill-placed task in the 
current permutation, said candidate being a task 
which has already been veri?ed, all the tasks fol 
lowing said candidate task in said current permuta 
tion being not considered as satisfying all the con 
straints, any more; 

verifying that if the candidate task is shifted to a 
position immediately after the ill-placed task all the 
constraints applying to all the tasks shifted in this 
way are then satis?ed; and 

if at least one constraint is not satis?ed, concluding that 
the candidate task is not suitable and then determin 
ing in the second series another candidate ask and 
repeating the previous veri?cation; and, if this is not 
possible, concluding that the scheduling fails; 

if all the constraints are satis?ed, concluding that the 
scheduling succeeds. 

This method has the advantage of being particularly fast 
since if the scheduling of a task fails it shifts one or more 
tasks preceding the task in respect of which scheduling has 
failed without systematically calling into question again all 
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the constraints already satis?ed, and therefore without call 
ing into question again all of the work already done. This 
signi?cantly reduces the computation time compared to any 
method that systematically explores all scheduling possi 
bilities. 
The method is also faster than the prior art methods in the 

case of repetitive tasks since the permutations are veri?ed in 
a single microcycle. Finally, this method can be applied to 
scheduling a system in which a plurality of tasks can be 
carried out in parallel. It then consists in breaking the system 
down into a plurality of subsystems in which the tasks must 
all be executed successively and applying the method of the 
invention to each of these subsystems. 
The method of the invention will be more clearly under 

stood and other features of the invention will emerge from 
the following description of one embodiment of the inven 
tion and the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows the block schematic of a system in which the 
dynamic scheduling method of the invention is imple 
mented. 

FIGS. 2 and 3 show one step of the method of the 
invention adapted to take into account the periodic nature of 
certain tasks. 

FIGS. 4 through 7 show the basic principles of the method 
of the invention. 

FIG. 8 shows the ?owchart of one embodiment of the 
invention. 

FIGS. 9 through 16 show timing diagrams illustrating the 
use of the ?owchart shown in FIG. 8. 

FIGS. 17 through 26 show one example of the use of the 
method of the invention to schedule tasks. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

The method of the invention can be used for static or 
dynamic scheduling. Its reduction in computation time is 
particularly advantageous in dynamic scheduling, however, 
since it allows changing constraints and/or tasks to be dealt 
with in real time. 

FIG. 1 shows the block schematic of one embodiment of 
the device implementing the method of the invention for 
dynamic scheduling of industrial production tasks, for 
example. 
The device includes a computer OR connected to a 

production system SY. The production system SY supplies 
to an input of the computer OR the parameters needed to 
determine a schedule: the identi?er ID K of each task and, if 
appropriate, the period TK of each task and the de?nition R L 
of each constraint to be satis?ed. These parameters are 
supplied each time that a change occurs in the nature of the 
task to be executed and/or in the constraints. 

The computer then determines a new permutation PER 
and the production system SY then executes the tasks in 
accordance with that new permutation. 

The tasks are usually executed by various devices of the 
system SY. The computer OR must be programmed to 
transmit to each device information indicating to it the times 
at which it can execute a task. The person skilled in the art 
will know how to program the computer OR to implement 
the method of the invention and to transmit information to 
each device and this programming will not be described 
beyond the description of the method itself. Likewise, the 
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4 
person skilled in the art will know what hardware to use to 
connect a computer OR to a system SY comprising various 
devices adapted to execute respective different tasks. 
The method of the invention is not limited to static 

scheduling applications. The same steps can perform 
dynamic scheduling in real time. 

Each constraint applies only to the execution start time, 
which muse be within a given interval [tmim tmax]. Execution 
can continue beyond the limit of an interval, but it muse 
respect the ?xed duration. If a plurality of timing constraints 
apply to the same task, they can be replaced by a single 
constraint for which the interval [tmim tmax] is obtained from 
the respective intervals of chose constraints by application 
of the AND operator. 
A preliminary step of the method of the invention reduces 

the number of permutations to be veri?ed by verifying the 
scheduling 'of tasks only during a microcycle which is the 
highest common denominator of all the task repetition 
periods. If a permutation is found such that if all the tasks are 
executed within the same microcycle and satisfy all the 
constraints, then that permutation will not lead to any 
con?ict during any of the microcycles constituting a mac 
rocycle, since the worst case scenario is that in which all the 
tasks occur in the same microcycle because multiples of 
their periods coincide. 

FIG. 2 and 3 shows this preliminary step of the method of 
the invention. Note that in the case where one or more tasks 
are not to be regarded a priori as repetitive, it is su?icient to 
assign them an arbitrary common period, but one that 
facilitates the determination of a microcycle. It is therefore 
sufficient to determine the value of the highest common 
denominator of the period of the repetitive tasks and then to 
choose a multiple of that value to constitute common periods 
for all the non-repetitive tasks. 

FIGS. 2 and 3 relate to the example in which six periodic 
tasks T1 through T6 with respective periods of 10 ms, 20 ms, 
30 ms, 40 ms, 50 ms and 40 ms have to be scheduled. The 
execution time is the same for all the tasks and is equal to 
1 ms. 

In FIG. 2 the time intervals [tm,-,,, tmax] for each task are 
shown cross-hatched. 

These intervals are as follows: 

TAl ltmin, tum] : [0, 4 ms] modulo l0 ms 
TA2 [10, 13 ms] modulo 20 ms 
TA3 [20, 23 ms] modulo 30 ms 
TA4 [30, 32 ms] modulo 40 ms 
TA5 [40, 4I ms] modulo 50 ms 
TA6 [20, 22 ms] modulo 40 ms 

These tasks have a macrocycle equal to the lowest com 
mon multiple of their period, which is 600 ms. A macrocycle 
can be divided into 60 microcycles each of 10 ms. Two 
repetitive tasks can be in con?ict if they have to be executed 
during the same microcycle. For example, the tasks TA1, 
TA3 and TA6 must be executed during the same microcycle 
[20 ms, 30 ms] then [120 ms, 140 ms], etc. 
To determine a schedule that suits the worst case scenario, 

it is suf?cient to consider a microcycle in which all tasks 
without exception must be executed once. In practise, the 
tasks do not all occur in the same microcycle. An imaginary 
case in which this event occurs is considered below. 

Time shifting can shift the execution time of each task 
into the interval of the same microcycle [0, 10 ms]. It is 
de?ned by the formula: 
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where 
tam-“"3 is the imaginary execution start time of a task K; 
tax is the real execution start time of the task K; 
PGCD is the duration of a rnicrocycle, i.e. the highest 
common denominator of the periods; and 

k is an integer such that the imaginary execution start time 
tsfi'mg of the task K is shifted into the required 
rrricrocycle, in this instance the rrricrocycle [0, 10 ms]. 

The interval [Tm-"K, TmaxK] de?ned by all the constraints 
applying to the task K is therefore also shifted by —k.PGCD. 
The scheduling method of the invention is then applied in 

this interval [0, 10 ms]. When a permutation satisfying all 
the constraints has been determined, the actual execution 
times t_,,K are deduced from the imaginary execution start 
times using the formula: 

t,,K=t_,,K""‘“8+k.PGCD modulo the period of the task K. 

FIG. 3 shows the resulting scheduling of the tasks over the 
interval 0 to 100 ms, the interval 100 ms to 600 ms not being 
shown but being scheduled in a similar way. Each execution 
interval is shown in black. Consider, for example, the 
interval 20 ms to 30 ms in which there can be con?ict 
between the tasks TA1, TA3 and TA6. The task TA1 is 
executed in the interval 23 ms to 24 ms. The task TA3 is 
executed in the interval 22 ms to 23 ms. The task TA6 is 
executed in the interval 21 ms to 22 ms. Thus TA1 and TA3 
or TA6 are never executed simultaneously, regardless of the 
rnicrocycle in question, which is one of the 60 microcycles 
constituting the macrocycle [0, 600 ms]. 

in an application in which some tasks can be executed 
simultaneously, this preliminary step further consists in 
grouping the tasks into a plurality of independent subsets, if 
possible, each subset containing only tasks related by con 
straints. Scheduling a plurality of subsets independently is 
faster than scheduling a single more complex set. 

FIGS. 4 through 7 show the basic principles of the method 
of the invention for scheduling all the tasks of a set of tasks 
in which the number of permutations to be veri?ed is 
minimized. This procedure succeeds if it determines a 
permutation constituting a schedule satisfying all the con 
straints applying to the tasks in 

FIG. 4 shows a timing diagram illustrating a ?rst basic 
principle of the method of the invention. This ?rst basic 
principle imposes priority execution of tasks for which the 
time interval starts the soonest, i.e. with the smallest value 
tmin. In practise the initial permutation of the tasks, i.e. the 
?rst permutation to be veri?ed, is constituted by a series 
MIN-SERIES, in which the tasks are arranged in increasing 
order of their tm," values. 
The rectangles IDA and IDB in FIG. 4 show time intervals 

respectively assigned to the execution of a task A and to the 
execution of a task B. Constraints require that execution of 
task A start within an interval [tm-n", t,,,,,;‘] or at worst at 
time t,,,,,,". They require execution of task B start within an 
interval [tminB, tmaxB] or, at worst, at time TmaxB. In this 
example t,,,,-,,’‘ is before tmmB. The ?rst basic principle is to 
execute task A ?rst, shifting the interval in which this 
execution occurs as close as possible to the lower limit t,,,,,,"; 
then executing task B during an interval IDB starting as 
close as possible to the lower limit TminB without overlap 
ping the interval IDA. In this example the interval IDA has 
a duration 8'‘ which overlaps the interval [Tm-"B, TmaxB] and 
consequently the intervals IDA and IDB will be as close 
together as possible by choosing: 
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6 
FIG. 5 shows, for the same example, the consequences of 

failure to apply this basic principle, i.e. of having task B 
executed before task A. The execution interval IDB then 
starts as soon as possible, i.e. at the lower limit of the 
interval [Tm-KB, TmaxB]. The execution interval IDA should 
start after the end of the execution interval IDB in order not 
to overlap the interval IDB, but in the example the execution 
interval IDB has a length such that it goes beyond the upper 
limit t,,,,,,,’‘ of the interval in which starting execution of task 
A is permitted. At best, task A could start at time ts,A=tmA, 
but then the two execution intervals IDB and IDA overlap. 
The overlap area is cross-hatched in FIG. 5. 
The example thus shows that failing to respect the ?rst 

basic principle increases the probability that some con 
straints will not be satis?ed. 

FIG. 6 shows a timing diagram illustrating a second basic 
principle of the method of the invention. This basic principle 
chooses the task to be given execution priority from a 
plurality of tasks for which the lower limit tmm has the same 
value. In this case, this second basic principle imposes 
priority execution of the task for which the upper limit tnm 
has the smallest value. 

In example shown in FIG. 6, two tasks A and B have the 
same lower limit tmmA=tmmB for the time interval in which 
execution must start. Constraints imposed by the existence 
of other execution intervals that are not shown prohibit 
execution of tasks A and B before a time tO after tminA=tmmB 
, in a time interval shown cross-hatched. Thus the execution 
intervals IDA and IDB can only start from this time to. The 
upper limit TmaxB for task B is greater than the upper limit 
tm?" for task A. In accordance with the second basic 
principle, task A takes priority for execution. Task B is then 
executed from a time: 

Thus the two execution intervals IDA and IDB occur one 
after the other with no particular problem due to the upper 
limit TmaxB. 

FIG. 7 shows, for the same example, a con?ict that is 
more likely to occur if the second basic principle is not 
respected. Task B is executed ?rst, from time ts,” which 
coincides with the end to of the prohibited interval shown by 
the cross-hatching. Task A must then be executed from a 
time ts,"=T,mrnB+ZSA to prevent the intervals IDA and IDB 
overlapping, but this time tsf‘ would then be in a prohibited 
area, shown cross-hatched in the ?gure after the upper limit 
tmaxA of the interval in which execution should start. There 
is therefore a constraint that is not satis?ed. This example 
shows that failing to respect the second basic principle 
increases the probability that some constraints will not be 
satis?ed. 

FIG. 8 shows a ?owchart of a preferred embodiment of 
the method of the invention. It starts with a step E21 to 
determine the series MIN-SERIES comprising all the tasks 
scheduled in increasing order of their lower limit tmin. This 
series will be used to apply the ?rst basic principle stated 
above. To maximize the probability of ?nding quickly a 
permutation that satis?es all the constraints applying to all 
the tasks, the initial permutation is constituted by MIN 
SERIES and the permutations veri?ed thereafter, in the 
event of failure, are deduced from MIN-SERIES by succes 
sive modi?cations. 

Step E21 also determines the series MAX-SERIES com 
prising all the tasks in increasing order of their upper limit 
tmax. This series will be used to apply the second basic 
principle stated above if the initial permutation has to be 
modi?ed. 
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The next step E22 veri?es the current permutation, i.e. 
veri?es if it satis?es all the constraints applying to all the 
tasks. At the beginning of this step the current permutation 
is the initial permutation determined by step E21. 

This veri?cation consists in taking each successive task in 
the order of the current permutation and verifying that the 
execution interval [tsp tend] imposed by the position occu 
pied by that task in the current permutation is compatible 
with the time interval [tmw tmax] imposed by the constraints 
that apply to that task. The task for which this veri?cation is 
in progress is called the current task. If the result of the 
veri?cation is positive for each of the tasks, this indicates 
that the current permutation succeeds (S). 

If the veri?cation ?nds at least one task whose position in 
the permutation imposes starting execution at a time t,, that 
is not in the time interval [tmI-H, tmax] imposed by the 
constraints, that task is regarded as ill-placed since there is 
a con?ict between two constraints. When step E22 ?nds a 
task (X) that is the ?rst ill-placed task in the current 
permutation, it draws the conclusion (R) that it is necessary 
to look for a task that is a candidate for shifting to constitute 
a new permutation. The method then executes a step E23 
which looks for the task immediately following the current 
task X in the series MAX-SERIES. If there is no such task, 
step E23 fails (F). 

If step E23 ?nds a candidate task Q immediately follow 
ing the current task X in the series MAX-SERIES, the next 
step E24 of the method veri?es that the task Q has already 
been considered to be well-placed during an earlier step E21. 
All the tasks considered to be well-placed are those which 
have a position below that of the current task X, since the 
veri?cation of step E22 is carried out according to increasing 
positions in the current permutation. Consequently, step E24 
simply veri?es that the candidate task Q precedes the current 
task X in the current permutation. If step E24 determines 
that the task Q was not considered to be well-placed, then 
step E23 is repeated to ?nd another candidate task imme 
diately following the task Q in MAX-SERIES. 
On the other hand, if the candidate task Q was considered 

to be well-placed, the next step E25 of the method compares 
the execution start time tMQ of the task Q to the upper limit 
tmaxx of the time interval corresponding to the current task 
X. 

If tMQZtmmX, the outcome is that denoted ot. The next step 
is then a step E29 which shifts the task Q in the current 
permutation to insert it between the current task X and the 
task after the task X in the current permutation. The tasks 
that were between Q and X, and the task X itself, are shifted 
one position downwards to ?ll in the space left free by Q. 
Consequently, the task Q subsequently occupies the position 
that was previously that of X. The method then repeats step 
E22 to verify if the new current permutation obtained in this 
way satis?es all the constraints. Note that the task Q and all 
the other tasks that followed it have been shifted. They can 
no longer be considered to have been well-placed as they do 
not necessarily satisfy all the constraints in their respective 
new positions. The tasks below Q retain the same position, 
and it is therefore not necessary to verify that they satisfy all 
the constraints applying to them, and therefore the work of 
verifying those constraints is not done again. 

if tS,Q<t,,,,,xX, the outcome is that denoted E (see below) 
and the next step of the method is step E26. 

FIG. 9 shows the outcome or, for example. The execution 
intervals are shown in dashed outline if a con?ict prevents 
execution and in full outline otherwise. 

Consider a task X in position PSi of the current permu 
tation and a task Q considered to be well-placed and in 
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8 
position PSj of the current permutation. The position PSi 
imposes the start of execution of task X at a time ts, (PSi) that 
is beyond the limit tmaxx. The position PSj imposes the start 
of execution of task Q at a time ts, (PSi) which in this 
example is beyond the time tmaxx. Since the time tnQ (PSi) 
is beyond the time tmaxx, the limit tmaxQ is therefore a fortiori 
greater than or equal to tmaxx and therefore has a chance of 
being nQear ts, (PSi), the ideal being that ts, (PSi) falls short 
of tmax . 

FIG. 10 shows that by shifting the tasks Q and X 
respectively into the positions PSi-1 and PSi, the robability 
that the time ts, (PSi-1) falls in the interval [Tm-n , tmaxx] is 
greater than the probability that the time ts, (PSi) had of 
falling in this same interval, because ts, increases system 
atically with the position PS. The ?gure shows that the end 
tmaxx of the segment corresponding to task X has moved 
closer to an execution interval, namely that which starts at 
ts, (PSi-1), and therefore has a greater chance of intersecting 
with that interval. 
The end tmaxQ of the segment corresponding to the task Q 

has a non-null chance of intercepting the rectangle repre 
senting the execution interval starting at time t_,, (PSi). 
Consequently, the new permutation has a greater chance 
than the old one of satisfying all the constraints and it is 
therefore bene?cial to try out this new permutation. In the 
example shown, ts, (PSi-1) is beyond tmax and there is 
therefore still a con?ict in respect of the task X. It is 
therefore necessary to make one or more further modi?ca 
tions to the current permutation. 

In this example, ts, (PSi) is beyond tmaxQ and there is 
therefore also a con?ict in respect of the task after the shift. 
However, in other examples corresponding to the outcome ot 
it may be that the constraints applying to X and those 
applying to Q are satis?ed simultaneously. Consequently, it 
is bene?cial to verify any new permutation corresponding to 
the out come or. 

In the case of the outcome &, on the other hand, further 
veri?cations are needed before it is possible to conclude that 
the task Q is a worthwhile candidate task. The next step of 
the method is then step E26 that compares the time tendQ of 
end of execution of the task Q to the upper limit tmaxX of the 
interval in which execution of the task X must start. If 
tendgétmaxx, the outcome is that denoted B and the next step 
of the method is the step E30 which shifts the task Q to insert 
it after the task X. The contrary outcome is that denoted 
B. Other veri?cations are needed before it is possible to 
conclude that the task Q is a worthwhile candidate task. 

FIGS. 11 and 12 show the outcome FIG. 11 shows a 
task X in the position PSi and a task Q in the position PSj 
such that the outcome & and the outcome [3 apply: the time 
tendQ of end of execution of the task Q, i.e. the time tend(PSi) 
imposed by the position PSj of Q in the current permutation, 
is beyond the time tmaxx. 

FIG. 12 shows that by displacing the tasks Q and X to the 
positions PSi-1 and PSi, respectively, the probability that the 
time Is, (PSLI) falls in the interval [T mmx, tmaxx] is greater 
than the probability that the time ts, (PSi) had of falling in 
that same interval, because ts, increases systematically with 
the position PS. What is more, the time tendQ =tend (PSi) is 
beyond the limit tmxx and there is no con?ict. This means 
that tmaxQ is either greater than tmaxx or slightly less than 
tmaxx, being at most at a distance equal to the interval [tn 
(PSj), tend (PSj)]. There is therefore little chance that tmaxQ 
is greater than tmw,X and therefore in this case there is little 
chance that tmaxQ will be beyond ts, (PSi) after the shift. It 
is therefore worthwhile to try out a permutation correspond 
ing to the outcome B, which will not necessarily be a waste 
of time. 
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In the example shown in FIG. 12, the shifting of Q and X 
is not sufficient for all the constraints on Q and X to be 
satis?ed. The current permutation needs to be modi?ed a 
little more. 

In the case of the outcome B, step E27 compares the upper 
limit tmaxQ of the time interval in which execution of task Q 
must start to the upper limit tmaxx of the time interval in 
which execution of task X must start. If tmaxQ >tmaxX, the 
outcome is denoted T] and the next step of the method is then 
a step E28. The contrary outcome is that denoted H and step 
E23 is then repeated since there is no chance that the 
candidate task Q is worthwhile. 

FIGS. 13 and 14 show the outcome F] by means of an 
example in which the limit tmaxQ is before the time tmaxx. 

FIG. 13 shows the tasks X and Q shifted into the positions 
PSi-1 and PSi, respectively. This ?gure shows that the time 
tmaxQ is closer to the time ts, (PSi) than it was to the time tn 
(PSj) but there is no chance of the task Q being executed 
since tmaxQ is still farther from ts, (PSi) than tmaxQ was. Since 
there is a 100% chance of the task Q being ill-placed, it is 
not worthwhile to attempt any modi?cation of the current 
permutation and for this reason the next step of the method 
is a step E23 that looks for another candidate task for 
shifting. 

In the case of outcome T], step E28 compares the lower 
limit tun-"Q of the interval in which execution of task Q must 
start with the lower limit Tmmx of the time interval in which 
the execution of task X must start. 
The objective of this step E28 is to verify that the task Q 

is before the current task X in the series MIN-SERIES so 
that the task Q can be moved after the task X. Otherwise 
(outcome 5) the next step of the method is a step E23 that 
looks for another task that is a candidate for shifting. 

In the case of the outcome X, the next step of the method 
is a step E29 that shifts the task Q after the task X; step E22 
is then repeated to verify if all the constraints applying to the 
tasks of the current layer are satis?ed. 

FIG. 15 shows an example in which the outcomes or, B, X, 
T] apply simultaneously. 

FIG. 16 shows the tasks X and Q shifted into the positions 
PSi-l and PSi, respectively, in an example in which the 
constraints are such that they are satis?ed after this shifting: 
ts, (PSi) is in the interval [t Q tmaxg ] and ts, (PSi-l) is in min ’ 

the interval [T X t X 
FIGS. 17 through 26 show the implementation of step E2 

for scheduling a layer comprising thirteen tasks: A, B, C, D, 
E, G, J, K, L, N, P, S, T. 

FIG. 17 shows on a time scale from 0 to 14 ms the 
position of the execution intervals respectively correspond 
ing to thirteen positions PS1 through PS13. The tasks are 
executed in the order of the positions PS1 through P813 and 
each execution interval has a duration equal to 1 ms. 

Each task must satisfy one or more constraints that result 
in a single constraint. The start of the execution interval 
(cross-hatched rectangle in FIG. 17) must be in a given time 
interval (bold segments in FIG. 18). In the worst case it can 
begin at the upper limit. 

Step E21 determines the series MIN~SERIES comprising 
all the tasks of the current layer scheduled in increasing 
order of their lower limit tmm. 

MIN-SERIES=N, J, S, D, E, B, T, A, K, P, L, C, G. 
In FIG. 18 the thirteen tasks are shown in the same order 

as MIN~SERIES, along the ordinate axis. To maximize the 
probability of quickly ?nding a permutation that satis?es all 
the constraints applying to the tasks of the layer in question, 
the so-called initial permutation veri?ed ?rst is that consist 
ing of MIN-SERIES, and those veri?ed thereafter, in the 
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10 
event of failure, are deduced from MIN-SERIES by succes— 
sive modi?cations. 

Step E21 further determines the series MAX-SERIES 
comprising all the paths of the current layer scheduled in 
order of increasing tmax values. This series will be used to 
apply the second basic principle stated above if the initial 
permutation has to be modi?ed. In this example: 
MAX-SERIES=E, D, A, K, P, B, L, C, G, T, J, S, N 
A step E22 then veri?es the current permutation, i.e. 

veri?es if it satis?es all the constraints applying to the tasks 
of the layer in question. At the start of step E2 the current 
permutation is the initial permutation determined by step 
E21. 
The veri?cation is performed successively for each task, 

in the order of the current permutation: N, J, S, D, E . . ., G. 
If the result of the veri?cation is positive for a task, that task 
is considered to be well-placed in the permutation, but its 
position can be called into question again subsequently if 
this is needed to satisfy other constraints. 

Comparing FIGS. 17 and 18 shows that there is no 
problem in executing the tasks N, J, S and D, respectively, 
during the execution intervals shown in FIG. 17. They are 
therefore all considered to be well-placed, the current per 
mutation is: 

N, J, S, D, E, B, T, A, K, P, L, C, G. 
The tasks underlined are those considered to be well 

placed. 
FIG. 19 shows the ?rst con?ict encountered in verifying 

the initial permutation. Cross-hatched rectangles in FIG. 19 
represent execution intervals for which there is no con?ict 
between the constraint and a dashed outline black rectangle 
shows the execution interval that is causing a con?ict. It 
corresponds to the position PS5 currently occupied by the 
task E. This execution interval does not intersect the interval 
in which the execution of the‘ task E must start. Step E23 
therefore looks in the series MAX-SERIES for a task 
following the task E, i.e. such that the limit tmax has a higher 
value. ' 

MAX-SERIES=E, D, A, K, P, B, L, C, G, T, J, S, N 
Step E23 ?nds the task D. Step E24 veri?es that it is 

considered to be well-placed, by verifying that its position is 
below the position of the current task E in the current 
permutation. Step E25 then arrives at a conclusion a. Step 
E26 then arrives at a conclusion [3. Step E29 then shifts D 
into the position POSS and E moves back into the position 
POS4. Step E22 veri?es that the constraints applying to E 
and the subsequent tasks are satis?ed but ?nds that the 
constraint applying to D are no longer satis?ed. The per 
mutation tried out is not suitable. It is not retained at the new 
current permutation. . 

FIG. 19 shows that this modi?cation cannot succeed 
because the interval corresponding to D has an upper limit 
which is not higher than that of the interval corresponding to 
E. They are in fact exactly the same. To prevent unnecessary 
veri?cation of new permutations it is possible to take 
precautions when constructing MAX-SERIES during step 
E21: 

If two tasks of the same layer have a common time 
interval constraint [tmim tmax], it is possible to put them in 
two different positions in the series MIN-SERIES that 
constitutes the initial permutation and in the series MAX 
SERIES. In the example shown in FIGS. 17 through 26 there 
are at least two possibilities for constructing the series 
MAX-SERIES since it is possible to perrnutate D and E: 

D, E,A, K, P, B, L, C, G, T, J, S,N 
E, D,A, K, P, B, L, C, G,T, J, S, N 
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It would have been preferable to choose the order E, D 
that is the opposite of the order D, E in which they are taken 
to constitute the initial permutation. 

MIN-SERIES=N, J, S, D, E, B, T, A, K, P, L, C, G. 
Step E23 then ?nds as successive candidate tasks the tasks 

A, K, P, B, L, C, G, T, J and step E24 retains task J. 
It can be shown that, as a general rule, if the masks of the 

layer to be scheduled have to satisfy only timing constraints, 
it is preferable to place in a reverse order all the tasks having 
the same interval [tmim tmax] regardless of their number. On 
the other hand, if both timing constraints and sequence 
constraints apply, it is preferable to place them in the same 
order. 

Consider the remainder of this example, retaining the 
initial choice of MAX-SERIES: 

E, D, A, K, P, B, L, C, G, T, J, S, N 
The current permutation is: 

N, J, S, E, D, B, T, A, K, P, L, C, G. 
After this unfortunate attempt to modify the permutation, 

step E23 ?nds as successive candidate tasks the tasks A, K, 
F, B, L, C, G, T and these are rejected by step E24 Step E23 
then ?nds task J. 

FIG. 20 shows this new attempt at modi?cation. Step E24 
veri?es that task J is considered to be well-placed. Step E25 
reaches the conclusion E. Step E26 reaches the conclusion 
15. Step E27 and E28 arrive at the conclusions 1] and X. 
Consequently step E29 places task J in position PS5 in place 
of E. Task E, D and S move back one place: S to position 
PS2, D to position PS3 and E to position PS4. The other 
tasks do not change place. 

Step E22 then veri?es that the tasks that have been shifted 
satisfy all the constraints applying to them, starting with the 
shifted task in the lowest position: S, then E, then D, then J. 
It then veri?es that there is no con?ict between the succes 
sive constraints for tasks B, T, A, K. 

FIG. 21 shows the new current permutation. Note that the 
execution interval for task K starts at the exact time which 
is the end of the interval in which execution of task K should 
start. There is no con?ict, but the constraints are satis?ed. 
The current permutation is: 

N, S, E, D, J, B, T, A, K, P, L, C, G. 
FIG. 22 shows that a con?ict occurs for task P. Step E23 

is then repeated to determine in the series MAX-SERIES the 
task immediately following the task P. It ?nds task B. Step 
E24 veri?es that task B is considered to be well-placed. 
Steps E25 and E26 reach conclusions & and then Step E27 
is then executed. This ?nds that TmaxB=tmaxP and conse 
quently arrives at the conclusion Step E23 is then 
repeated to ?nd another candidate task in the series MAX 
SERIES. The segment representing the time interval corre 
sponding to B would not intersect with the execution inter 
val [9 ms, 10 ms] corresponding to the position POS10 if 
task B were shifted to that position. Consequently, the 
constraints that apply to B would not be satis?ed. 

Step E23 then ?nds the successive tasks L, C, G but step 
E24 rejects them as they are not considered to be well-placed 
in the permutation. Finally, steps E23 and E24 ?nd task T. 
Steps E25 through E28 successively arrive at the conclu 
sions a, B, T], X. Step E29 shifts T to position POS10. Tasks 
P, K, A move back into positions POS9, POSS, POS7, 
respectively. 

Step E22 then veri?es that the constraints applying to the 
shifted tasks A, K, P, T and the subsequent tasks are satis?ed. 
The new current permutation is: 

N, S, E, D, J, B, A, K, P, T, L, C, G. 
As shown in FIG. 23, step E22 then ?nds that the 

constraints applying to task L are not satis?ed. 
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Step E23 then ?nds task T and step E24 veri?es that it is 

considered to be well-placed. Step E25 and the subsequent 
steps can then be executed. They arrive at conclusions 5, 
B then T] and XX. Step E29 can then be executed. It places 
task T in the position POS11 that was occupied by task L, 
which moves back one place. Step E22 veri?es that the 
constraints applying to the shifted tasks L and T are satis?ed. 
Consequently, the current permutation becomes: 

N, S, E, D, J, V, A, K, P, L, T, C, G. 
As shown in FIG. 24, there is a con?ict between the 

constraints applying to task C. Step E23 determines the task 
following task C in the series MAX-SERIES. It ?nds task G 
but step E24 ?nds that task G is not considered to be 
well-placed in the permutation. Step E23 is repeated and 
determines another task T preceding task C in the series 
MAX-SERIES. Step E24 veri?es that task T is considered to 
be well placed in the ermutation. Step E25 arrives that the 
conclusion or since ts, =tmaxc. Step 29 is therefore executed 
immediately and places task T after task C in the permuta 
tion, which is the same thing as permutating the positions of 
C and T. Step E22 then veri?es that all the constraints 
applying to the shifted tasks C and T are satis?ed. 
The new current permutation is: 

N, S, E, D, J, B, A, K, P, L, C, T, G. 
As shown in FIG. 25, step E22 ?nds that there is a con?ict 

between the constraints applying to task G. Step E23 deter 
mines a task T immediately following task G in the series 
MAX-SERIES. Step E24 veri?es that task T is considered to 
be well-placed in the permutation. Step E25 arrives at the 
conclusion 0t since tS,T=tm,,xG. Step E29 places T after G in 
the permutation, which is the same thing as permutating T 
and G. Step E22 then veri?es that all the constraints apply 
ing to the shifted tasks G and T are satis?ed. The new current 
permutation is: 

N, S, E, D, J, B, A, K, P, L, C, G, T. 
All the tasks are considered to be well-placed because all 

the constraints are satis?ed, as shown in FIG. 26, and 
consequently step E22 succeeds (S). 

There is claimed: 
1. Method for scheduling successive tasks by means of a 

computer, said tasks being subject only to timing constraints, 
a timing constraint requiring that the execution start time be 
in at least one predetermined time interval relative to an 
absolute reference time; 

said method comprising the following successive steps in 
this order: 

calculating for each task upper and lower limits of the 
interval in which execution of that task must start; 

constructing a ?rst series in which all said tasks are 
scheduled in increasing order of their lower limit, and 
are scheduled in increasing order of their upper limit 
when several tasks have a same lower limit; 

constructing a second series in which all said tasks are 
scheduled in increasing order of their upper limit, and 
are scheduled in decreasing order of their lower limits 
when several tasks have a same upper limit and have 
different lower limits; 

constructing a current permutation, ?rst by scheduling all 
said tasks in the order of said ?rst series; 

verifying if said current permutation satis?es all said 
constraints supplying to said tasks, the tasks being 
considered one by one in the order corresponding to 
said current permutation, to check whether each task 
satis?es all the constraints applying to said task; 

concluding that the scheduling succeeds if all said con 
straints are satis?ed; 
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