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[57] ABSTRACT 

An improved method and apparatus are disclosed for pro 
cessing spectral data to remove undesired variations in such 
data and to remove interfering information present in the 
data. The method land apparatus corrects multiplicative 
effects present in the spectral data. Additive and interferent 
contributions can be corrected as well. In one aspect of the 
method, coe?icients for a selected appropriate model are 
applied to the input spectral data based on ?rst and second 
reference spectra. The spectral data are then corrected based 
on the estimated coe?icients at least as to multiplicative 
errors for producing a linear additive structure for use in 
calibration, validation and determination by linear multi 
variate analysis. The method and apparatus will improve the 
accuracy of spectral data structures derived from measure 
ments Using spectroscopy, chromatography, thermal analy 
sis, mechanical vibration and acoustic analysis, rheology, 
electrophoresis, image analysis and other analytical tech 
nologies producing data of similar multivariate nature. 

49 Claims, 5 Drawing Sheets 
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MULTIPLICATIVE SIGNAL CORRECTION 
METHOD AND APPARATUS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This is a continuation~in-part application of application 
Ser. No. 07/402,038, ?led Sep. 1, 1989, now abandoned. 

FIELD OF THE INVENTION 

The present invention relates generally to processing of 
spectral data to reduce undesired variations and to remove 
interfering information present in the data. Speci?cally, the 
present invention relates to an improved instrument or 
method for processing of spectral data to reduce undesired 
variations and to remove interfering information present in 
the data. Most speci?cally, the present invention relates to an 
improved instrument, method or process to provide 
improved measurements of analytes based on spectral data 
by reducing Undesired variations and removing interfering 
information present in the data. 

BACKGROUND OF THE INVENTION 

Spectral data consists of multiple interrelated data points, 
such as an optical spectrum or a chromatogram, which 
carries information related to the components and charac 
teristics of the specimen from which the data was derived, 
as well as to performance of the analytical instrument and to 
the general experimental conditions. In spectroscopy, for 
example, this specimen is a material and the spectral data 
comprises the results of related measurements made on the 
specimen as a function of a variable, such as the frequency 
or wavelength of the energy used for measurement. In 
chromatography, the spectral variable may be time or dis 
tance. In thermal analysis, the variable is usually tempera 
ture or time. In mechanical vibration/acoustics analysis the 
variable is usually frequency. In rheology the variable can be 
position, shear rate or time. In electrophoresis and thin layer 
chromatography the variable is relative distance in one or 
two dimensions. In many different analyses, e.g. kinetic 
measurements, time is either the primary variable or an 
additional variable that adds to the dimensionality of the 
data. 

In image analysis the fundamental variable is usually 
distance in one or two dimensions although the two-dimen 
sional Fourier transform, also known as the Weiner trans 
form, and the Weiner spectrum which express the informa 
tion in a two-dimensional spatial frequency domain are also 
prevalent. Multivariate images, such as three color video 
signals and many satellite images where each picture ele 
ment is characterized by a multichannel “spectrum” and also 
images constituting a time sequence of information, provide 
additional dimensionality in the data. Alternatively, in image 
analysis, the images can be summarized into histograms 
showing distributions of various picture elements, where the 
variable is then a vector of categories, each representing a 
class of picture elements, e.g. various gray levels of pixels, 
or contextual classes based on local image geometry. For 
multivariate images, the additional multichannel informa 
tion may be included in the contextual classi?cation. Time 
information can likewise be included in the de?nition of the 
categories in the variable. The above descriptions of two 
way images also apply to three-way tomographic images, 
e.g. in MRI and X-ray tomography. 
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2 
It should also be noted that it is possible to express 

spectral data more or less equivalently in several different 
domains, i.e. with respect to several different variables, for 
example by a Fourier, Weiner, or Hadamard transformation, 
and using different metrics, such as Euclidian and Mahal 
anobis distances. 

For all of the above types of spectral data, information 
from several specimens may be related to each other statis 
tically to derive analytical information. In order to derive 
speci?c desired analytical information, such as the concen 
tration of a constituent, the magnitude of a physical property, 
or the identi?cation of the specimen or its components, one 
form or another of additive multivariate approximation or 
modeling is typically employed. For example, a desired 
parameter may be modeled as the suitably weighted sum of 
the measurements at selected data points within the spec 
trum or a weighted sum of previously determined reference 
spectra. The weighting coe?icients, sometimes referred to as 
the calibration coefficients, are statistically determined 
based on spectral data obtained from a set of calibration 
specimens for which the values for the parameter of interest 
are known. 

This additive multivariate calibration may be considered 
as a general interference subtraction, whereby each input 
spectrum is resolved as a sum of underlying structures, each 
with a known or estimated spectrum. The structures can be 
known or directly measured spectra of various individual 
phenomena aifecting the input spectrum, or estimated “load 
ing” vectors (e.g. bilinear factors) that span their variability 
statistically. The resolution yields estimates of the level or 
score of each such phenomenon or factor in the input 
spectrum. Then the additive modeling performs the equiva 
lent of a weighted subtraction of the various interferants’ 
spectral effects, thereby providing selectivity enhancement. 

Additive multivariate approximation is appropriate for 
purely additive structures, or by taking the logarithm of the 
data values, for purely multiplicative structures. The mod~ 
eling is much less accurate and robust for mixed additive and 
multiplicative structures. Unfortunately, real measured spec 
tral data usually has some degree of such mixed structures 
including multiplicative effects that a?ect the analytical 
sensitivity. In di?’use re?ectance spectroscopy, for example, 
the scatter coefficient varies due to particle size. Even when 
grinding is appropriate, the resulting particles have a range 
of sizes, with a mean and distribution that is variable 
depending on both physical and chemical factors, and a 
range of optical properties that vary with the wavelength 
itself as well as the particle composition and physical shape. 
In transmission spectroscopy, the effective optical path 
length may be affected by changes in geometry, scattering, 
temperature, density of the material, and related physical 
parameters. Variation in the amount of material added to the 
column produces multiplicative e?‘ects in chromatography 
as does the intensity of the dye added to gel in electrophore 
sis. In image analysis, variations the total area of pixels 
counted and the pixel intensity can contribute multiplicative 
factors to otherwise additive structures. Finally, instrumental 
and other experimental effects, e.g. a nonlinear instrument 
response, may appear as multiplicative factors, particularly 
when a logarithmic data transformation is applied. 
Much of the effort to overcome these e?ects has resulted 

from the increased use of near-infrared diffuse re?ectance 
spectroscopy, in Which multiplicative effects are quite large 
although not necessarily obvious on ?rst examination of 
spectral data. Near-infrared spectra tend to decrease in 
absorbance with decreasing wavelength because the absorp 
tion bands are based on several orders of overtones and 
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combinations of mid-infrared vibrational frequencies. Band 
strength decreases as the order of the harmonic involved 
increases, i.e. as the frequency increases. A multiplicative 
effect on such a tilted spectrum appears similar to the 
addition of a tilted baseline. Therefore, Norris and other 
early workers used the ?rst or second derivative of the 
absorbance spectrum with respect to wavelength in their 
models. The derivatives explicitly remove any additive 
constant and, in the case of the second derivative, any linear 
sloped additive baseline. Unfortunately, the true multiplica 
tive effects remain after taking the derivative of the data. 
Removal of a multiplicative factor implies division of the 

data by an appropriate value. Norris (K. H. Norris and P. C. 
Williams, Optimization of Mathematical Treatments of Raw 
Near-Infrared Signal in the Measurement of Protein in Hard 
Red Spring Wheat. I. In?uence of Particle Size, Cereal 
Chem. 61(2):158 and K. H. Norris, Extracting Information 
from Spectrophotometric Curves Predicting Chemical Com 
position from Visible and Near-Infrared Spectra, Food 
Research and Data Analysis, H. Martens and H. Russwurm, 
Ed. Applied Science Publishers, Ltd. 1983 Essex, England, 
copies of which being annexed hereto) introduced the use of 
derivative ratios by 1981. In their approach, ?rst or second 
derivative spectra are used so that any baseline o?°sets are 
eliminated. The absence of baseline offset in the divisor is a 
requirement to maintain linearity when removing a multi 
plicative factor. Their method involves selecting a wave 
length for the ?rst numerator by examination of the corre 
lation of the data at each wavelength with the values of the 
parameter of interest. A denominator wavelength is then 
selected by similar examination of the correlation of the 
ratio to the parameter of interest. Iteration involving changes 
to the data point spacing and smoothing used in the ?nite 
difference computation of the derivative is then performed to 
optimize the approximation. Additional terms may then be 
added to the model in a stepwise procedure. This method has 
been useful however, it is limited to a speci?c calibration 
using data at a few selected wavelengths. 

Murray and Jessiman (1. Murray and C. S. Jessiman, 
unpublished work (1982) quoted in Animal Feed Evaluation 
by Near Infrared Re?ectance (NIR) Spectrocomputer paper 
presented at the Royal Society of Chemistry Symposium at 
the University of East Anglia, Norwich UK 23 Mar. 1982. A 
copy of which being annexed hereto) developed a technique 
termed “mathematical ball milling” which provided a cor— 
rection to the whole spectrum. In their technique, simple 
linear least squares regression (estimation of a multiplicative 
slope and additive offset parameter) is used to ?nd the best 
linear ?t of each spectrum, as well as of the average of many 
spectra, (ordinates or regressands) to a vector representing 
the actual wavelength, e.g., nanometers (common abscissa 
or regressor). Each individual spectrum is then modi?ed 
with respect to offset and slope such that the simple linear 
regression line of the modi?ed spectrum is coincident with 
the regression line initially obtained for the average spec 
trum. 

Martens, Jensen and Geladi (H. Martens, S. A. Jensen, 
and P. Geladi, Multivariate Linearity Transformations for 
Near-Infrared Re?ectance Spectrometry, Proceedings, Nor 
dic Symposium on Applied Statistics, Stavanger, June 1983, 
Stokkand Forlag Publishers, Stavanger, Norway 
pp.205—234, a copy of which being annexed hereto) devel 
oped the method of “Multiplicative Scatter Correction” that 
is the forerunner of the present invention. They utilize a 
previously known reference spectrum representative of the 
“ideal specimen”. In practice this is usually based on the 
average of the spectra contained in the calibration data set. 
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4 
Each spectrum, whether used for calibration, validation, or 
determination, is then projected on this average spectrum by 
simple linear regression over selected wavelengths and its 
offset and slope relative to the average spectrum thereby 
determined. Corrected spectra are then obtained by subtract 
ing the appropriate offset coefficient from each spectrum and 
then dividing the resulting spectral data by the slope coef 
?cient. The estimated slope coe?icient is sometimes modi 
?ed somewhat at different wavelengths in order to correct 
for wavelength dependency of the scatter coe?icient. The 
resulting corrected spectral values equal the average spectral 
values plus residuals that contain the desired analytical 
information normalized to the average measurement condi~ 
tions. This method, however, is subject to errors caused by 
the non-random nature and potentially large magnitude of 
these residuals. 
A prior approach to minimizing these errors has been to 

omit those portions of the spectrum having large variability 
from the data used in the regression. This approach is 
sometimes di?icult to apply, because it may require many 
trials and operator judgments, and it is only partially suc 
cessful at best. In a variation of this approach, the range of 
the spectral data included in the average spectrum used to 
determine the offset and slope coef?cients is restricted to the 
vicinity of a strong isolated spectral feature, such as a 
solvent absorption band, thereby limiting the magnitude of 
the residuals and improving the accuracy of the correction. 
This variation has been applied to correction of the effects of 
scattering within the specimen in transmission spectroscopy. 
In many cases, however, there is no strong isolated band 
available for determination of the multiplicative correction. 
A related problem occurs in measuring one material through 
another with the pathlength through each material unknown 
and variable. In either case, better means are needed to 
accurately separate additive and multiplicative e?ects. 

Varying levels of known or unknown additive interfer 
ences also characterize the above forms of spectral data. In 
spectroscopy it is common to, have a background spectrum 
added to the desired data from sources such as absorption by 
the solvent used to dissolve the specimen for analysis, 
absorption by the reference used to determine the incident 
energy, nonspeci?c emission or ?uorescence from the speci 
men or instrumentation, and stray light, specular re?ections, 
and other measurement artifacts. The other technologies 
discussed above have similar problems of additive interfer 
ences. 

Specimen stability is often a cause of such a problem. For 
example, in near-infrared diffuse re?ectance spectroscopy 
powdered specimens are common. The water content of 
many powdered specimens tends to equilibrate with the 
environmental humidity. In many cases, it is extremely 
di?icult to maintain an adequate set of calibration and 
validation specimens with a su?icient range of water content 
to allow accurate calibration. Temperature also affects the 
spectra, particularly in the case of hydrogen bonded species 
such as water. A small fraction of one degree Celsius 
temperature change can be readily detected in aqueous 
specimens. Adequate control of specimen temperature dur 
ing measurement is di?icult in the laboratory and often 
impossible in a processing plant environment. Other mea-_ 
surement technologies are subject to such difficult to control 
variables. A method to accurately remove the spectral effects 
of such variables without disturbing the analyte information 
prior to use of the spectra for calibration, validation, and 
determination would improve the utility and performance of 
multivariate data analysis techniques. 
Manual subtraction of one or more background spectra 

from an unknown spectrum by graphically oriented trial 
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and-error is well known in several disciplines, eg in UV, 
VIS, and IR spectroscopy. This type of interference subtrac 
tion has the advantage of letting the user interactively apply 
his or her knowledge of the structures involved. Automated 
methods have been developed but these are subject to 
signi?cant errors, particularly where not all the constituent 
spectra are known, where constituent spectra are in?uenced 
by changes in the environment, and Where the background 
or interference spectra are correlated with the analyte spec 
tra. 

In general, the above previous spectral correction tech 
niques have been based on assumptions that the data struc 
tures are linear in the parameters. Various linearization 
techniques are applied to the data, most commonly the 
logarithmic transformation to convert purely multiplicative 
structures to additive form and, in diffuse re?ectance spec 
troscopy, the Kubelka-Munk function. While useful, these 
data transformations are based on the assumption that the 
structure is intrinsically linear. Physical and instrumental 
e?ects often add intrinsically nonlinear elements to mea 
sured data structures, even if the underlying phenomena is 
linear. 

OBJECTS OF THE INVENTION 

Accordingly, it is an object of the present invention to 
improve the accuracy of multivariate analysis of spectral 
data structures derived from measurements using spectros~ 
copy, chromatography, thermal analysis, mechanical vibra~ 
tion and acoustic analysis, theology, electrophoresis, image 
analysis, and other analytical technologies producing data of 
similar multivariate nature. 

It is an object of the present invention to more accurately 
correct spectral data to reduce or eliminate multiplicative 
effects thereby improving and simplifying subsequent addi 
tive modeling. 
To accomplish this object, it is a further object of this 

invention to distinguish additive features, which in spec 
troscopy may be chemical or physical, from multiplicative 
features, which in spectroscopy are generally physical, 
thereby reducing the danger of confusing and destroying the 
desired information in the multiplicative signal correction 
process. 

It is a further object of this invention to provide error 
warnings if the additive (e.g. chemical) features are too 
similar to the multiplicative (e. g. physical) features to allow 
reliable multiplicative signal correction. 

It is yet another object of this invention to allow for 
non-linear effects such as wavelength dependencies and 
wavelength shifts, by going from non~iterative linear to 
interactive non-linear modeling in the multiplicative signal 
correction. 

It is an additional object of this invention to provide a 
multivariate interference rejection ?lter which removes the 
spectral information due to variable interferences without 
disturbing the desired analyte information. 

It is still another object of this invention to integrate the 
multiplicative signal correction with the additive calibration 
regression or determination of unknown values. 

It is yet another object of this invention that these additive 
and multiplicative correction and interference rejection ?lter 
methods provide graphically based interactive as well as 
fully automated operation so as to allow the users to use their 
judgement and experience in applying the methods if they so 
desire. 
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6 
SUMMARY OF THE INVENTION 

In accordance with the present invention, a method is used 
wherein spectral data of each specimen is represented by a 
multivariate model using previously known spectral infor 
mation as opposed to only the average or “ideal specimen” 
spectral data utilized with simple linear regression modeling 
in the prior multiplicative scatter correction method. In the 
?rst instance, where the multiplicative corrections are of 
prime concern, the method encompasses incorporating the 
reference spectra of selected other components and, using 
multivariate estimation means rather than simple linear 
regression, determining the coe?icients thereby resulting in 
substantially more accurate estimation of the magnitude of 
the o?’set and multiplicative corrections due to the reduction 
of the amount of unmodeled information contained in the 
residuals. 
The present invention includes using any linear multivari~ 

ate estimator to determine the correction coe?‘icients such as 
multiple linear regression, generalized least squares, maxi 
mum likelihood regression, robust regression, estimated best 
linear predictor, partial least squares, principal component 
regression, Fourier regression, covariance adjustment, or 
non-Euclidian distance measures. 

The present invention also includes using any non-linear 
multivariate estimation method to determine the corrections, 
such as linearization by Taylor expansion, the steepest 
descent method, Marquardt’s compromise, or simplex opti 
mization to de?ne coe?icients minimizing the sum squared 
error of the nonlinear model. 

In addition to subtracting the offset coef?cient resulting 
from the multivariate modeling, the present invention also 
comprises, as option A, using the coe?icients of the inter 
fering components derived by the linear or non-linear mod 
eling to scale the spectra of these components so that 
subtraction of the scaled spectra from the data can substan 
tially remove their contribution from the data. 
The present invention also comprises, as option B, gen 

erating modi?ed reference spectra of the interfering com 
ponents that contain only those portions of the original 
reference spectra that are orthogonal to, and therefore uncor 
related with, one or more reference analyte spectra. The 
coe?icients generated for these orthogonal spectra are not 
in?uenced by the presence or magnitude of analyte infor 
mation contained in the raw data even if the analyte spec 
trum is not included in the modeling or the coe?icient 
estimator does not inherently orthogonalize the components, 
so they may be a more correct representation of the mag 
nitude of the spectral effects of the interfering components. 
These more accurate coe?icients are then used to scale the 
original reference spectra prior to subtraction from the input 
data and the correction proceeds as in option A. This option 
reduces or eliminates the error in analyte spectral contribu 
tion that would otherwise be caused by subtracting an 
incorrect amount of a spectrum which contains some infor 
mation equivalent to analyte information. 
The present invention also comprises, as option C, the 

further scaling of the spectra of the interfering components 
and, if desired, the spectra of the analyte(s) so as to control 
the degree of spectral modi?cation and correction applied to 
the data. Spectral components may be removed, down 
weighted, left as is, or emphasized by control of the weight 
ing coe?icients. 
The present invention also comprises, as option D, updat 

ing of the analyte and interference spectra based on the 
results of later stages of data processing and analysis, for 
example based on principal components analysis (PCA) or 
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partial least squares (PLS). This is particularly useful in 
conjunction with “Signal Processing Method and Appara 
tus” US. application Ser. No. 07/319,450 ?led Mar. 3, 1989 
by Edward Stark, one of the co-inventors of the present 
invention. 
The present invention also comprises, as option E, inter 

active displaying graphical output concerning which analyte 
and interference spectra, if any, are causing difficulties with 
respect to estimation of the multiplicative correction and 
interactive control over which reference spectra are utilized, 
the spectral range included in estimating the coe?icients, and 
the weighting of the additive corrections employed. 

For a better understanding of the present invention, ref 
erence is made to the following description and accompa 
nying drawings while the scope of the invention will be 
pointed out in the the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a perspective view of a spectrophotometric 
sensor system for use in the performance of the methods and 
apparatus of the present invention; 

FIG. 2 is a general block diagram of the apparatuses used 
as components in conjunction with the present invention as 
shown in FIG. 1; ' 

FIG. 3 is a block diagram of the data normalizer unit as 
used in the present invention; 

FIG. 4 is a block diagram of a non-linear model coe?icient 
estimator used in conjunction with the present invention. 

FIG. 5 is a block diagram of a principal component 
regression device used in conjunction with the present 
invention. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

The present invention has general applicability in the ?eld 
of signal and data processing, wherever “spectra” or data 
structures consisting of multiple interrelated data points are 
obtained and the variability in the data can be described as 
combined additive and multiplicative e?ects. These types of 
effects are common in many forms of measurement and 
previous eiTorts have bee It made to solve the problems, as 
discussed above. - 

Like Norris, the present application uses division to 
normalize the multiplicative variability but it employs all or 
most of the spectral information rather than one or a few 
selected wavelengths and does not depend on use of the 
derivative data transformation. 

Like Murray and Jessiman’s “mathematical ball milling” 
it seeks to normalize every input spectrum to some reference 
or “average” state by additive and multiplicative normaliza 
tion, and it allows an explicit correction for wavelength 
effects (most simply by including wavelength as an extra 
additive “constituent” vector but more eifectively through 
the use of non-linear modelling). In addition, it employs a 
diiferent regressor (an actual reference spectrum, e.g. an 
average spectrum) for determining the multiplicative cor 
rection and it allows modeling and, if desired, subtraction of 
several additional phenomena at the same time. 

Like the conventional Martens, Jensen, and Geladi mul 
tiplicative scatter correction (MSC), it seeks to normalize 
every input spectra to some reference “ideal” or “average” 
state by additive and multiplicative normalization, after 
having estimated the o?’set and slope parameters by some 
type of regression against some reference spectrum over 
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8 
some selected wavelength range, and this reference spec 
trum may be of the same kinds as those employed in MSC. 
However, it extends conventional MSC by explicitly mod 
eling the e?ects of anticipated additive interferences and by 
optionally utilizing nonlinear modeling in deriving the addi 
tive and multiplicative normalization. This in turn improves 
the accuracy of the multiplicative correction, it allows 
removal of undesired interferants already at the multiplica 
tive preprocessing stage, and it simpli?es a causal under 
standing of the multiplicative correction and facilitates its 
interactive graphical optimization. It may also create inter 
ference reference spectra orthogonal to the analyte(s) spectra 
for use in the modeling to avoid the effects of intercorrela 
tion between the interferant spectra and the analyte spectra 
which would otherwise cause inaccuracies in estimating the 
interferant coefficients and in the subsequent subtraction of 
their contribution to the spectral data being normalized. 

Like the manual background subtraction, it also allows 
graphical interactive access, but in addition it employs 
statistical parameter estimation in the determination of how 
much to subtract. Like the general interference subtraction, 
it also allows modeling and subtraction of several phenom 
ena at the same time but it combines additive and multipli 
cative modeling into one process mud compensates for 
intercorrelation among the spectral components. 

If the physical situation results in a substantially linear 
combined additive and multiplicative structure, the mea 
sured spectral information may be considered as: 

X is the spectral ordinate, e.g. absorbance, ?uorescent 
energy, or pixel intensity or relative count, representing the 
measurement system response. The subscript i denotes the 
object or specimen while subscript k (k=l,2, . . . ,K) is the 
spectral variable. k may be representative of a single dimen 
sion, e.g. wavelength in optical spectroscopy, two dimen 
sions, e.g. time and wavelength in GC-IR measurements, or 
more depending on the measurement technology utilized. As 
used here, names of matrices are capitalized (e.g. Rkj) and a 
matrix may comprise a single row Dr a single column of 
elements, for example Xki, Yki, and R,“ are individual 
spectra represented by single column matrices (vectors) of 
length K. Sets of multiple spectra form matrices (e.g. Rka, 
Rkj, and Qkm). Quantities that only exist as vectors or scalers 
are not capitalized. 

This physical situation described above is linear in the 
parameters, i.e. the spectral data consists of the sum of 
spectral components Rb, and Qkm that are functions of the 
variable k, each contributing to the spectrum of specimen i 
in an amount de?ned by the Coe?icients t,“- or tn", the values 
of which differ from specimen to specimen but are not 
functions of k. eki is additive random error in the spectral 
data. The spectral components may be considered the fun 
damental signatures of the underlying chemical or physical 
parameters being measured while the coe?icients relate to 
the quantity of the parameter and the sensitivity of the 
measurement. Many fundamental physical processes gener 
ate such linear spectral data, e.g. the absorbance spectra of 
chemical mixtures measured by optical spectroscopy. to, 
describes a additive o?cset and any additive baseline that is 
a function of k can be considered an additional spectral 
component Qkm. Variations in the additive o?’set and the 
sensitivity of the measurement among data from diiferent 
specimens contributes the additive and multiplicative errors 
for which this invention provides improved data corrections. 
The fundamental improved method of data normalization 

provided by this invention is based on the use of previously 
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obtained reference spectra Rh, Rka, and Rkj to model the 
input spectral data Xki. Therefore, they are separately con 
sidered in the equation above. Qkm describes spectral infor 
mation present in the input data that is not represented by 
any of the reference spectra. The objective is to include 
su?icient spectral information in Rks, Rka and Rkj so that 
Qk,,,*tm,~ is small enough that it may be safely neglected. 

R,“ is the primary “standard” spectrum used as the basis 
for detemiining the multiplicative correction coe?icient. 
Typically, it represents the average spectrum of the class of 
specimens, the spectrum of the solvent within which the 
analyte is dissolved and to which the analyte concentration 
is referenced (e.g. molality), or the spectrum of a naturally 
occurring or arti?cially introduced tracer material. On the 
basis that the offset to,- is an artifact that should be removed, 
and that it is desired to normalize the coe?icients of each 
spectrum so that the standard component Rb always has the 
same contribution in the data, a corrected spectrum Yki can 
be de?ned as 

In order to perform such a correction, the values of to,- and 
ts, must be derived from the data X,“- separately for each 
specimen i. Improved methods and apparatus for estimating 
these values are the subject of this invention. 

Rka are ore or more reference spectra representing the 
expected in?uence of the analytes of interest on the input 
data. In this context analyte is used broadly to indicate the 
quality sought in the subsequent analysis of the data, for 
example a quantity of a constituent or an identi?cation of the 
specimen or one or more of its components based on a 
between-class discriminant function. Rkj are reference spec 
tra representing the expected in?uence of various undesired 
interferences, whether chemical or physical interferences in 
the specimen or artifacts introduced by the instrumentation, 
on the input data Xki. 

If R,“ is the ideal spectrum e.g. the average taken under 
the same measurement conditions, the expected value of ts, 
is 1. If R6 is a pure solvent taken under the same conditions, 
ts,- is expected to be less than 1, depending on solute 
concentration. If Rk, is taken under different pathlength or 
concentration conditions, tn- can be less than or greater than 
1. ta,- and ti, are related to the concentration of the compo 
nents and differences in the measurement sensitivity 
between the data for Rk,l and that for Xki. 
The reference spectra represent previously known more or 

less accurate information about how the qualities sought in 
the subsequent analysis (e.g. analyte concentrations or 
between-class discriminant functions) and various interfer 
ences are expected to affect the input data. These reference 
spectra can be based on direct physical measurements of 
individual specimens, direct physical measurement of the 
separate constituents, or statistical summaries or estimates 
of the spectra based on Sets of specimens. For example, Rk, 
may be the average of all the spectra obtained by measure 
ment of the calibration set of specimens or the result of a 
careful measurement of a solvent blank. It is desireable that 
the spectral characteristics of R,“ be stable. If R,“ is the 
average spectrum, this implies use of a reasonably large 
number of representative individual spectra in computing 
the average spectrum. In the case of a solvent spectrum Rb, 
it is often desireable to characterize the solvent by more than 
one spectrum to encompass possible variations due to, for 
example, the in?uence of specimen composition, tempera 
ture or other environmental factors. The most stable spectral 
component is then used as Rb and the spectra representing 
deviations or variations in the solvent spectrum are included 
in Rkj. 
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The Rka and Rkj reference spectra are often statistical 

estimates extracted from the measured data from sets of 
specimens, although directly measured spectra are also 
useful in many cases. Honig’s spectral reconstruction (D. E. 
Honigs, G. M. Hieftje, and T. Hirschfeld, A New Method for 
Obtaining Individual Component Spectra from Those of 
Complex Mixtures, Applied Spectroscopy, 38(3), pp. 
317-322, a copy of which being annexed hereto) provides a 
method for extracting spectra from a set of mixture speci 
mens based on knowledge of the concentration values. 
Principal component analysis (PCA) and partial least 
squares (PLS) provide orthogonal sets of spectra represen 
tative of the variation in the data. Stark’s method (US. 
patent application Ser. No. 07/319,450) provides reference 
spectra for previously unknown variations based On analysis 
of replicate data. In the simplest operation of the present 
invention, i.e. correction for offset and multiplicative fac 
tors, the primary requirement of Rka and Rkj is that they 
reasonably span the variation of Xki so as to stabilize the 
modeling and spectral accuracy and speci?city are not 
essential. For the more complex options, in which Rka and 
Rkj are incorporated into the output data as corrections, the 
quality of Rka and Rh- become more important. The accuracy 
and speci?city of the Rka spectral data is particularly impor 
tant in orthogonalization of Rkj either explicitly or implicitly 
and when used for added weight as described below. The 
spectral information in Rka and Rkj may be represented in 
various ways with respect to redundancy and collinearity, for 
example one individual vector for each phenomenon, sev 
eral replicates or specimens, statistical summaries (averages, 
bilinear components, square root of covariance matrices, 
etc.), or rotated representations where some or all collineari 
ties have been eliminated. In a preferred embodiment, 
redundancy is eliminated by averaging so that the number of 
vectors equals the number of phenomena being modeled. 
An intrinsically nonlinear data structure may arise 

because the physics of the measurement and/or instrumen 
tation has introduced characteristics differing from those 
described above. One common type of nonlinearity is ana 
lytical sensitivity (e.g. gain, pathlength) which is a function 
of the variables. A more general description of the input data 
then takes the form 

II 

This describes a structure resulting from nonlinear distor 
tions of the, fundamentally linear structure described by 
[Rk,,*t,,i] where 

RbFl laRksrRkmRkjl 

and any other spectral data, for example the Qkm*tmir are 
included in the error eki. It will be appreciated by those 
skilled in the art that other forms of nonlinearity may arise 
which can also be described as distortions of the basic linear 
structure above. 

In the present case, Cki and DH may each be a function of 
the spectral value Xki, of the wavelength k, or of both. In the 
usual nonlinear case of small but signi?cant deviations from 
linearity, the values of CH and Dki are will be close to 0 and 
1 respectively. If the nonlinearity is negligible, Cki can be set 
equal to 0 and DH equal to l. The resulting structure is then 
equivalent to the linear additive and multiplicative structure 
discussed above. 
The form of Ck, and Dki are related to the causes of 

nonlinear behavior. For example, in spectroscopy the 
amount of scattering and therefore the effective pathlength 
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may vary as a smooth function Of wavelength. Refractive 
index effects have similar smoothly varying forms with 
respect to wavelength. Therefore, Dk, may be a smooth but 
non-linear function of wavelength. On the other hand, the 
effective pathlength may be a smooth function of absor 
bance, as in convergence error in transmission spectroscopy, 
where an increase in reduces the energy from longer path 
lengths more than from shorter ones, thereby making the 
effective pathlength grow shorter as absorbance increases. 
Measurements in trans?ection mode, where convergence 
error is maximized, resulted in use of a model that gave 
excellent correction 

where X is measured log(l/R). In general both k and X 
variables should be included in the nonlinear model, fo 
example in trans?ection of scattering samples. ‘ 

For generality, the scattering pathlength and similar mul 
tiplicative effects can be described as a function of k in 
accordance with the series expansion 

Again for generality, convergence error and other effects 
that affect the linearity of the value of X can be described by 

Therefore, a general form for Ck, and Dki can be described 
as a product of these series, ie a new series in terms of the 
powers of k and X and their cross products, removing 
redundant constants and terms in k or X and normalizing so 
that the linear magnitude information is kept in [Rk,,*l,,,-] and 
Ck,- and DH carry only the information relating to the 
nonlinearity. Ck,- and Dki are matrices containing k rows, and 
as many columns as required for the number of terms in the 
appropriate power series approximations. 

It is the underlying intrinsically linear additive structure 
that is desired for later analysis steps using linear multivari 
ate calibration, validation and determination procedures. 
Therefore, the corrected spectra Yki are formed by 

where the b,“- are estimates of the true t,"- and CH, Dki, and 
b,“- are derived from the data Xki. 
The corrected spectrum Yki comprises the standard spec 

trum R,“ and linear additive deviations from R,“ caused by 
analytes, interferants, and errors, and it is therefore suitable 
for further linear data analysis. 

Preferred embodiments of the above are illustrated in the 
?gures and further described below. In FIG. 1 for instance a 
photospectrophotometric sensor system 100 as used in the 
present invention is described. This system can be used, for 
example, in the determination of analytes in blood or, for 
instance, in the display of glucose levels in blood. This 
sensor system 100 comprises an optical source 110, for 
example a General Electric type EPT tungsten halogen 
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projection lamp 111 mounted in a housing 112 containing a ‘ 
fan 113 for cooling and coupled to a 1 cm. diameter ?ber 
optic bundle 120 for transmitting energy to the specimen, 

, e.g. the surface of the skin of a patient. Energy transmitted 
through the tissue is collected by a second ?ber optic bundle 
130, which transmits it to the spectrophotometer 140. This 
spectrophotometer comprises an entrance slit 141, a concave 
holographic grating 142, and one or more diode array 
detectors 143 and their associated order sorting ?lters 144, 
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arranged to measure energy at different points in the spectral 
image formed by the holographic grating, and therefore at 
different wavelengths within the visible and near-infrared 
regions of the electromagnetic spectrum. Each detector 
channel has an associated preampli?er 145, the output of 
which is multiplexed by multiplexer 146 into a program 
mable gain and offset ampli?er 147. The spectrophotometer 
140 is further described in “Improved Grating Spectrom~ 
eter”, a U.S. patent application ?led Aug. 24, 1989 by 
Edward Stark, one of the coinventors of the present inven 
tion. The application has issued on Mar. 5, 1991 U.S. Pat. 
No. 4,997,281. The contents of said patent are incorporated 
herein by reference. 
As is shown in FIG. 2, the time sequential multiplexed 

analog signal is then converted to digital form by an analog 
to digital converter 201 in data acquisition system 200. In 
preprocessor 202, the energy data is processed to eliminate 
instrumental offsets and to reduce both systematic and 
random noise and then ratioed to obtain data relating to 
transmission of the specimen. This data is then linearized 
with respect to the analyte information of interest, e.g., the 
logarithm of transmission is more or less linear with con 
centration of chemical constituents within the specimen. The 
data is then in form to be normalized in accordance with the 
methods of this invention. Although the details may differ, 
similar functions are utilized in obtaining spectral data of the 
other forms discussed above. 
The additive and multiplicative corrections of this inven 

tion are performed by data norrnalizer 300, which comprises 
special purpose digital computation logic. After normaliza 
tion, the data may be further processed in processor 400 
prior to use for multivariate calibration, validation and 
detemiination of unknown values. For example, processor 
400 may comprise the invention of “Signal Processing 
Method and Apparatus” U.S. patent application Ser. No. 
07/319,450 ?led Mar. 3, 1989. The contents of said appli~ 
cation are incoporated herein by reference. Finally, the data 
is analyzed in the data analyzer 500 which performs the 
functions of multivariate calibration, validation, and deter 
nrination required to generate the analytical values then 
presented on display 600. 
The data norrnalizer 300 of the present system illustrated 

in FIG. 3 provides a number of options for processing the 
input spectral data Xki. The basic improved method of data 
normalization provided by this invention is based on the use 
of reference spectra Rh, Rka, and Rkj stored in the reference 
spectra storage 310 to model the input spectral data Xki by 
means of the coe?icient estimator 320, and to determine 
corrected spectral data Yki by means of calculator 330. 
Functions 340, 350, and 360 provide additional options 
which are bypassed for the basic corrections. The control 
and logic sequencer 370 provides the timing, data selection, 
and control signals required to perform the selected func 
tions in proper sequence. 

In a preferred embodiment shown in FIG. 3, this correc 
tion is implemented by the calculator function 330 compris 
ing subtractor 331, divider 332, subtractor 333, and divider 
334 that perform successive operations on Xki involving the 
coef?cients Ch, Dki, bm, and b,, generated by the coe?icient 
estimator 320. These operations are performed sequentially 
element by element by indexing k with a ?rst counter and 
performing the required sequence of digital arithmetic func 
tions under logic control based on the state of a second 
counter. These digital arithmetic functions are available 
digital logic functions utilized in computers, and may con 
veniently be obtained in the 80287 math coprocessor device 
or an array processor. 
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In a preferred addition to the basic preferred embodiment 
described above and shown in FIG. 3, additional correction 
spectra [Rka*ba,-] and [Rh-*bji] are formed by matrix multi 
plier 340 from the reference spectra and their associated 
coe?icients that were also generated in coe?‘icient estimator 
320. A matrix multiplier to form the spectrum [Rkn’l‘bni] for 
a single input spectrum i, consists of short term storage for 
the both inputs, a multiplication and summation circuit, an 
address sequencer which accesses the corresponding ele 
ments n of Rkn and Bnk and a second address sequencer 
which accesses the rows k of Rkn and addresses the short 
term storage which keeps the resulting k><1 matrix. Matrix 
multiplication is also a standard function of available array 
processors. This additional combined correction spectrum 
may be used directly by subtractor 333 to further correct Yki, 
which becomes 

Here the [Rka’l‘bai] represents the analyte(s) of interest, 
which must not be removed. Ideally, for a single analyte, 
[Yk,-—R,G] is simply the analyte spectrum whose scale factor 
represents the amount of analyte present. 

Often, only a subset of the possible [Rkj*b?] corrections 
are applied at this stage of data processing, because later 
additive linear modeling may be more effective than the 
spectral subtraction based on previously known reference 
spectra performed here. The [Rkj*b-,-] should include, how 
ever, those interferants that are dr?icult or impossible to 
adequately represent in the calibration data, e.g. moisture 
and temperature as previously discussed. 

Greater control of the situation is provided in a preferred 
embodiment that also incorporates multiplier 351 and com 
ponent weight storage 352. In this embodiment, the amount 
or weight ha or hj of each correction spectrum that is 
subtracted in forming Yki can be controlled by the operator 
or in accordance with information obtained in later data 
processing steps. The corrections then become ha[Rka*b,,,-] 

Ru + (1 — hj)lRka*bail + (1 - ha)lRka*bail + eki II 

A weight of hj=l is used when complete cancellation is 
desired, while a weight of hj=0 provides no correction for 
interferant j and ha=0 preserves the analyte signal 
unchanged. Values 0<hj<1 may be used to downweight 
information that has uncertainty or potentially harmful 
effects on later data analysis without total rejection. ha<0 
increases the weight of the analyte information, thereby 
reducing the relative importance of other information in the 
corrected signal. 
The orthogonal component generator 360 provides for 

transformation of the reference spectra [Rk,,Rka,RkJ-] into a 
new set of spectra, [Pk,,Pka,PkJ-], some or all of which are 
orthogonal to each other. If the reference spectra are latent 
variables derived from a single PCA or PLS analysis, they 
are orthogonal by de?nition. If they are measured spectra of 
components or otherwise separately derived, they will gen 
erally be intercorrelated, which if severe enough may cause 
errors in the coefficient values or failure of the coe?icient 
estimator to complete its operation. If orthogonal reference 
spectra are created, new reference spectra may be added 
without requiring complete recalculation by the coe?icient 
estimator. Orthogonal reference spectra also minimize the 
number of operations required by the coe?icient estimator to 
determine the coe?icients. 

In a preferred embodiment, the orthogonal component 
generator performs a Gram-Schmidt orthogonalization in 

10 

15 

20 

25 

30 

35 

45 

50 

55 

60 

65 

14 
accordance with 

ZiT II 

where 
I:the identity matrix 
Z=the matrix of vectors already transformed, 
Z,=the column vector of X to be transformed, and 
Z,T:transformed vector orthogonal to vectors already in 

Z. 

Z'=transpose of Z, [ ]_1=inverse of [ ] 
Z comprises orthogonal columns therefore [Z'Z] is diagonal 
of size (i)><(i) and determining [Z'Z]-1 is trivial by inversion 
of the individual elements. 
The ?rst reference spectrum to be orthogonalized is R,c9 

(i=2,Z'Z=K from column of l’s) whereby 

The variations of R,“ are preserved in Pb, therefore the 
coe?icient bs is not affected by the orthogonalization. Each 
succeeding R,m is then orthogonalized against the matrix 
formed by the preceding orthogonal Pb, spectra, until all 
reference spectra are orthogonalized into matrix Pk,,=[l,P,u, 
PkwPkj]. Each spectrum Pk" comprises the residuals of the 
regression of Rkn on the preceding orthogonal Pk". If a 
spectrum PM is 0 or has only small values, it provides 
warning of dependence between spectra that could cause 
problems in coe?icient estimation. In such case, the infor 
mation is provided to the operator, or separate decision 
circuitry, to determine whether to delete the spectrum from 
the model, to downweight its importance, or to accept it 
without change. orthogonalization processing may be per 
formed solely for the purpose of generating this warning 
information. When full orthogonalization is chosen, the 
reference spectra input to matrix multiplier 340 are the Pk] 
and Pk“. 
The orthogonal component generator and storage 360 

comprises storage for PM, the portion that is ?lled as the 
process proceeds comprising Z, storage for [Z'Z]-l, storage 
for the intermediate product Z(Z'Z)—1, storage for 2,, stor 
age for the intermediate product Z'Z,-, point by point multiply 
and sum logic, scalar inversion (l/a) logic, a subtractor, and 
the sequencer to select data from storage for processing, to 
control the processing sequence, and to direct storage of 
results. Circuit devices to perform these functions include 
the Intel 80287 math coprocessor for hardware implemen 
tation of the arithmetic functions, CMOS static ram chips 
(e.g. 4 parallel Motorola MCM6226~30 128K><8) to provide 
32 bit resolution in storage of the digital data, and standard 
programmable array logic devices (PAL’ s) combined with a 
clock and counter as the sequencer. Each matrix element is 
acted on in sequence in accordance with the hardware logic. 
The required functions can also be obtained with a standard 
array processor operated in sequential fashion by the 
sequencer. 

Operation is as follows after clearing to Us: 

1. Set 11 and the ?rst column of the PM storage to l’s. 
(Z=Pk1) 

2. Set the ?rst element of [Z'Z]-lzl/K 
3. Set all elements of Z[Z‘Z]—1=l/K 
4. Increment n 

5. Move spectrum RM to Z,- storage (Rh for n=2) (KXl) 
6. Multiply and sum to form Z'Zi (n-lXl) 
7. Multiply and sum to form an element of Z[Z‘Z]—lZ'Z, 

(K><n——l) ' 
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8. Subtract sum from the same element of Z, 

9. Store in that element of column n of PM storage (Kxn) 
10. Repeat 7-10 for K points in spectrum Rkn to get Pkn 
(ZzPkl . . . Pk") 

11. Multiply and sum to form Zi'Zi (scaler) 
12. Invert (l/a) and store in nth element of [Z‘Z]“1 (nxn) 
13. Multiply and to form new elements of Z[Z'Z]_1 (Kxn) 
14. Repeat from step 4 until all Rkn are used. (Z=Pk1 . . . 

15. End 
The contents of Z[Z'Z]_1 is the transpose U' of U=[Z'Z] 

—1Z' which is useful in ?nding multiple linear regression 
coeflicients by matrix multiplication. 

Full orthogonalization may modify the spectra so drasti 
cally that it becomes di?icult to recognize their origin and 
the associated coei?cients are thoroughly aliased compared 
to the original quantities represented by the reference spec 
tra. This is particularly troublesome when interference sub 
traction, interference downweighting, or analyte enhance 
ment is desired. These factors often make it desireable to 
perform less drastic processing. 
An alternative preferred embodiment orthogonalizes each 

interferant spectrum only against the analyte spectrum by 
the simple linear regression model, 

With this procedure, Rkn may be omitted in the estimation of 
the bk]- coefficients without causing errors in their determi 
nation. This method has the advantage of only removing 
analyte related information from the reference spectra, thus 
the analyte spectrum is unaffected, the interferant spectral 
shapes are minimally affected, and the coe?icients have 
physical interpretations. In this case, the correct input to the 
matrix multiplier 340 is Rkj rather than Pkj, to properly 
subtract the portion of Rkj correlated with Rkn. Implemen 
tation of this digital logic requires only a subset of the 
functions described previously. 

If even this degree of reference spectrum modi?cation is 
undesireable, the orthogonal component generation is 
bypassed and the original reference spectra are passed to the 
coef?cient estimator. 
The coefficient estimator 320 mathematically determines 

the coef?cients applicable to the various components used to 
model the input data. In general, the coefficient estimation 
process involves creating a model representative of the input 
spectral data that is a function of the reference spectral data 
and, in nonlinear models, of other variables such as the input 
spectral data itself and k. 

In the linear case, taking Rkn=[l,Rk,,Rka,R,g-], a matrix 
where each row represents observations at a value k of the 
spectral variable and each column is a reference spectrum 
Rkn incorporated in the model, coe?icient estimator 320 ?ts 
Xk, to Rnk by some method, minimizing the residuals eki in 

Methods for achieving this linear modeling include gen 
eralized least squares, maximum likelihood regression, 
robust regression, estimated best linear predictor, partial 
least squares, principal component regression, Fourier 
regression, covariance adjustment, and others. For example, 
generalized least squares with generalized inverse models 
Xki by 
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where [ ]~ means a generalized inverse and where covari 
ance matrix v(i) can be iteratively updated based on the 
previous ?t for this specimen i. 

However, a preferred embodiment uses the more usual 
linear modeling performed by multiple linear regression 
where 

b,,,=[R'R]-‘R'Xk,. 

When the speci?c Rkn a to be used are known in advance, 

Unk=[R'R]_1R' 

can be precomputed externally and stored with the reference 
spectra, thereby minimizing the requirements on the data 
normalizer 300. If full rank Gram-Schmidt orthogonaliza 
tion is used, Unk is available from that process. In either case 
the calculation of the coe?icients of the linear model 
involves a simple matrix multiplication. A matrix multiplier 
for Unk and Xki consists of short term storage for one or both 
inputs, a multiplication and summation circuit, an address 
sequencer which accesses the corresponding elements k of 
Unk and Xk, and a second address sequencer which accesses 
the rows 11 of Unk and addresses the short term storage which 
keeps the resulting b,"- values. In the more general case of 
multiple linear regression, matrix [R'R] must be formed and 
inverted to obtain [R'R]"1 prior to matrix multiplication by 
R' to obtain Unk. This function can readily be accomplished 
with an available array processor and suitable logic 
sequencer. 
A second preferred embodiment of the coe?icient estima 

tor which avoids matrix inversion is a principal components 
regression (PCR) device, which requires no pretreatment of 
Rkn and no matrix inversion. 

In the case of nonlinear modeling, the coefficient estima 
tor 320 becomes more complex as each nonlinear coefficient 
becomes a vector of length k. Ck,- and Dk, are therefore 
matrices containing a number of coe?icient vectors that 
depends on the form of the nonlinear model. 

These coe?icients can not be determined by multiple 
linear regression or other bilinear methods so an interactive 
procedure must be used. Methods in the literature include 
linearization by Taylor series, steepest descent Marquardt’s 
compromise, and simplex optimization: (N. Draper and H. 
Smith, Applied Regression Analysis, Second Edition, John 
Wiley & Sons, New York 1981 pp. 458-465). 
A preferred embodiment uses the coe?icient estimator 

320 illustrated in FIG. 4 which employs Taylor series 
linearization. The model response generator 321 calculates 
the vector F from the reference spectra Rkn, the present 
value Ari of the coe?icients being generated by the iterative 
process, the variable k and the input spectral data Xki. This 
operation involves matrix multiplication and summation in 
accordance with the appropriate form of model as discussed 
above. The set of coe?icients Ari, comprising cni of Cki, dni 
of Dki, and bni, are initially stored in coef?cient Aq—1 
storage 322a. They may be modi?ed by means of adder 322b 
through addition of a weighted correction wGq or of incre~ 
ment dAr to one of the coe?icients at a time to create the 
present values stored in coefficient Aq storage 3220 and used 
by model response generator 321. The remaining functions 
will become obvious from the following description of the 
operation. 

1. Initialize A(q—l), k, F(Aq), and iteration counter q to 0; 
2. Load Rkn into the partial differences Zr storage 321%; 
3. Regress Xki on Rkn to determine the linear model bni; 
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4. Set w=1 and add bni to A(q—1) to put bni in Aq storage 
322i 0; 

5. Set dOi=l in Aq and generate F(AO), store in 323e, 
6. Transfer Aq from 322a to A(q—l) storage 322a; 
7. Sequentially increment Aq values by adding dAr by 

322b, 
8. Calculate F(Aq+dAr) and subtract F(Aq) to get Zr; 
9. Store in Zr and iterate 7, 8, 9 for all r; 
10. Form X-F(Aq) and regress on Zr using 324 to form 
Gq; 

ll. Compute SSq, compare to prior value, and select 
weight by 326; 

12. Added weighted Gq to A(q—l) to form next Aq; 
13. Compare Gq/Aq with stop criterion, if greater next q, 

else end. 
This operation is controlled by sequencer 327. 
It should be obvious to those of ordinary skill in the art 

that some of the above operations may be performed in 
dilTerent order without signi?cantly affecting the results 
obtained. It should also be obvious that the functions shown 
can [(be?)] be implemented with common digital logic 
circuits well understood by those of ordinary skill or by 
available microcode controlled array processors, such as the 
Data Translation Model DT7020 with the MACH DSP 
Subroutine Library of microcode. Copies of the applicable 
Data Translation 1988/ [99 (897)] 89 Data Acquisition Hand 
book pages have been annexed hereto and incorporated in 
their entirety by reference. 
One variation in the method used to estimate and correct 

for multiplicative effects is to ?t an additive model and a 
multiplicative model in an interactive sequential fashion. 

1. Let X=(xik) be the matrix of spectral ordinates for i=1 ,2, 
. . . N objects, k=l,2, . . . ,K wavelengths. The 

multiplicative effect is modeled from the spectral data 
using a standard multiplicative scatter correction (i.e., 
avoiding the use of components for practicing the 
present invention) yielding the corrected spectral data 
Z. 

2. Estimate an additive model: 

Z=1*z,m,,+D*P'-r-E 

where 1 is a vector of ones of size k, zmmn is the mean vector 
of Z, and P=(Pk,) spans the spectral variations of analytes 
and interferences as well as possible and/or to the extent the 
user wishes. P may include any of the following: input 
component spectra, estimated component spectra, loadings 
from a PCA or PLS analysis of residuals after ?tting 
estimated component spectra, or loadings from PCA or PLS 
analysis of X or Z. D represents the associated vector of 
weights obtained by PCA or PLS, for example. 

3. Reconstruct the spectral data without the estimated 
additive e?’ects, 

4. Estimate the multiplicative effects on Y using one of the 
methods proposed in this invention. 

5. Construct a new matrix of corrected spectra Z from X 
and repeat step 2, step 3, and step 4 until convergence 
Occurs. 

6. Following performance of steps 1~5, the ?nally cor 
rected spectra, Z, may be used as a multiplicative 
corrected input spectra or from this ?nally corrected 
spectra, Z, the desired D and P factors which one wants 
to take away may be subtracted. 
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In this method, the multiplicative effects, say from a 

physical model, and the additive effects, say from a chemical 
model, are obtained at separate steps in the process. How 
ever, the results of each model are adjusted for the elfect of 
the other model. That is, the results are adjusted for the 
multiplicative effects and the additive and interferent effects 
present in the bilinear factors which are chosen for elimi 
nation. In addition, this technique allows for a wide variety 
of choices of kinds of components to include in the chemical 
model varying from known interferents and component 
spectra through statistically estimated PCA or PLS factors. 
The fundamental improved method of data normalization 

provided by this invention is based on the use of previously 
obtained analyte and reference spectra to model multiplica 
tive effects on spectral data, although use of the invention 
does not speci?cally require the estimation of multiplicative 
effects directly from the input spectral data using said 
reference spectra. Rather, the multiplicative eifects can be 
modeled from coe?icients and/or loadings derived from 
statistical analyses (e.g. multiple linear regression, principal 
component analysis, partial least squares, and generalized 
least squares) of spectral data. The multiplicative elfects 
obtained in this way can be used to correct the spectral data 
for multiplicative effects. 

For example, if the physical situation results in a com 
bined additives and multiplicative structure, the measured 
spectral information may be considered as 

where X=(x,-k) is the matrix of spectral ordinates for i=1,2, 
. . . N objects, k=l,2, . . . ,K wavelengths, T=(t,-1) is the matrix 

of scores for objects i, bilinear factors 11:1 ,2, . . . ,L obtained 
from some bilinear model (e.g. principal component analy 
sis, partial least squares, etc), P=(p,d) are the loadings for 
objects i on bilinear factors 1, and E=(e,-k) are the residuals 
between data X and model T*P'. The loadings P can then be 
decomposed into a function of a reference spectra r=(rk) (e. g. 
the Bean of the X data) and a matrix G=(gkm) spanning the 
spectra for analyte and interference phenomena m=l,2, . . . 

,M: 

where d=(d1) and h=(h1) are vectors of length L, l is a vector 
of ones of length K, C=(c,m) is a matrix of regression 
coe?icients of size LXM which quanti?es the analyte and 
interference contributions, and F=(f1k) contains the residual 
loadings with the multiplicative, analyte, and interference 
phenomena removed. d, h, and C can be estimated by 
regression of P‘ on r, 1, and G by some method (e.g. 
weighted least squares). C*G‘ could be reduced in size by 
elimination of elfects if the relative size of the chemical or 
interferent effects are small 
The additive and multiplicative effects for the input 

spectra can be obtained from the loadings and scores by 

If the mean values of vectors a and b are amen" and bmmn, 
respectively, the input spectra, corrected for additive and 
multiplicative elfects, can be determined by 

The quantities (ammfai) and (bmmnlbi) appear in the equa 
tion to scale the corrected spectra such that the individual 
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spectrum’s additive and multiplicative corrections are made 
relative to the overall additive and multiplicative effects. 

In addition, the input spectral data can be corrected 
simultaneously for interferent contributions and additive and 
multiplicative effects, 

C* and G* are user-chosen subsets of C and G which include 
those interferents and analytes of interest which it is desired 
to eliminate from the input spectral data. The corrected 
spectrum Y,-_ represents the original input spectra after 
correction for the additive, multiplicative, and interferent 
effects present in the bilinear factors. 
A modi?cation to the above technique includes the 

method whereby the additive, multiplicative and interferent 
effects are modeled from the coe?icients and/or loadings of 
multivariate statistical techniques and the corrections are 
applied directly to the multivariate scores rather than to the 
input spectral data. 

Using the prior example where the input spectral data X 
are modeled using a bilinear model, 

the offset-corrected and interferent-corrected spectral data 
can be de?ned as Z=(z,-k) where 

where T, h, l, P, C* and G* are de?ned as above. Z represents 
a general case. More speci?cally, Z can be corrected for 
offset and/or a subset of the analyte and interference infor 
mation contained in C. In practice, if additive correction is 
desired, the offset correction and a correction for only s 
subset of C and G will be used. The offset-corrected input 
spectra may be considered as 

where L'=P'—h*l—T*C**G*'. Use of singular value decom 
position (PCA) can partition the uncentered L' into two 
components, 

where U=is a matrix of eigenvalues and V' is a matrix of 
eigenvectors. By substitution, 

The product T*U produces offset and interferent corrected 
scores and V' is the matrix of corresponding spectra loadings 
associated with the corrected scores. 

Multiplicative correction of the offset and interferent 
corrected data Z can be found in the following way: 

Let S be the diagonal matrix containing the elements of 
the product T*d. The fully corrected spectral data are 
found by 

where S‘1 is the inverse of S. The fully corrected score 
matrix W is found in a similar fashion, 

W=(Wi1) is the matrix of the offset, multiplicative, and 
interferent corrected scores which can be used 'as regressors 
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in additive mixture models etc. 

It is also possible to obtain a set of scores which are 
corrected only for multiplicative effects by following the 
same method, 

The above methods may be used for calibration, prediction, 
and deterrrrination procedures. Using either of the above two 
techniques, calibration occurs in the following way: 

1. Applying a bilinear model to a set of spectral data in a 
calibration data set, decompose the spectral data into 
the factor scores T and the factor loadings P; 

2. Using a statistical method (e. g. weighted least squares), 
a reference spectra r, and appropriate analytes and 
interferents G, calculate d, h, and C from P; 

3. If the spectral scores are to be corrected, calculate U 
(for additive and interferent effects) and S“1 (for mul 
tiplicative effects); 

4. Correct the spectral input data after calculating b,-, a,, 
a and b 
mean’ mean , 

5. Use the corrected spectral data Y ?t a linear model. 
Methods for achieving this model include multiple 
linear regression, generalized least squares, maximum 
likelihood regression, robust regression, ‘estimated best 
linear predictor, partial least squares, principal compo 
nent regression, Fourier regression, and other tech 
niques. 

Altemately, use the corrected spectral scores W to ?t a 
linear model using an appropriate method listed above. 

Prediction occurs in the following way: 
1. Use an independent set of data and apply the factor 

loadings P to ?nd a new set of spectral scores T; 

2. To use corrected spectra data, calculate a and b from the 
new spectral scores and use a b C* and 6* mean’ mean’ 

derived from the calibration to determine 

1C=lX.-.—C'*G"+amw.—arl *bmm/bi; 

Alternatively, to use corrected spectral scores, calculate a 
new S"1 from the new spectral scores and use U from the 
calibration data to ?nd 

3. Use the corrected data and the calibration model 
coe?icients from the linear model to predict the prop 
erties of interest. 

In the description of the alternative embodiments 
described immediately above (pp. 35-40), the apparatus 
described generally in FIG. 2 still is applicable as would be 
understood by one of ordinary skill. In construction of some 
of the more detailed blocks, the coe?icient estimator 320 
described above is preferably the basic element. For 
example, the estimation of an additive model (p. 35, step 2), 
is performed by coe?icient estimator 320. The reconstruc 
tion of the spectral data (p. 35, step 3), is preferably 
performed by calculator 330. The iteration required on page 
35, step 5 is controlled by a logic sequencer 370 or equiva 
lent. Modeling from statistical analyses (principal compo 
nent analysis or partial least squares, for example) may be 
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accomplished by the structure shown in FIG. 5. Decompo 
sition of loadings (see page 37) may be performed by the 
coeflicient estimator 320. Other functions are readily per 
formed by apparatus disclosed herein. 

While the foregoing description and drawings represent 
the preferred embodiments of the present invention, it will 
be obvious to those skilled in the art that various changes 
and modi?cations may be made therein without departing 
from the true spirit and scope of the present invention. 
What is claimed is: 
1. A method for correcting signals representing input 

spectral data (Xki) derived from a sensor during a measure 
ment, at least as to multiplicative errors, said method com 
prising the steps of: 

providing a ?rst and primary reference spectrum signal 
(Pkg) representing a predetermined standard for such 
data; 

providing at least one second reference spectrum signal 
(Pka or Pkj); 

estimating coe?icients for a selected appropriate model to 
be applied to said input data based on said ?rst and 
second reference spectra signals; and 

correcting said signals representing said spectral data 
based on said estimated coe?icients at least as to 
multiplicative errors for producing signals representing 
a linear additive structure for use in calibration, vali 
dation and determination by linear multivariate analy 
sis. 

2. The method as in claim 1 wherein said at least one 
' second reference spectrum signal represents expected in?u~ 
ence of analytes of interest on input data (Pkg). 

3. The method as in claim 1 wherein said at least one 
second reference spectrum signal represents expected in?u 
ence of undesired interferences (Pjk). 

4. The method as in claim 1 wherein said at least one 
second reference spectrum signal represents expected in?u 
ence of analytes of interest on the input data (PM) and said 
method also includes the step of providing at least one third 
reference spectrum signal (Pkj) representing the expected 
in?uence of various undesired interferences, said estimating 
step being also based on said at least one third reference 
spectrum. 

5. The method as in claim 1 or claim 2 or claim 3 or claim 
4 also including the step of correcting said spectral data as 
to additive errors based on said estimated coe?icients. 

6. A method of claim 5 wherein said model includes a 
generalized least squares technique. 

7. The method as in claim 1 wherein said model is a linear 
model. - 

8. The method of claim 6 wherein said model includes a 
maximum likelihood regression technique. 

9. The method of claim 6 wherein said model includes an 
estimated best linear predictor technique. 

10. The method of claim 6 wherein said model includes a 
principal component regression technique. 

11. The method of claim 6 wherein said model includes a 
covariance adjustment technique. 

12. The method of claim 1 wherein said model is a 
non-linear model. 

13. The method of claim 12 wherein said model includes 
a Taylor expansion technique. 

14. The method of claim 12 wherein said model includes 
a steepest descent method. 

15. The method of claim 12 wherein said model includes 
a Marquardt’s compromise technique. 

16. The method of claim 12 wherein said model includes 
a simplex optimization technique. 
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17. The method as in claim 1 or claim 3 or claim 4 

including the steps of using the coefficients of at least one 
interfering component derived by the modeling to scale the 
spectra of the component and subtracting the scaled spectra 
from the data to remove their contribution from the data. 

18. The method as in claim 17 including the steps of 
generating modi?ed reference spectra of interfering compo 
nents that contain only those portions of original reference 
spectra of the interfering components that are orthogonal to, 
and therefore uncorrelated with, at least one reference ana 
lyte spectrum, using the coefficients generated from said 
orthogonal reference spectrum to scale the original reference 
spectra prior to subtracting the scaled spectra from the data. 

19. The method as in claim 18 including the step of further 
scaling the spectra of the interfering components to control 
a degree of spectral modi?cation and correction applied to 
the data. 

20. The method as in claim 17 including the step of further 
scaling the spectra of analyte data. 

21. The method as in claim 1 or claim 2 or claim 3 or 
claim 4 or claim '7 also including the step of updating of 
standard (Pka), analyte PM, or interference Pkj spectra based 
on results of later stages of data processing and analysis. 

22. The method as in claim 21 wherein said later stages of 
data processing and analysis include principal components 
analysis (PCA). 

23. The method as in claim 21 wherein said later stages of 
data processing and analysis include a technique of partial 
least squares (PLS). 

24. The method as in claim 1 or claim 2'or claim 3 or 
claim 4 or claim 17 including the step of interactively 
displaying graphical output concerning which analytes and 
interference spectra, if any, are causing di?iculties with 
respect to estimation of the multiplicative correction and 
interactive control over which reference spectra are utilized, 
a spectral range included in estimating the coe?icients and 
weighing of additive corrections employed. 

25. The method as in claim 24 including the step of further 
scaling the spectra of interfering components to control a 
degree of spectral modi?cation and correction applied to the 
data. 

26. The method as in claim 24 also including the step of 
further scaling the spectra of analyte data. 

27. The method as in claim 1 or claim 2 or claim 3 or 
claim 4 or claim 17 also including the step of updating of 
standard PM, analyte PM, and signal Pkj spectra based on 
results of later stages of data processing and analysis. 

28. Apparatus for correcting input spectral data (Xki) 
derived from a sensor during a measurement, at least as to 
multiplicative errors, said apparatus comprising: 

input means for supplying a signal representing spectral 
data subject to correction for at least multiplicativ 
errors; 1 

means for supplying a signal representing a ?rst and 
primary reference spectrum (Pkg) as a predetermined 
standard for such data; 

means for supplying a signal representing at least one 
second reference spectrum (Pka or Pkj); 

means for estimating coefficients for a selected model for 
application to said input spectral data, said input spec 
tral data signal and ?rst and second reference spectrum 
signals being supplied to said estimating means; and 

means responsive to said estimating means for correcting 
said spectral data based on estimated coe?icients at 
least as to multiplicative errors for producing a signal 
representing a linear additive structure for use in cali 
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bration, validation and determination by linear multi 
variate analysis. 

29. Apparatus as in claim 28 wherein said means for 
supplying said signal representing at least one second ref 
erence spectrum supplies a signal which represents at least 
one spectrum representing expected in?uence of analytes of 
the interest on input data (PM). 

30. Apparatus as in claim 28 wherein said means for 
supplying said signal representing at least one second ref 
erence spectrum supplies a signal which represents at least 
one spectrum representing expected in?uence of various 
undesired interferences (PI-k). 

31. Apparatus as in claim 28 wherein said means for 
supplying said signal representing at least one second ref 
erence spectrum supplies a signal which represents at least 
one spectrum representing expected in?uence of analytes of 
interest of input data and also including means for supplying 
a signal of at least one third reference spectrum representing 
expected in?uence of various undesired interferences, said 
third reference spectrum signal also being supplied to said 
estimating means. 

32. Apparatus as in claim 28 or claim 29 or claim 30 or 
claim 31 including means responsive to said estimating 
means for correcting said spectral data as to additive errors 
based on said estimated coe?icients. 

33. Apparatus as in claim 28 or claim 29 or claim 30 or 
claim 31 wherein said estimating means estimates coe?i 
cients for a linear model. 

34. Apparatus as in claim 28 or claim 29 or claim 30 or 
claim 31 wherein said estimating means estimates coe?i 
cients for a non-linear model. 

35. In a system for analyzing a medium, said system 
having a spectrophotometric sensor for providing a signal 
representing input spectral data (Xki), the improvement 
comprising: 

apparatus for correcting said spectral data for at least 
vmultiplicative errors, said apparatus including: 
means for supplying a signal representing a ?rst and 

primary reference spectrum (Pkg) as a predetermined 
standard for said spectral data; 

means for supplying a signal representing at least one 
second reference spectrum (Pk,z or Pkj); 

means for estimating coe?icients for a selected model 
for application to said input spectral data, said input 
spectral signals and ?rst and second reference spec 
tral signals being supplied to said estimating means; 
and 

means responsive to said estimating means for correct 
ing said spectral data based on estimated coe?icients 
at least as to multiplicative errors for producing a 
signal representing a linear additive structure for use 
in calibration, validation and determination based on 
linear multivariate analysis. 

.36. The method for correcting input spectral data (Xki) 
derived from a measurement, by applying an additive model 
and multiplicative model for the data in a sequential fashion, 
comprising the steps of: 

l) obtaining a set of spectral data Z from original input 
spectral data corrected for multiplicative e?’ects by 
using a standard multiplicative scatter correction tech 
nique; 

2) estimating an additive model which takes into account 
spectral variations of analytes and interferences; 

3) reconstructing spectral data Y without the estimated 
additive effects; 

4) estimating the multiplicative effects on Y; 
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5) constructing a new matrix of corrected spectra Z from 

X; and 
repeating steps 2, 3 and 4 until convergence occurs. 
37. The method of claim 36 wherein the additive effects 

are obtained from a different model than the multiplicative 
effects. 

38. The method of claim 37 wherein one model is a 
physical model and the other model is a chemical model. 

39. The method of claim 36 wherein step 4 includes the 
steps of: 

providing a ?rst and primary reference spectrum; 
providing at least one second reference spectrum; 
estimating coef?cients for a selected appropriate model to 

be applied to the input data based on said ?rst and 
second reference spectra; and 

correcting said spectral data Y based on said estimated 
coef?cients. 

40. The method for correcting input spectral data (Xki) 
derived from a measurement or for correcting the scores 
obtained by bilinear modeling of such data, said method 
comprising the steps of: 

examining the measured spectral data as a combined 
additive and multiplicative structure such that 

where X:(x,-k) is the matrix of spectral ordinates for i=l,2 . 
. . N objects, k=l,2 . . . , K wavelengths, T=(I,-l) is the matrix 

of scores for objects i, l=l,2 . . . L representing bilinear 

factors Obtained from a bilinear model, P=(Pk,-) are the 
loadings for objects i on bilinear factors 1, and E=(eik) are the 
residuals between data X and model T*P'; 

decomposing the loadings into a function of a reference 
spectral and, optionally, a matrix of spectral compo 
nents for analyte and interference phenomena; 

obtaining the additive and multiplicative effects for the 
input spectra from the coef?cients from the loading 
decomposition and scores; and 

correcting said input spectra based on said obtained 
additive and multiplicative eifects. 

41. The method of claim 40 including the step of correct 
ing said input spectral data simultaneously for interferent 
contributions and additive and multiplicative effects. 

42. The method for correcting input spectral data (Xki) 
derived from a measurement or for correcting the scores 
obtained by bilinear modeling of such data, said method 
comprising the steps of: 

examining the measured spectral data as a combined 
additive and multiplicative structure such that 

where X=(xik) is the matrix of spectral ordinates for i=1,2 . 
. . N objects, k=l,2 . . . , K wavelengths, T=(t,-l) is the matrix 

of scores for objects i, l=l,2 . . . L representing bilinear 

factors obtained from a bilinear model, P=(Pk,-) are the 
loadings for objects i on bilinear factors 1, and E=(e,-k) are the 
residuals between data X and model T*P'; 

decomposing the loadings into a function of a reference 
spectrum and, optionally, a matrix of spectral compo 
nents for analyte and interference phenomena; 

obtaining the additive elfects for the scores T from the 
offset corrected loadings and the scores T; and 

applying the obtained additive effects to the scores; 
obtaining the multiplicative eifect from the coe?icient d 

from the reference spectrum; and 
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obtaining scores corrected for additive and multiplicative 
effects using the multiplicative e?ect, or scores T and, 
optionally, the additive effect. 

43. The method of claim 42 including the steps of 
additionally correcting the input spectral data for multipli 
cative effects. 

44. The method of claim 36 or claim 39 or claim 41 
including the further step of using said corrected input 
spectral data or said corrected scores for calibration of 
measuring equipment, prediction and determination proce 
dures. 

45. The method of claim 44 wherein the prediction 
procedure, using corrected spectral data, includes the steps 
of: 

using an independent set of data and applying factor 
loadings P to ?nd a new set of spectral scores T; and 

determining the additive and multiplicative effects from 
the new spectral scores and using the mean quantities 
of additive and multiplicative effects and those portions 
of the interferents and analytes which had been used in 
a prior calibration to obtain a corrected spectra; and 

using the corrected data and the calibration model coef 
?cients from the linear model coefficients from the 
linear model to predict properties of interest. 

46. The method of claim 44 wherein. the prediction 
procedure, using corrected spectral scores, includes the steps 
of: 

using an independent set of data and applying factor 
loadings P to ?nd a new set of spectral scores T; and 

' determining an 8‘1 factor related to a matrix containing 
T*d for multiplicative effects from the new spectral 
scores T and using a factor U from calibration relating 
to additive and interferent e?ects to ?nd 

W=S_1*T*U; where W is the matrix of the additive, 
multiplicative and interferent corrected scores which 
can be used as regressors in additive mixture models; 

using the corrected data and calibration model coe?’icients 
from the linear model to predict properties of interest. 

47. Apparatus for correcting an input spectral data (Xki) 
signal derived from a measurement, particularly as to mul 
tiplicative errors, by the ?tting of an additive model and 
multiplicative model in sequential fashion, comprising: 

?rst means for obtaining a signal representing a set of 
spectral data Z from the original input spectral data 
signal corrected for multiplicative effect by using a 
standard multiplicative scatter correction technique; 

second means for providing a signal representing estimate 
of an additive model which takes into account spectral 
variations of analytes and interferences; 

third means for providing a signal representing the recon 
structing of spectral data Y without the estimated 
additive effects; 

fourth means for providing a signal representing an esti 
mate of the multiplicative effects on Y; 

?fth means for providing a signal representing the con 
struction of a new matrix of corrected spectra Z from X; 

means for respectively providing said signal from said 
?fth means to said second, third and fourth means; and 

means responsive to the output signals of said second, 
third and fourth means for determining when conver 
gence occurs. 

48. Apparatus for correcting an input spectral data (Xki) 
signal derived from a measurement or for correcting a signal 
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representing the scores obtained by bilinear modeling of 
such data, comprising: 
means for providing a signal responsive to said input 

signal representing the measured spectral data as a 
combined additive and multiplicative structure such 
that 

where X=(xik) is the matrix of spectral ordinates for i=1,z . 
. . N objects, k=l,2 . . . , k wavelengths, T=(t,-,) is the matrix 

of scores for objects i, 1:1,2 . . . L representing bilinear 

factors obtained from a bilinear model, P=(Pk,-) are the 
loadings for objects i on bilinear factors 1 and E=(eik) are the 
residuals between data X and model T*P'; 

means for providing a signal representing decomposed 
loadings which have been decomposed into a function 
of a reference spectra and, optionally, a matrix of 
spectral components for analyte and interference phe 
nomena; 

means for providing a signal representing the additive and 
multiplicative effects for the input spectra obtained 
from the coe?icients from the loading decomposition 
and scores; and 

means for providing a signal representing the correction 
of said input spectra from said signal representing the 
additive and multiplicative effects. 

49. Apparatus for correcting an input spectral data (Xki) 
signal derived from a measurement or for correcting a signal 
representing the scores obtained by linear modeling of such 
data, comprising: 
means for providing a signal responsive to said input 

signal representing the measured spectral data as a 
combined additive and multiplicative structure such 
that 

where X=(xik) is the matrix of spectral ordinates for i=l,z . 
. . N objects, k=l,2 . . . , k wavelengths, T =(t,-,) is the matrix 

of scores for objects i, l=l,2 . . . L representing bilinear 

factors obtained from a bilinear model, P=(Pk,~) are the 
loadings for objects i on bilinear factors 1 and E=(ei,<) are the 
residuals between data X and model T*P'; 

means for providing a signal representing decomposed 
loadings which have been decomposed into a function 
of a reference spectra and, optionally, a matrix of 
spectral components for analyte and interference phe 
nomena; 

means for providing a signal representing the additive 
effects for the scores T obtained from the offset cor 
rected loadings and the scores T; 

means responsive to said signal representing the additive 
effects for providing a signal representing the applica 
tion of the additive eifects to the multivariate scores; 

means for providing a signal representing the multiplica 
tive effect from the coefficient d from the reference 
spectrum; and 

means for providing a signal representing scores corrected 
for additive and multiplicative effects using the multi 
plicative eifect, or scores T and, optionally the additive 
effect. 
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