
l|ll|l|||l|||l|||lllllllllll||||l|ll|llllllllllllllllllllllllllllllllllllll
US005459837A

Unlted States Patent [19] [11] Patent Number: 5,459,837
Caccavale [45] Date of Patent: Oct. 17, 1995

[54] SYSTEM TO FACILITATE EFFICIENT 5,067,107 11/1991 Wade 395/500
UTILIZATION OF NETWORK RESOURCES 5,109,350 4/1992 Henwood et a1. .. 364/550
IN A CONIPUTER NETWORK 5,197,127 3/1993 Waclawsky et al. 395/200

5,331,574 7/1994 Temoshenko et a1. 364/551.01
. - 5,339,430 8/1994 Lundin et a1. 395/700

[75] Inventor‘ Frank S‘ caccavale’ Holhston’ Mass‘ 5,375,206 12/1994 Hunter et al. 395/200

[73] Assignee: Digital Equipment Corporation, Primary Examiner__Kn-Sna Lim
Maynard’ Mass‘ Attorney, Agent, or Firm—Kenneth F. Kozik

[211 App1.No.: 50,929 1511 ABSTRACT

[22] Filed; Apr, 21, 1993 In a method and system for monitoring the performance of
6 servers across a network and for suggesting an appropriate

[51] Int. Cl. G06F 11/34 Server to a client requesting a Service, a plurality of probes
U-S. CL are placed in various clients in the network a Broker

364/DIG- 1; 364/2645; 364/285; 364/267-9; Performance Mechanism. The probes request that the serv
364/551-01; 371/20-1; 371/62 ers perform various network functions and measure the

[58] Field of Search 395/200, 575; response times of the servers in satisfying those requests.
371/60, 62, 16.3, 20.1; 364/551.01 The Broker-Performance Mechanism retrieves, analyzes,

_ and stores the response time data. The stored data can be
[56] References Clted made available to a user for system diagnostic purposes. In

Us PATENT DOCUMENTS addition, when a particular client requests a particular ser
vice, the Broker-Performance Mechamsm examines the ana

4,750,175 6/1988 Brenneman et a1. 371/22 lyzed data and determines which server is best suited, at that
4,821,178 4/1989 Levin et a1. 395/575 particular time, to provide the requested service to the
4,890,227 12/1989 Watanabe et a1. . 395/800 requesting chem
4,905,171 2/1990 Kiel et a1. 364/551.0l

4,930,093 5/1990 Houser et a1. . 364/55101
5,067,099 11/1991 McCown et a1. 364/550 11 Claims, 9 Drawing Sheets

BROLAR
PERFORMANCE
MECHANISM

oooolO/gb

r33
SERVER

US. Patent Oct. 17, 1995 Sheet 1 0f 9 5,459,837

mm

.09 Em_Z<IQmE mUZSzmOummm m<JOmm

US. Patent 0a. 17, 1995 Sheet 2 of 9 5,459,837

FOR OPERATION "0"

GET_RESPONSETIME_"0" ()

FOR (x=0: x < x + +){
WAIT__A_RANDOM_TIMER 0;
TIME (s) = BUNCH_OF_"0" 0;

GET__RESPONSE_TIME_FOR_"0" ();I*PUT TIMES INTO
APPROPRIATE
DATA BASE
ENTRIES */

}
BUNCH__OF_"0" ()

}
TIMESTAMP1 0;
FOR (x=)=:x<x + +)

PERFORM "0";
TIMESTAMP 2 0;
TIMES = TIMESTAMP2 -T|MESTAMP1;
RETURN (TIME);
}

Fig. 2

US. Patent Oct. 17, 1995 Sheet 5 0f 9 5,459,837

RT

RT2

rt-sat

Fig. 5

US. Patent Oct. 17, 1995 Sheet 7 of 9 5,459,837

I* SEE IF USER KNOWS THE TRANSACTION DEFINITION“!
IF (DOESUSERKNOW == TRUE)

KNOWTRANSACTIONO:
ELSE

UNKNOWNTRANSACTIONO:

/* FOR KNOWN TRANSACTIONS */
KNOWNTRANSACTION(){

FOR (X=0:X=NUM__TRANSACTION:X++){
I" IF A NEW DEFINITION */
I’ BRING UP DIALOG BOX FOR TRANSACTION
DEFINITION */
DIALOGDEFINETRANSACTION(TRANSACTID);

I

1* SET UP THE TIMER ROUTINE WHICH WILL RE
CALCULATE THE TRT's EACH INTERVAL */
SETTIMERROUTINE(INTERVAL. RECALCULATETRT
(TRANSACTLIST{}));

DIALOGDEFINETRANSACTION(TRANSACTID){
1* THIS DIALOG BOX ALLOWS THE USER TO
DEFINE A TRANSACTION AS A SEQUENCE OF
PRIMITIVE OPERATIONS */
DEFINE TRANSACT(TRANSACTID);
/* WHEN DONE THE USER SAVES THE
DEFINITION INTO A DATABASE */
SAVETRANSACTION(TRANSACTID);

l* FOR UNKNOWN TRANSACTIONS */
UNKNOWN TRANSACTION ()

I* DEFINE THE NAME OF THE CLIENT WHICH WILL RUN THE
APPLICATION */
CLIENTNAME = SETCLIENTNAME 0;

I’‘ LOAD THE RECORDING TSR ONTO THE CLIENT */
LOADCMTTSR (DATAFILENAME, SERVERNAME);
I* EXECUTE, THE APPLICATION ON THE CLIENT */
RUNAPPLICATION(CLIENT NAME, APPLICATIONNAME);
l* RETRIVE THE FILE SERVER PRIMITIVES ASSOCIATED WITH
THE APPLICATION FROM THE FILE PRODUCED BY THE TSR AND
DISPLAY IN A DIALOG BOX FOR THE USER TO EDIT */
RETRIVETSRPRIMITIVESUITE(SERVERNAME, DATAFILENAME,
CLIENTNAME.SUITE PTR);
I"r DISPLAY THE SUITE OF SERVER PRIMITIVES IN THE TRACE OF
THE APPLICATION AND ALLOW THE USER TO EDIT,
IF DESIRED */

Fig. 7

US. Patent 0a. 17, 1995 Sheet 8 of 9 5,459,837

DISPLAYTHEPRIMITIVESUITEO
1* RECORD THE DEFINED TRANSACTION INTO THE
TRANSACTION DATABASE *1
RECORDTRANSACTIONS(NUM_TRANSACT,
TRANSACTION_NAMED {});

1* NOW TREAT THE DEFINED TRANSACTIONS AS KNOW
TRANSACTIONS */
1* SET UP THE TIMER ROUTINE WHICH WILL RE-CALCULATE THE
TRT's EACH INTERVAL */
SETTIMERROUTINE(INTERVAL, RECALCULATETRT(TRANSACT
LIST 6));

I" THIS FUNCTION RE-CALCULATES THE TRT EACH INTERVAL */
RECALCULATETRT(TRANSACTLIST {}){

FOR (x=0:x< RETURN_TRANSACTIONS:X + +){
1* FOR EACH DEFINED TRANSACTION CALCULATE ITS
TRT "l
TRT(X) = CALCULATETRT(TRANSACTIONID);

I

CALCULATETRT(TRANSACTIONID){
I" LOCATE TRANSACTION DEFINITION IN DATABASE */
LOOKUPTRANSACTION(TRANSACTION ID.
TRANSACTIONPTR);
TRT : 0;
FOR (x=0:X<TRANSACTIONID->NUM__PRIMITIVES;X + +){

I* GET THE AGGREGATE TRT FROM THE SUM OF THE
AVERAGE RT'S */
TRT += TRANSACTIONlD->RT(X);

}

RETURN(TRT):

Fig. 7 cont.

US. Patent 0a. 17, 1995

BRING UP DIALOG
BOX FOR

TRANSACTION
DEFINITION

Y

SAVE
TRANSACTION

DEFINITION INTO
A DATA BASE

V

USER KNOW
TRANSACTION
DEFINITION ’

PROCESS TRT

Fig. 7A

Sheet 9 of 9 5,459,837

7

DEFINE NAME OF

WHICH WILL RUN
THE APPLICATION

THIS CLIENT

RECORDING TSR
ONTO THE CLIENT

LOAD THE

7

EXECUTE THE
APPLICATION ON
THE CLIENT

I

FROM ASSOC WITH
RETRIVE TRIAL

APPL FROM TSR
AND DISPLAY IN A
DIALOG BOX TO

EDIT

V

DISPLAY SUITE OF
SERVER

PRINCIPELS IN THE
TRACE OF TIME
APPLICATION

7

RECORD THE
DEFINED

TRANSACTION INTO
THE TRANSACTION

DATA BASE

5,459,837
1

SYSTEM TO FACILITATE EFFICIENT
UTILIZATION OF NETWORK RESOURCES

IN A COMPUTER NETWORK

FIELD OF THE INVENTION

The present invention relates to systems for monitoring
and analyzing the performance of servers in a network and
for suggesting an appropriate server to a client having a
particular service request. More speci?cally, the present
invention relates to such a system which evaluates a server’s
capability to service the particular client and service
requested without requiring a broker to have any detailed
information regarding the nature of the servers.

BACKGROUND OF THE INVENTION

In a computer network, a client (e.g. a processor or
computer in the network) that wishes to obtain a particular
service will generally have a wide range of available
resources that are capable of performing the service. While
this is advantageous, it also creates resource management
problems, e.g., which one of these resources should the
client utilize? It is known in the art to utilize a server, which
is generally comprised of both hardware and software, as an
interface between a client and a plurality of resources. In a
given network, there may be a plurality of servers, each one
of which is itself associated with a plurality of resources and
is able to provide a plurality of services. Moreover, for any
given service, there may be a plurality of available servers.

In order to facilitate e?icient utilization of network
resources, it is known in the art to use a “broker mechanism”
to receive requests from clients for various services, and to
suggest an appropriate server to satisfy the various requests.
One known type of broker operates to assign an entire broker
to a client without regard to the resources required by the
client.

None of the prior art systems, however, take into account
performance discrepancies across the network. For example,
due to various performance delays (e.g. bridges, bus tra?ic,
routing problems), a particular server may be able to service
client “1” more quickly than client “2.” Furthermore, a
server may be able to perform one particular service more
quickly than another. Moreover, a server’s ability to more
e?iciently provide service to client “1” over client “2” may
further depend upon the type of service being performed.
A system is needed which evaluates the performance of a

server from the perspective of the client and suggests the
server that is best suited to provide a particular client with
a particular service at a particular time.

Moreover, since present day networks frequently include
many different types of servers which may have vastly
different physical characteristics, a system is required that
can perform the above function without any detailed knowl~
edge of the internal operation and design of the various
servers.

SUMMARY OF THE INVENTION

The present invention provides a system for monitoring
the performance of servers in a network and suggesting an
appropriate server to a client with a particular service
request. It performs an active analysis of each server’s
ability to provide various services to various clients, and
utilizes this information to suggest an appropriate server to
a client requesting a particular service. The present invention

15

25

30

35

40

45

55

60

65

2
accomplishes these tasks without any detailed knowledge of
the internal operation and design of the various servers. In
accordance with the present invention, a Broker-Perfor
mance Mechanism is provided which is coupled between a
plurality of clients and a plurality of servers.
The Broker-Performance Mechanism performs an active

performance analysis of the servers across the network and
utilizes this information to alert the system manager to
server performance problems and to automatically suggest
an appropriate server to a client requesting a particular
service.

In order to perform an active performance analysis of the
servers in the network, the Broker-Performance Mechanism
sends probes to various clients which reside in various parts
of the network. The greater the number of probes, the greater
the accuracy of the analysis. The probes are small applica
tion programs that perform certain elementary functions on
particular server(s) and measure the response times of the
server(s) in response to commands from the Broker-Perfor
mance Mechanism. The Broker-Performance Mechanism
can send a probe to a client by utilizing, for example, a
Pathworks “Showserv” utility (a product of Digital Equip
ment Corporation). Alternatively, the probes can be manu
ally installed in a client via the client’s disk drive.

The probes are generally application programs which run
in a client that is simultaneously performing its normal
functions (e.g. running a WordperfectTM word processing
program). However, a probe could also be a dedicated
hardware device capable of responding to the commands of
the Broker-Performance Mechanism. In any case, since a
probe is an application running in the client (or a device
which simulates an application running in a client), the
response time for a particular server is the actual response
time that would be seen by an application in the client, i.e.
the actual amount of time it would take to satisfy client
requests.
The Broker-Performance Mechanism initially commands

each probe to measure the response time at a period of
extremely low network activity, e.g. midnight, to obtain
baseline response values for one or more of the servers. The
Broker-Performance Mechanism then periodically com
mands the probe to measure response times so that the
Broker-Performance Mechanism can determine how each
server’s response has degraded or improved over time or
during particular times of the day, week, month, etc.

In order to determine the level of performance of a
particular server across the network, the Broker-Perfor
mance Mechanism will send out probes to clients located in
various portions of the network and instruct the probes to
perform various operations on the server. It should be
stressed that since the performance evaluation is performed
from the perspective of the client, it requires no detailed
knowledge of the speci?cs of the server to be evaluated.

In an embodiment of the system according to the present
invention, the data retrieved from the various probes are
manipulated to indicate the performance of one or more
servers across the entire network. Utilizing this information,
a user can extrapolate server performance with respect to a
particular client from the performance data retrieved from
nearby probe sites. This, in turn, will aid the user in
identifying problems in the network which are causing
degradation of server performance in a particular region of
the network (for example delays due to bridges or routing
problems).
The probe data is also utilized to provide a brokering

function. In accordance with the brokering function of the

5,459,837
3

present invention, the Broker-Performance Mechanism uti
lizes the probe data to distribute service requests across the
network in order to balance the load placed on the servers.
When a client wishes to perform a particular application, it
sends a request for a service to the Broker-Performance
Mechanism. The Broker-Performance Mechanism maintains
a list of servers and the services which they are able to
perform. When a request for a particular service is received,
the Broker-Performance Mechanism examines, for each
server which is capable of performing the application
requested, the performance data from the probe(s) in the
same region of the network as the requesting client. Utilizing
this information, the Broker-Performance Mechanism sug
gests the server which is best able to perform the particular
service for the particular client.
Assume, e.g., that 4 servers (A-D) are in the network;

only servers A-C are capable of interacting with client 1;
and only servers A, B and D are capable of delivering service
Beta. The Broker-Performance Mechanism will ?rst elimi
nate servers C and D from consideration and then evaluate
the probe data from servers A and B in order to determine
which of these two is the optimal server for client 1. The
probe data for the servers are organized by probe location.
The Broker-Performance Mechanism makes its suggestion
based upon the probe data from the region of the network in
which the client resides. If there is no probe data from that
region, the Broker-Performance Mechanism can use the
probe data generated from its own position as the probe data.
Utilizing this information, the Broker-Performance Mecha
nism will chose either server A or server B to provide
application Beta to client 1.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the system according to the
present invention.

FIG. 2 shows an illustrative computer program for deter
mining the average response time.

FIG. 3 is a table which illustrates an exemplary method of
setting an alarm as a function of relative degradation values.

FIG. 4 is a graph which illustrates the manner in which a
server’s performance varies with its workloadv

FIG. 5 is a graph which illustrates a server saturation
alarm system of the present invention.

FIG. 6 is a table which illustrates response time triplets
used in the graph of FIG. 5; and FIG. 7A is a ?ow chart of
the illustrative computer program of FIG. 7.

FIG. 7 shows an illustrative computer program for imple
menting a transaction simulation tracking function and an
application simulation tracking function.

DETAILED DESCRIPTION

The system according to the present invention utilizes a
Broker-Performance Mechanism and a plurality of probes to
provide both a monitoring function and a brokering func
tion. This system is illustrated in FIG. 1 which shows a
network 10 having a client population 20, a server popula
tion 30, a plurality of resources 50, and a Broker-Perfor
mance Mechanism 40 (hereinafter “BPM”). The server
population can be a heterogeneous mix of dissimilar servers
31—34. Each server 31-34 may be coupled to some or all of
the resources 50. The only requirement is that each server
31-34 to be monitored and considered with regard to the
brokering and/or monitoring function should be capable of
communicating with the BPM 40. Similarly, the client

15

25

30

35

40

45

50

55

60

65

4
population 20 can include dissimilar clients 21, so long as '
each client 21 availing itself of the brokering function is
capable of communicating with the BPM 40. The clients 21
are located in various regions 60 of the network 10. Each
server 31—34 need not be compatible with each client 21 in
the client population 20. The manner in which the system _
provides the brokering and monitoring functions will now be
described in detail. '

A. The Brokering Function

Each client 21 in the client population 20 contains a
distributed broker program (DBP) which allows the client 21
to utilize the broker service. In an illustrative embodiment of
the present invention, the DBP is a Microsoft Windows
application which communicates with the BPM 40 via a
NetBios message protocol. It should be noted that NetBios
is merely an example of an acceptable protocol. Any mes
sage protocol(s) or system of communication which allows
server~BPM and client-BPM communication is acceptable.
In any case, a user who wishes to utilize the brokering
function initiates DBP from the main menu. DBP derives a
unique NetBios name for the client from the client’s hard
ware address. The user provides:

1) the name of the application which the user wishes to
run; and

2) the preferred Network Operating System (NOS) types
for server systems which the user is willing or able to use.
This feature allows the user to define a set of permissible
server types which is a subset of the set of server types which
the client is capable of utilizing. In an alternative embodi
ment, the DBP provides a predetermined list of acceptable
server types.

The DBP utilizes this information to encode a NetBios
message which includes the unique address of the client, the
requested application, and the list of acceptable server types.
This message is transmitted over the network via NetBios to
the BPM 40. After the message is sent, the DBP listens to the
NetBios link for incoming messages from the Broker Per
formance Mechanism 40. In an illustrative embodiment of
the invention, the DBP sets off a Windows timer of 3 seconds
in duration and uses this interval to periodically listen for
incoming messages. When a message is received from the
BPM 40, the message is decoded by DBP and the suggested
server(s) for the requested application are displayed to the
user in order of predicted best performance.
The BPM contains a central broker program (CBP) and a

performance data collection mechanism (PDCM). The
PDCM provides the CBP with continually updated perfor
mance information regarding each server in the server
population.
The performance information for each server is generated

by a plurality of probes 22 which are located in certain
clients 21 in the client population 20. The BPM 40 itself
contains a BPM probe 41 which measures the performance
of the servers from the perspective of the BPM 40. The
PDCM commands some or all of the probes to periodically
perform various server primitive operations on some or all
of the servers. Examples of server primitive operations
include sequential reads and writes of various sizes, random
reads and writes of various sizes, ?le opens and closes, byte
range locks, etc.
The PDCM calculates a performance index for each

server in the system with respect to each probe in the system.
Thus, assuming there are eight probes and four servers in a
system comprising 100 clients, each of the four servers

5,459,837
5

would have eight performance indices. The manner in which
a performance index is obtained will now be discussed.

The performance index (PI) is calculated as the inverse of
the average response time (RTavg), i.e. PI=1/RT,,vg. For
example, assume the response time (RT) of serverA to probe
1 for three server primitive operations (01, O2, O3) is as
follows: RT1=36 ms; RT2=l2 ms; and RT3=309 ms. Further
assume that the workload composition of server A for the
three server primitive operations is as follows: O1=30%;
O2=50%; and O3=2O%. In accordance with an embodiment
of the present invention, the PDCM calculates two different
performance indices; a relative performance index and an
absolute performance index which are derived from RT,,_,,_
avg and RTabHvg, respectively. RTalmavg is derived with
each server primitive operation carrying an equal weight
while RTmMvg is derived with each server primitive opera
tion carrying a weight equal to its frequency of occurrence
in the workload distribution. Applying this to the above cited
example:

Plrel(A,l)=llRTrel_avg(A,l)=0.0l27
The client user, system user, or system designer can choose
whether an absolute or relative index should be used to
generate the performance indices.

The performance indices from each probe are sent to the
BPM 40 for processing. In the BPM 40, the CBP creates a
data structure which contains a list of the servers in the
system, the applications which they are able to perform, and
the performance indices for each server with respect to each
probe.
When the BPM 40 receives a message from a client

requesting a server suggestion, the CBP determines which of
the plurality of servers is capable of providing the service
requested. The CBP then determines which of the plurality
of probes is from the same network region 60 as the
requesting client. If none of the probes is from the requesting
client’s region, the performance data from the BPM probe
41 is used. In any case, the relevant probe data for each of
the acceptable servers is accessed. The BPM 40 then sug
gests the server with the highest performance index for the
relevant probe.

In a further embodiment of the present invention, the CBP
creates an ordered list of the acceptable servers and provides
the client with the top ?ve performing servers in order of
descending performance.

It should be understood that since the PDCM receives the
individual response times for each server primitive opera
tion, a performance index could be generated with respect to
each individual server primitive operation. Since certain
applications may be sensitive to degradations in particular
server primitive operations, the BPM 40 could suggest an
appropriate server based upon the performance index of
particular server primitive operation(s). For example, if
client 1 requests application A and application A is known to
consist primarily of block read operations, the BPM 40
could suggest the server which has the highest performance
index with respect to block read server primitive(s).
The manner in which the probes gather the performance

information will now be discussed in more detail. In an
illustrative embodiment of the invention, a probe 22 com
prises a response time monitoring program (RTMP) running
in a client 21. The RTMP is an application level program in

15

20

25

30

35

45

50

55

65

6
the client. A similar program implements the BPM probe 41.
The RTMP performs certain server primitive operations on
selected servers, measures the response time of the servers,
and transmits the information to the PDCM in the BPM 40
for processing. The BPM 40 designates 1) which server
primitive operations are to be performed; 2) on which
servers these server primitive operations are to be per
formed; and 3) the frequency with which the operations are
to be performed. Since the RTMP is an application level
program, the response time measured is equal to the
response time which would actually be seen by a client
performing a normal application.

Since the response time for a server primitive operation is
generally faster than the running time of a high level
instruction (e.g. a C-language instruction), the RTMP mea
sures the response time for a plurality of sequentially
performed server primitive operations. For a particular
server primitive operation 0, a “bunch” is represented as a
number “n” and a small sample size is represented as In
an illustrative embodiment of the present invention, n=20
and s=5. RTMP will perform “s” sets of “n” transactions of
server primitive operation “0” and measure the total
response time, RT,(O), using C run-time library functions.
The average response time for operation 0 (RTavg(O)) is
then RT/n.

FIG. 2 shows a generalized computer program to deter
mine the average response time. Referring to FIG. 2, pro
cedure Get_Responsew_Time_“O” waits a random period
of time and then calls procedure Bunch_of_“0”. Procedure
Bunch_of_“0” stores a timestampl; performs the server
primitive operation “0” n times; and then stores a times
tarnp2. It then returns the total response time (time=times
tamp2—timestarnp1) to the procedure Get Response__Time.
Procedure Get_Response_,Time stores the response time
and repeats the entire procedure s times to form a set of s
response times for operation “0”. Utilizing standard small
sample statistical techniques, these values are used to report
a metric for the average, median, variance, and 95% con?
dence interval of “O”, and this information is transmitted to
the PDCM in the BPM 40 for processing. This procedure is
repeated for all server primitive operations and servers
which are of interest. In accordance with the present inven
tion, the periodic probing of servers in the network continues
inde?nitely or until explicitly terminated by the user.

B. The Monitoring Function

The monitoring function of the present invention also
utilizes the performance information generated by the
probes and the performance indices generated by the CBP
and the PDCM. In accordance with the monitoring function,
however, this information is used to alert the system man
ager of potential problems in the network.
As explained earlier, the probes are positioned in various

locations in the network. The probes may, for instance, be
positioned by “department.” For example, a network might
provide services to various departments in a company.
Therefore, there may be a ?rst probe in one of several clients
in the accounting department, a second probe in one of
several clients in the engineering department, and so on. The
data from the probes can therefore be used to determine the
performance degradation of a server across the network. For
example, due to routing or bridging problems, the perfor
mance of a server with respect to a probe in the accounting
department might be inferior to the performance of the same
server with respect to a probe in the engineering department.

In accordance with the monitoring function, each probe in

5,459,837
7

the network applies the same set of server primitive opera
tions to each server in the network. Baseline performance
values for each server with respect to each probe are
measured at a period of extremely low network activity (e. g.
Midnight). The BPM 40 then instructs the probes to peri
odically measure response time information for various
server primitives such as the average, median, variance, and
95% con?dence interval response time. When the BPM 40
receives the response time information from a particular
probe for a particular server, it compares this current
response time information with the baseline response time
information and that same probes prior response time infor
mation to determine by how much, if at all, the server’s
performance has degraded, ?rst, since the baseline value was
recorded (baseline degradation) and, second, since the pre
vious recorded value (relative degradation). This same pro
cess is repeated for each of the probes with respect to each
of the servers. Therefore, if there are 3 servers and 6 probes,
the BPM 40 will have, for each of the 3 servers, 6 baseline
degradation values and 6 relative degradation values, i.e.,
one for each of the probes.
The baseline degradation values can be used to simply

indicate to the system manager whether any of the three
servers are overloaded. For example, the system manager
could de?ne an unreasonable baseline degradation as any
such degradation value exceeding 60%, and set an alarm
when that value is exceeded by any server as measured by
any of the probes.
The relative degradation values are used to alert the

system manager (or other user) to potential problems in the
network relating to the connection paths from client to
server. If, for any of the 3 servers, one of the six relative
degradation values disproportionately exceeds the others, an
alarm is sent to the system manager indicating that there may
be some problem regarding the connection to the region of
the network in which the probe which exhibited the abnor
mal degradation value is located. In an exemplary embodi
ment, the system triggers an alarm as a function of a
comparison of degradation values, rather than merely as a
function of an increase in response time for a single probe,
because the response time of a server will vary according to
the server’s workload. When the response time degrades,
over a single time period, more quickly with regard to one
probe than the others, a problem in the server-client paths is
indicated.

In an exemplary embodiment of the present invention,
each probe’s relative degradation values are compared with
the relative degradation values of the BPM probe utilizing a
two tailed test at 0.05 level of signi?cance with a Student's
t Distribution. Referring to FIG. 3, six response time values
(RT1—RT6) are measures with respect to each of three server
primitive operations (A, B, C) for each of three probes (1, 2,
3) and the BPM probe. Each of the probes takes its mea
surements from the same server at approximately the same
time. Thus, the measurement of RT1 ‘a for probe 1 occurred
within a few minutes of the measurement of RT“, for probes
2, 3 and the BPM probe. From the six response time values
for each of the three server primitive operations for each
probe, ?ve relative degradation values (D1—D5) are obtained
for each of the three server primitive operations with respect
to each probe.
The degradation values for each probe are averaged to

form a set of ?ve composite degradation values: Cd1— Cds.
From the ?ve composite degradation values, Cd1— Cd5 for
each probe, an average degradation value (Xavgyi) and a
standard deviation (8,) is obtained for each probe. Utilizing
a two-tailed test at 0.05 level of signi?cance with a Student’ s

10

20

25

30

45

50

55

60

65

8
t Distribution, the degradation in performance for each of
probes 1-3 is compared to the degradation of performance
of the BPM probe (using the above-mentioned average
degradation values and standard deviations) to determine if
any of the probes are exhibiting performance degradations
which are signi?cantly different from the performance deg
radations of the BPM probe. If a probe is exhibiting perfor
mance degradations which are signi?cantly different than
the BPM probe, the system sets an alarm which indicates
that there may be a problem in the path between the probe
and the server tested.

Another feature of the present invention sets an alarm for
the central user or system manager when the response time
of a server, considered as a whole, indicates that the server
is approaching saturation behavior, i.e. a suddenly decreas
ing level of performance. This feature will be explained with
reference to FIGS. 4 and 5. The manner in which a server’s
performance varies with its workload is shown in FIG. 4.
With regard to any server, there exists a point x,y after which
the response time of the server begins to increase suddenly
as the workload increases. This point is sometimes referred
to as the “knee” of the curve. For obvious reasons, this is a
very undesirable condition. Saturation behavior by a server
can be counteracted by altering the workload or server
parameters to move the server’s performance back into an
area of linear behavior. An even more advantageous solution
is to determine when a server is approaching saturation
behavior and alert the central user or system manager to the
problem so that corrective measures can be taken before the
server enters the saturation region.

An exemplary method of determining the “knee” or
saturation point of the curve of FIG. 4 will now be illus
trated. The workload of the server is varied and the corre
sponding response times are calculated to form n workload/
response time pairs ((W1, RT 1) through (Wn, RTn)) which
can be plotted on the graph of FIG. 4. The knee of the curve
(point x,y) is calculated as follows:

1) calculate an average slope:

The knee (or saturation point) of the curve is the particular
one of the n points, x, which satis?es each of the following
conditions mx=mavg+,_5%; mx_1<= mavg; and mx+1>mavg.

In accordance with the present invention, a single probe
is chosen (generally the BPM probe 41 shown in FIG. 1) and
probe data with regard to a server is obtained as described
previously. The BPM 40 determines when a server is
approaching saturation behavior by examining “triplets” of
measured response times (RT1, RTZ, RT3), i.e. three con
secutive response times, from the probe. A response time
saturation value RTm is de?ned as the response time at
which the server begins to exhibit saturation behavior. As
described above, RT“, can be determined for any given
server by utilizing the probes to arti?cially alter the server’s
workload and measuring the resulting response time to
determine the point at which the server’s performance
begins to exhibit saturation behavior. Alternatively, RTm,
can be de?ned as any response time which the system
manager or central user determines to be a maximum
permissible value.

Referring to FIG. 5, there is shown a graph with RT1, RT2,
and RT3 as the x, y, and z axes, respectively. Each sequential
set of 3 response time values creates a triplet as shown in
FIG. 6. Each triplet forms a single point on the graph. The
maximum permissible response time forms a cube with the
length of the sides being equal to RTW, as shown. It has

5,459,837
9

been empirically determined that the set of triplets measured
over time will typically be bounded by a sphere of radius r,,.
The center of the sphere (which also de?nes the center of the
cube) can be determined, for example, by computing the
arithmetic mean of the triplet values calculated over a period
of time. The radius, r,,, can then be de?ned as the distance
from the most recent triplet value (or from the average
position of a set of recent triplet values) to the center of the
sphere. In accordance with the present invention, the rate at
which the sphere is approaching the cube is identi?ed and
reported as the rate at which the server is approaching
saturation behavior. As a result, the BPM 40 can set an alarm
indicating that the server is approaching saturation behavior
when this rate exceeds a certain threshold. The BPM 40 will
also set an alarm when the sphere intersects the cube to
indicate when the server has entered the saturation region.
The above described process is performed with respect to
each server thereby forming a separate graph and triggering
a separate alarm for each server.

Another feature of the present invention allows a central
user, system manager, or client user to perform transaction
simulation tracking and application simulation tracking.

In accordance with the transaction simulation tracking
function, the user can simulate the performance of multiple
user de?ned transactions over time. For example, a user may
know that his particular application has speci?c performance
critical transactions. It is therefore advantageous for the user
to determine how e?‘iciently various servers in the network
respond to these transactions without actually installing the
application on the network.
The BPM 40 can provide this service because it is

continually measuring application level responses for server
primitives. Assume, for example, that the user de?nes the
following transaction for simulation: ?le open, lock 100
bytes, read 10 bytes @ o?fset x, write 50 bytes @ offset y,
unlock 100 bytes, close ?le. Since the BPM 40 is continually
compiling response times for these server primitive opera
tions in conjunction with its other functions, the BPM 40 can
tabulate baseline response time information regarding this
transaction from the baseline values for the relevant server
primitive operations. The simulated performance of this
critical transaction can then be tracked over time without
ever installing the application on the network by utilizing the
data retrieved by the probes for use in the BPM’s other
functions.
A similar procedure can be used even if the user is unable

to identify the critical transactions of the application. In this
situation, the BPM 40 will identify the sequence of server
primitive operations generated by the application for the
user. In accordance with this feature of the present invention,
the BPM 40 utilizes a DOS Terminate and Stay Resident
(TSR) component which loads itself into memory and
passively hooks onto the DOS INT 21 through which all
client-server exchanges must pass. The actual application is
then run only once with the TSR component in the back
ground. Utilizing the information detected by the TSR, the
BPM 40 identi?es and tabulates the sequence of client server
primitive exchanges contained in the application. Once the
sequence of server primitives has been determined, the BPM
40 tracks the simulated performance of this sequence of
transactions (and hence, the performance of the application)
over time, as described above with reference to the trans
action simulation.

FIG. 7 shows an illustrative computer program for imple
menting the transaction simulation tracking function and the
application simulation tracking function and FIG. 7A is a
?ow chart of the illustrative computer program of FIG. 7.

10

15

20

25

30

35

40

45

55

60

65

10
The program initially determines whether the user knows
critical transactions of interest.

If the user knows the critical transactions, function
KnownTransaction is called. The user is then prompted to
de?ne a transaction as a sequence of server primitive opera
tions (DialogDe?neTransaction(transactID)). The user may
create one or more transactions. These transactions are saved
in TransactList, and then procedure SetTimerRoutine is
called which periodically calculates the total transaction
response time for each transaction by performing procedure
RecalculateTRT at regular intervals. Procedure Recalcu
lateTRT calculates a total transaction time for each transac
tion by calling procedure CalculateTRT and storing the total
transaction time as TRT[x]. Procedure CalculateTRT locates
the user de?ned transaction in the database (LookUpTrans
action) which stores the response time values which are
continually gathered for the brokering and monitoring func
tions. For each server primitive operation de?ned, the cor
responding average response time in the Broker-Perfor
mance Mechanism is retrieved. These average response
times are summed to form a total response time for each
transaction.

If the user does not know the relevant critical transactions,
procedure UnknownTransaction is called. The user must
?rst identify the client which will run the application (Cli
entName). The TSR component is then loaded into the client
(LoadCM'I'I‘SR) and the application to be simulated and
tracked is then run once on the client (RunApplication(Cli
entNarne, ApplicationName)) to generate a list of server
primitive operations for the application. The TSR compo
nent produces a ?le (RetreivePrimitiveSuite) which contains
a list of the server primitive operations associated with the
application. This list is displayed to the user (DisplayTheP
rimitiveSuite) to allow the user the option of editing the list
to form one or more smaller lists of server primitive opera
tions. The resulting list (or set of lists) is then saved as a
transaction(s), and procedure SetTimerRoutine is called (as
described above) to periodically calculate the response times
for the transaction(s).

It should be understood that since the transaction and
application simulations merely create, in effect, a user
de?ned server primitive operation with a corresponding set
of response time values, all of the performance degradation
analyses previously discussed can also be implemented with
the simulated data.
What is claimed is:
1. In a network including at least one client and at least

one server, a method for monitoring a performance degra
dation of the at least one server, comprising the steps of:

(a) providing at least one probe in the network;
(b) operating the at least one probe to determine a baseline

performance value for the at least one server by trans
mitting a request to the at least one server and mea
suring a response time for the at least one server at a
period of low network activity;

(c) transmitting the baseline performance value to a
monitoring device;

(d) operating the at least one probe to transmit a request
to the at least one server and to measure a response time
for the at least one server to determine a current
performance value of the at least one server;

(e) transmitting the current performance value to the
monitoring device;

(f) repeating steps (d) and (e) periodically at a preselected
rate to form a set of current performance values; and

(g) determining, in the monitoring device, a degradation

5,459,837
11

in performance of the at least one server as a function
of the base line performance value and the set of current
performance values.

2. The method of claim 1, further comprising the step of
setting an alarm when the determined degradation in per
formance of the at least one server exceeds a predetermined
value.

3. The method of claim 1, wherein the step of providing
at least one probe includes the step of sending an application
program from the monitoring device to the at least one
client, the application program performing preselected net
work functions in response to commands from the monitor
ing device.

4. The method of claim 1, wherein the at least one probe
performs a sequence of server primitive operations, the
sequence of server primitive operations corresponding to a
sequence of critical server transactions extracted from a
user-de?ned application.

5. The method of claim 4, wherein the user-de?ned
application is provided to the monitoring device and the
monitoring device extracts the sequence of critical server
transactions from the user~de?ned application and creates
the corresponding sequence of server primitive operations.

6. In a network including a plurality of clients and a
plurality of servers, each one of the plurality of servers
capable of providing at least one of a plurality of services,
a method for suggesting an appropriate one of the plurality
of servers to a one of the plurality of clients requesting one
of the plurality of services, comprising the steps of:

(a) providing a plurality of probes located in selected parts
of the network;

(b) providing a service list in a Broker-Monitor device
which includes information indicating, for each of the
plurality of servers, which of the plurality of services
are available;

(c) operating at least two of the plurality of probes to
transmit a probe request to each of the plurality of
servers and to measure at least one response time for
each of the plurality of servers;

(d) transmitting the response times to the Broker-Monitor
device;

(e) receiving, in the Broker-Monitor device, a client
request for a selected one of the plurality of services
from one of the plurality of clients;

(f) determining, from the service list, a subset of the
plurality of servers which are available to provide the
selected one of the plurality of services;

(g) analyzing the response times in the Broker-Monitor
device to determine, for each server in the subset of the
plurality of servers, a performance level with respect to
each of the at least two probes; and

(h) suggesting a server from the subset of the plurality of
servers to the one of the plurality of clients as a function
of the performance levels of the servers.

7. The method of claim 6, wherein the step of providing
a plurality of probes includes the step of sending an appli
cation program from the Broker-Monitor device to certain
ones of the plurality of clients, the application program
performing preselected network functions in response to
commands from the Broker-Monitor device.

8. In a network including a plurality of clients and a
plurality of servers, each one of the plurality of servers
capable of providing at least one of a plurality of services,
a system for suggesting an appropriate one of the plurality
of servers to one of the plurality of clients requesting one of
the plurality of services, comprising:

20

30

45

50

55

60

65

12
a plurality of probes located in selected parts of the

network;
a Broker-Monitor device coupled to the plurality of serv

ers, to the plurality of clients, and to the plurality of
probes;

the Broker-Monitor device generating a service list which
includes information indicating, for each of the plural
ity of servers, which of the plurality of services are
available;

each of the plurality of probes operating to transmit a
probe request to each of the plurality of servers and to
measure at least one response time for each of the
plurality of servers, each of the plurality of probes
transmitting the response times to the Broker-Monitor
device;

the Broker-Monitor device receiving a client request for a
selected one of the plurality of services from a certain
one of the plurality of clients, the Broker-Monitor
device determining, from the service list, a subset of the
plurality of servers which are available to provide the
selected one of the plurality of services;

the Broker-Monitor device analyzing the response times
in the Broker-Monitor device to determine, for each of
the subset of the plurality of servers, a performance
level for each server with respect to the each of the
plurality of probes; and

the Broker-Monitor device suggesting one of the subset of
the plurality of servers to the certain one of the plurality
of clients as a function of the performance levels of the
servers.

9. The system of claim 8, wherein each of the plurality of
probes is an application program resident in a respective one
of the plurality of clients in the network, and wherein the
respective one of the plurality of clients performs prese
lected network functions in response to commands from the
Broker-Monitor device.

10. In a network including at least two clients and at least
one server, a method for monitoring a performance of the at
least one server across the network, comprising the steps of:

(a) providing at least two probes at various locations in the
network;

(b) operating the at least two probes to transmit a request
to the at least one server to measure a response time for
the at least one server, wherein each of the at least two
probes performs a sequence of server primitive opera
tions, the sequence of server primitive operations cor
responding to a sequence of critical server transactions
extracted from a user-de?ned application, wherein the
user-de?ned application is provided to the monitoring
device and the monitoring device extracts the sequence
of critical server transactions from the user de?ned
application and creates the corresponding sequence of
server primitive operations; and

(c) analyzing the response times to determine the perfor
mance of the at least one server.

11. A method for determining when a server in a network
is approaching saturation, comprising the steps of:

(a) providing a probe in one of a plurality of clients in the
network;

(b) operating the probe to periodically transmit a request
to the server and measure a response time for the server
in order to determine a set of three consecutive current
response time values;

(0) plotting the set of three consecutive current response
time values as a single location on a three dimensional
graph;

5,459,837
13 14

(d) repeating steps (b) and (c) at selected time intervals to mined saturation response time; and
form a Sphere of radius r, the Sphere having a Center at (f) determining a rate at which the server is approaching
a Position C on the graph; saturation as a function of the rate at which the sphere

(e) plotting a cube on the three dimensional graph, the is approaching a side of the cube.
cube having a center at the position 0 on the graph, a 5
length of a side of the cube being equal to a predeter- * * * * *

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description/Claims
	Page 16 - Claims
	Page 17 - Claims

