
llllllllllllllIllIlll
United States Patent [191
Maguire, Jr. et a1.

[54] DETERMINISTIC, PROBABILISTIC AND
SUBJECT IVE MODELING SYSTEM

Inventors: Harold T. Maguire, Jr., Pittsburgh;
John S. Wiesemann, Monroeville;
David R. Frost, Plum Borough;
Raymond J. Nath, Murrysville;
Aristides S. Candris, O’Hara, all of
Pa.

Westinghouse Electric Corp.,
Pittsburgh, Pa.

43,141
Apr. 2, 1993

[751

[73] Assignee:

[21]
[22]

Appl. No.:

Filed:

Related US. Application Data

Continuation of Ser. No. 388,086, Aug. 2, 1989, aban
doned.

Int. Cl.5 G06F 15/60

US. Cl. .. 364/578; 395/920

Field of Search 364/578, 488, 512;
395/500, 919, 920

References Cited

U.S. PATENT DOCUMENTS

4,801,421 l/ 1989 Ackerson et al. 376/249
4,965,743 10/1990 Malin et a1. 395/920

5,016,204 5/1991 Simoudis et a1. 364/578

OTHER PUBLICATIONS

Simulation Series; “Intelligent Simulation Environ
ments”; vol. 17,No. 1, Jan. 1986.

Primary Examiner-Jack B. Harvey

[63]

[51]
[52]
[58]

[56]

US005331579A

Patent Number:

Date of Patent:
5,331,579

Jul. 19, 1994
[ll]

[45]

Assistant Examiner-Ellis B. Ramirez
Attorney, Agent, or Firm-J. C. Valentine

[57] ABSTRACT
A modeling system that arranges the model in a hierar
chical structure of communicating and independently
executing object modules controlled by an overall su
pervisor. Each object represents a component or a sys
tem and includes an object controller which communi
cates with other object modules, an object error
checker and an object model. The objects communicate
through a database accessible by all objects. The struc
ture of the object module and the hierarchical structure
itself are standardized allowing new components or
systems to be added by adding a standard object module
which includes an object model that is unique to the
object being modeled. The controller for an object
causes subobjects upon which the object model depends
for data to be executed prior to execution of the object
model. Such bottom up model traversal insures that
models do not execute until all needed data is available.
The error check module checks the controller and
model modules to make sure they are executing prop
erly. The object model includes a deterministic equation
based component aging model, a statistical based com
ponent aging model and expert rules that combine the
deterministic and statistical model with the knowledge
of experts to determine the current state of the object
and make recommendations concerning future actions
concerning the object. A maintenance module is also
included along side the supervisor that allows mainte
nance actions for the objects to be taken into consider
ation.

12 Claims, 11 Drawing Sheets

K "MRI"; I N_"Mnrmn nmaum__ \
mm mm" ‘lé‘liuié‘l?hj
mum _ uraum

WESTINGHOUSE COMPONENT AGING EXPERT sYsTEm@
[RECOMMENDED MAINTENANCE] 1 PUMP uFE PROFILE |

"EL-4‘ um
um mm am

I UFE LEFT ll \EAR RATE H EXPECTED UFE ll SAFETY mom

\ / \
I 011. | L BEARINGS l 1 sum so“? I sum | L mPEuER 1
[E1] 11W! EH11 we! WWWITEHEJIElEE

in m m m m m) SM um > M m
> > ’

um LII LN) LII) 25D [LN w Linn mm 1M]
> > P D >

k m m m m 1m 1m mm Ml mm m, j

US. Patent July 19, 1994 Sheet 1 of 11 5,331,579

5"\.
EXTRAPOLATION

. 8 .

- USER

4*\ STATE

EVALUATION

FIG.1A

US. Patent July 19, 1994

FIG. 2

Sheet 3 of 11 5,331,579

SUPERVISOR “Q50

A I
PLANT OBJECT F54

COMPONENT OBJECT
INPuLj‘
DATA. .

l (58
SYSTEM‘ OBJECT

“a l
' SUBCOMPONENT OBJECT

f
INPUT DATA

w
SPAMN MODEL MODULE,
ERROR CHECK MODULE

AND SUDOBJECT MODULES
A

INTERRUPT — - — - 'P

O
AWAIT INTERRUPT 4

SUBCOMPONENT OBJECT

!
INPUT DATA

L
86
p FLAG INTERRUPTING

PROCESS AS COMPLETED

INTERRUPT PARENT
%

AWAIT TNTERRUPT

US. Patent

INTERRUPT — -— —>

INTERRUPT - — —>

118

July 19, 1994 Sheet 4 of 11 5,331,579

CONDITION DATA
OBTAIN INITIATED

w .
CHECK FLAGS
(START, sToP,

PAUSE)

fIO‘T
—-—-> OTHER ROUTINES

I
CHECK ERROR
CHECK MODULE

106
J

I (-108
INCRENENT

TIME VARIABLE i109
I

RUN MAINTAINANCE
MODULE

L
WAIT

A
RUN OBJECT

A
WAIT

114

F120
RUN ARCHIVE

MODULE
+

I WAIT --—-INTERRUPT

RUN SCREEN
DISPLAY MODULE

K122

126 I
WAIT 4- —- - INTERRUPT

FIG. 4

US. Patent July 19,1994 Sheet 5 of 11 5,331,579

m “I
‘ (161

141 WRITE ERROR
DESCRIPTION OATA

142 I‘
GET suOOBIEcT IO U TERMINATE 152

LIST FROM COMMON OATA MODEL A)
+ 143 MODULE

OET SUBOBJECT ExEcuTE -J 4'
I——> CYCLES BETWEEN RUN TERMINATE 164

FROM COMMON OATA SUBOBJECT _/
NOOuLE

Y 144

r145
RIIN SUBOBJECTS

+ N1
WAIT <---INTERROPT
Q

FLAG INTERROPTINO I147
PROcEss AS OONPIETEO

14a

CHECK ERROR FLAGS "149
I52

ERROR INDICATED Y m
N

RUN MODEL #153
INTERROPT r160 MODULE
-l-> WAIT 154 ' i

WAIT <-——-INTERRUPT
W

r158 CHECK ERROR EIAOs "155

INTERROPT 157 Y
PARENT OBJECT ERROR INOIOATEO

N FIG. 5

US. Patent July 19, 1994 Sheet 6 of 11 5,331,579

T72
_ OBTAIN

DATA I A

L
_ FIRE MAINTAINANCE

RULES

(-194
WATT 4———INTERRUPT

L CALL EQUATION I
ROUTTNES V 192

184 I ‘L CLEAN-UP J

\- FIRE RECOMMENDATION 1‘
190 RULES

INTERRUPT J
CONTROLLER

T
Y OUTPUT RESULTS

‘ ——_—> T0 COMMON

STORAGE

US. Patent July 19, 1994 Sheet 7 of 11 5,331,579

210
INITIATION AND HOUSEKEEPING _/
DATA STORAGE INTERNAL usE J12

1 INPUT RDuTINEs ’_ 214

30 MAINTAINANCE RULES \{215

K’ sTATE DETERMINATTDN RULES JM
/220 EDDATIDN sIIRRouTINE CALLS

RECDMMENDATIDN RULES J 222

DDTPDT ROUTINES J2“
INTERRDPT HANDLING AND INTTIATTDN P226

CLEAN-UP Jm
EDDATIDN RouTTNEs /‘ 230

FIG. '7

(UNACCEPTABLE RISK LEVEL) __

(40 YEARs) ,

l /’
I _ _ _ (LICENSED RISK LIMIT) /

______ __r________/__________

z / ‘I PREsuMED
a: / SAFETY
‘Z9 / DECRADATTDN
a CDMPDNENT //
g REPLACEMENT \//

I I

20 40 60
PLANT ACE (YEARS)

FIG.12

US. Patent July 19, 1994

SCHEDULE 241
WAKE UP \J

INTERRUPTS

‘———>i F242

254
\i CHECK

i
CHECK
OBJECT J

CONTROLLER

245 Y

N

MODEL

256 Y

N .

257
\d

244

Sheet 8 of 11

WAIT 4- — - INTERRUPT

WRITE QBJECT ERROR ’\

253

5,331,579

DESCRIPTION DATA

‘P 248
CHECK SET ERRoR FLAG J

CONTROLLERS 0F 1
SUBOBJECTS INTERRUPT OBJECT jg

corTTRouER MODULE

258 Y *
ERROR TERMINATE ~250

N MODEL

' E 22 TERMINATE SUBOBJECT J5
FIG° 8 coNTRouERs

US. Patent

OPTIONS

July 19, 1994

DISPLAY ‘ ‘

5,331,579 Sheet 9 of 11'

________, cm
DATA

T 324
CHECK SCHEDULE

VS. TIME J

SET MAINTAINANCE
INDICATOR

INTERRUPT _/
‘SUPERVISOR

T
INTERRUPT-——> WAIT _/

<______|

FIG.11

US. Patent July 19,1994 Sheet 10 of 11 5,331,579

CREATE cENERTc' 292
VISUAL DISPLAY J

A
294 CREATE OBJECT

VISUAL DISPLAY J

A
PLOT SHELLS fm

Ti
DETERMINE INITIAL /298
OBJECT FOR DISPLAY

+
CREATE WINDOWS _J

WAIT <

1 3 4_ PLOT
DATA

CREATE NEW
WINDOWS

US. Patent July 19, 1994 Sheet 11 of 11 5,331,579

mH .UE

:8. 33 J

as. as. 4Q. as as. as as. as.

A A A A A as as s2 83 as as as as a... as

A A A

ss_ .3 A g .5 A a; an sé ‘ a: g as

:23: ESE Ea; _EE; 35:1 23-; FEM; Tau; E53; TEE E51; E<=w 5m E<=m 855m =0 case
a;

8:. 8S . 5: 83 i 22; FEW _ F a: 25:: _ _ Ex is; _ _ :5 a: _ 8.2% H55 mEéEE 3 2 E 95.51.“ :éaiéig

. _ as. 5; £5 25 2.2.5 mat

i is...“25 52:5
8.8 35.85“ SE“ 531mg

35.55“ wing: 95!
_ 3.2a 2325;

_

5.2252: @2585 _

zmhmwm Emmxm uz5< .wzmzomzou mmpomuz?mma?qg
5:5 :6 5:58 558

icy-E BE!
2% 2%

5,331,579
1

DETERMINISTIC, PROBABILISTIC AND
SUBJECI‘IVE MODELING SYSTEM

This application is a continuation of application Ser.
No. 07/388,086, ?led Aug. 2, 1989, now abandoned.

BACKGROUND OF THE INVENTION

1. Field Of The Invention
The present invention is a computer-based modeling

system designed to improve the overall performance of
components and systems that degrade with age. The
invention combines expert rules, probabilistic models,
and deterministic models to evaluate and predict the
effect of component aging on component life extension,
operational readiness, maintenance effectiveness, and
safety of a system along with evaluating and recom
mending maintenance and operational actions to im
prove the overall perforrnance of the modeled system.

2. Description Of The Related Art
Current methods used to obtain, analyze and model

complex systems, such as nuclear power plant informa
tion, to determine age degradation of the various sys
tems within the complex system are inefficient, time
consuming, and many times unreliable. Each compo
nent of the plant or complex system is analyzed sepa
rately to obtain a numerical indication of its state. The
numerical value must then be interpreted by a plant
operator to determine the current and potential state of
the component. To determine the overall state of the
system, each individual component of the system must
be analyzed in relation to the other components, for
example, the separate parts of a reactor coolant pump
must be combined and analyzed together to determine
the actual state of the reactor coolant pump. The cur
rent methods emphasize the separate components of a
system, instead of how and why these components in
teract.

Many current modeling methods use a deterministic
approach which reviews the physical characteristics of
a system, for example, temperature, pressure, etc., and
evaluates the system solely on the basis of this quantita
tive information. Other modeling methods use a statisti
cal and probabilistic approach to compare the present
state of a component with its past history and to deter
mine what the component and the system might do
next. The current modeling methods do not emphasize
an heuristic approach to consider the dynamic interac
tion between the components of a system or between
the systems themselves when determining the present
and future performance of a plant.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a
system that will combine deterministic, statistical and
probabilistic modeling methods with heuristic expert
system prediction methods for modeling systems and
their components.

It is also an object to provide a system in which new
objects (components, systems, etc.) can be added to the
system with ease.

It is another object of the present invention to pro
vide a system in which data is shared between object
models allowing the state of one object to be communi
cated to another object.

It is a further object of the present invention to pro
vide a system that accurately and reliably improves the

10

50

65

2
performance of aging systems particularly aging power
plants.

It is an additional object of the present invention to
reduce or delay the need for replacement of plant com
ponents, monitor the effects of aging on plant safety,
improve the reliability and availability of the plant,
avoid catastrophic plant failures and optimize mainte
nance and repair of the plant.
The above objects can be attained by a system that

arranges the model in a hierarchical structure of com
municating object modules controlled by an overall
supervisor module. Each object module represents a
component or a system and includes an object control
ler which communicates with other object modules, an
object error checker and an object model. The structure
of the object module and the hierarchial structure itself
are standardized allowing new components or systems
to be added by adding a standard object module which
includes a unique object model. The object model in
cludes a deterministic equation based component aging
model, a statistical based component aging model and
expert rules that combine the deterministic and statisti
cal models with the knowledge of experts to determine
the current state of the object and make recommenda
tions concerning future actions concerning the object.
A maintenance module is also included, along side the
supervisor module, that allows maintenance actions for
the objects to be taken into consideration.
These together with other objects and advantages

which will be subsequently apparent, reside in the de-‘
tails of construction and operation as more fully herein
after described and claimed, reference being had to the
accompanying drawings forming a part hereof, wherein
like numerals refer to like parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a illustrates how deterministic, probabilistic,
statistical and heuristic methods are combined;

FIG. 1b is system level diagram of the invention;
FIG. 2 illustrates the initiation and execution control

and data flow in the present invention;
FIG. 3 depicts the initiation routine of each object in

the present invention;
FIG. 4 illustrates the supervisor module 14/50;
FIG. 5 illustrates the controller module 26 of each

object being simulated;
FIG. 6 depicts a model module 30 for each object;
FIG. 7 shows a preferred arrangement for a model

module 30;
FIG. 8 illustrates the operation of the error check

module 28;
FIG. 9 depicts the user control module 16;
FIG. 10 illustrates the screen display module 18;
FIG. 11 shows the function of the maintenance mod

ule 20; and
FIGS. 12 and 13 are examples of displays provided

during a simulation.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention is a modeling system designed
to accurately and reliably improve the performance of
aging power plants. The system provides a method to
evaluate the effects of age degradation on a power
plant, before they manifest themselves, and to make
recommendations to mitigate these aging effects. The
invention is able to anticipate problems before they
occur and to make maintenance, testing, replacement,

5,331,579
3

or inspection recommendations through the use of sys
tem simulation. The modeling system provides continu
ous monitoring of both the risk and the probability of
failure, and the probable life left of any particular com
ponent or system within the plant.
The modeling system of the present invention has a

modular and distributed design. It uses an integrated
modeling approach by combining the deterministic,
statistical, probabilistic and heuristic approaches to
problem solving. Integrated modeling provides an accu
rate and practical measure of the state of a particular
component or system. It combines and analyzes all the
factors which might affect the component or system
under consideration. Because of the distributed modular
design, the invention can be used as a generic shell and
applied to any component or system within a power
plant. To enhance ?exibility the system is designed with
blank stubs which reserve space in the system for addi
tional modules.
The function of the system is to collect, store, and

display data representative of the operating condition of
the plant components and systems. The system then
calculates the expected life of each component and each
system that includes the components. The system can
also make recommendations directing the plant opera
tor to perform or to refrain from performing certain
procedures. The system is designed to emulate the ana
lytical processes of an engineer. The invention reviews
the historical data relating to the component or system,
evaluates age degradation and extrapolates into the
future to develop a life pro?le including measures of life
left, useful life, etc. The system predicts the life pro?le
of components or systems by considering several fac
tors including maintenance schedules, subcomponent
and part quality, personnel availability, and economic
resources. A life pro?le is an indication of the level of
performance of a component or system from its installa
tion to the present and through the expected or pre
dicted out-of-service date. The profiles are similar to
tracking devices and operate in an iterative fashion and
summarize all the substates a component or system
passes through, over time, to reach a certain state. The
pro?les are extremely useful visual tools in determining
whether plant safety parameters are being satis?ed.
The invention is a combination of the deterministic,

statistical, probabilistic and heuristic approaches to
problem solving. The deterministic approach models
fundamental physical processes of a system to predict
behavior for assumed conditions. The statistical and
probabilistic approach models the historical behavior of
a particular component or system. The heuristic ap
proach is a qualitative, high level approach to problem
solving which captures human expertise to model the
dynamic interaction of components and systems. By
combining these three approaches to problem solving, a
realistic and comprehensive picture of the component
or system can be obtained. The information thereby
provided directly relates to the physical, historical, and
actual status of the component or system making it
useful and practical to the operator.
The present invention displays and records the evalu

ated information on a digital display screen. The output
can be continuously displayed in analog form, using
meters, graphs, and moving displays such as a compo
nent life pro?le graph, for increased user friendliness or
simple numbers can be output.
To combine the deterministic, probabilistic, statistical

and heuristic approaches the model of each object

20

25

35

40

50

55

65

4
should be divided into two distinct sections that take
advantage of the programming language capabilities of
todays languages. One section, as illustrated in FIG. 1a
which handles the heuristic determinations and deter
ministic calculations, is preferably an expert system
module 4 that performs state evaluations. This module 4
performs rule based (expert system) determinations and
simple calculations to ‘determine the state of the object
from all of the variables available which must be evalu
ated to determine the state. The second section 6 uses
deterministic calculations, which can be statistically or
probabilistically based, to extrapolate the change in
condition of the object during a predetermined interval
from the state determined by module 4. Heuristic rules
can also be used to choose the deterministic calculations
that extrapolate from the determined state to the extrap
olated condition. This section 6 is typically imple
mented in a scienti?c calculation programming lan
guage. The cycle of state evaluation 4 and extrapolation
6 in predetermined time increments continues as the
aging of the object is simulated over time. Some of the
variables produced by the extrapolation are used in the
next state determination. The extrapolation produces
data that can be used by other objects, that can be
changed by the user to simulate external condition
changes and that can be output to be displayed to the
user as the simulation progresses. In addition to control
ling the sequence of object simulation shown in FIG.
1a, heuristic rules can also be used to determine the
interaction of all the objects in the system.
The computer system has two basic'levels, a system

level 10 and model levels 12 as illustrated in FIG. 1b.
The system level contains supervisor 14, user control
16, screen display 18, maintenance 20, error check 22,
and data archive 24 modules . The supervisor module 14
controls the execution sequence of the other modules
and initiates execution of the models in the model levels
12. The user control module 16 permits the operator to
select the objects modeled, i.e., the components or sys
terns; the pro?les, i.e. useful service, safety margin, etc.;
and the system parameters, i.e., temperature, pressure,
etc., for analysis and display during a particular run. It
also provides the operator with the ability to start, stop,
pause, save, or restore a particular run. The screen
display module 18 accesses and displays the collected
data and recommendations of the invention from a com
mon database. The maintenance module 20 makes
changes in the model database which simulate compo
nent replacement or repair. The supervisor error check
module 22 monitors the user control module 16, screen
display module 18, the maintenance test and inspection
module 20 and the data archive module for errors. The
supervisor error check module 22 performs the same
functions as other lower level error check modules, as
will be discussed in more detail later, and noti?es the
user module 16 and supervisor 14 when any errors are
detected. The ability to access data archives using mod
ule 24 gives an operator the ?exibility to store result
data for selected objects for a particular run, and re
trieve the information at a later time. Each object model
on each of the model levels 12 contains three object
modules designated controller module 26, error check
module 28 and model module 30. The controller mod
ule 26 determines and controls the processes to be run
on each of the systems, components, or subcomponents.
The error check module 25 is an independent monitor
ing module which monitors and scans the system for
errors and excessive CPU completion times. It passes

5,331,579
5

the acquired error data to the controller module 26 and
the operator. The model module 30 represents the ac
tual system, component, and subcomponent models of
the plant. This module 30 takes input data and performs
deterministic, probabilistic and expert system functions
to provide the various pro?le data and recommenda
trons.
The invention has the capability of switching analysis

from one object to another. Each object has a separate
model module for object evaluation and each system in
the plant is also represented by an object, that is, the
objects represent the system 32 as well as components
34 of the system. Each of the objects relates back to a
higher level object as shown by the connection of com
ponent object 34 to system object 32 and thereon to
plant object 36. The invention uses a standardized mod
ular structure, i.e., the model is divided into a plant
level, a systems level, the systems are divided into com
ponents, and the components are divided into subcom
ponents to allow each part of the plant to be analyzed
separately and as a part of the whole plant. The modular
structure provides the invention with the necessary
?exibility and growth potential to allow the continuous
expansion of the systems and their components through
the addition and replacement of modules. Each object
32, 34 or 36, representing a speci?c component or sys
tem within the plant, also has a standard structure. The
modular structure minimizes the need to recompile,
retest, and recode information about each component or
system.
The information input to the system models includes

plant operating characteristics, preventative mainte
nance schedules, predefined time periods for evaluation,
the present state of the equipment, etc.. The information
is processed by the system to obtain output values of the
life left, the failure probabilities, the useful service, and
the life pro?les of the systems and components. The
invention takes into consideration the increase in the
expected life of a plant, produced by replacing and
repairing parts, when determining the failure probabil
ity of a plant.
The present invention is preferably implemented in a

computer such a Digital Equipment Corporation
(DEC) Microvax using an operating system which al
lows each module in the system to execute as an inde
pendent process such as the DEC VMS operating sys
tem, where the processes are primarily written in a
language such as-FORTRAN which will allow easy
system control. Each model module 30 is written in an
expert system language such as OPSS which will allow
expert rule type determinations to be easily made and
which is designed to allow the expert system to call
FORTRAN routines to obtain deterministic, probabilis
tic and statistical model predictions, thereby allowing
the model module builder to create expert rules in a
language suitable for expert programs and to create
prediction equations in a language suitable for such
equations. During the model initialization process the
supervisor 50, as illustrated in FIG. 2 initiates the plant
object 54. The plant object controller within the plant
object 54 initiates the model module 30 and error check
module 28 in the plant object 54 and then proceeds to
initiate any subobjects, for example system objects 56
and 58, which the plant object 54 depends upon for
input data. These subobjects are generally system ob
jects 56 and 58 however the subobjects can be compo
nent objects. Each subobject such as the system object
56 initiates its own model module and error check mod

H 5

25

30

35

40

45

50

55

65

6
ule and then proceeds to initiate any subobjects, such as
component objects 60 and 62, upon which it depends.
These component objects also initiate their own error
check and model modules as well as any subcomponent
objects 64 and 66. When a lower level object such as
object 64 has been initiated it communicates the status
of this task completion to the higher level object, such
as 62. When all of the objects have been initiated as
indicated by each of the subobjects informing a higher
level object which informs a further higher level object,
the supervisor 50 initiates a simulation cycle. A simula
tion cycle requires that all lower level objects complete
a simulation execution cycle before a higher level object
can complete execution. The higher level object initi
ates the lower level object from a list of objects which
it controls. In this way initiation of the object tree is
controlled from the top down while actual execution is
from the bottom up. To add objects to the system, it is
only necessary to add the new object to the objects list
contained in the parent object. Input data in the form of
component initialization or current state data can be
provided individually to each one of the objects, where
data ?ow is illustrated in FIG. 2 by dashed lines, or the
input data can be stored in a common data pool 68.
Result data produced by an object such as object 64 and
66 is stored in the common data pool 68 where it can be
accessed by any object at any level, thereby providing
data communication between objects. For example, a
subcomponent object may be representing the bearings
in a feedwater pump while the component object repre
sents the pump which includes not only the bearings but
a drive motor component. By designing the system so
that result data is stored in a common data pool 68 new
objects and communication pathways between the new
objects can be easily created.
The routine within the controller module 26 of each

object (32, 34 or 36) which controls initiation of the
object and its subobjects is illustrated in FIG. 3. Once
the initiation process within the object controller 26 is
started 80, it spawns 82 the model module 30, error
check module 28 and subobject modules using a list of
subobjects on which the object depends for data. For
example, the coolant pump object could spawn a cool
ant pump bearing object, a motor winding object and an
impeller object. The spawning process is a conventional
process within the VMS operating system and merely
requires that a message be transmitted to the operating
system requesting that a named process be started. The
names of the processes to be spawned are obtained from
the list of subobjects. To add a subobject to the objects
in a system the name of the subobject only needs to be
added to the list in the parent object. The name of each
process is a unique identi?er which also identi?es the
data storage area for the process where the data storage
area contains initial conditions, the maintenance sched
ule and stores result data. Once the spawning process is
started for all the modules, the initiation routine within
the controller 26 awaits interrupts 84 from the processes
that have been started. When an interrupt occurs, the
process named in the interrupt message is used to access
the list of subobject processes and the process providing
the interrupt is flagged 86 indicating that it is com
pleted. Next the initiation routine determines 88
whether all of the processes are done, by reviewing the
list to see if all subobject initiation ?ags have been set, if
not the process returns to await 84 further interrupts. If
the processes are all initiated, the routine interrupts 90
its parent object by sending an initialization complete

5,331,579
7

message, which includes the name of the process that
has ?nished initialization, to the parent object through
the operating system in a conventional manner. This
interrupt message transmission is followed by the entry
into a wait state 92 in which the controller 26 awaits an
interrupt requesting a simulation cycle. By initiating all
processes as independent processes and placing them in
interruptable wait states, the system will only execute
those processes that are needed and therefore the execu
tion efficiency of the modeling system is improved be
cause all processes are not active at the same time.
The next step in the simulation process is to run the

modeling system based on initial conditions and ex
pected operating conditions for a period of time desig
nated by the user such as forty years which is the typical
life of a power plant. During a run various outputs are
provided to the user which indicate the state of the
components of the plant and any maintenance which is
simulated as being performed on the various compo
nents. During a model run the user can interrupt execu
tion to change the state of various components, such as
indicating complete replacement, so that the effects of
unscheduled maintenance can be determined. At the
end of a run, the user reviews the various graphs and
statistics produced for the various components, such as
the remaining life of the plant or the components or the
risk of plant or component failure. Once this review is
completed, the user can input new initial conditions or
new operating conditions or a new maintenance sched
ule and perform another simulation. In this way, the
user can model various maintenance responses to
changing plant conditions to optimize a maintenance
schedule as well as to enhance the life of the plant. By
allowing the user to change initial conditions, the actual
state of the plant at the time of the simulation can be
incorporated into the model making future projections
as accurate as possible at the time of the simulation.
Periodic simulations, such as once every month, will
allow the user to ?ne tune maintenance and plant life
extension strategies as the plant ages because the initial
condition of the components will re?ect actual compo
nent condition at the monthly simulation times.
At the start 100 of a simulation the supervisor module

14/50, as illustrated in FIG. 4, obtains initial condition
data either from a ?le designated by the user or from
initial conditions keyed in by the user. For example, the
initial condition data for an oil pump could be (100, 23.3,
normal, high, normal, a102, 0, 20000) where, respec
tively, 100 is pressure in pounds per square inch pro
duced by the pump, 23.3 is temperature in degrees C. of
the oil, normal indicates oil flow is in a normal range,
high indicates a high corrosive particulate count in the
oil, normal indicates normal pump speed, a102 is the
model number of the pump, 0 indicates the current time
the pump has been running at the beginning of the simu
lation and 20000 is the maintenance interval for the
pump. Of course the order and speci?cs of the data
provided initially will vary depending on the object
being modeled, however, variables for the current time
and the maintenance interval will always be included.
Once the initial conditions are obtained 102 the process
checks 104 start, stop, pause and other flags and if one
of these ?ags is set, the process executes an appropriate
routine. For example, if the stop flag is detected, the
system will stop and permit a data input routine to be
executed which will allow the user to change the main
tenance data record, thereby interrupting the run to
perform an unscheduled maintenance. For example,

20

25

40

45

65

8
such a conventional routine would ask the user to iden
tify the object of interest, using the object name the
routine would read out the object data in the common
data base 68, allow the user to change the data and
restore the data to the data base 68. Next the supervisor
checks 106 the error check module 22 by examining an
indicator (?ag) in the common data area 68 which is set
by the error check module 22 when a problem has oc
curred. If this ?ag is set the supervisor module 14 stops
execution and thereby transfers control to a display
routine which will provide the user with information
concerning the error detected by the error check mod
ule 22. Next the supervisor increments 108 the time
variable by a predetermined amount. The amount or
time increment depends on the physical characteristics
of objects being simulated, the maintenance periods of
the objects and the desired resolution of the output.
With respect to the physical characteristics of the ob
jects, it is preferable that the time increment be shorter
than the shortest duration of a physical phenomenon of
the objects being simulated. It is also preferable that the
time increment be shorter than the shortest maintenance
interval otherwise maintenance activities could be
skipped. It is also preferable that the time increment be
set such that a ?ne resolution will be obtained so that
the results will be more accurate. However, minimizing
the time increment increases the run time for a simula
tion. Since the simulation can be run off line (i.e. not real
time), turn around is generally not a problem. For
power plants a time increment of 24 hours is preferred.
At this step 108 the total elapsed time is also compared
to the time set for the simulation and, if the elapsed time
is equal to or greater than the set time, the program
stops the simulation. Next the maintenance module 20 is
executed 110 which will update the mode and state
variables of the different objects being modeled in the
common data area 68 to indicate that maintenance has
occurred, if the time of the simulation is coincident with
a scheduled maintenance event. For example, if replace
ment type maintenance is indicated in the maintenance
schedule the remaining life of the component being
replaced is set to 100% in the common data area, how
ever, if component refurbishment is performed the re
maining life may be set at 80%. Execution of the mainte
nance module 20 is accomplished by conventionally
providing an appropriate message to the operating sys~
tern directed to awakening the maintenance module.
The supervisor then waits 112 for an interrupt from the
maintenance module 20 indicating that the maintenance
cycle has been completed. Next the supervisor routine
14/50 runs or starts the highest object in the model
which is the plant object in the example discussed
herein. This'is accomplished by providing a conven
tional message to the operating system specifying the
task to be run. Once again the supervisor waits 116 until
the object indicates via an interrupt that this simulation
cycle has been completed. The process then checks 118
an archive data ?ag to determine whether it is set and,
if so, the archive module 24 is executed 120 followed by
a wait 122 for an interrupt indicating that the results of
this time increment in the simulation cycle have been
stored on an appropriate medium such as a ?oppy disk.
Next the screen display module 18 is executed 124 and
the graphs and statistics on the current state of the simu
lation are provided to the user, after which another wait
state 126 is entered. When the wait state 126 from the
running of the screen display module 18 is ?nished, as
signi?ed by an interrupt from the screen display module

5,331,579
9

18, the supervisor process cycles back to perform an
other time increment of the simulation.
Each object (32, 34 or 36) includes a controller mod

ule simulation control routine such as illustrated in FIG.
5. Each controller module 26 is started 140 by the par
ent process providing a conventional start message to
the operating system. The ?rst step by the controller
module is the check 141 to determine whether the error
check module 28 for the object is executing by examin
ing the status of the error check module 28, continu
ously updated by the system (VMS). Prior or subse
quent to the error check 141, the controller preferably
sets an indicator in the common database 68 that indi
cates that the controller module for this object has
started a simulation cycle. It is also possible for this step
to store the start time of the cycle. By storing an indica
tor indicating the start of a simulation cycle and the
actual start time, the error check module 28 for the
object can determine if the controller is properly exe
cuting. The controller 26 next determines which subob
jects should be run by examining 142 a list of subobjects
from which data is required. This list is preferably an
ordered list since a ?rst subobject may produce data
that is used by a second subobject. This list can indicate
143 and 144 that a subobject should be run for every
time increment, every other time increment or when a
predetermined amount of time has passed since the last
execution of the subobject. This allows the execution of
the subobjects to be tailored to the aging process for the
subobjects. For example, if an object such as a turbine
rotor blade degrades signi?cantly enough in one year to
require a life expectancy determination calculation
while the simulation time increment is one day then the
object for simulating the turbine blade need only be
executed every 365 time increments. As will be dis
cussed later, the user can also limit the objects in a
system that are simulated to a desired subset by ?agging
the objects as not to be executed. For example, if the
system includes the entire nuclear power plant and the
user only wants to simulate the reactor damping system,
only the objects and parent objects related to the reac
tor damping system are executed. Once the list of
subobjects to run is examined and the subobjects are
designated, the process runs 145 the subobject one at a
time by conventionally providing execution command
messages to the operating system allowing processes
that need data from another process to run and ?nish
before the needing process is started. The controller
module 26 then waits 146 for interrupts from the subob
ject indicating that they have completed. When an in
terrupt occurs the process ?ags 147 an object entry in
the subobjects list to indicate the subobject has com
pleted execution. This flagging as complete at step 147
occurs even if the error check module 28 is the module
providing the interrupt. As will be discussed in more
detail later with respect to FIG. 8, the error check
module 28 can provide an interrupt whenever it detects
that an error has occurred, even in a subobject, and set
an error flag which is acted upon by this controller
module (see steps 149 and 150). It is of course possible to
provide a check of the error ?ags immediately after the
return from the wait and stop if errors are detected. The
system then checks 148 to determine whether more
subobjects need to be run and, if so, returns to examine
the list again. Once all the subobject processes are com
pleted, the data necessary for the object model is avail
able in the common database 68. When the subobject
processes are completed, the error ?ags for the sub

20

25

35

40

45

55

65

10
processes are checked 149 and if an error is indicated
the process stops 152. This stop will occur when the
error check module 28 has set an error ?ag even if all
subobject return successfully. If no errors are detected,
the model module 30 for the object is executed 153 by
again providing an execution command to the operating
system designating the model module to be executed.
The system then waits 154 until the model module 30
has executed. When the object model process 30 is
completed, the error ?ags for the process are checked
156 and, if an error is indicated 157, the process stops
152. An interrupt is provided 158 to the parent object
indicating that the object has completed execution. This
step also can include a step of setting an error check
indicator, indicating that the controller 26 has success
fully completed a simulation cycle, and storing a cycle
completion time in the common database 68 for review
by the error check module 28. The interrupt of the
parent is followed by a wait 160 for another execution
cycle in the simulation. If the error check module is not
executing the controller writes 161 error description
data to common storage 68, terminates 162 the model
module 30 and error check module 28 by sending an
execution stop command to the modules 20 and 30 and
terminates the subobject modules in the same way. The
display screen module will retrieve the error data and
produce an appropriate message.
FIG. 6 illustrates the structure and execution of a

model module 30 contained within each object. This
modeling module 30 is preferably written in an expert
system language such as OPS5 with calls to FOR
TRAN routines for performing equation executions.
Appendices A-D have been provided herewith that
provide examples of OPS5 modules for a pump model
module (appendix A) and a pump shaft model module
(appendix B) and FORTRAN routines for performing
calculations for components using component equations
(appendix C) and subcomponents using subcomponent
equations (appendix D) when called by the modules.
Even though the controller routine 26 which starts this
routine is written preferably in FORTRAN, the start of
this routine is handled in the same way by sending a
message to the operating system designating the process
to be executed. The OPS5 language will execute all the
rules in the module at the same time without any dis
tinction in order unless the rules are classified in levels
and a level execution order is speci?ed. Since the pres
ent invention has a preferred order the ?rst section of
OPS5 module includes execution sequence (level) state
ments which establish the preferred execution order.
This order is set forth inherently in the FIG. 6 flow
chart. When the controller module 26 of FIG. 5 starts
170 the model module 30 of FIG. 6 the ?rst step by the
module is to obtain 172 the needed input data and com
mon data for the module 30. For error detection pur
poses, the model module 30 at this point can set a pro
cess started indicator along with storing the start time as
was described with respect to the controller module 26.
Once the housekeeping level rules have completed

?ring, the system ?res maintenance rules to perform any
maintenance on the object which is speci?ed by the
maintenance schedule. For example, the maintenance
rules can review the maintenance schedule in the com
mon database 68 and determine that an inspection dis
covered premature degradation of the oil lubricating a
turbine and thus reduce the useful life by 20% and
change the degradation constants in the degradation
equation to simulate faster degradation of the oil. Ap

5,331,579
11

pendices A and B include examples of maintenance
rules for a pump and a pump shaft. For example, con
sider a pump shaft and the bearing for that shaft. At a
point during a simulation the state of the bearing and
shaft are determined. The states are extrapolated using
the bearing and shaft life equations to be discussed in
more detail later. Assume that the next state determina
tion indicates the bearing is bad and that maintenance is
not scheduled until some time later. As a result, the
bearing will remain bad until it is replaced. The shaft
rules have an input that considers bearing quality, now
bad, and will determine that the wear rate on the shaft
is now high. If the bearing is replaced, the age of the
bearing as set to zero and the condition set to good and
the rules determine that the state of the bearing is good.
During the interval between the bearing going bad and
being replaced the shaft is wearing at an accelerated
rate. When the bearing is replaced the shaft rules will
determine that the shaft wear rate is normal, unless too
much time has passed and the shaft has been declared
bad or other effects which prevent a normal shaft condi
tion are created by other components. It is possible that
the accelerated aging of the shaft will cause the shaft to
go bad before the shaft scheduled maintenance and if
this happens the bad shaft will affect other components
or the entire pump.
The failure of the hearing before the scheduled main

tenance acts as a recommendation that the bearing be
replaced in the immediately preceding scheduled main
tenance outage. In this situation there is always a con
cern about the accuracy of the prediction and the inher
ent recommendation made by the prediction of a failure.
The level of accuracy required in a nuclear power plant
is bound by the time window de?ned by refueling out
ages. This is approximately 1 to 1.5 years. In such a
plant it is preferable that all maintenance be performed
during the scheduled outages versus bring the plant
down for an unscheduled or forced outage due to the
unexpected failure of a system or component or due to
the need to perform preventive or corrective mainte
nance. In such a situation the present invention is re
quired to predict between which outages an object will
likely fail or require maintenance rather than determine
the exact date of failure. The system does attempt to
accurately predict the actual date of failure, however,
the accuracy depends on the accuracy of the object
model and the. accuracy of the data concerning initial
conditions. The determination of when to take action is
left for the user to decide. The present invention will
tell the user the last possible date on which to perform
maintenance to avoid a failure. This date will be before
the failure is actually expected to occur. The user would
normally be expected to perform the recommended
maintenance activity at the outage prior to the pre
dicted failure.
The ?ring of maintenance rules is continuously exe

cuted until all are satis?ed 176 after which state deter
mination rules 178 are ?red. An example of several state
determination rules which not only require input data
directly but data previously produced by a subobject
are illustrated in appendices A and B.
Once all the state determination rules are satis?ed 180

the model module starts or calls 182 FORTRAN equa
tion routines which performs the deterministic, and/or
statistically based, and probabilistic calculations to sim
ulate the changes in the state of the object required for
the current time period. The calling of the FORTRAN
routines is performed by a standard call statement in

20

25

40

55

60

65

12
OPSS such as CALL AGEROUTINE <V17> <V2
7> <V37> which will call an age routine that needs
variables Vl-V3. Of course the routine must be com
piled and linked with the program. The passing of vari
ables down to a FORTRAN routine by an OPSS rou
tine is accomplished using variables. However, passing
variables up to an OPSS routine by a FORTRAN rou
tine requires creating and using working memory ele
ments or variables within the calling routine. Examples
of this are shown in the appendices. An example of
equations which uses not only input data directly pro
vided to the object but also input data provided by the
subobjects to determine the life of an object and the risk
of failure of the object are illustrated in appendices C
and D. Once the simulation of a change in state of the
component for the current time period has occurred the
module ?res 184 recommendation rules which provide
maintenance recommendations to the user. In effect the
model module performs diagnostics to determine if any
of a list of recommendations should be issued. The
maintenance module issues con?rmations of the com
pletion of maintenance activity. In both situations the
text is stored in the common storage 68 and the display
module subsequently accesses and displays the text.
Examples of recommendation rules for a pump and a
shaft are illustrated in the appendices.
Once all the recommendation rules are satis?ed 186

the results are output 188 to common storage 68 fol
lowed by an interrupt being transmitted 190 to the con
troller for the object. The results of a single cycle of the
simulation are used as the initial conditions of the next
cycle. This particularly is applicable to time related
data. However, as the simulation progresses these vari
ables can be modi?ed by the user or other external data.
For example, the time increment can be changed during
a simulation to provide a period of higher or lower
resolution allowing the simulation to skip over less
interesting events and simulate interesting events in
great detail. An example of other data'from external
sources which is not carried from cycle to cycle is main
tenance schedules.
The routine then performs appropriate housekeeping

and clean up duties 182 such as setting variables to
initial values and then waits 194 for an interrupt from
the associated controller. This housekeeping also in
cludes setting a process ?nished indicator and the com
pletion time for analysis by the error check module.
When an interrupt occurs the execution cycle starts
again.
To enhance the modularity of the present invention

the model module 30 is preferably organized in distinct
separate sections which will allow a standard model
module template to be easily updated for any new ob
jects that need to be added to the system. A preferred
arrangement for the standardized model module is illus
trated in FIG. 7. The preferred arrangement includes
initiation and housekeeping and execution sequence
rules at the beginning followed by internal data storage
areas 212 with input routine rules 214. Next, mainte
nance 216 and state determination 218 rules follow,
while equation routine calls 220 follow the state deter
mination rules. Next recommendation rules 222 are
followed by output routines 224. All interrupt handling
and initiation rules are grouped together followed by
cleanup type housekeeping 228. Next come the equation
subroutines 230 which are called by the calls 220.
The rules and equations as discussed above for ob

jects other than a pump and a shaft can be developed by

5,331,579
13

a component engineer of ordinary skill who is familiar
with the object being modeled. As an alternative an
ordinarily skilled knowledge engineer could query the
component engineer and develop the rules and equa
tions. A standardized arrangement such as illustrated in
FIG. 7 will enhance the ability of the present invention
to expand and handle any desired number of objects in
a system being modeled. To further enhance modularity
the common data area 68 is also organized in a modular
way. Preferably each object is provided a ?xed size
initial conditions and operating parameters data storage
area within the common data storage 68. Within the
storage area prede?ned storage areas which have asso
ciated variable names. For example, a storage area for
the useful service remaining for a shaft would be prere
served and given a name such as Shaft-Useful Service.
By scanning the variable names a desired data storage
area for an object can be found. By providing the com
mon data storage area with ?xed size object storage
areas, loading the data into arrays which will increase
operating speed is facilitated.
The error check module 28 in each object is illus

trated in FIG. 8. The goal of the error checking routine
is to determine whether the various modules which
interact with the object and upon which the object
depends are properly executing. During the initial cycle
of the error check routine, that is, after execution has
been started 240 by the routine of FIG. 3, the error
check module 28 schedules 241 timed wake up inter
rupts for interrupts at speci?ed real times. For example,
an interrupt every ten seconds. The process then enters
a wait state 242 waiting for these interrupts.
Once an interrupt occurs the process checks 244 the

controller. This check is performed by checking the
started and ?nished process indicators for the object
controller and determining the elapsed time for the
started controller process. If the time of execution for
the controller module is beyond a predetermined
amount this indicates that the module is stuck in a loop
or that an object process which the controller is waiting
on is stuck. This is an error. Another type of error is a
condition where the controller module has not executed
within a predetermined time from the start of a simula
tion. If an error has occurred 245, the module 28 writes
appropriate error condition description data into com
mon storage 68. The display module 18 will later re
trieve this information and produce a message describ
ing the error On the display screen. Next the error
checker 28 sets 248 the error flag and then interrupts
249 the object control module 26 when interrupted, as
illustrated in FIG. 5, the module 26, will check the error
flag and terminate itself. After interrupting module 26,
the error check module 28 terminates the model and
subobject controllers and itself 253. Next the routine
performs the same sort of check on the model module
30 and if there is an error 256 noti?es the controller in
the manner previously discussed. Next the routine
checks 257 the controllers of the subobjects which are
being controlled by the object controller by accessing
the list of executing processes designated by the object
controller. Once again, if an error is detected 258 thé
controller 26 is noti?ed.
The user control routine 16 allows the user to set

initial conditions, change maintenance schedules, inter
rupt the simulation and perform unscheduled mainte
nance and select which objects are to be simulated in a
run, and the operation of this routine is depicted FIG. 9.
Once this routine is started by the user the user is pro

20

25

30

35

40

45

50

55

60

65

14
vided a display 272 of available options followed by
entry of the routine into a wait state 274 where the
process waits for an option selection. When the inter
rupt is exited an option determination 276 is performed
followed by processing of the option. For example, if
the option selected by the user is to update maintenance
data, the processing of the option would retrieve the
maintenance ?le and allow the user to change the con
tents of the maintenance ?le. If the user selects an op
tion for designating a subset of the objects in the system
to be simulated, the common database 68 is scanned to
determine the names of the objects available from the
tags in the database. The list of objects is provided to
the user and the user marks those for which a simulation
is required. The list must include the_desired target
object and all associated parents up to and including the
supervisor module 14. For example, if the turbine pump
object is the object of simulation interest, it is marked as
one of the objects. The list of objects to be run must also
include the turbine object of which the pump is a subob
ject, the plant object of which the turbine is a subobject
and the supervisor. If the plant object also has as subob
jects the generator, the boiler and the power distribu
tion systems, these systems would not be marked for
execution. Each object examines uses this list as previ
ously discussed with respect to FIG. 5. The objects then
uses this flagged list to decide whether they should
execute as previously mentioned. The user can also be
given the option to select various modes of outputting
the results such as producing displays that show the life
pro?le, safety margin, trip margin, expected life, wear
rate maintenance and elapsed simulation time when for
example simulating components of a nuclear power
plant. Once this option is processed the user is given the
option to select a new display 280 and, if no new dis
plays are selected, any functions selected by the user are
performed. For example, the user could stop an execu
tion, change the maintenance data and request a simula
tion from the original initial conditions. The functions
performed would then be updating of the maintenance
data and initiation of a simulation.
The screen display routine 18 illustrated in FIG. 10

performs conventional display functions using conven
tional virtual display techniques. During the ?rst cycle
of the screen display module, a generic display for the
entire system is created 292 along with virtual object
displays 294. The system also creates graphic shells for
plotting the results and then, based on user input, deter
mines which initial object will be displayed. For exam
ple, the user can specify, during the user control module
16 execution, that only the water chemical make-up
system is to be simulated and that only the life pro?le of
a boron concentration analyzer is to be displayed. From
this determination appropriate windows into the virtual
display are designated 300 and the user is provided with
an appropriate display. The system then enters a wait
state 302 waiting for the supervisor to indicate that a
simulation time increment has been completed. When
an interrupt occurs the system determines 304 whether
the simulation is ?nished, if so the system stops 306. If
the user wishes to display a new object, then the old
windows are deleted 310 followed by the creation of
new windows and plotting 314 of the output result data
for the object windows. If a new object is not desired, a
determination is made as to whether a new pro?le of the
objects is desired and, if so, the windows are again
deleted and new ones created.

5,331,579
15

The maintenance module 20 illustrated in FIG. 11
starts by obtaining 322 the maintenance schedule from
the common database 68. Preferably, the maintenance
schedule for each object is stored in the dedicated stor
age area for the input data and output results for the
object previously mentioned. The schedule is compared
with the current simulated time for each object on the
list. If there is a match 326 for a particular object the
maintenance indicator for that object is set so that the
maintenance rules in the object can perform the appro
priate maintenance. For example, the maintenance indi
cator can indicate complete replacement of the object,
rebuilding or repair or refurbishment of the object and
for each one of these different types of maintenance, a
different improvement in component life expectancy,
reliability, etc. is caused. If all the objects of the mainte
nance schedule have not been compared to the current
time the routine returns for more comparisons. When
all the comparisons have been completed the supervisor
14/50 is interrupted allowing the supervisor to initiate a
new simulation run. Once the supervisor is interrupted
the process waits 334 for an interrupt from the supervi
sor indicating another maintenance cycle is necessary.
The system can provide various types of displays as

illustrated in FIGS. 12 and 13. The display of FIG. 12
shows the pro?le for changes in risk level in a plant
from a situation where no maintenance is performed
and a situation where maintenance is performed three
times on the components of the system. This type of
display will allow the user to very effectively determine
the cost risk ratio associated with various maintenance
plans. FIG. 13 shows the life pro?le, wear rate, ex
pected life and safety margin of for a pump along with
the life left and wear rate of the components which
make up a pump.
The present invention provides the capability to opti

mize plant operations, safety, and performance. It pro
vides the capability to perform analyses of the different
systems and components by varying operating modes
and conditions, safety and trip goals, maintenance and
part quality, and scheduled maintenance, replacement,
test, and inspection intervals. The analysis allows a
prediction about the affect on safety, performance, and
life extension. The invention enables the optimal main
tenance, replacement, test, and inspection intervals for
the various systems within the plant to be determined.
The overall bene?ts of the invention when applied to a
power plant system include reduced forced outages,
improved safety, reduced outage durations, and im
proved planning.

Currently, to change operating conditions during a
simulation the following steps are taken. First a set of
operating conditions that the system will access during
the simulation is created. The simulation is started and
paused at the point in the simulation when a change in
operating conditions is desired. The operating condition
data is then replaced or updated and the simulation is
continued. It is possible to have the databases used dur
ing the simulation to be automatically switched. This
could be accomplished by having an operating condi
tions schedule that is checked at the same time the main
tenance schedule is checked. This schedule could be
used to load in a designated new operating conditions
database.
As previously mentioned, blank stubs are provided in

the system to reserve space in the system for additional
modules. A blank stub has all the basic input/output
variables and declarations necessary to provide the

20

25

30

35

50

55

65

16
minimum processing or calculations necessary to return
any processed data to the calling program in which the
stubs are inserted. For example a system level module
can be created having a model of a pump, piping and
valves. By providing blank stubs in the system level
model the system can be exercised and tested because
the blank stubs provide return valves where the pump,
piping and valve modules will reside. The stubs may
simply accept and return ?xed data, thereby emulating
all processing by and communications to and from the
stubs. For example, a subprocess stub, as represented in
pseudo code, could be:

Sub~Process Valve
Get all data from calling process
Add 1 to all data
Return Data
End Sub-Process Valve

A model stub, as represented in pseudo code could be:

Sub-Process Valve
Get all data from calling process
Pressure = log (T + P)/g
Call (Subroutine A, B, C)
Add 5 to all temperature data
Flow = Flow + % Open
Return Data
End Sub-Process Valve

This stub would calculate a pressure from the variables
that determine pressure in a valve, call a subroutine that
typically calculates life of the valve, add 5° to the tem
perature data for the valve and increase the flow by the
percent the valve is open. The stub would thereby pro
vide varying data for all parameters of a valve.
The many features and advantages of the invention

are apparent from the detailed speci?cation and thus it
is intended by the appended claims to cover all such
features and advantages of the invention which fall
within the true spirit and scope thereof. Further, since
numerous modi?cations and changes will readily occur
to those skilled in the art, it is not desired to limit the
invention to the exact construction and operation illus
trated and described, and accordingly all suitable modi
?cations and equivalents may be resorted to, falling
within the scope of the invention.
What is claimed is:
1. A modeling system, comprising:
a computer, comprising:

supervisory means for performing supervisory
functions of the system;

object means for modeling objects in the system
responsive to a simulation cycle initiated by said
supervisory means, said object means comprising
object models where each object model com
prises modeling means for deterministically,
probabilistically and heuristically modeling the
object and producing object expected life state
information over a simulated passage of future
time including multiple time points of the future
time; and

a display connected to said computer and displaying
the state information.

2. A system as recited in claim 1, further comprising
a common database to which all object models have
access.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description/Claims
	Page 21 - Claims

