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NEURAL NETWORK AND SYSTEM 

STATEMENT AS TO RIGHTS TO. INVENTIONS 
MADE UNDER FEDERALLY SPONSORED 

RESEARCH AND DEVELOPMENT 

The US. Government has a paid-up license in this 
invention and the right in limited circumstances to re 
quire the patent owner to license others on reasonable 
terms as provided for by the terms of Contract No. 
F33615-87-C-l454 awarded by the US Air Force. 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation-in-part of copend 
ing US. patent application Ser. No. 318,038, ?led Mar. 
2, 1989 (Penz and Gately). Copending US. patent appli 
cations Ser. Nos. 032,887, ?led Mar. 31, 1987 (Penz), 
010,619, ?led Feb. 4, 1987 (Frazier), and 057,887, ?led 
June 1, 1987 (Provence) disclose related subject matter. 
All of these cross-referenced applications are assigned 
to the assignee of this application and are hereby incor 
porated by reference. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to computation, and, 

more particularly, to neural network information and 
signal processing. 

2. Description of the Related Art 
Avionics sensor systems typically are confronted 

with the problem of identifying the emitters of various 
electromagnetic signals (i.e., radar pulses) being re 
ceived. The known sensor systems typically include an 
antenna, a preprocessor, a pulse buffer, a digital signal 
processor, and a classi?er. The antenna receives signals 
from various emitters with various frequencies, pulse 
widths, pulse repetition rates, locations, and so forth. 
The antenna output is preprocessed to extract a set of 
features for each received pulse. The set of features is 
processed by standard signal processing methods to 
cluster the pulses from each perceived emitter, and the 
classi?er compares the features of each perceived emit 
ter with pre-stored data to determine its identity. All of 
this analysis would take place in a homing missle which 
would then decide which of the perceived emitters to 
attack. 
However, the known sensor systems have the prob 

lem of extracting the emitter identity information from 
the mass of incoming pulses; the computing power re 
quired for standard digital signal processing in real time 
cannot be effectively put into every homing missle. 
Attempts to understand the functioning of the human 

brain have led to various “neural network” models in 
which large numbers of neurons are interconnected. 
These models roughly presume each neuron exists in 
one of two states (quiescent and ?ring) with the state 
determined by the states of connected nuerons (if 
enough connected neurons are ?ring, then the original 
neuron should be in the ?ring state); and the thrust of 
the models is to perform computations such as pattern 
recognition with the neural networks. The models may 
be simple feedforward layered structures with an input 
layer of neurons, one or more hidden layers of neurons, 
and an output layer of neurons. Other models have 
feedback among the neurons and correspondingly more 
involved behavior. 
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2 
J. Hop?eld, Neural Networks and Physical Systems 

with Emergent Collective Computational Abilities, 79 
Proc. Natl. Acad. Sci. USA. 2554 (1982) describes a 
neural network model with N neurons each of which 
has the value 0 or 1 (corresponding to quiescent and to 
?ring), so the state of the network is then a N-compo 
nent vector V=[V1,V2, . . . , VN] of 0’s and l’s which 

depends upon time. The neuron interconnections are 
described by a matrix Ti‘; de?ning the influence of the 
3'',’ neuron on the ith neuron. The state of the network 
evolves in time as follows: each neuron i has a ?xed 
threshold 0,- and readjusts its state Vi randomly in time 
by setting V1 equal to 0 or 1 depending on whether 

2. Till-VI“ 91' 
1 

is negative or positive. All neurons have the same aver 
age rate of readjustment, and the readjustments de?ne a 
dynamic flow in state space. 
With the assumption that T1‘,- is symmetric, the poten 

tial function - 

can be used to show that the How of the network is to 
local rninima of the potential function. Further, with a 
given set of uncorrelated N-component vectors U1,U2, 
. . . ,U-‘, a Tid- can be de?ned by 

n, = léiég av." - nut/,1) 

and with the thresholds equal to 0, these Uk are the ?xed 
points of the flow and thus stable states of the network. 
This is a type of “outer product storage” of the vectors 
U1,U2, . . . ,US. Such a network can act as a content 

addressable memory as follows: the memories to be 
stored in the network are used to construct the U'‘ and 
hence TU, so the stored memories are ?xed points of the 
?ow. Then a given partial memory is input by using it to 
de?ne the initial state of the network, and the state will 
flow usually to the closest ?xed point/stable state Uk 
which is then the memory recalled upon input of the 
partial memory. 

Further analysis and modi?ed network models ap 
pear in, for example, J. Hop?eld et a1, Computing with 
Neural Circuits: A Model, 233 Science 625 (1986) and J. 
Hop?eld, Neurons with Graded Response Have Collec¢ 
tive Computational Properties like Those of Two-State 
Neurons, 81 Proc. Natl. Acad. Sci. USA. 3088 (1984). 

L. Cooper, A Possible Organization of Animal Mem 
ory and Learning, Proc. Nobel Symp. Coll. Prop. Phys. 
Sys. 252 (Academic, New York 1973) observes that the 
modelling of neural network for animal memory and 
learning has the problem of mapping events in the ani 
mal’s environment (i.e., sensory output) to signal distri 
butions in the animal’s neurons with the fundamental 
property of preserving closeness or separateness (in 
some sense not yet completely de?ned) of the events. 
That is, with a vector representation of the neural net 
work states, two events as similar as a white cat and a 
gray cat should map into vectors which are close to 
parallel while two events as different as the sound of a 
bell and the sight of food should map into vectors that 
are close to orthogonal. Note that standard analysis, 
such as described in Gonzalez and Wintz, Digital Image 
Processing (Addison-Wesley 1977), does not use neural 
network computation and does not have this problem; 
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rather, the standard analysis attempts to extract features 
and categorize by serial number crunching. 

J. Anderson, Cognitive Capabilities of a Parallel Sys 
tem, NATO Advanced Research Workshop (Mar. 3, 
1985) describes the Brain State in a Box (BSB) neural 
network model which includes outer-product storage, 
Widrow-Hoff learning, and a ramped-threshold recall 
algorithm. That is, the matrix of interconnection 
strengths, TM, is modi?ed to learn a new vector V] by 

"l 2 

where 1] is a learning constant and N is number of neu 
rons. The learning constant is roughly the inverse of the 
number of times the matrix must be trained on a given 
vector before it fully learns the vector. The smaller the 
learning constant, the ?ner the resolution of the average 
direction for a learned state but the more times the input 
vectors must be trained. The learning procedure satu 
rates when ATM is close to zero, which implies that the 
vector is close to being an eigenvector of the matrix 
with an eigenvalue near 1. 

Recall of a learned (stored) vector given an input 
vector U; is by the following iterative process that con 
verges towards an eigenvector: 

E 
lékéN 

where the “Limit” function clamps the values in the 
range from —1 to l. The constants y and ,8 measure the 
feedback and signal decay in the algorithm. This syn 
chronous recall algorithm replaces the dynamic ?ow of 
the Hop?eld model. The usual applications of the BSB 
neural network such as data bases with words and let 
ters encoded as their ASCII representations require 
binary neurons as in the ?rst Hop?eld model. 

SUMMARY OF THE INVENTION 

The present invention provides analog behavior in a 
neural network to learn either binary or analog vectors 
and recall vectors that include information regarding 
the clustering of the learned vectors. Further, for multi 
ple feature signal processing the features are concate 
nated to form vectors for learning but the learning is 
limited to avoid saturation. Preferred embodiments 
include use of such neural networks in avionics sensor 
systems wherein binary data learned by the network has 
some of its statistical properties revealed by the analog 
aspects of the recalled vectors. Preferred embodiments 
also use such neural networks for look-up table type 
information storage for emitter identi?cation. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

The drawings are schematic for clarity. 
FIG. 1 illustrates in block form a ?rst preferred em 

bodiment sensor system; 
FIG. 2 shows encoding for the ?rst preferred em 

bodiment; 
FIG. 3 shows encoded data for the ?rst preferred 

embodiment; 
FIGS. 4a-b illustrates hardware usable in the ?rst 

preferred embodiment; 
FIGS. 5-6 show learned data and recall data for the 

?rst preferred embodiment; 
FIGS. 7a-b show recall data; 
FIG. 8 illustrates analog input data; 
FIGS. 9a-b illustrate analog recall; 
FIG. 10 illustrates in block form a second preferred 

embodiment sensor system; 
FIG. 11 is a flow chart for the second preferred em 

bodiment clustering; 
FIGS. 12a-c illustrate clustering with the second 

preferred embodiment; and 
FIGS. 13a-b illustrate encoding for a third preferred 

embodiment. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

The known radar sensor systems typically include an 
antenna, a preprocessor, a pulse buffer, a digital signal 
processor, and a classi?er. The antenna receives radar 
signals from various emitters with various frequencies, 
pulse widths, pulse repetition rates, locations, and so 
forth. The antenna output is preprocessed to extract a 
set of features (frequency of the pulse, pulse width, 
signal-to-noise ratio for the pulse, and azimuthal and 
elevational angles towards the emitter) and time of 
arrival for each received radar pulse and periodically 
store a table of such features in a buffer. The stored set 
of features is processed by standard signal processing 
methods to cluster the pulses from each perceived emit 
ter, and the classi?er compares the features of each 
perceived emitter with pre-stored data to determine its 
identity. All of this analysis would take place in a hom 
ing missle which would then decide which of the per 
ceived emitters to attack. 
FIG. 1 illustrates, in schematic block form, a ?rst 

preferred embodiment radar sensor system 100 and 
includes antenna 102, preprocessor for feature extrac 
tion 104, encoder 106, neural network 108, and classi?er 
110. Antenna 102 and feature extractor 104 are the same 
as in the known systems. Antenna 102 receives radar 
pulses from various radar emitters 122, 124, 126, . . . , 
and the pulses are analyzed as received by feature ex 
tractor 104 according to the direction of the pulse (azi 
muth and elevation angles), the signal-to-noise ratio, the 
frequency, and the pulse width to produce a data stream 
such as in the following table: 

Pulse Azimuth Elevation Sig/Noise Freq Pulse Width Time of 
number (deg) (deg) (dB) (MHz) (usec) arrival 

l 21 —— 20 — 109 9066 2.186 1 

2 34 - 35 —98 9437 1.489 12 
3 — 12 27 —81 9214 0.399 20 
4 —6 —34 —85 10054 0.421 53 
5 —26 0 —86 9210 0.397 58 
6 23 — l7 — 108 9030 2.191 75 

7 16 —l6 —97 9342 1.399 97 
8 21 —22 —108 9015 2.195 112 
9 —25 —30 —83 9023 0.416 117 
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—continued 

Pulse Azimuth Elevation Sig/Noise Freq Pulse Width Time of 
number (deg) (deg) (dB) (MHz) (psec) arrival 

10 19 —21 —109 0932 2.195 149 
ll 8 —29 —83 9805 7.156 164 
12 20 —17 —109 9018 2.21 186 
13 20 —19 —96 9335 1.402 213 
14 23 —21 — 108 9041 2.207 223 

15 32 —30 —98 9435 1.375 251 
16 24 —21 —108 9051 2.21 260 
17 22 —20 —109 9011 2.194 297 
18 19 —17 —97 9345 1.384 330 
19 25 —20 - 109 8997 2.185 334 

20 23 —19 —109 9049 2.215 371 

The data stream is temporarily stored in a pulse 
buffer. Combat conditions may be expected to yield an 
output from extractor 104 of 300 table entries during a 
10 millisecond interval; at the end of each 10 millisec 
ond interval the pulse buffer is unloaded. The data is 
encoded by encoder 106 to be compatible with binary 
neurons in neural network 108, although neural net 
work 108 has analog neurons. In particular, each neuron 
of neural network 108 may take on real number values 
between ---1 and l but the encoder 106 only produces 
outputs of —l and l. Neural network 108 has 400 neu 
rons, and the neurons are grouped with 50 neurons for 
azimuth, 50 neurons for elevation, 50 neurons for signal 
to-noise, 150 neurons for frequency, and 100 neurons 
for pulse width. Thus a state of neural network 108 is a 
400-component vector of real numbers between —1 and 
l with the ?rst 50 components relating to the azimuth, 
the second 50 relating to the elevation, the third 50 
relating to the signal-to-noise ratio, the next 150 relating 
to frequency, and the last 100 relating to the pulse 
width. 
Encoder 106 uses a closeness code, its encoding 

method is illustrated in FIG. 2 for the case of encoding 
the azimuth data in degrees (ranging from —35 to +35 
in 2 degree intervals) to network 108 compatible input 
vectors of — l’s and l’s. FIG. 2 shows that a number is 
encoded by the position of a block of ?ve +1’s in the 
otherwise all —1 components of the state vector. The 
other data is similarly encoded, except that the numeri 
cal interval corresponding to the next neuron depends 
upon the spread of the data. For example, the frequency 
data (expressed in MHz) has a spread of about 1100, so 
the 150 neurons could (with a block of 22 + l’s for the 
position indicator) represent 128 numbers which trans 
lates to an interval of about 9 MHz. The frequency data 
is encoded with the position of a block of twenty-two 
+ l’s rather than the block of ?ve + l’s of the other data 
because the frequency of an emitter may be varied to 
deter detection, and overlap of the blocks of + l’s for 
different vectors corresponding to the same emitter is 
required for network 108 to cluster the data to identify 
the emitters. This is explained in more detail in connec 
tion with the operation of network 108. Two vectors 
are close in Hamming distance if and only if the two sets 
of pulse feature numbers are close. 
For example, a 400-component vector [-1 (18), +1 

(5), —1 (53), +1 (5), —1(55), +1 (5), —1 (30), +1 (22), 
—l (110), +1 (5), —l (42)] would represent a pulse 
with azimuthal angle of 0 degrees, elevational angle of 
0 degrees, a signal-to-noise ratio of —95 dB, a center 
frequency of 9500 MHz, and a pulse width of 2 usec. 
This vector is more conveniently represented graphi 
cally as shown in FIG. 3. 
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FIG. 4a schematically illustrates a six-neuron neural 
network fabricated from standard electronic compo 
nents. The network, generally denoted by the reference 
numeral 200, includes rows and columns of wires inter 
connected by an array of transconductances Ti‘,- 202, the 
horizontal wires connect to op amps 206 and threshold 
linear array 204 and switch bank B. Threshold linear 
array 204 has a transfer function as shown shown in 
FIG. 4b and essentially just limits the neuron states to 
the range —1 to l. Neuron states correspond to voltages 
on the vertical wires and the connecting righthand 
portions of the horizontal wires. Switch bank A (with 
switch bank B open) is used to input the initial network 
state, and the buffers 206 may incorporate the synchro 
nous timing. Network 108 could be a 400 neuron ver 
sion of network 200. 
The operation of network 108 proceeds as follows: 
A sequence of emitter pulse data (such as in the Table 

above) of perhaps 300 pulses is encoded as a sequence of 
300 400-component vectors with binary components 
(—1 or 1) and each vector is learned by network 108 
using the Widrow-Hoff learning rule with a learning 
rate of 0.035. That is, the matrix of interconnection 
strengths, TM, is modi?ed to learn a new vector V] by 

where n=0.035 is the learning rate and N=40O is num 
ber of neurons. Each vector is learned four times. Note 
that if a vector Wj is repeatedly learned, then the inter 
connections tend to saturate (ATM-+0) and thus W1 
approximates an eigenvector of TM with eigenvalue 2» 
approximately equal to 1. That is, for ATM-:0 the term 
in the square brackets also approximates 0 for each i, 
which implies that for each i 

lélféN TLkVk : V.- = XVI 

with A: 1. Of course, only an approximation to an ei 
genvector is expected because only a ?nite number of 
learnings occur, the thresholding limits the neuron val 
ues, and so forth. 
Due to the dynamics of the Widrow-Hoff learning 

rule, similar input vectors merge to form a single eigen 
vector. These eignevectors become averages of the 
pulse vector information that contribute to them. Be 
cause of the normalization process of the learning rule, 
the stable states of the network have non-binary com 
ponents-essentially becoming histograms of the con 
tributing vectors. 
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After the 300 vectors are learned, they are put into 
clusters (which presumably correspond to the various 
radar emitters which have emitted the original pulses 
received by antenna 102) as follows: the ?rst vector is‘ 
input as the initial condition (U,(0)=Vj) for network 
108 to recall a vector by the following iterative process 
that converges towards an eigenvector: 

where the “Limit” function constrains the values in the 
range from —1 to l and corresponds to the transfer 
function of FIG. 4b. The constants )1 and [3 measure the 
positive/ negative feedback in the algorithm and are 
taken to be 0.8 and 0.4, respectively. Note that for two 
eigenvectors Wj, Xj of T,;,- with eigenvalues A, u, respec 
tively, with Azl (e.g., Wj has been well learned) and 
nzO (e.g., X; has been poorly learned), the recall algo 
rithm initialized at UJ(0)= W}-+Xj will yield 

and thus the coef?cient of Wj grows with increasing n 
and the coef?cient of Xj shrinks to 0 with increasing 11. 
So roughly the well learned eigenvector will be re 
called and the poorly learned eigenvector will lost. 

This ?rst recalled vector is taken to be the ?rst cluster 
vector, A, which presumably corresponds to one of the 
emitters 122, 124, 126, . . . 

The second vector from the 300 vectors is then input 
as the initial condition to recall a second vector from 
network 108, and this second recalled vector is com 
pared to A by taking the dot product with A. If the dot 
product divided by the products of the vector lengths is 
greater than 0.9, then the second vector is considered to 
also correspond to the cluster with A, and the process 
continues to the third vector from the 300 vectors. 
Contrarily, if the second recalled vector has a dot prod 
uct with A divided by the product of the second re 
called vector length and the length of A is less than 0.9, 
then the second recalled vector is taken to be the second 
cluster vector, B. Note that the number of clusters is 
expected to be insensitive to the dot product cutoff for 
a cutoff between 0.9 and 0.99, but if 0.9 is replaced with 
a smaller number, then likely fewer clusters will be 
found. The examplar vector for each cluster will be the 
initial recalled vector after several iterations of the re 
call procedure. 

In a similar manner, each of the vectors from the 300 
vectors is input as the initial condition to recall a vector 
from network 108, and the recalled vector is compared 
to the previously determined cluster vectors A, B, . . . to 
decide whether a new cluster vector has been found or 
whether the recalled vector correpsonds to one of the 
previously found cluster vectors. 

This is illustrated in FIGS. 5 and 6 which show the 
input pulses (out of time order) and the corresponding 
recalled results. The recalled vectors are the eigenvec 
tors of the similar, learned vectors (note that all of the 
recalled vectors look the same and are approximations 
to a common eigenvector). The nonbinary aspect of the 
recalled vector is a measure of the variation (noise) of 
the input data. Thus the cluster vectors A, B, . . . contain 
information in their shapes with regard to the variation 
of the original data. This information is a statistical 
summary of the orginal data that has been generated 
without any presumption as to the probability distribu 
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8 
tion of the original data as is typically done with stan 
dard digital signal processing in the known methods. 
Indeed, binary vectors were learned and the resulting 
cluster vectors recalled were an analogized version of 
binary vectors with input variation information deter 
mining the analog aspects. This shows why the fre 
quency data was encoded with a block of twenty-two 
+ l’s to insure overlap of all of the blocks for an emitter 
despite the variation in pulse frequencies by that emit 
ter. 
Once the vectors are clustered, then the pulse repeti 

tion rate can be computed from the time of arrival data 
in the pulse buffer but which was not encoded in the 
vectors. The pulse repetition rate information can then 
be encoded and concatenated with the cluster vectors 
or handled separately, although this is optional. The 
cluster vectors A, B, . . . are then compared to stored 

information on known radar emitters by classi?er 110 to 
identify the emitters corresponding to the clusters. Of 
course, the extrinsic information (azimuthal and eleva 
tion angles and signal-to-noise ratios) relates to the loca 
tion of an emitter and the intrinsic information (fre 
quency, pulse width, and pulse repetition rate) relate to 
the identity of an emitter, so only the intrinsic informa 
tion portion of a cluster vector is used for comparison 
with known emitter types. The identities of the emitters 
are then used to determine subsequent actions. Note 
that the use of multiple features concatenated together 
in the encoded vectors together with a low precision for 
each feature (learning only a fews times for each en 
coded vector) allows an effective extraction of features 
including some statistical information. 

Classi?er 110 includes a neural network that has al 
ready learned the intrinsic information On known emit 
ter types, and thus already has approximate eigenvec 
tors with shapes similar to those of the intrinsic informa 
tion portion of the cluster vectors. The intrinsic infor 
mation for an emitter may contain analog values. For 
example, an emitter may be known to have a high varia 
tion in its frequency. Thus the vector trained for this 
emitter would have a large, Gaussian distribution for 
the frequency (FIG. 7a). As another example of the 
storage of analog data, an emitter may have two pulse 
widths. Instead of storing them as two separate entries 
in the classi?er network, a hybrid vector, containing the 
analog histogram of the data, can be stored (FIG. 7b). 
Classi?er 110 identi?es the emitter type corresponding 
to each of the cluster vectors by successively inputting 
each cluster vector and recalling an emitter-type vector 
by the same recall algorithm that converges towards an 
eigenvector: 

0,0 + 1) = Limit [WE HkUkU) + Bum] 

where again the “Limit” function constrains the values 
to the range from —l to l and corresponds to the trans 
fer function of FIG. 3b. The constants )1 and B are taken 
to be 0.73 and 0.3, respectively, and the iteration is 
performed ten times. Note that the length of the itera 
tion vectors is not much different from that of the input 
because 0.73 +0.3 is close to 1.0, so the neurons are not 
pushed into saturation and the analog shape aspects are 
recoverable. 
The preferred embodiment has the capacity to in 

clude analog data from the feature extractor 104 of 
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FIG. 1; such analog data may be a frequency spectrum 
for the pulses being detected. More explicitly, feature 
extractor 104 may have the capability to provide an 
entire frequency spectrum estimate for a received pulse 
rather than just the center frequency. F IG. 8 illustrates 
a typical spectrum. This spectral information could be 
reduced to statistics such as mean, variance, number of 
nodes, skewness, kurtosis, and relative sidelobe size, and 
encoded in the manner of encoding the azimuth, eleva 
tion, and pulse width. But the entire spectrum can also 
be normalized to fall between —1 and +1 and directly 
encoded: if feature extractor 104 yields a spectrum by a 
sampling of 60 frequencies (roughly as illustrated in 
FIG. 11), then 60 neurons are used for this feature and 
60 components of each input vector will have values 
anywhere between ---1 and +1 and will just equal the 
normalized spectrum values. In this manner all of the 
information in the spectrum can be used. 

Learning of directly encoded features proceeds just 
as for closeness encoded features. The recall requires 
7+8 to be close to l to preserve the analog shape and 
avoid saturation to --l and +1 of the recalled vector 
components. The recall of directly encoded features is 
complicated if the feature also varies, because the learn 
ing effectively averages input vectors and so the analog 
portion of the recalled vector is a mixture of both the 
variation and the input shapes. However, if an emitter 
uses the same spectrum and just varies the center fre 
quency, then the spectrum feature is nonvarying. Simi 
larly, if an emitter switches between a small number of 
spectra, then these spectra may be learned and recalled 
as distinct, and the classi?er of the cluster vectors 
would recognize them as indicating the same emitter. 
For example, FIG. 9a shows three analog input vec 

tors (using 400 neurons) having sine wave shapes with 
frequencies 3, 6, and 9 that were learned and then each 
input vector was used as the initial condition “input” for 
a recall with the recalled vector shown as “output”. 
The recall had 'y=0.73, B=0.3, and used ten iterations. 
The recall preserved the shapes as shown. 
FIG. 9b shows the same neural network as FIG. 9a 

but with a mixed “input” consisting of the trigonomet 
ric sum of one of the three learned sine waves plus a sine 
wave of frequency 4; the recall “output” is just the 
learned sine wave without any frequency 4 contamina 
tion. Thus analog vectors even in the face of mixed 
analog input can be recalled. 
The second preferred embodiment system and 

method apply to the same sort of problems as the ?rst 
preferred embodiment and will be described in terms of 
the same data. The second preferred embodiment fol 
lows the ?rst preferred embodiment with regard to the 
preprocessing of antenna output, the storing of the ex 
tracted features in a buffer, the periodical unloading of 
the buffer and encoding by closeness code the data for 
neural network compatibility (400-component binary 
vectors with component values of —1 or +1), and the 
learning of each input vector by the neural network 
using the Widrow-Hoff learning rule. The second pre 
ferred embodiment uses a learning rate of 1p=4 with 
each input vector being learned two times. 
The second preferred embodiment is illustrated in 

block diagram in FIG. 10 and clusters the input vectors 
as illustrated in FIG. 11. The second preferred embodi 
ment includes antenna 202, feature extractor 204, en 
coder 206, neural network 208, and classi?er 210 which 
are analogous to those of the first preferred embodiment 
for detecting emitters 222, 224, and 226. The second 
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10 
preferred embodiment also has tracker 212 for listing 
cluster vectors as they are generated and for prescreen 
ing input vectors from encoder 206 prior to learning by 
neural network 208. This prescreening picks out input 
vectors that correspond to any cluster vector in tracker 
212 and thereby avoids extraneous learning by neural 
network 208. This generates a list of cluster vectors 
(together with feature spreads) in tracker 212 and a 
clustering of the input vectors into groups with all of 
the vectors in a group corresponding to a single cluster 
vector. Once the input vectors have been clustered, 
then the ?rst preferred embodiment can again be fol 
lowed to determine pulse repetition rate, compare clus 
ter vectors (optionally including pulse repetition rate 
information) to known emitters, and so forth. Also, the 
directly encoded analog portions (if any) of input vec 
tors could be included, but this will slow down the 
prescreening by tracker 212. 

In more detail, this second preferred embodiment 
clustering proceeds as follows. 

(a) The ?rst input vector, V1, is used as the initial 
condition (U ](0)=Vj1) for a recall from the neural net 
work (which has learned all the input vectors) using ten 
iterations in 

U,(t + 1) = Limit [7 % THU/((1) + BUN) :1 

As explained supra the “Limit” function constrains the 
values to the range from ---1 to 1, and 'y and B are 
constants which set the positive/negative feedback in 
the algorithm and are taken to be 0.8 and 0.4, respec 
tively. This ?rst recalled vector U1 will typically look 
like the vector illustrated in FIG. 12a. The features with 
variation in values among related input vectors (such as 
frqeuency variation by an emitter) lead to the analog 
(nonbinary) aspects of the recalled vector. In particular, 
each analog portion of U1 has a zero-to-zero part of 
width w and a spread s with the width measured at 
neuron value zero (half maximum) and the spread mea 
sured as the larger of the two ramp widths, s1 and 52, 
between --1 and +1 as illustrated in FIG. 12a. 

(b) Then Ul is used to de?ne a ?rst cluster vector, A, 
by copying each all-binary feature portion of U1 and by 
using the zero-to-zero part of each analog feature por 
tion of U1 in binary form. This is illustrated in FIG. 12b 
and mathematically amounts to mapping U1 to A by 
replacing a component Ujl of U1 with a +1 if UjléO 
and replacing the component Ujl with a —1 if Ujl <0. 
The cluster vector A together with the spread(s) s of 
U1 are- stored in a local buffer. 

(c) Next, the second input vector, say V2, is com 
pared to the cluster vector A feature by feature, and if 
each difference (Hamming distance) is less than 110% 
of the corresponding s for the feature, then V2 is taken 
to correspond to the cluster vector A. Note that if the 
analog portion of U1 is roughly an averaging of blocks 
in varying positions, then the extreme of the analog 
portion indicates the maximum variation from the mean 
position, and that this, by an expected rough symmetry 
of the analog portion about zero neuron values, should 
be about 5/2. But if a block is offset by s/Z, then the 
Hamming distance is about 5 since both ends of the 
block are offset. The 110% is to include a 10% safety 
margin. 
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For a feature encoded with a block of ?ve +1’s (such 
as the azimuth data) and a ?rst recalled vector Ul also 
with a block of + l’s for this feature, the corresponding 
sis zero because there is no spread, so the cluster vector 
A will have the same block of +1’s and an input vector 
Vi will correspond to A only if the blocks of + l’s ex 
actly match for this feature. Contrarily, for a feature 
encoded with a block of twenty-two 1+’s (such as 
frequency), the ?rst recalled vector may have a zero-to 
zero width w of twenty-three and a spread s of thirteen 
(s1: 12, s2= 13), so the second input vector V2 will 
correspond to the cluster vector A only if overlap of the 
block of twenty-two + l’s in V2 on the block of twenty 
three + l’s in A is at least sixteen (so the offsets at the 
two ends are are six and seven which add to thirteen 
which is less than 110% of s). FIG. 12c shows the over 
lap for V2 corresponding to A: all of the ?ve + l’s 
blocks exactly match and the twenty-two/twenty-three 
blocks have an overlap of nineteen. 

(d) (i) If V2 does correspond to A, then step (c) is 
repeated with the third input vector V3. in place of V2. 
If V3 also corresponds to A, then go to V4; contrarily, 
if V3 does not correspond to A, then go to (ii) with V3 
in place of V2. (ii) If V2 does not correspond to A, then 
step (a) is repeated with V2 used in place of V1 as the 
initial condition for a recall to yield U2. Then U2 de?nes 
a second cluster vector B as in step (b) together with 
spread(s) for each feature. The next input vector V3 is 
?rst compared to A and B and if it corresponds to nei 
ther, then go to (ii) with V3 in place of V2 and A and B 
in place of A. 

(e) Continue to the remaining input vectors. 
Thus the clustering method differs from the ?rst 

preferred embodiment by essentially cleaning up the 
analog portions of a recalled vector to have a binary 
cluster vector while using the size of the analog log 
portion to set the tolerance for comparisons of the input 
vectors to the cluster vector. The second preferred 
embodiment also prescreens the input vectors by com 
parison to the cluster vectors found so far rather than 
using each input vector as the initial condition for a 
recall; this saves on computation in that a Hamming 
distance comparison of binary vectors is used in place of 
a ten iteration recall. 
Of course, the clustering method may be modi?ed in 

many ways such as a cluster vector could be de?ned 
from a recalled vector using a —1-to-—l width (essen 
tially w+s) block of +1’s with a comparison tolerance 
of s, a + l-to-+l width (essentially w—s) block with a 
comparison tolerance of s, or intermediate size blocks; 
the comparison tolerance may be 110% s, s, 125% s, a 
single tolerance for all of the analog portions (when the 
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recalled vector has more than one analog portion) to- _ 
gether could be used, and so forth. 

Alternatively, the cluster vector may be taken to be 
the recalled vector (as in the ?rst preferred embodi 
ment), but the comparison tolerance may be determined 
by the analog spread. In this case the comparison is 
between a binary input vector and a (possibly) analog 
cluster vector, so the comparison should be a sort of 
integration and the tolerance may be various function of 
the analog spread such as the total area. But this will 
slow down the comparison. 
A third preferred embodiment uses thermometer 

encoding rather than closeness encoding for converting 
the preprocessed data to neural network compatible 
vectors. FIG. 13a illustrates thermometer encoding of 
the same data that was closeness encoded in FIG. 3. 
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Thermometer encoding uses the size of a block of + l’s 
to represent a number rather than the position of a set 
size block as in the closeness encoding of the ?rst two 
preferred embodiments. Of course, each feature has a 
corresponding set of neurons and vector components, 
so the blocks of + l’s start at the set boundaries. 
Thermometer encoding has the advantage that block 

size need not be guessed because variable or noisy data 
just spreads out the block rather than move a ?xed-size 
block to where there may be no overlap with other 
?xed-size blocks for the same feature. With thermome 
ter encoding the first two preferred embodiments meth 
ods of learning the input vectors, recalling vectors, 
de?ning cluster vectors, and clustering the input vec 
tors can be performed in a manner analogous to those 
described for closeness encoding. Indeed, the Widrow 
Hoff learning and BSB recall formulas can be used 
without change. 
For example, a recalled vector with thermometer 

encoding will show analog feature portions correspond 
ing to varying or noisy data in the same manner as 
closeness encoded recalled vectors having suf?cient 
block-size. FIG. 13b illustrates a typical thermometer 
coded recalled vector where the frequency feature 
(components 151-300) has variability for the corre 
sponding emitter, but the other features do not. 

Following the ?rst preferred embodiment, each ther 
mometer-coded input vector is learned by the neural 
network, then each input vector is used as initial condi 
tion to recall a cluster vector (similar to that illustrated 
in FIG. 13b) or a vector corresponds to a previously 
recalled cluster vector. A vector is taken to correspond 
to a second vector if the dot product divided by the 
vector lengths is greater than a preselected threshold, 
0.9. This generates the clustering for thermometer 
coded vectors just as in the ?rst preferred embodiment. 

Following the second preferred embodiment, each 
thermometer-coded input vector is learned by the neu 
ral network, then the ?rst input vector is used as initial 
condition to recall a ?rst recalled vector (such as illus 
trated in FIG. 13b) and the ?rst recalled vector de?nes 
a ?rst cluster vector by replacing each analog portion 
with a block of + l’s of width equal to the zero-to-zero 
width of the analog portion (w in FIG. 13b). The analog 
portions also each de?ne a spread (s in FIG. 13b) which 
is used for determination of vector correspondence as in 
the second preferred embodiment. But note that a vec 
tor corresponds to a cluster vector if the Hamming 
distance between the each feature portion of the two 
vectors is less than half of the spread multiplied by 
whatever safety margin being used because the ther 
mometer-coded blocks all begin at the same component 
and the offset is only on one end. 

MODIFICATIONS AND ADVANTAGES 
Various modi?cations of the preferred embodiment 

encoders and methods may be made while retaining the 
aspects of analog treatment of binary neural network 
data for extraction of statistical information and of ana 
log performance of neural networks, and the use of 
many low precision concatenated features to form the 
network vectors. 

For example, other types of information and signals 
may be processed, a neural network may be used for the 
initial clustering and standard digital signal processing 
for the classi?cation, a neural network may be used for 
the classi?cation with standard signal processing for the 
clustering, after a ?rst clustering additional information 
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may be determined (e.g., pulse repetition rate) and con 
catenated onto the vectors and other information de 
leted from the vectors (e.g., extrinsic), the number of 
neurons in the network can be varied, the encoding by 
closeness code may be with different length blocks or 
even with the neurons corresponding to the block per 
muted (so the representation of FIG. 3 would have the 
blocks split apart and shuf?ed), the thermometer code 
encoding also may have the vector components shuf 
fled, but the number of analog components will remain 
the same and can be used to measure spread for either 
encoding, the encoding may have levels of precision 
such as a block for a more signi?cant portion of a num 
ber and another block for a less signi?cant portion of 
the number, the recall parameters may be varied, the 
learning constant and the number of learning presenta 
tions may be varied, the number of recall steps may be 
varied, . . . 

What is claimed is: 
1. An information processor, comprising: 
(a) an encoder, said encoder encoding input informa 

tion at least partially into a position type code for 
mat; and 

(b) a clustering neural network providing an output 
therefrom, said clustering network having an input 
receiving said output of said encoder and said out 
put of said clustering network, said clustering neu 
ral network clustering said input thereto with thre 
sholded analog neurons in conjunction with a 
learning rule and a recall rule to preserve analog 
aspects. 

2. The processor of claim 1, further comprising: 
(a) a classifying neural network having stored infor 
mation in a format of vectors recalled from said 
clustering network using said recall rule, said clas 
sifying network comparing said stored information 
recalled from said clustering network with other 
information stored therein with a second recall 
rule. 

3. The processor of claim 1, further comprising: 
(a) a tracker receiving the output of said encoder and 

recalled vectors from said neural network and 
forming cluster vectors in response thereto with 
correspondence information from said recalled 
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vectors to prohibit recall of the portion of said 
output of said encoder corresponding to a previ 
ously formed one of said cluster vectors; and 

(b) a classi?er having stored information therein pro 
viding an output indicative of the correspondence 
between said stored information and said cluster 
vectors. 

4. The processor of claim 1, wherein: 
(a) said learning rule is a Widrow-Hoff learning; and 
(b) said recall rule is a BSB-type recall rule. 
5. A method of information processing, comprising 

the steps of: 
(a) encoding said information into thermometer code 

format; 
(b) learning said encoded information with a thre 

sholded analog neural network; 
(c) recalling at least some of said information from 

said neural network; 
(d) recoding said recalled information; 
(e) comparing said encoded information with said 

recoded recalled information with noncomparable 
encoded leading to further recall; and 

(t) comparing said recoded recalled information with 
stored information. 

6. The method of claim 5, wherein; 
(a) said stored information is stored in a second thre 

sholded analog neural network. 
7. The method of claim 5, comprising the further 

steps of: 
(a) deleting a portion of each of said recalled versions; 
and 

(b) adding further information to each of said recalled 
versions. 

8. A method of processing multiple-feature informa 
tion, comprising the steps of: 

(a) encoding information by concatenated thermome 
ter codes of features of said information; 

(b) learning without saturation said encoded informa 
tion in a thresholded analog neural network; and 

(c) inputting said encoded information into said net 
work and recalling processed versions of said en 
coded information. 

* * * * * 
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