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A method for analyzing a sample of Wafers includes iden 
tifying F failure metrics applicable to at least one pattern on 
each Wafer Within the sample. Z spatial and/ or reticle Zones 
are identi?ed on each Wafer, Where Z and F are integers. 
Values are provided for each failure metric, for each Zone on 
each Wafer. A point is de?ned for each respective Wafer in 
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_ an N-dimensional space, Where N=F*Z, and each point has 
(21) Appl' NO" 10/596’960 coordinates corresponding to values of the F failure metrics 

(22) PCT Filed: Dec_ 31, 2003 in each of the Zones of the corresponding Wafer. The sample 
of Wafers is partitioned into a plurality of clusters, so that the 

(86) PCT NO; PCT/Us03/41668 Wafers Within each clusters are close to each other in the 
N-dimensional space. A plurality of clusters is thus identi 

§ 371(c)(1), ?ed from the sample of Wafers so that Within each individual 
(2), (4) Date; Jul, 16, 2007 cluster, the Wafers have similar defects to each other. 
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METHOD AND SYSTEM FOR FAILURE SIGNAL 
DETENTION ANALYSIS 

FIELD OF THE INVENTION 

[0001] The present invention relates to semiconductor 
fabrication generally, and more speci?cally to methods for 
analyzing semiconductor yield data. 

BACKGROUND 

[0002] The fundamental task of yield analysis is to deter 
mine the root cause of yield loss so that the consultant, 
factory engineer and/or designer can take action to mitigate 
the yield loss mechanism(s). The fundamental challenge is 
to connect the yield loss, as manifested in failure bit map 
(FBM) failures or die sort fail bins, as presented by e-test 
data, to its root cause. Typically, the source of the bin 
failures from the test data is unknown, but Without this 
information a course of action cannot be taken to resolve the 
issue. Standard techniques for ?nding yield loss mechanisms 
include correlation analysis of yield vs. inline data, e-test 
data, defect, or Wafer process history data. HoWever, 
straightforWard correlation analysis is hampered by the fact 
that in the manufacture of IC’s, hundreds of process steps 
involving many pieces of associated equipment are 
employed, anyone of Which may contribute to yield loss. 
Because of the superposition of yield impacting signals, 
correlation analysis signals may be Weak or obscured 
because multiple failure modes may be present in a given 
population of Wafers. 

[0003] Generally, yield loss in semiconductor processing 
may be characterized as being composed of tWo compo 
nents; systematic yield loss and random yield loss. This 
systematic yield loss may occur due to poor processing 
conditions or centering at a given process step, or perhaps 
the yield loss may be associated With a design marginality or 
?aW. Random yield loss tends to be associated With normal 
operating conditions Where the background levels of defec 
tivity from the fab ambient environment and/or ambient 
Within tools contribute to defects on the Wafer. Partitioning 
methods attempt to discern the random yield loss from the 
systematic yield loss so that subsequent investigation into 
root cause(s) can address each issue as deemed necessary. 
One such method uses a Wafer tiling algorithm Whereby die 
are aggregated into groups of die of varying siZe such that 
the slope of the logarithm of group yields vs. group siZe is 
an estimate of the random defectivity (Do) assuming Pois 
son statistics, and the y-intercept is an estimate of the 
systematic yield (Ys) (Segal et al., 2000). In this latter 
approach, one is able to get an estimate of Ys for a given 
Wafer(s), but it is not readily possible to group Wafers With 
similar Ys values as belonging to the same root cause group 
or cluster of Wafers because no spatial distribution informa 
tion is maintained. In other Words, different root causes may 
have similar Ys values. Other methods do not rely on the test 
data but utiliZe test chips that contain representative 
attributes that can de?ne the systematic yield values as they 
are related to an IC product. 

[0004] A ?rst method of identifying yield loss and drill 
doWn analysis (identifying the fundamental root cause of 
failure) is disclosed in US. Pat. No. 6,393,602 by Atchison 
et al., Which discloses a yield management method by Which 
clustering is done in a similar manner as prescribed by Segal 
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et al., “Reducing baseline defect density through modeling 
random defect limited yield”, MicroMagaZine, January 
2000. They employ a negative binomial statistic to estimate 
the systematic and defect limited yield. In this case, a 
clustering factor is estimated but this clustering factor is an 
aggregate across the Wafer or Wafers. In other Words, assum 
ing a fairly symmetric Wafer, this method Would not dis 
criminate betWeen N chips failing in the upper left comer 
versus N chips failing in the loWer right corner, but the 
physical mechanisms for these yield losses are likely very 
different. Further, Atchison et al. go on to disclose the use of 
spatial analysis but only in a straightforWard and rudimen 
tary manner Whereby Wafer region yields are simply plotted 
in 2-D projections for visual revieW. 

[0005] US. Pat. No. 6,470,229 by Wang et al, discloses a 
comprehensive yield management system and method using 
data pre-processing to remove bad data and data mining 
techniques to generate a decision tree for an automated 
analysis system. The data mining system is used to build a 
decision tree to ?nd relationships betWeen the response 
variable and the predictor variable(s) to ?nd the best deci 
sion-split based on each predictor. In this Way, the response 
variable, typically yield, may be related to one or more 
predictor variables. These types of generaliZed data mining 
techniques, While in principle are very elegant and attractive, 
in practice fall short of expectations due to large amounts of 
noise in the system. 

[0006] In the semiconductor manufacturing process the 
process Wafers are subject to random and non-random 
spatial defect sources/root causes. Some clustering algo 
rithms attempt to discern betWeen the random and non 
random defect components by assigning the non-random 
defect pattem(s) to a given cluster. Clustering has been 
applied to optical defect inspection data to determine if a 
given defect is actually part of a group of other defects, e.g., 
associated With a scratch. Other clustering algorithms may 
not speci?cally attempt to discern betWeen random and 
non-random responses but rather simply group Wafers With 
similar patterns inclusive of random and non-random 
responses. This latter approach is more generally used When 
looking at patterns of bin data. Differentiating betWeen 
different clusters is an additional burden that an algorithm 
must properly perform to be useful so as to distinguish 
different patterns and hence root causes. 

[0007] To accomplish this separation, a clustering metric 
is applied and a clustering criteria and/or threshold are set. 
Some metric of difference criteria is set to provide a thresh 
old of association. Hansen and James (Bell Labs Technical 
Journal, 1997) discuss an approach Where they applied 
smoothing to spatial pass/fail bin die sort data based on a 
user selected smoothing threshold. They then test the result 
ing Wafer map for spatial randomness based on joint count 
statistics. If the Wafer map fails the spatial randomness test 
it is compared With other Wafers that have failed the same 
test using a hierarchical clustering method using the “thresh 
olded maps”. The association of Wafers in clusters suggests 
that the Wafers in the group may likely have similar root 
causes for their die failures. In this Way, clustering of Wafers 
may aid in the diagnosis of yield limiting issues in the 
fabrication process. The “thresholded maps” constitute a 
library of knoWn Wafer patterns that are correlated against 
process Wafers coming from the production line. In this Way, 
Wafers can be classi?ed as belonging to a certain group of 
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previously de?ned patterns. The problem With this approach 
is that it is only strictly valid for a given process and product 
layout Which is relatively mature because the catalog or 
library of patterns is not necessarily static, especially as 
technology nodes change and as neW process steps and 
materials are introduced (See “Intemational Technology 
Roadmap for Semiconductors,” 2001 Edition. Semiconduc 
tor Industry Association, 2001.) Also, this technique has 
been applied to the overall fail bin vs. pass bin case but does 
not seem readily amenable to exploring the generaliZed bin 
failure case as is the case for the invention disclosed herein. 
Other softWare applications (eg S-Wafers) essentially 
divide all Wafers up and the engineer has to visually group 
the Wafers With similar patterns together. 

SUMMARY OF THE INVENTION 

[0008] A method for analyZing a sample of Wafers com 
prises: identifying F failure metrics that are applicable to at 
least one circuit pattern on each Wafer Within the sample of 
Wafers, Where F is an integer; identifying Z spatial and/or 
reticle Zones on each Wafer, Where Z is an integer; providing 
values for each of the F failure metrics, for each of the Z 
Zones on each Wafer; de?ning a point for each respective 
Wafer in an N-dimensional space, Where N=F*Z, and each 
point has coordinates corresponding to values of the F 
failure metrics in each of the Z Zones of the corresponding 
Wafer; and clustering the sample of Wafers into a plurality of 
clusters of Wafers, so that the Wafers Within each cluster are 
close to each other in the N-dimensional space, thereby 
identifying the plurality of clusters of Wafers from the 
sample of Wafers so that Within each individual cluster, the 
Wafers have similar defects to each other. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0009] FIG. 1 is a How chart diagram of an exemplary 
method for partitioning Wafer failure data. 

[0010] FIG. 2 is a How chart diagram of an exemplary 
method Wherein the data are assigned to reticle Zones. 

[0011] FIG. 3 is a How chart diagram of an exemplary 
agglomerative hierarchical clustering method used for the 
clustering step of FIG. 1. 

[0012] FIG. 4 is a How chart diagram of an exemplary 
recursive bisection method for determining Whether to 
divide a cluster into tWo smaller clusters. 

[0013] FIG. 5. Example Wafer Zone De?nition: This ?g 
ure depicts a 9 Zone Wafer de?nition. This is one of many 
possible sets. 

[0014] FIG. 6. Example of Wafer sample With yield data 
suitable for analysis using a 6-Zone reticle de?nition. 

[0015] FIG. 7 is a Cluster Tree Visualization (dendro 
gram): This ?gure is an example of the number of different 
clusters as Well as the relative relationship of Wafer clusters 
to one another. 

[0016] FIG. 8 is a Pareto Plot ofa baseline Cluster. In this 
example, the cluster has points representing 592 Wafers With 
8 different yield metrics. 

[0017] Each of these acronyms correspond or represent a 
failure mode of the chip memory block(s). For example, 
PWRS means poWer-short and BIT means single bit cell 
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failure. The speci?c failure modes shoWn in the ?gure are 
not important; Wafers may be grouped by any failure modes 
that are pertinent for a given Wafer population and process. 

[0018] FIG. 9 is an exemplary pareto plot of another 
cluster having 18 Wafers, in Which one of the yield metrics 
(designated PWRS) has signi?cantly more failures than any 
of the other yield metrics. 

[0019] FIG. 10 is an exemplary pareto plot of another 
cluster having 7 Wafers, in Which 7 out of 8 yield metrics 
have signi?cantly more failures in one spatial Zone (OBL) 
than in the other 8 spatial Zones. 

[0020] FIG. 11 is a How chart of an FBM-Bin Yields 
Cluster Analysis. This ?gure depicts the basic algorithm 
How of FSDA for FBM data 

[0021] FIGS. 12A and 12B. Standardization of FBM 
Clustering Drill DoWn Algorithm: These ?gures depict the 
more generaliZed analysis ?oW including drilldoWn analysis. 

[0022] FIG. 13 is a How chart diagram shoWing a variation 
of the clustering method that may be used for Wafer samples 
having very large numbers of Wafers. 

[0023] FIG. 14 is a detailed ?oW chart diagram shoWing 
the commonality analysis of FIG. 12A. 

DETAILED DESCRIPTION 

[0024] This description of the exemplary embodiments is 
intended to be read in connection With the accompanying 
draWings, Which are to be considered part of the entire 
Written description. In the description, relative terms such as 
“loWer,”“upper,”“horiZontal,”“ver‘tical,”“above,”“beloW, 
”“up,”“doWn,”“top” and “bottom” as Well as derivative 
thereof (e.g., "horizontally,’"‘doWnWardly,”“upWardly,” 
etc.) should be construed to refer to the orientation as then 
described or as shoWn in the draWing under discussion. 
These relative terms are only for convenience of description. 

[0025] The methods disclosed herein address the identi? 
cation of the source of the systematic yield loss as derived 
from the e-test data, by providing a partitioning method to 
group Wafers With similar systematic yield patterns. 

[0026] In general, if one could reduce the noise in the 
system (response and/or predictor variables) by grouping or 
clustering Wafers With similar root causes together, then 
such data mining methodologies may become more gener 
ally useful. Techniques described beloW address this issue of 
noise reduction of the response variable, speci?cally spatial 
variation in bin sort and failure bit map (FBM) yield. 

[0027] Failure Signature Detection Analysis (FSDA) is a 
method for identifying yield loss mechanisms in semicon 
ductor data, utiliZing product test data, Wherein a novel data 
organiZation and clustering method is applied to improve the 
identi?cation of Wafers With similar root cause induced 
failures. 

[0028] [FIG. 11 is a high level How diagram of the method. 

[0029] At step 1100, bin data (for example, failure bit map 
(FBM), die sort data, or multi-probe data), and the Within 
Wafer spatial failure distribution of that bin data are mapped 
into an N-dimensional vector space de?ned by the bin 
failure (bin ID) and one of the prescribed spatial regions of 
the Wafer. If the Wafer is divided into K regions and there are 



US 2007/0288185 Al 

I possible bin failure modes then the multi-dimensional 
space has K*J=N dimensions. Each Wafer is mapped to one 
point in this space depending on its failure mode (fail bins 
and regions). 

[0030] At step 1102, the data are prepared. Noise in the 
cluster identi?cation is improved using a ?ltering method. 
For example, a method employing principal component 
analysis may be used. 

[0031] At step 1104, a clustering algorithm can be applied 
in this N-dimensional space to identify groups or clusters of 
Wafers With similar failing mechanisms or root causes. 

[0032] At step 1106, a variety of analytical methods and 
tools may be used to obtain information about the cause of 
the problems. These tools present the data in a fashion that 
makes it easier to identify the problem cause(s). 

[0033] At step 1108, the Wafers thus identi?ed to belong to 
certain groups can be further analyZed With so called drill 
doWn techniques to identify the root cause of the failure. In 
this Way, one can signi?cantly improve upon the signal to 
noise resulting in a higher success rate of identifying the 
fundamental root cause of failure(s). The drill doWn tech 
niques may include parametric to yield correlation analysis, 
defect to yield correlation (kill ratio) analysis, equipment 
commonality analysis, or the like. 

[0034] FSDA uses a novel algorithm to group or cluster 
the Wafers by their fail bin patterns; the type of bin failure 
and the spatial distribution of that failure. 

[0035] Clustering of defect modes for FSDA detects/ 
identi?es clusters of failure bins and their associated spatial 
patterns. The failure bins can be from Fail Bit Map (FBM) 
data or die sort data and the spatial patterns can be con 
structed as per user con?guration: typically a 9 Zone+reticle 
?eld pattern are used but the Zone de?nitions are not limited 
to these tWo choices and overlapping Zones are permissible. 

[0036] FIG. 5 shoWs an example of a 9-Zone pattern, in 
Which each die on the Wafer is assigned to one of the 
folloWing nine Zones: center (C), middle top left (MTL), 
middle top right (MTR), middle bottom left (MBL), middle 
bottom right (MBR), outer top left (OTL), outer top right 
(OTR), outer bottom left (OBL), outer bottom right (OBR) 

[0037] Another useful choice is a 5-Zone concentric ring 
pattern (not shoWn). 
[0038] FIG. 6 is a diagram shoWing an example ofa yield 
metric for a sample in Which de?nition of 6 reticle Zones 
Would be advantageous. In FIG. 6, the average value of an 
exemplary yield metric is shoWn for each die position 
(averaged across a sample of 41 Wafers). The heavy lines 
shoW groups of 6 die that are exposed simultaneously during 
a single exposure by the stepper. That is, each group of 6 die 
With a box surrounded by heavy lines indicates a reticle 
?eld. An inspection of the yield metric values shoWs that that 
the values for the top left die in each reticle ?eld is 
signi?cantly greater than the values in the other 5 die in each 
reticle ?eld. This is an indicator that there is probably a 
photo related problem. For a reticle ?eld With 6 die, an 
appropriate number of dimensions Would by 6*] (J =number 
of failure metrics). Each Wafer is represented by a single 
point. For each metric, the values of that metric across the 
Wafer are combined into 6 averages, one for each of the die 
positions in the reticle ?eld. The six die reticle ?eld illus 
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trated in FIG. 6 is only shoWn as an example; the method 
may be used With reticle ?elds having any number of roWs 
and any number of columns. 

[0039] Individual clusters of Wafers and/or lots are iden 
ti?ed by their failure mode (bin and pattern) and are com 
pared against the “background” cluster group, Which is the 
largest constituent cluster or a user-selected cluster. This 
approach uses a more generaliZed clustering approach based 
on the failure bin mode and the spatial distribution of that 
failure mode. An N-dimensional vector, Where N is equal to 
the number of failure bin modes multiplied by the number of 
Zones selected, is constructed and can represent all possible 
states of the Wafer population. For a given Wafer and Zone, 
m-bins may fail and the number of failures Would constitute 
the distance along that Wafer/Zone/bin(s) axes. In this Way, 
an N-dimensional Euclidean “distance” matrix can be con 
structed for the entire population of Wafers being analyZed 
such that each Wafer is represented as a single point in this 
N-dimensional space. The differences in local distance 
betWeen groups of Wafers versus their distance from other 
groups can have a statistical threshold applied to it, so that 
a signi?cance test can be used to determine if a given Wafer 
is part of a cluster and Whether a given cluster is discernible 
from other clusters. Given that many clusters can be gen 
erated, many of Which are insigni?cant or spurious, some 
?ltering using Principal Component Analysis is applied to 
identify the “natural” major cluster groups on Which addi 
tional drilldoWn analysis can be performed. Also, engineer 
ing discretion may be applied such that grouping of clusters 
into larger groups is done subjectively if the automated 
algorithm appears to have excessive differentiation or if the 
user feels that the subsequent analysis is more appropriately 
done in larger groupings. 

[0040] This approach uses a more generaliZed clustering 
approach based on the failure bin mode and the spatial 
distribution of that failure mode. Some major strengths of 
the FSDA approach are: 

[0041] a. Can truly handle multiple yield metrics: multiple 
metrics, such as multiple FBM fail bins or multiple diesort 
bins beyond simply pass and fail bin (e.g. pass bin and/or 
overall fail bin), can be used. 

[0042] b. Permits clustering based on different types of 
Wafer patterns simultaneously: Some embodiments use spa 
tial Zones and reticle positions simultaneously in partitioning 
the Wafers into meaningful spatial and reticle pattern clusters 

[0043] c. Recursive partitioning algorithm: this alloWs 
best partition of data in all yield regions. In other Words, the 
best partitions of the Wafers are more locally determined, i.e. 
by Wafers around the relevant yield region. OtherWise, 
Wafers With yield around 10% could be partitioned the same 
Way as Wafers around 50% or 90%. 

[0044] d. Meaningful cluster identi?cation criteria: tun 
able criteria to decide When a group of Wafers have a similar 
enough pattern and are not to be sub-divided into more 
clusters. 

[0045] e. Nominal re-grouping of clusters: automatically 
regroup clusters that are only marginally statistically differ 
ent. 

[0046] FIG. 1 is a How chart diagram of a partitioning 
method according to a preferred embodiment of the FSDA, 
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wherein clustering is performed on FBM and/or Die Sort 
data extracted from an IC product tester to identify groups 
of Wafers With similar failure bins and failure patterns for 
those bins as folloWs: 

[0047] At step 100, a set of F failure metrics appropriate 
for the Wafer population is identi?ed. For example, in the 
case of Wafers containing memory chips, the metrics may 
include poWer-short, single bit cell failure, and the like. 

[0048] At step 102, a set ofS spatial Zones and/or R reticle 
Zones are identi?ed. In preferred embodiments, both spatial 
and reticle Zones are identi?ed. 

[0049] An N dimensional space is established that de?nes 
the yield metrics, Where N=F*(S+R). Each Wafer is repre 
sented by a respective point in this space. Each point is a 
vector having individual coordinates corresponding to val 
ues of the F failure metrics in each of the (S+R) Zones of the 
corresponding Wafer. 

[0050] 1.1.1 For example if there are 8 yield metrics and 
9 Zones, form 8*9=72 Zone yields or dimensions, corre 
sponding to a respective dimension for each combination of 
Zone and metric. 

[0051] 1.1.2 Assume that there are 6 reticle patterns (six 
die exposed each time the stepper advances), 8*6=48 reticle 
yields are independently formed. These reticle yields entail 
adding another set of Zones, in this case reticle ?eld Zones, 
that overlap With the other (spatial) Zones but may present 
information in a more meaningful fashion in the case Where, 
for example, there is defect in the reticle used to process the 
Wafers. If one grouping (spatial or reticle representation) is 
stronger than another then that is What the algorithm Will 
select as signi?cant. 

[0052] If there are some other interesting patterns to group 
the dies in a Wafer, one can use the same idea to create these 
sets of Within-Wafer group yields. Selection of these patterns 
is subjective. For example, assume that the Wafer fail 
patterns seem to have nearly circular fail pattems/ then one 
may choose a Zonal de?nition that is composed of concentric 
rings extending from the center of the Wafer instead of the 
9 Zone pattern that Was depicted in the original Zonal 
de?nition (FIG. 1). 
[0053] 1.1.4 Note that there is no requirement for these die 
partitions to be independent. In some embodiments, one 
partition may actually contain another partition. Then the 
subsequent tests Would simply ignore one of these die 
partitions. 
[0054] For example, if all instances of a failure mode are 
observed in a single spatial Zone, but not in the other spatial 
Zones, then the analysis Will indicate that there are no 
periodic defects of the type shoWn in FIG. 6, and application 
of the algorithm to the reticle Zone data Will shoW that that 
failure mode is not con?ned to any one reticle Zone. Con 
versely, if all instances of a failure mode are observed in a 
single reticle Zone (a periodic pattern in a spatial represen 
tation), then that failure mode Will not be con?ned to any of 
the spatial Zones. 

[0055] Having established the F*(S+R) dimensional 
space, at step 104, a loop including steps 106-112 is 
executed for each Wafer. 

[0056] At step 106, a loop including steps 108-110 is 
executed for each dimension of the F*(S+R) dimensional 
space. 
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[0057] At step 108, test data are collected. For example, 
FBM data, EDS data from an IC product tester, or multi 
probe data may be collected. 

[0058] At step 110, from the raW data a value is extracted 
for each dimension of the point (vector) representing that 
Wafer. 

[0059] At step 112, a respective point in the F*(S+R) 
dimensional space is de?ned for each Wafer. 

[0060] At step 114, the points representing the Wafers are 
partitioned into clusters, such that the points in any given 
cluster are relatively close together in the F*(S+R) dimen 
sional space, based on a Euclidean distance. 

[0061] FIG. 2 is a How chart of a more speci?c example, 
Where only reticle Zones are used. 

[0062] At step 200, Z reticle Zones are identi?ed, corre 
sponding to Z die Within the reticle ?eld. 

[0063] At step 202, E reticle ?elds are identi?ed, corre 
sponding to E exposures by a stepper, Where Z die are 
formed for each exposure. 

[0064] At step 204, a loop from step 206-214 is performed 
for each Wafer. 

[0065] At step 206, a loop from step 208-212 is performed 
for each dimension (Zone and failure metric combination). 

[0066] At step 208, a loop is performed for each of the E 
reticle ?elds on a Wafer. 

[0067] At step 210, data are collected for the given Wafer, 
exposure, Zone and metric. 

[0068] At step 212, for each dimension (Zone-metric com 
bination), the values across all exposures are combined, so 
that one value per dimension is used to characteriZe the 
given Wafer. 

[0069] At step 214, a respective point in the F*Z dimen 
sional space is de?ned for each respective Wafer. 

[0070] FIG. 3 is a How chart shoWing an example of a 
noise reduction and Wafer partitioning method using 
agglomerative hierarchical clustering. It Will be understood 
that this is only one example of a clustering technique that 
may be applied to the N-dimensional data. 

[0071] At step 300, a principal components analysis 
(PCA) is performed on both yield sets of Zone yields and 
reticle yields, and the vector representing each Wafer is 
transformed into the principal coordinates. PCA alloWs 
identi?cation of signi?cant principal component scores, and 
?ltering out of insigni?cant ones, thus simplifying further 
analysis. 

[0072] At step 302, the PCA scores that are deemed noise 
scores are identi?ed. For example, according to one noise 
criterion, scores are considered noise if they do not vary 
signi?cantly from normality. 

[0073] At step 304, insigni?cant principal component 
scores are eliminated for both yield sets (spatial and reticle), 
keeping only the signi?cantly non-noise scores. 

[0074] Although steps 300-304 are described in the con 
text of one exemplary clustering technique (agglomerative 
hierarchical clustering), PCA may be used as the preliminary 
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step When any other clustering technique (e.g., divisive 
clustering, non-hierarchical clustering, or others) is used. 

[0075] Steps 306-322 provide a ?rst example of a method 
to partition the Wafers. Agglomerative hierarchical cluster 
ing is a clustering algorithm that starts With each Wafer as its 
oWn cluster and then recursively groups the Wafers together 
that are closest using some de?ned distance metric. 

[0076] At step 306, each Wafer is initially assigned to a 
separate cluster of its oWn. 

[0077] At step 308, a loop including steps 310-314 is 
performed for each cluster. 

[0078] At step 310, a loop including step 312 is performed 
for each Wafer (point). 

[0079] At step 312, the distance betWeen 2 Wafers is the 
Euclidean distance in the signi?cant non-noise scores 
de?ned by the PCA. That is for a pair of Wafers X and Y 
described by N-dimensional vectors in an N-dimensional 
space, 

d: 

[0080] At step 314, the distance betWeen 2 clusters 
(groups of Wafers) is de?ned to be the maximum of all 
distances betWeen any tWo of the Wafers in the tWo clusters. 
This is the farthest neighborhood or, equivalently, the com 
plete linkage distance. (The concept of complete linkage 
distance is explained in Duda, Hart, and Stork, Pattern 
Classi?cation, John Wiley & Sons, Inc., NeW York, N.Y., 
2001, pp. 550-559, Which is incorporated by reference 
herein.) 
[0081] Although the exemplary method uses the complete 
linkage distance, other cluster distance de?nitions may be 
used for the purpose of partitioning. In some embodiments, 
the distance betWeen clusters is de?ned as the distance 
betWeen the closest pair of points containing one point from 
each cluster. In some embodiments, the distance betWeen 
tWo clusters is de?ned as the average distance betWeen pairs 
of points containing one point from each cluster, With every 
possible combination re?ected in the average. In still other 
embodiments, the distance betWeen tWo clusters is de?ned 
as the distance betWeen the centroid of each cluster. One of 
ordinary skill understands that each inter-cluster distance 
computation has a different sensitivity to outlying data 
points. 
[0082] At step 316, the tWo Wafer-clusters that are closest 
together (based on Whatever cluster-distance de?nition is 
selected) are grouped into one cluster. In the example, 
agglomerative hierarchical clustering With a complete link 
age distance metric is used to ?nd the best partition of the 
Wafers based on each of the tWo yield sets (spatial or reticle). 

[0083] At step 318, given the best partition from each 
yield set, test if the partition should be performed. In the 
exemplary embodiment, the test may be based on a sum of 
the squared error (SSE) calculation. 

[0084] The total SSE is de?ned as the sum (over all 
Wafers) of the squares of the distances betWeen the point 
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corresponding to each Wafer and the centroid of the cluster 
to Which that point belongs. By this de?nition, the SSE is 
alWays Zero if each point is assigned to a respective separate 
cluster, and the SSE is greatest When all points are assigned 
to a single cluster. One of ordinary skill Will understand that 
an optimum partitioning can be de?ned such that agglom 
erative hierarchical clustering up to the optimum partition 
causes insigni?cant changes to the SSE, but additional 
merging of clusters beyond the optimal partition Will have 
signi?cant changes to the SSE. Put another Way, if all points 
are initially assigned to a single super-cluster, divisive 
partitioning Will cause substantial reductions in the SSE up 
to the optimal partition, after Which further divisive parti 
tioning Will produce little improvement in SSE. 

[0085] Other clustering methodology can be substituted in 
its place. CLARA (classi?cation of large application) is one 
technique that has been investigated and proven to Work 
Well With large number (5K+) of Wafers (Kaufmann and 
RousseeuW, Finding Groups in data: an Introduction to 
Cluster Analysis, 1990.) 
[0086] In other embodiments, divisive hierarchical parti 
tioning is used. FIG. 7 shoWs an example of a dendrogram 
for visualizing a clustering technique that may be used. Note 
that the percentages are the difference in mean yield of the 
particular FBM bins betWeen Wafers in the left and right 
branches of the cluster tree node. 

[0087] A calculation is performed to determine Whether to 
accept the cluster, for example, based on the criterion (stop 
partitioning Wafers) described by Duda, Hart, and Stork, at, 
pp. 557-559.). The partition test criterion checks if there is 
a signi?cant reduction of sum of squared error (SSE) When 
one of the clusters is subdivided into tWo neW clusters. 

[0088] The SSE for all Wafers in the cluster prior to 
divisive partitioning is de?ned as the sum of Euclidean 
distances of the Wafers to the center of a single super-cluster 
containing all of the Wafers in the non-noise scores space 
found by the PCA. 

[0089] The SSE for the partitioned Wafers is the sum of the 
tWo SSEs for the tWo partitioned clusters of Wafers. 

[0090] Because the individual Wafers Will alWays be closer 
to the centroids of their respective clusters after an addi 
tional divisive partitioning, the SSE is alWays reduced by an 
additional divisive partition. 

[0091] At step 320, based on Whether the reduction in SSE 
is “signi?cant,” a decision can be made Whether to accept 
the partition (and continue partitioning) or to reject the 
partition and discontinue further partitioning. If the reduc 
tion in SSE is signi?cant, the partition is accepted, and step 
308 is again executed. If the reduction in SSE is insigni? 
cant, then the partitioning stops. 

[0092] FIG. 4 is a more detailed ?oW chart diagram of an 
exemplary partition evaluation process. The SSE reduction 
test is a test of ratio of the partitioned SSE to overall SSE. 
This ratio has a distribution that is approximately normal 
(Gaussian) When there is no signi?cant partition of the 
Wafers. Eventually a point is reached Where dividing a 
cluster may not have a signi?cant reduction in SSE, for 
example, Where the cluster does not have any outliers. 

[0093] At steps 400 and 402, tWo p-value cutolfs are 
speci?ed for the signi?cance levels to be used to accept the 
Wafers as a cluster or partition them to tWo groups. 










	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description/Claims
	Page 24 - Claims

