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METHOD AND SYSTEM FOR FAILURE SIGNAL
DETENTION ANALYSIS

FIELD OF THE INVENTION

[0001] The present invention relates to semiconductor
fabrication generally, and more specifically to methods for
analyzing semiconductor yield data.

BACKGROUND

[0002] The fundamental task of yield analysis is to deter-
mine the root cause of yield loss so that the consultant,
factory engineer and/or designer can take action to mitigate
the yield loss mechanism(s). The fundamental challenge is
to connect the yield loss, as manifested in failure bit map
(FBM) failures or die sort fail bins, as presented by e-test
data, to its root cause. Typically, the source of the bin
failures from the test data is unknown, but without this
information a course of action cannot be taken to resolve the
issue. Standard techniques for finding yield loss mechanisms
include correlation analysis of yield vs. inline data, e-test
data, defect, or wafer process history data. However,
straightforward correlation analysis is hampered by the fact
that in the manufacture of IC’s, hundreds of process steps
involving many pieces of associated equipment are
employed, anyone of which may contribute to yield loss.
Because of the superposition of yield impacting signals,
correlation analysis signals may be weak or obscured
because multiple failure modes may be present in a given
population of wafers.

[0003] Generally, yield loss in semiconductor processing
may be characterized as being composed of two compo-
nents; systematic yield loss and random yield loss. This
systematic yield loss may occur due to poor processing
conditions or centering at a given process step, or perhaps
the yield loss may be associated with a design marginality or
flaw. Random yield loss tends to be associated with normal
operating conditions where the background levels of defec-
tivity from the fab ambient environment and/or ambient
within tools contribute to defects on the wafer. Partitioning
methods attempt to discern the random yield loss from the
systematic yield loss so that subsequent investigation into
root cause(s) can address each issue as deemed necessary.
One such method uses a wafer tiling algorithm whereby die
are aggregated into groups of die of varying size such that
the slope of the logarithm of group yields vs. group size is
an estimate of the random defectivity (Do) assuming Pois-
son statistics, and the y-intercept is an estimate of the
systematic yield (Ys) (Segal et al., 2000). In this latter
approach, one is able to get an estimate of Ys for a given
wafer(s), but it is not readily possible to group wafers with
similar Ys values as belonging to the same root cause group
or cluster of wafers because no spatial distribution informa-
tion is maintained. In other words, different root causes may
have similar Y's values. Other methods do not rely on the test
data but utilize test chips that contain representative
attributes that can define the systematic yield values as they
are related to an IC product.

[0004] A first method of identifying yield loss and drill
down analysis (identifying the fundamental root cause of
failure) is disclosed in U.S. Pat. No. 6,393,602 by Atchison
et al., which discloses a yield management method by which
clustering is done in a similar manner as prescribed by Segal
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et al., “Reducing baseline defect density through modeling
random defect limited yield”, MicroMagazine, January
2000. They employ a negative binomial statistic to estimate
the systematic and defect limited yield. In this case, a
clustering factor is estimated but this clustering factor is an
aggregate across the wafer or wafers. In other words, assum-
ing a fairly symmetric wafer, this method would not dis-
criminate between N chips failing in the upper left corner
versus N chips failing in the lower right corner, but the
physical mechanisms for these yield losses are likely very
different. Further, Atchison et al. go on to disclose the use of
spatial analysis but only in a straightforward and rudimen-
tary manner whereby wafer region yields are simply plotted
in 2-D projections for visual review.

[0005] U.S. Pat. No. 6,470,229 by Wang et al, discloses a
comprehensive yield management system and method using
data pre-processing to remove bad data and data mining
techniques to generate a decision tree for an automated
analysis system. The data mining system is used to build a
decision tree to find relationships between the response
variable and the predictor variable(s) to find the best deci-
sion-split based on each predictor. In this way, the response
variable, typically yield, may be related to one or more
predictor variables. These types of generalized data mining
techniques, while in principle are very elegant and attractive,
in practice fall short of expectations due to large amounts of
noise in the system.

[0006] In the semiconductor manufacturing process the
process wafers are subject to random and non-random
spatial defect sources/root causes. Some clustering algo-
rithms attempt to discern between the random and non-
random defect components by assigning the non-random
defect pattern(s) to a given cluster. Clustering has been
applied to optical defect inspection data to determine if a
given defect is actually part of a group of other defects, e.g.,
associated with a scratch. Other clustering algorithms may
not specifically attempt to discern between random and
non-random responses but rather simply group wafers with
similar patterns inclusive of random and non-random
responses. This latter approach is more generally used when
looking at patterns of bin data. Differentiating between
different clusters is an additional burden that an algorithm
must properly perform to be useful so as to distinguish
different patterns and hence root causes.

[0007] To accomplish this separation, a clustering metric
is applied and a clustering criteria and/or threshold are set.
Some metric of difference criteria is set to provide a thresh-
old of association. Hansen and James (Bell Labs Technical
Journal, 1997) discuss an approach where they applied
smoothing to spatial pass/fail bin die sort data based on a
user selected smoothing threshold. They then test the result-
ing wafer map for spatial randomness based on joint count
statistics. If the wafer map fails the spatial randomness test
it is compared with other wafers that have failed the same
test using a hierarchical clustering method using the “thresh-
olded maps”. The association of wafers in clusters suggests
that the wafers in the group may likely have similar root
causes for their die failures. In this way, clustering of wafers
may aid in the diagnosis of yield limiting issues in the
fabrication process. The “thresholded maps” constitute a
library of known wafer patterns that are correlated against
process wafers coming from the production line. In this way,
wafers can be classified as belonging to a certain group of
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previously defined patterns. The problem with this approach
is that it is only strictly valid for a given process and product
layout which is relatively mature because the catalog or
library of patterns is not necessarily static, especially as
technology nodes change and as new process steps and
materials are introduced (See “International Technology
Roadmap for Semiconductors,” 2001 Edition. Semiconduc-
tor Industry Association, 2001.) Also, this technique has
been applied to the overall fail bin vs. pass bin case but does
not seem readily amenable to exploring the generalized bin
failure case as is the case for the invention disclosed herein.
Other software applications (e.g. S-Wafers) essentially
divide all wafers up and the engineer has to visually group
the watfers with similar patterns together.

SUMMARY OF THE INVENTION

[0008] A method for analyzing a sample of wafers com-
prises: identifying F failure metrics that are applicable to at
least one circuit pattern on each wafer within the sample of
wafers, where F is an integer; identifying Z spatial and/or
reticle zones on each wafer, where Z is an integer; providing
values for each of the F failure metrics, for each of the Z
zones on each wafer; defining a point for each respective
wafer in an N-dimensional space, where N=F*Z, and each
point has coordinates corresponding to values of the F
failure metrics in each of the Z zones of the corresponding
wafer; and clustering the sample of wafers into a plurality of
clusters of wafers, so that the wafers within each cluster are
close to each other in the N-dimensional space, thereby
identifying the plurality of clusters of wafers from the
sample of wafers so that within each individual cluster, the
wafers have similar defects to each other.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a flow chart diagram of an exemplary
method for partitioning wafer failure data.

[0010] FIG. 2 is a flow chart diagram of an exemplary
method wherein the data are assigned to reticle zones.

[0011] FIG. 3 is a flow chart diagram of an exemplary
agglomerative hierarchical clustering method used for the
clustering step of FIG. 1.

[0012] FIG. 4 is a flow chart diagram of an exemplary
recursive bisection method for determining whether to
divide a cluster into two smaller clusters.

[0013] FIG. 5. Example Wafer Zone Definition: This fig-
ure depicts a 9 zone wafer definition. This is one of many
possible sets.

[0014] FIG. 6. Example of wafer sample with yield data
suitable for analysis using a 6-zone reticle definition.

[0015] FIG. 7 is a Cluster Tree Visualization (dendro-
gram): This figure is an example of the number of different
clusters as well as the relative relationship of wafer clusters
to one another.

[0016] FIG. 8 is a Pareto Plot of a baseline Cluster. In this
example, the cluster has points representing 592 wafers with
8 different yield metrics.

[0017] Each of these acronyms correspond or represent a
failure mode of the chip memory block(s). For example,
PWRS means power-short and BIT means single bit cell
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failure. The specific failure modes shown in the figure are
not important; wafers may be grouped by any failure modes
that are pertinent for a given wafer population and process.

[0018] FIG. 9 is an exemplary pareto plot of another
cluster having 18 wafers, in which one of the yield metrics
(designated PWRS) has significantly more failures than any
of the other yield metrics.

[0019] FIG. 10 is an exemplary pareto plot of another
cluster having 7 wafers, in which 7 out of 8 yield metrics
have significantly more failures in one spatial zone (OBL)
than in the other 8 spatial zones.

[0020] FIG. 11 is a flow chart of an FBM-Bin Yields
Cluster Analysis. This figure depicts the basic algorithm
flow of FSDA for FBM data

[0021] FIGS. 12A and 12B. Standardization of FBM-
Clustering Drill Down Algorithm: These figures depict the
more generalized analysis flow including drilldown analysis.

[0022] FIG. 13 is a flow chart diagram showing a variation
of' the clustering method that may be used for wafer samples
having very large numbers of wafers.

[0023] FIG. 14 is a detailed flow chart diagram showing
the commonality analysis of FIG. 12A.

DETAILED DESCRIPTION

[0024] This description of the exemplary embodiments is
intended to be read in connection with the accompanying
drawings, which are to be considered part of the entire
written description. In the description, relative terms such as
“lower,“upper,”“horizontal,” ‘vertical,”“above,” below,

““up,”“down,”“top” and “bottom” as well as derivative
thereof (e.g., “horizontally,”downwardly,”*“upwardly,”
etc.) should be construed to refer to the orientation as then
described or as shown in the drawing under discussion.
These relative terms are only for convenience of description.

[0025] The methods disclosed herein address the identifi-
cation of the source of the systematic yield loss as derived
from the e-test data, by providing a partitioning method to
group wafers with similar systematic yield patterns.

[0026] In general, if one could reduce the noise in the
system (response and/or predictor variables) by grouping or
clustering wafers with similar root causes together, then
such data mining methodologies may become more gener-
ally useful. Techniques described below address this issue of
noise reduction of the response variable, specifically spatial
variation in bin sort and failure bit map (FBM) yield.

[0027] Failure Signature Detection Analysis (FSDA) is a
method for identifying yield loss mechanisms in semicon-
ductor data, utilizing product test data, wherein a novel data
organization and clustering method is applied to improve the
identification of wafers with similar root cause induced
failures.

[0028] [FIG. 11 is a high level flow diagram of the method.

[0029] At step 1100, bin data (for example, failure bit map
(FBM), die sort data, or multi-probe data), and the within-
wafer spatial failure distribution of that bin data are mapped
into an N-dimensional vector space defined by the bin
failure (bin ID) and one of the prescribed spatial regions of
the wafer. If the wafer is divided into K regions and there are
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J possible bin failure modes then the multi-dimensional
space has K*J=N dimensions. Each wafer is mapped to one
point in this space depending on its failure mode (fail bins
and regions).

[0030] At step 1102, the data are prepared. Noise in the
cluster identification is improved using a filtering method.
For example, a method employing principal component
analysis may be used.

[0031] At step 1104, a clustering algorithm can be applied
in this N-dimensional space to identify groups or clusters of
wafers with similar failing mechanisms or root causes.

[0032] At step 1106, a variety of analytical methods and
tools may be used to obtain information about the cause of
the problems. These tools present the data in a fashion that
makes it easier to identify the problem cause(s).

[0033] At step 1108, the wafers thus identified to belong to
certain groups can be further analyzed with so called drill-
down techniques to identify the root cause of the failure. In
this way, one can significantly improve upon the signal to
noise resulting in a higher success rate of identifying the
fundamental root cause of failure(s). The drill down tech-
niques may include parametric to yield correlation analysis,
defect to yield correlation (kill ratio) analysis, equipment
commonality analysis, or the like.

[0034] FSDA uses a novel algorithm to group or cluster
the wafers by their fail bin patterns; the type of bin failure
and the spatial distribution of that failure.

[0035] Clustering of defect modes for FSDA detects/
identifies clusters of failure bins and their associated spatial
patterns. The failure bins can be from Fail Bit Map (FBM)
data or die sort data and the spatial patterns can be con-
structed as per user configuration: typically a 9 zone+reticle
field pattern are used but the zone definitions are not limited
to these two choices and overlapping zones are permissible.

[0036] FIG. 5 shows an example of a 9-zone pattern, in
which each die on the wafer is assigned to one of the
following nine zones: center (C), middle top left (MTL),
middle top right (MTR), middle bottom left (MBL), middle
bottom right (MBR), outer top left (OTL), outer top right
(OTR), outer bottom left (OBL), outer bottom right (OBR)

[0037] Another useful choice is a 5-zone concentric ring
pattern (not shown).

[0038] FIG. 6 is a diagram showing an example of a yield
metric for a sample in which definition of 6 reticle zones
would be advantageous. In FIG. 6, the average value of an
exemplary yield metric is shown for each die position
(averaged across a sample of 41 wafers). The heavy lines
show groups of 6 die that are exposed simultaneously during
a single exposure by the stepper. That is, each group of 6 die
with a box surrounded by heavy lines indicates a reticle
field. An inspection of the yield metric values shows that that
the values for the top left die in each reticle field is
significantly greater than the values in the other 5 die in each
reticle field. This is an indicator that there is probably a
photo related problem. For a reticle field with 6 die, an
appropriate number of dimensions would by 6*J (J=number
of failure metrics). Each wafer is represented by a single
point. For each metric, the values of that metric across the
wafer are combined into 6 averages, one for each of the die
positions in the reticle field. The six die reticle field illus-
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trated in FIG. 6 is only shown as an example; the method
may be used with reticle fields having any number of rows
and any number of columns.

[0039] Individual clusters of wafers and/or lots are iden-
tified by their failure mode (bin and pattern) and are com-
pared against the “background” cluster group, which is the
largest constituent cluster or a user-selected cluster. This
approach uses a more generalized clustering approach based
on the failure bin mode and the spatial distribution of that
failure mode. An N-dimensional vector, where N is equal to
the number of failure bin modes multiplied by the number of
zones selected, is constructed and can represent all possible
states of the wafer population. For a given wafer and zone,
m-bins may fail and the number of failures would constitute
the distance along that wafer/zone/bin(s) axes. In this way,
an N-dimensional Euclidean “distance” matrix can be con-
structed for the entire population of wafers being analyzed
such that each wafer is represented as a single point in this
N-dimensional space. The differences in local distance
between groups of wafers versus their distance from other
groups can have a statistical threshold applied to it, so that
a significance test can be used to determine if a given wafer
is part of a cluster and whether a given cluster is discernible
from other clusters. Given that many clusters can be gen-
erated, many of which are insignificant or spurious, some
filtering using Principal Component Analysis is applied to
identify the “natural” major cluster groups on which addi-
tional drilldown analysis can be performed. Also, engineer-
ing discretion may be applied such that grouping of clusters
into larger groups is done subjectively if the automated
algorithm appears to have excessive differentiation or if the
user feels that the subsequent analysis is more appropriately
done in larger groupings.

[0040] This approach uses a more generalized clustering
approach based on the failure bin mode and the spatial
distribution of that failure mode. Some major strengths of
the FSDA approach are:

[0041] a. Can truly handle multiple yield metrics: multiple
metrics, such as multiple FBM fail bins or multiple diesort
bins beyond simply pass and fail bin (e.g. pass bin and/or
overall fail bin), can be used.

[0042] b. Permits clustering based on different types of
wafer patterns simultaneously: Some embodiments use spa-
tial zones and reticle positions simultaneously in partitioning
the wafers into meaningful spatial and reticle pattern clusters

[0043] c. Recursive partitioning algorithm: this allows
best partition of data in all yield regions. In other words, the
best partitions of the wafers are more locally determined, i.e.
by wafers around the relevant yield region. Otherwise,
wafers with yield around 10% could be partitioned the same
way as wafers around 50% or 90%.

[0044] d. Meaningful cluster identification criteria: tun-
able criteria to decide when a group of wafers have a similar
enough pattern and are not to be sub-divided into more
clusters.

[0045] e. Nominal re-grouping of clusters: automatically
regroup clusters that are only marginally statistically differ-
ent.

[0046] FIG. 1 is a flow chart diagram of a partitioning
method according to a preferred embodiment of the FSDA,
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wherein clustering is performed on FBM and/or Die Sort
data extracted from an IC product tester to identify groups
of wafers with similar failure bins and failure patterns for
those bins as follows:

[0047] At step 100, a set of F failure metrics appropriate
for the wafer population is identified. For example, in the
case of wafers containing memory chips, the metrics may
include power-short, single bit cell failure, and the like.

[0048] At step 102, a set of S spatial zones and/or R reticle
zones are identified. In preferred embodiments, both spatial
and reticle zones are identified.

[0049] An N dimensional space is established that defines
the yield metrics, where N=F*(S+R). Each wafer is repre-
sented by a respective point in this space. Each point is a
vector having individual coordinates corresponding to val-
ues of the F failure metrics in each of the (S+R) zones of the
corresponding wafer.

[0050] 1.1.1 For example if there are 8 yield metrics and
9 zones, form 8%9=72 zone yields or dimensions, corre-
sponding to a respective dimension for each combination of
zone and metric.

[0051] 1.1.2 Assume that there are 6 reticle patterns (six
die exposed each time the stepper advances), 8%6=48 reticle
yields are independently formed. These reticle yields entail
adding another set of zones, in this case reticle field zones,
that overlap with the other (spatial) zones but may present
information in a more meaningful fashion in the case where,
for example, there is defect in the reticle used to process the
wafers. If one grouping (spatial or reticle representation) is
stronger than another then that is what the algorithm will
select as significant.

[0052] If there are some other interesting patterns to group
the dies in a wafer, one can use the same idea to create these
sets of within-wafer group yields. Selection of these patterns
is subjective. For example, assume that the wafer fail
patterns seem to have nearly circular fail patterns/ then one
may choose a zonal definition that is composed of concentric
rings extending from the center of the wafer instead of the
9 zone pattern that was depicted in the original zonal
definition (FIG. 1).

[0053] 1.1.4 Note that there is no requirement for these die
partitions to be independent. In some embodiments, one
partition may actually contain another partition. Then the
subsequent tests would simply ignore one of these die
partitions.

[0054] For example, if all instances of a failure mode are
observed in a single spatial zone, but not in the other spatial
zones, then the analysis will indicate that there are no
periodic defects of the type shown in FIG. 6, and application
of the algorithm to the reticle zone data will show that that
failure mode is not confined to any one reticle zone. Con-
versely, if all instances of a failure mode are observed in a
single reticle zone (a periodic pattern in a spatial represen-
tation), then that failure mode will not be confined to any of
the spatial zones.

[0055] Having established the F*(S+R) dimensional
space, at step 104, a loop including steps 106-112 is
executed for each wafer.

[0056] At step 106, a loop including steps 108-110 is
executed for each dimension of the F*(S+R) dimensional
space.
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[0057] At step 108, test data are collected. For example,
FBM data, FDS data from an IC product tester, or multi-
probe data may be collected.

[0058] At step 110, from the raw data a value is extracted
for each dimension of the point (vector) representing that
wafer.

[0059] At step 112, a respective point in the F*(S+R)
dimensional space is defined for each wafer.

[0060] At step 114, the points representing the wafers are
partitioned into clusters, such that the points in any given
cluster are relatively close together in the F*(S+R) dimen-
sional space, based on a Euclidean distance.

[0061] FIG. 2 is a flow chart of a more specific example,
where only reticle zones are used.

[0062] At step 200, Z reticle zones are identified, corre-
sponding to Z die within the reticle field.

[0063] At step 202, E reticle fields are identified, corre-
sponding to E exposures by a stepper, where Z die are
formed for each exposure.

[0064] At step 204, a loop from step 206-214 is performed
for each wafer.

[0065] At step 206, a loop from step 208-212 is performed
for each dimension (zone and failure metric combination).

[0066] At step 208, a loop is performed for each of the E
reticle fields on a wafer.

[0067] At step 210, data are collected for the given wafer,
exposure, zone and metric.

[0068] At step 212, for each dimension (zone-metric com-
bination), the values across all exposures are combined, so
that one value per dimension is used to characterize the
given wafer.

[0069] At step 214, a respective point in the F*Z dimen-
sional space is defined for each respective wafer.

[0070] FIG. 3 is a flow chart showing an example of a
noise reduction and wafer partitioning method using
agglomerative hierarchical clustering. It will be understood
that this is only one example of a clustering technique that
may be applied to the N-dimensional data.

[0071] At step 300, a principal components analysis
(PCA) is performed on both yield sets of zone yields and
reticle yields, and the vector representing each wafer is
transformed into the principal coordinates. PCA allows
identification of significant principal component scores, and
filtering out of insignificant ones, thus simplifying further
analysis.

[0072] At step 302, the PCA scores that are deemed noise
scores are identified. For example, according to one noise
criterion, scores are considered noise if they do not vary
significantly from normality.

[0073] At step 304, insignificant principal component
scores are eliminated for both yield sets (spatial and reticle),
keeping only the significantly non-noise scores.

[0074] Although steps 300-304 are described in the con-
text of one exemplary clustering technique (agglomerative
hierarchical clustering), PCA may be used as the preliminary
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step when any other clustering technique (e.g., divisive
clustering, non-hierarchical clustering, or others) is used.

[0075] Steps 306-322 provide a first example of a method
to partition the wafers. Agglomerative hierarchical cluster-
ing is a clustering algorithm that starts with each wafer as its
own cluster and then recursively groups the wafers together
that are closest using some defined distance metric.

[0076] At step 306, each wafer is initially assigned to a
separate cluster of its own.

[0077] At step 308, a loop including steps 310-314 is
performed for each cluster.

[0078] At step 310, a loop including step 312 is performed
for each wafer (point).

[0079] At step 312, the distance between 2 wafers is the
Euclidean distance in the significant non-noise scores
defined by the PCA. That is for a pair of wafers X and Y
described by N-dimensional vectors in an N-dimensional
space,

d=

v 3
>xi- Y;)Z}
i=1

[0080] At step 314, the distance between 2 clusters
(groups of wafers) is defined to be the maximum of all
distances between any two of the wafers in the two clusters.
This is the farthest neighborhood or, equivalently, the com-
plete linkage distance. (The concept of complete linkage
distance is explained in Duda, Hart, and Stork, Pattern
Classification, John Wiley & Sons, Inc., New York, N.Y.,
2001, pp. 550-559, which is incorporated by reference
herein.)

[0081] Although the exemplary method uses the complete
linkage distance, other cluster distance definitions may be
used for the purpose of partitioning. In some embodiments,
the distance between clusters is defined as the distance
between the closest pair of points containing one point from
each cluster. In some embodiments, the distance between
two clusters is defined as the average distance between pairs
of points containing one point from each cluster, with every
possible combination reflected in the average. In still other
embodiments, the distance between two clusters is defined
as the distance between the centroid of each cluster. One of
ordinary skill understands that each inter-cluster distance
computation has a different sensitivity to outlying data
points.

[0082] At step 316, the two wafer-clusters that are closest
together (based on whatever cluster-distance definition is
selected) are grouped into one cluster. In the example,
agglomerative hierarchical clustering with a complete link-
age distance metric is used to find the best partition of the
wafers based on each of the two yield sets (spatial or reticle).

[0083] At step 318, given the best partition from each
yield set, test if the partition should be performed. In the
exemplary embodiment, the test may be based on a sum of
the squared error (SSE) calculation.

[0084] The total SSE is defined as the sum (over all
wafers) of the squares of the distances between the point
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corresponding to each wafer and the centroid of the cluster
to which that point belongs. By this definition, the SSE is
always zero if each point is assigned to a respective separate
cluster, and the SSE is greatest when all points are assigned
to a single cluster. One of ordinary skill will understand that
an optimum partitioning can be defined such that agglom-
erative hierarchical clustering up to the optimum partition
causes insignificant changes to the SSE, but additional
merging of clusters beyond the optimal partition will have
significant changes to the SSE. Put another way, if all points
are initially assigned to a single super-cluster, divisive
partitioning will cause substantial reductions in the SSE up
to the optimal partition, after which further divisive parti-
tioning will produce little improvement in SSE.

[0085] Other clustering methodology can be substituted in
its place. CLARA (classification of large application) is one
technique that has been investigated and proven to work
well with large number (5K+) of wafers (Kaufmann and
Rousseeuw, Finding Groups in data: an Introduction to
Cluster Analysis, 1990.)

[0086] In other embodiments, divisive hierarchical parti-
tioning is used. FIG. 7 shows an example of a dendrogram
for visualizing a clustering technique that may be used. Note
that the percentages are the difference in mean yield of the
particular FBM bins between wafers in the left and right
branches of the cluster tree node.

[0087] A calculation is performed to determine whether to
accept the cluster, for example, based on the criterion (stop
partitioning wafers) described by Duda, Hart, and Stork, at,
pp. 557-559.). The partition test criterion checks if there is
a significant reduction of sum of squared error (SSE) when
one of the clusters is subdivided into two new clusters.

[0088] The SSE for all wafers in the cluster prior to
divisive partitioning is defined as the sum of Euclidean
distances of the wafers to the center of a single super-cluster
containing all of the wafers in the non-noise scores space
found by the PCA.

[0089] The SSE for the partitioned wafers is the sum of the
two SSEs for the two partitioned clusters of wafers.

[0090] Because the individual wafers will always be closer
to the centroids of their respective clusters after an addi-
tional divisive partitioning, the SSE is always reduced by an
additional divisive partition.

[0091] At step 320, based on whether the reduction in SSE
is “significant,” a decision can be made whether to accept
the partition (and continue partitioning) or to reject the
partition and discontinue further partitioning. If the reduc-
tion in SSE is significant, the partition is accepted, and step
308 is again executed. If the reduction in SSE is insignifi-
cant, then the partitioning stops.

[0092] FIG. 4 is a more detailed flow chart diagram of an
exemplary partition evaluation process. The SSE reduction
test is a test of ratio of the partitioned SSE to overall SSE.
This ratio has a distribution that is approximately normal
(Gaussian) when there is no significant partition of the
wafers. Eventually a point is reached where dividing a
cluster may not have a significant reduction in SSE, for
example, where the cluster does not have any outliers.

[0093] At steps 400 and 402, two p-value cutoffs are
specified for the significance levels to be used to accept the
wafers as a cluster or partition them to two groups.
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[0094] At step 400, the first p-value cutoff is specified to
determine when the reduction of SSE is significant.

[0095] At step 402, the second p-value cutoff is specified
for the probability of obtaining the actual partitioned com-
ponent sizes by random chance.

[0096] At step 404, a minimum cluster size is specified.

[0097] At step 406, a cluster is divided (partitioned) to
maximize the yield difference (in one principle component
dimension) between the two resulting clusters. An example
of'this step is shown in FIG. 7. For example, at the top (root)
of the dendrogram in FIG. 7, the complete sample of wafers
is divided into two groups: a first group including cluster 15
(4 wafers) and the remaining group, which has several
hundred wafers (which eventually are assigned to clusters
1-14 ). These two groups differ in the BIT1 yield metric by
87%, in the BSR2 yield metric by 74% and in the BSC2
Even yield metric by 47%. Then, the remaining group is
again divided into a first group (eventually assigned to
clusters 12-14) and a remaining group (eventually assigned
to clusters 1-11). These two groups differ in the yield metric
PWRS by 23%. One of ordinary skill can readily recognize
how at each node of the dendrogram, a cluster is divided to
maximize the yield difference between the two clusters
formed by the partition. Thus, a node that is closer to the root
of the dendrogram by definition has a greater yield differ-
ence between branches than a node that is closer to the
leaves of the dendrogram. In general, the more nodes there
are separating a given node from the root, the smaller the
yield difference at the given node will be.

[0098] A variety of techniques may be used to identify a
proposed partition into clusters. FIGS. 9-10 show Pareto
plots that are useful for human analysis of the data to make
this assessment. For example, FIG. 9 shows that in cluster 14
(of the dendrogram in FIG. 7), all of the zones show a yield
problem with the PWRS metric, and none of the zones have
a significant yield problem with the other seven metrics.
FIG. 10 is a pareto plot of cluster 9 from FIG. 7, in which
all of the metrics for the outer bottom left zone show the
greatest yield problems, and all metrics show significant
yield problems in the middle bottom left zone.

[0099] At step 408, the SSE reduction is determined by
one minus the ratio of the SSE of the larger of two clusters
after the partition to the SSE of the original cluster before the
partition.

[0100] At step 410, the SSE reduction is compared to the
cutoff.

[0101] If the SSE reduction is less than the cutoff, then
step 412 is executed. If the SSE reduction is greater than or
equal to the cutoff, then step 414 is performed.

[0102] At step 414, if the more significant wafer partition
of the two yield sets reduces the SSE significantly, i.e. with
p-value less than the pre-specified p-value cutoff, use this
partition to divide wafers into 2 clusters. When step 414 is
executed, step 416 is skipped, and step 418 is executed next.

[0103] At step 412, where the SSE reduction is less than
the cutoff, the second test for accepting the partition is
performed. At step 412, if both partition tests for SSE
reduction are not significant, check whether one of the two
partitions has significantly different numbers of wafers in its
two partitioned components. If the partition component sizes
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are significantly non-random, tested against the p-value
cutoff of step 402, then step 414 is executed to divide the
wafers into 2 groups by this partition.

[0104] If both tests (steps 410 and 412) return non-
significant partitioning of the wafers for both yield sets, the
step 416 is performed.

[0105] At step 416, the wafers are accepted as a cluster
and the bisection algorithm is stopped with the current set of
wafers. This corresponds to accepting a cluster as a leaf of
the dendrogram as shown in FIG. 7.

[0106] At step 418, the size of the new clusters is com-
pared to the minimum cluster size. If either of the clusters is
greater than the minimum, then the recursive bisection
continues at step 406 for that cluster. If either of the clusters
is less than the minimum, step 420 is executed for that
cluster.

[0107] At step 420, for partitions that contain small num-
ber of wafers, i.e. less than some pre-specified minimum
wafer number, accept wafers in these partitions as clusters
and stop bisection algorithm on these groups of wafers.

[0108] Thus, the loop from steps 406-418 is recursively
applied to each of the larger wafer partitions, using wafers
in each partition, and in child partitions that still satisty the
criteria for further partitioning.

[0109] FIG. 12A is a flow chart showing the remaining
steps for determining the cause(s) of the failures.

[0110] At step 1200, the cluster partitioning is performed
on the filtered yield metric data, as described above, or using
another clustering technique.

[0111] At step 1202, select a baseline cluster that repre-
sents best-case typical operation of the manufacturing facil-
ity (fab). Heuristic algorithms are used to select the baseline
cluster taking into account both yield and cluster size. For
example, the baseline cluster may be identified manually
using a set of pareto plots. FIG. 8 shows a cluster that could
serve as the baseline cluster of the sample shown in FIG. 7.
None of the 8 yield metrics shows a significant problem for
this cluster.

[0112] At step 1204, a loop including steps 1206-1216 is
performed for each cluster.

[0113] At step 1206, perform a drill down analysis to
provide information about root cause.

[0114] At step 1208, perform qualitative micro-event on
each cluster and compare to the baseline. The result of this
is a list of one-or-more process modules that can help drive
subsequent drill down.

[0115] At step 1210, for process steps in the target mod-
ules, perform equipment commonality analysis on lots in the
baseline and the target cluster to determine if any equipment
contains more lots from this cluster than can be accounted
for by random chance. If so, mark these steps for detailed
examination of the equipment parameters (inline).

[0116] At step 1212, perform an analysis comparing the
defectivity of baseline and each cluster.

[0117] Create plots when defectivity is significantly higher
in target cluster.
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[0118] At step 1214, for scribeline measurements associ-
ated with the target modules, perform a scribeline analysis to
determine if the scribeline parameters are significantly dif-
ferent between the target cluster and the baseline. If so,
create plots to indicate the difference. 4) Build the equip-
ment parameter (inline) data sets needed for detailed exami-
nation of equipment parameters. These are identified during
step 1210.

[0119] For each cluster, complete the drill down. At step
1216, Check each equipment parameter in the targeted
process steps to determine if there is a significant difference
between targeted cluster and baseline.

[0120] When the analysis is completed, one can create an
overall summary report and create a final drill down Pow-
erPoint report for each cluster.

[0121] FIG. 12A shows a preferred drilldown algorithm
for FBM drilldown—when all data are available. FBM is
used for memory, where the failed bits on each memory chip
can be identified as to their general location from a memory
test. FBM data can be used directly for drill down. If one is
looking at die sort yield, then equipment commonality, tool
QC/equipment log, scribeline, and defectivity analyses are
preferably used. For die sort data, the spatial algorithms
described above are used for drill down to find the tool
responsible for the failures.

[0122] FIG. 12B shows a variation of the method of FIG.
12A. In FIG. 12B, steps 1256-1266 are the same as the
respective steps 1206-1216, but are not performed in the
sequence of FIG. 12A. FIG. 12B shows that the steps
1256-1266 may be performed in parallel, instead of sequen-
tially. A signal found in one of these drilldown methods may
drive subsequent analysis using one of the other methods but
that the order of drilldown is not necessarily fixed.

[0123] Further, one of ordinary skill will understand that
steps 1206-1216 may be performed in other sequences, or in
combinations of some steps in parallel and other steps in
sequence.

[0124] FIG. 14 is a flow chart diagram with a detailed
description of step 1210 (Equipment Commonality Analy-
sis) of FIG. 12A.

[0125] As noted above with reference to FIG. 12A, at step
1202, all wafers are classified into clusters of different yield
patterns, and one cluster is established as the baseline cluster
(good wafers cluster). This allows comparison of all other
clusters with the baseline cluster. Although the failure data
have been clustered, the equipment data is at the lot level.
For each processing step, data indicate the lots that were
processed through the equipment corresponding to that step.
As such, the wafer cluster results are now organized at lot
level for equipment commonality analysis.

[0126] At step 1400, a loop of steps 1402-1404 is executed
for each cluster.

[0127] At step 1402, a loop of step 1404 is executed for
each lot.

[0128] At step 1404, for each cluster, only the wafers that
are in that cluster (bad wafers) and in the baseline cluster
(good wafers) are used. For each lot, a statistic is calculated
that measures the goodness of that lot (the “lot goodness
ratio”) by taking the proportion of good wafers, or the

Dec. 13, 2007

number of wafers in baseline for that lot divided by the sum
of all wafers in baseline and cluster in that lot.

[0129] The step 1406-1418 use this lot-level proportion of
good wafer statistic to identify processing steps with equip-
ment that contain significant number of bad lots (lots con-
taining high proportion of bad wafers). This is referred to as
the Equipment Commonality Analysis.

[0130] At step 1406, an Equipment Commonality Analysis
Method is selected to identify bad equipment. Two examples
of preferred analysis techniques are Monte Carlo (Bootstrap-
ping) and Analysis of Variance between Groups (ANOVA).

[0131] Ifthe bootstrapping (Monte Carlo) method is used,
then at step 1408, internal data are essentially randomly
selected with replacement.

[0132] At step 1410, the probability of the given outcome
is calculated. Given the yield and equipment assignment of
the lots, the bootstrapping (Monte Carlo) method may be
used to compute the probability of the lots being distributed
among the equipment in the realized outcome without any
assumption about the yield distribution. This can be used on
discrete data.

[0133] The Monte Carlo simulation calculates multiple
scenarios of a model by repeatedly sampling values from the
probability distributions for the uncertain variables and
using each values for a respective trial. Monte Carlo simu-
lations can include as many trials as desired. This method is
used to obtain greater accuracy at the expense of time. When
repeated for many scenarios (e.g., 10,000 or more), the
average solution gives an approximate answer to the prob-
lem. Accuracy of this answer can be improved by simulating
more scenarios. The accuracy of a Monte Carlo simulation
is proportional to the square root of the number of scenarios
used.

[0134] 1i. Given N lots distributed among K equipment in
a given step with equipment 1 to K containing N, to N
number of lots, compute the realized equipment weighted
sum of square error (WSS):

1 & .
WSS = ﬁ; Ni(Y; - Y)

[0135] where Y, is the yield of equipment i (average yield
of lots through equipment i) and Y is the overall yield.

[0136] ii. Next, randomize the lot-equipment relationship
M times and each time compute the WSS of the randomized
data to obtain the distribution of this WSS statistic.

[0137] iii. Lastly, say a subset MG of these M computed
WSS statistics is larger than the realized WSS in step i, so
the p-value is M/M.

[0138] In other words, the larger WSS values correspond
to lot-equipment relationships where there is greater varia-
tion among the yields of the various lots. The smaller WSS
values correspond to lot-equipment relationships where
there is little, or only noise, variation among the yields of the
various lots. Thus, the M/M ratio indicates the probability
that the variation among the yields is as large as the actual
observed variation.
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[0139] The ANOVA method of steps 1412-1418 is a
standard statistical ANOVA (e.g., F test). Given the yield and
equipment assignment of the lots, the ANOVA method can
be used to identify whether the yield variation among the
equipment is significantly larger than the noise (average
yield variation within the equipment).

[0140] At step 1412, the yield variation among lots (equip-
ments) is calculated. The collection of the “lot goodness
ratios” are treated as data and the variation of those ratios is
calculated.

[0141] At step 1414, the yield variation within lots (equip-
ments) is determined, based on an overall variation among
all of the wafers, adjusted for the cluster size.

[0142] At step 1416, the ratio of the variation among lots
to the variation within lots is calculated. The number of
degrees of freedom (“d.f.”) for the numerator (variation
among lots) is one less than the number of lots. The number
of degrees of freedom for the denominator (so called “error”
or variation within lots or expected variation) is the total
number of wafers minus the total number of lots. The F ratio
can be computed from the ratio of the mean sum of squared
deviations of each lot goodness ratio from the overall mean
yield [weighted by the size of the lot] (“Mean Square” for
“between”) and the mean sum of the squared deviations of
each item from that item’s lot mean (“Mean Square” for
“error”). In the previous sentence “mean” indicates dividing
the total “Sum of Squares” by the number of degrees of
freedom.

[0143] At step 1418, the significance of the ratio can be
determined, for example, from a table of the F-distribution,
using the relevant degrees of freedom.

[0144] The ANOVA method of steps 1412-1418 is based
on the assumption that the noise is normally distributed. So
precision of the computed probability of event (p-value)
suffers when the data do not meet this assumption. However,
the ANOVA method is very fast.

[0145] Both Monte Carlo and ANOVA methods return
comparable p-values when the normality assumption is
valid. The bootstrapping (Monte Carlo) method is preferred
when the normality assumption is invalid (for example
highly discretized yield metric) or when a high degree of
accuracy is desired. ANOVA is used when time is of the
essence and the accuracy is deemed sufficient.

[0146] Thus, a method has been described for organizing
semiconductor wafer data and its spatial variability such that
N-dimensional vectors can be constructed that represent
each wafer as a single point in this aforementioned N-di-
mensional space. A wafer zone map is prescribed with or
without overlapping regions. A data-zone vector is con-
structed for each wafer. The semiconductor data may be bin
data such as die sort, multi-probe, and fail bit map data. A
portion of the resulting constructed data points in the N-di-
mensional space can be defined as “clustered” according to
some set of rules. In some embodiments, a filtering analysis
is performed on the data-zone vectors to determine the
dominant clusters in the data, and a distance matrix is
constructed and a distance threshold determined,

[0147] The filtering method used may include principle
component analysis to determine the dominant clusters in
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the N-dimensional space. A drill down method, may include,
for example, tool commonality, microevents from FBM, or
the like.

[0148] FIG. 13 is a flow chart of a variation of the
clustering method that may be used with a very large sample
of wafers, such that insufficient computer memory resources
are available to automatically perform all of the clustering
computations for agglomerative hierarchical clustering
beginning with each wafer in a separate cluster.

[0149] At step 1300, the data are divided into two sets. The
wafers in the first set are assigned to an initial set of clusters.
The wafers in the second set are to be incorporated into the
initial clusters.

[0150] At step 1302, the initial clusters are formed by
randomly selecting wafers from the first set.

[0151] At step 1304, a loop containing steps 1306-1314 is
performed for each wafer in the second set.

[0152] At step 1306, the wafer is assigned to the cluster
having its centroid nearest the wafer to be assigned. Distance
is measured using the Fuclidean distance in N-dimensions,
d=I%; o fer—Xictuster] Where X; . is the position in N-space of
the j*™* wafer of the i cluster and x, ..., is the mean position
of the i cluster where mean position is calculated using the
mean of wafer positions in that cluster. Then the cluster
acceptance criterion (e.g., SSE) is applied.

[0153] At step 1308, a decision is made whether to add the
wafer to one of the existing clusters. If the wafer belongs in
the cluster, step 1310 is executed. If the wafer does not
belong in an existing cluster (i.e., if it is an outlier), step
1312 is executed to form a new cluster containing the wafer.

[0154] At step 1314, summary statistics are updated.

[0155] By using the method of claim 13, the techniques
described above can be extended to samples of any size.

[0156] Although the invention has been described in terms
of exemplary embodiments, it is not limited thereto. Rather,
the appended claims should be construed broadly, to include
other variants and embodiments of the invention, which may
be made by those skilled in the art without departing from
the scope and range of equivalents of the invention.

What is claimed is:
1. A method for analyzing a sample of wafers, comprising
the steps of:

(a) identifying F failure metrics that are applicable to at
least one circuit pattern on each wafer within the
sample of wafers, where F is an integer;

(b) identifying Z spatial and/or reticle zones on each
wafer, where Z is an integer;

(c) providing values for each of the F failure metrics, for
each of the Z zones on each wafer;

(d) defining a point for each respective wafer in an
N-dimensional space, where N=F*Z, and each point
has coordinates corresponding to values of the F failure
metrics in each of the Z zones of the corresponding
wafer; and

(e) clustering the sample of wafers into a plurality of
clusters of wafers, so that the wafers within each cluster
are close to each other in the N-dimensional space,
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thereby identifying the plurality of clusters of wafers
from the sample of wafers so that within each indi-
vidual cluster, the wafers have a similar distribution of
defects.

2. The method of claim 1, wherein step (c) includes
extracting the values from failure bit map data, multi-probe
data or final die sort data collected from each wafer, using
a die sort tester.

3. The method of claim 1, wherein:

step (b) includes identifying Z reticle zones, correspond-
ing to Z zones within a reticle used to make each wafer,
each wafer has E reticle fields corresponding to E
exposures of the wafer using the reticle, and step (c)
includes providing, for each wafer, Z values for each
failure metric, each of the Z values representing a
combined measure of the values of that failure metric
for a given one of the reticle zones across all E reticle
fields of that wafer.

4. The method of claim 3, wherein the D reticle zones

correspond to D die within each reticle field.
5. The method of claim 1, wherein:

S spatial zones and R reticle zones are identified on each
wafer, where R and S are integers,

steps (¢), (d) and (e) are performed with Z=S, using spatial
data from the S spatial zones, and

steps (¢), (d) and (e) are performed with Z=R, using reticle
data from the R reticle zones.
6. The method of claim 1, further comprising after step
(d), filtering the data to eliminate noise.
7. The method of claim 1, further comprising after step

(d),

performing a principle component analysis on the coor-
dinates for each point to identify a set of principle
component scores;

identifying insignificant principal component scores; and

eliminating the insignificant principal component scores
before step (e).
8. The method of claim 7, wherein step (e) includes:

initially assigning each wafer to a respectively different
cluster;

determining a respective distance between each pair of the
clusters in a principle component space; and

recursively combining into a single cluster the pair of
clusters that are separated by a smallest distance in the
principle component space.
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9. The method of claim 7, wherein step (e) includes
agglomerative hierarchical clustering.

10. The method of claim 9, wherein a distance between a
given two of the clusters is defined as the greatest distance,
in the N-dimensional space, between any two wafers in the
given two clusters, and the agglomerative hierarchical clus-
tering includes combining wafers of the clusters until the
smallest distance between any two of the clusters exceeds a
predetermined threshold.

11. The method of claim 8, wherein the distance between
a pair of clusters is defined as the greatest distance between
any two points corresponding to any of the wafers in the pair
of clusters.

12. The method of claim 1, wherein step (e) comprises:

(el) initially assigning a subset of the wafers to one of the
clusters;

(e2) determining a respective distance between the point
corresponding to each of the subset of wafers and a
centroid of the one cluster;

(e3) calculating a first sum of the squared errors from the
distances of step (e2);

(e4) calculating a second sum of the squared errors that is
obtained from each of two partitioned clusters to be
formed by partitioning the one cluster, where the sec-
ond sum of the squared errors is based on the respective
distance between each point and a centroid of the
respective partitioned cluster to which that point is to
be assigned;

(e5) partitioning the one cluster into the two partitioned
clusters, if the second sum of the squared errors is
significantly less than the first sum of the squared
errors.

13. The method of claim 12, wherein step (e5) comprises
partitioning the one cluster into the two partitioned clusters,
if one minus a ratio of the second sum of the squared errors
divided by the first sum of the squared errors exceeds a
threshold value.

14. The method of claim 1, further comprising performing
a commonality analysis to identify one or more pieces of
equipment responsible for a lot of wafers having a yield
below a desired yield.

15. The method of claim 14, wherein the commonality
analysis includes a Monte Carlo simulation.

16. The method of claim 14, wherein the commonality
analysis includes analysis of variance between lots of
wafers.
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