(12) United States Patent

Coakley et al.
(10) Patent No.: US 8,199,007 B2
(45) Date of Patent: Jun. 12, 2012

4,653,498 A	3/1987	New, Jr. et al.	
4,685,464 A *	8/1987	Goldberger et al.	600/344
4,694,833 A	9/1987	Hamaguri	
4,697,593 A	10/1987	Evans et al.	
4,700,708 A	10/1987	New, Jr. et al.	
4,714,080 A	12/1987	Edgar, Jr. et al.	
4,714,341 A	12/1987	Hamaguri et al.	
4,759,369 A	7/1988	Taylor	
4,770,179 A	9/1988	New, Jr. et al.	
4,773,422 A	9/1988	Isaacson et al.	
4,776,339 A	10/1988	Schreiber	
4,781,195 A	11/1988	Martin	
4,796,636 A	1/1989	Branstetter et al.	
4,800,495 A	1/1989	Smith	
4,800,885 A	1/1989	Johnson	
4,802,486 A	2/1989	Goodman et al.	
4,805,623 A	2/1989	Jöbsis	
	(Con	nued)	

FOREIGN PATENT DOCUMENTS
$3516338 \quad 11 / 1986$
(Continued)

OTHER PUBLICATIONS

Faisst, Karin, et al.; "Intrapartum Reflectance Pulse Oximetry: Effects of Sensor Location and Fixation Duration on Oxygen Saturation Readings," Journal of Clinical Monitoring, vol. 13, pp. 299 302 (1997).

(Continued)

Primary Examiner - Anthony Q Edwards
(74) Attorney, Agent, or Firm - Fletcher Yoder

ABSTRACT

The present disclosure relates to a sensor assembly, comprising a frame comprising structural supports, and housings configured to house an optical component; and a strut disposed between one of the structural supports and housings; wherein the struts are adapted to house conductors connecting the optical component to a circuit.

5 Claims, 3 Drawing Sheets

U.S. PATENT DOCUMENTS				5,209,230	A	5/1993	Swedlow et al.	
4,807,630	A	2/1989	Malinouskas	5,213,099	A	5/1993	Tripp, Jr.	
4,807,631	A	2/1989	Hersh et al.	5,216,598	A	6/1993	Branstetter et al.	
4,819,646	A	4/1989	Cheung et al.	$5,217,012$ $5,217,013$	A	$6 / 1993$ $6 / 1993$	Young et al.	
4,819,752	A	4/1989	Zelin	5,21,013	A	6/1993	Mannheimer et al.	
4,824,242	A	4/1989	Frick et al.	5,224,478	A	7/1993	Sakai et al.	
4,825,872	A	5/1989	Tan et al.	5,226,417	A	7/1993	Swedlow et al.	
4,825,879	A	5/1989	Tan et al.	5,228,440	A	7/1993	Chung et al.	
$4,830,014$ 4832484	A	5/1989	Goodman et al.	5,237,994	A	8/1993	Goldberger	
$4,832,484$ $4,846,183$	A	7/1989	Aoyagi et al.	5,239,185	A	8/1993	Ito et al.	
4,848,901	A	7/1989	Hood, Jr.	5,246,002	A	9/1993	Prosser	
4,854,699	A	8/1989	Edgar, Jr.	$5,246,003$ $5,247,931$	A	9/1993	DeLonzor	
4,859,056	A	8/1989	Prosser et al.	5,247,932	A	9/1993	Chung et al.	
4,859,057	A	8/1989	Taylor et al.	5,249,576	A	10/1993	Goldberger et al.	
4,863,265	A	9/1989	Flower et al.	5,253,645	A	10/1993	Friedman et al.	
4,865,038	A	9/1989	Rich et al.	5,253,646	A	10/1993	Delpy et al.	
4,867,557	A	9/1989	Takatani et al.	5,259,381	A	11/1993	Cheung et al.	
4,869,253	A	9/1989	Craig, Jr. et al.	5,259,761	A	11/1993	Schnettler et al.	
4,869,254	A	9/1989	Stone et al.	5,263,244	A	11/1993	Centa et al.	
4,880,304	A	11/1989	Jaeb et al.	5,267,562	A	12/1993	Ukawa et al.	
4,883,055	A	11/1989	Merrick	5,267,563	A	12/1993	Swedlow et al.	
4,883,353	A	11/1989	Hansmann et al.	5,273,036	A	12/1993	Kronberg et al.	
4,890,619	A	1/1990	Hatschek	5,275,159	A	1/1994	Griebel	
4,892,101	A	1/1990	Cheung et al.	5,279,295	A	1/1994	Martens et al.	
4,901,238	A	2/1990	Suzuki et al.	5,285,783	A	2/1994	Secker	
4,908,762	A	3/1990	Suzuki et al.	5,285,784	A	2/1994	Seeker	
4,911,167	A	3/1990	Corenman et al.	5,287,853	A	2/1994	Vester et al.	
4,913,150	A	4/1990	Cheung et al.	5,291,884	A	3/1994	Heinemann et al.	
4,926,867	A	5/1990	Kanda et al.	5,297,548	A	3/1994	Pologe	
4,927,264	A	5/1990	Shiga et al.	5,299,120	A	3/1994	Kaestle	
4,928,692	A	5/1990	Goodman et al.	5,299,570	A	4/1994	Hatschek	
4,934,372	A	6/1990	Corenman et al.	5,309,908	A	5/1994	Friedman et al.	
4,938,218	A	7/1990	Goodman et al.	5,311,865	A	5/1994	Mayeux	
4,942,877	A	7/1990	Sakai et al.	5,313,940	A	5/1994	Fuse et al.	
4,948,248	A	8/1990	Lehman	5,323,776	A	6/1994	Blakeley et al.	
4,955,379	A	9/1990	Hall	5,329,922	A	7/1994	Atlee, III	
4,960,126	A	10/1990	Conlon et al.	5,337,744	A	8/1994	Branigan	
4,964,408	A	10/1990	Hink et al.	5,339,810	A	8/1994	Ivers et al.	600/340
4,971,062	A	11/1990	Hasebe et al.	5,343,818	A	9/1994	McCarthy et al.	
4,974,591	A	12/1990	Awazu et al.	5,343,869	A	9/1994	Pross et al.	
5,007,423	A	4/1991	Branstetter et al.	5,348,003	A	9/1994	Caro	600/310
5,025,791	A	6/1991	Niwa	5,348,004	A	9/1994	Hollub et al.	
RE33,643	E	7/1991	Isaacson et al.	5,349,519	A	9/1994	Kaestle	
5,028,787	A	7/1991	Rosenthal et al.	5,349,952	A	9/1994	McCarthy et al.	
5,035,243	A *	7/1991	Muz 600/344	5,349,953	A	9/1994	McCarthy et al.	
5,040,539	A	8/1991	Schmitt et al.	5,351,685	A	10/1994	Potratz	
5,054,488	A	10/1991	Muz	5,353,799	A	10/1994	Chance	
5,055,671	A	10/1991	Jones	5,355,880	A	10/1994	Thomas et al.	
5,058,588	A	10/1991	Kaestle	5,355,882	A	10/1994	Ukawa et al.	
5,065,749	A	11/1991	Hasebe et al.	5,361,758	A	11/1994	Hall et al.	
5,066,859	A	11/1991	Karkar et al.	5,365,066	A	11/1994	Krueger, Jr. et al.	
5,069,213	A	12/1991	Polczynski	5,368,025	A	11/1994	Young et al.	
5,078,136	A	1/1992	Stone et al.	5,368,026	A	11/1994	Swedlow et al.	
5,084,327	A	1/1992	Stengel	5,368,224	A	11/1994	Richardson et al.	
$5,088,493$ 5	A	2/1992	Giannini et al.	5,372,136	A	12/1994	Steuer et al.	
5,090,410	A	2/1992	Saper et al.	5,377,675	A	1/1995	Ruskewicz et al.	
5,094,239	A	3/1992	Jaeb et al.	5,385,143	A	1/1995	Aoyagi	
$5,094,240$ $5,099.841$	A	3/1992	Muz	5,387,122	A	2/1995	Goldberger et al.	
$5,099,841$ $5,099,842$	A	3/1992	Heinonen et al.	5,390,670	A	2/1995	Centa et al.	
$5,099,842$ H0001039	A	3/1992	Mannheimer et al.	5,392,777	A	2/1995	Swedlow et al.	
H000 1039 $5,104.623$	H	4/1992	Tripp et al.	5,398,680	A	3/1995	Polson et al.	
5,104,623 $5,109.849$	A	4/1992	Miller	5,402,777	A	4/1995	Warring et al.	
$5,109,849$ $5,111,817$	A	5/1992 5/1992	Goodman et al.	5,411,023	A	5/1995	Morris, Sr. et al.	
5,113,861	A	5/1992	Rother	5,411,024	A	5/1995	Thomas et al.	
5,125,403	A	6/1992	Culp	5,413,099 5,413,100	A	5/1995	Barthelemy et al.	
5,127,406	A	7/1992	Yamaguchi	5,413,101	A	5/1995	Sugiura	
5,131,391	A	7/1992	Sakai et al.	5,41,101 5,413,102	A	5/1995	Schmidt et al.	
5,140,989 5	A	8/1992 10/1992	Lewis et al.	5,413,102 5,417,207	A	5/1995	Young et al.	
5,152,296 5,154,175	A	10/1992	Simons Gunther	5,421,329	A	6/1995	Casciani et al.	
5,158,082	A	10/1992	Jones	5,425,360	A	6/1995	Nelson	
5,170,786	A	12/1992	Thomas et al.	5,425,362	A	6/1995	Siker et al.	
5,188,108	A	2/1993	Secker	5,427,093	A	6/1995	Ogawa et al.	
5,190,038	A	3/1993	Polson et al.	5,429,128	A	7/1995	Cadell et al.	
5,193,542	A	3/1993	Missanelli et al.	5,429,129	A	7/1995	Lovejoy et al.	
5,193,543	A	3/1993	Yelderman	5,431,159	A	7/1995	Baker et al.	
5,203,329	A	4/1993	Takatani et al.	5,431,170	A	7/1995	Mathews	

5,437,275	A *	8/1995	Amundsen et al. 600/323	5,727,547	A	3/1998	Levinson et al.
5,438,986	A	8/1995	Disch et al.	5,731,582	A	3/1998	West
5,448,991	A	9/1995	Polson et al.	393,830	A	4/1998	Tobler et al.
5,452,717	A	9/1995	Branigan et al.	5,743,260	A	4/1998	Chung et al.
5,465,714	A	11/1995	Scheuing	5,743,263	A	4/1998	Baker, Jr.
5,469,845	A	11/1995	DeLonzor et al.	5,743,349	A	4/1998	Steinberg 180/272
RE35,122	E	12/1995	Corenman et al.	5,746,206	A	5/1998	Mannheimer
5,474,065	A	12/1995	Meathrel et al.	5,746,697	A	5/1998	Swedlow et al.
5,482,034	A	1/1996	Lewis et al.	5,752,914	A	5/1998	DeLonzor et al.
5,482,036	A	1/1996	Diab et al.	5,755,226	A	5/1998	Carim et al.
5,483,646	A	1/1996	Uchikoga	5,758,644	A	6/1998	Diab et al.
5,485,847	A	1/1996	Baker, Jr.	5,760,910	A	6/1998	Lepper, Jr. et al.
5,490,505	A	2/1996	Diab et al.	5,766,125	A	6/1998	Aoyagi et al.
5,490,523	A	2/1996	Isaacson et al.	5,766,127	A	6/1998	Pologe et al.
5,491,299	A	2/1996	Naylor et al.	5,769,785	A	6/1998	Diab et al.
5,494,032	A	2/1996	Robinson et al.	5,772,587	A	6/1998	Gratton et al.
5,497,771	A	3/1996	Rosenheimer	5,774,213	A	6/1998	Trebino et al.
5,499,627	A	3/1996	Steuer et al.	5,776,058	A	7/1998	Levinson et al.
5,503,148	A	4/1996	Pologe et al.	5,776,059	A	7/1998	Kaestle et al.
5,505,199	A	4/1996	Kim	5,779,630	A	7/1998	Fein et al.
5,507,286	A	4/1996	Solenberger	5,779,631	A	7/1998	Chance
5,511,546	A *	4/1996	Hon 600/490	5,782,237	A	7/1998	Casciani et al.
5,517,988	A	5/1996	Gerhard	5,782,756	A	7/1998	Mannheimer
5,520,177	A	5/1996	Ogawa et al.	5,782,757	A	7/1998	Diab et al.
5,521,851	A	5/1996	Wei et al.	5,782,758	A	7/1998	Ausec et al.
5,522,388	A	6/1996	Ishikawa et al.	5,786,592	A	7/1998	Hök
5,524,617	A	6/1996	Mannheimer	5,790,729	A	8/1998	Pologe et al.
5,529,064	A	6/1996	Rall et al.	5,792,052	A	8/1998	Isaacson et al.
5,533,507	A	7/1996	Potratz	5,795,292	A	8/1998	Lewis et al.
5,551,423	A	9/1996	Sugiura	5,797,841	A	8/1998	DeLonzor et al.
5,551,424	A	9/1996	Morrison et al.	5,800,348	A	9/1998	Kaestle
5,553,614	A	9/1996	Chance	5,800,349	A	9/1998	Isaacson et al.
5,553,615	A	9/1996	Carim et al.	5,803,910	A	9/1998	Potratz
5,555,882	A	9/1996	Richardson et al.	5,807,246	A	9/1998	Sakaguchi et al.
5,558,096	A	9/1996	Palatnik	5,807,247	A	9/1998	Merchant et al.
5,560,355	A	10/1996	Merchant et al.	5,807,248	A	9/1998	Mills
5,564,417	A	10/1996	Chance	5,810,723	A	9/1998	Aldrich
5,575,284	A	11/1996	Athan et al.	5,810,724	A	9/1998	Gronvall
5,575,285	A	11/1996	Takanashi et al.	5,813,980	A	9/1998	Levinson et al.
5,577,500	A	11/1996	Potratz	5,817,008	A	10/1998	Rafert et al.
5,582,169	A	12/1996	Oda et al.	5,817,009	A	10/1998	Rosenheimer et al.
5,584,296	A	12/1996	Cui et al.	5,817,010	A	10/1998	Hibl
5,588,425	A	12/1996	Sackner et al.	5,818,985	A	10/1998	Merchant et al.
5,588,427	A	12/1996	Tien	5,820,550	A	10/1998	Polson et al.
5,590,652	A	1/1997	Inai	5,823,950	A	10/1998	Diab et al.
5,595,176	A	1/1997	Yamaura	5,823,952	A	10/1998	Levinson et al.
5,596,986	A	1/1997	Goldfarb	5,827,182	A	10/1998	Raley et al.
5,611,337	A	3/1997	Bukta	5,830,135	A	11/1998	Bosque et al.
5,617,852	A	4/1997	MacGregor	5,830,136	A	11/1998	DeLonzor et al.
5,619,992	A	4/1997	Guthrie et al.	5,830,137	A	11/1998	Scharf
5,626,140	A	5/1997	Feldman et al.	5,839,439	A	11/1998	Nierlich et al.
5,630,413	A	5/1997	Thomas et al.	RE36,000	E	12/1998	Swedlow et al.
5,632,272	A	5/1997	Diab et al.	5,842,979	A	12/1998	Jarman et al.
5,632,273	A	5/1997	Suzuki	5,842,981	A	12/1998	Larsen et al.
5,634,459	A	6/1997	Gardosi	5,842,982	A	12/1998	Mannheimer
5,638,593	A	6/1997	Gerhardt et al.	5,846,190	A	12/1998	Woehrle
5,638,818	A	6/1997	Diab et al.	5,851,178	A	12/1998	Aronow
5,645,060	A	7/1997	Yorkey	5,851,179	A	12/1998	Ritson et al.
5,645,440	A	7/1997	Tobler et al.	5,853,364	A	12/1998	Baker, Jr. et al.
5,660,567	A	8/1997	Nierlich et al.	5,860,919	A	1/1999	Kiani-Azarbayjany et al.
5,662,105	A	9/1997	Tien	5,865,736	A	2/1999	Baker, Jr. et al.
5,662,106	A	9/1997	Swedlow et al.	5,871,442	A	2/1999	Madarasz et al.
5,666,952	A	9/1997	Fuse et al.	5,879,294	A	3/1999	Anderson et al.
5,671,529	A	9/1997	Nelson	5,885,213	A	3/1999	Richardson et al.
5,673,692	A	10/1997	Schulze et al.	5,890,929	A	4/1999	Mills et al.
5,673,693	A	10/1997	Solenberger	5,891,021	A	4/1999	Dillon et al.
5,676,139	A	10/1997	Goldberger et al.	5,891,022	A	4/1999	Pologe
5,676,141	A	10/1997	Hollub	5,891,024	A	4/1999	Jarman et al.
5,678,544	A	10/1997	DeLonzor et al.	5,891,025	A	4/1999	Buschmann et al.
5,680,857	A	10/1997	Pelikan et al.	5,891,026	A	4/1999	Wang et al.
5,685,299	A	11/1997	Diab et al.	5,902,235	A	5/1999	Lewis et al.
5,685,301	A	11/1997	Klomhaus	5,910,108	A	6/1999	Solenberger
5,687,719	A	11/1997	Sato et al.	5,911,690	A	6/1999	Rall
5,687,722	A	11/1997	Tien et al.	5,912,656	A	6/1999	Tham et al.
5,692,503	A	12/1997	Kuenstner	5,913,819	A	6/1999	Taylor et al.
5,692,505	A	12/1997	Fouts	5,916,154	A	6/1999	Hobbs et al.
5,709,205	A	1/1998	Bukta	5,916,155	A	6/1999	Levinson et al.
5,713,355	A	2/1998	Richardson et al.	5,919,133	A	7/1999	Taylor et al.
5,724,967	A	3/1998	Venkatachalam	5,919,134	A	7/1999	Diab

5,920,263	A	7/1999	Huttenhoff et al.	6,181,958	B1	1/2001	Steuer et al.	
5,921,921	A	7/1999	Potratz et al.	6,181,959	B1	1/2001	Schöllerman et al.	
5,922,607	A	7/1999	Bernreuter	6,184,521	B1	2/2001	Coffin, IV et al.	
5,924,979	A	7/1999	Swedlow et al.	6,188,470	B1	2/2001	Grace	
5,924,980	A	7/1999	Coetzee	6,192,260	B1	2/2001	Chance	
5,924,982	A	7/1999	Chin	6,195,575	B1	2/2001	Levinson	
5,924,985	A	7/1999	Jones	6,198,951	B1	3/2001	Kosuda et al.	
5,934,277	A	8/1999	Mortz	6,206,830	B1	3/2001	Diab et al.	
5,934,925	A	8/1999	Tobler et al.	6,213,952	B1*	4/2001	Finarov et al.	600/491
5,940,182	A	8/1999	Lepper, Jr. et al.	6,217,523	B1	4/2001	Amano et al.	
5,954,644	A	9/1999	Dettling et al.	6,222,189	B1	4/2001	Misner et al.	
5,960,610	A	10/1999	Levinson et al.	6,226,539	B1	5/2001	Potratz	
5,961,450	A	10/1999	Merchant et al.	6,226,540	B1	5/2001	Bernreuter et al.	
5,961,452	A	10/1999	Chung et al.	6,229,856	B1	5/2001	Diab et al.	
5,964,701	A	10/1999	Asada et al.	6,230,035	B1	5/2001	Aoyagi et al.	
5,971,930	A	10/1999	Elghazzawi	6,233,470	B1	5/2001	Tsuchiya	
5,978,691	A	11/1999	Mills	6,236,871	B1	5/2001	Tsuchiya	
5,978,693	A	11/1999	Hamilton et al.	6,236,872	B1	5/2001	Diab et al.	
5,983,122	A	11/1999	Jarman et al.	6,240,305	B1	5/2001	Tsuchiya	
5,987,343	A	11/1999	Kinast	6,253,097	B1	6/2001	Aronow et al.	
5,991,648	A	11/1999	Levin	6,253,098	B1	6/2001	Walker et al.	
5,995,855	A	11/1999	Kiani et al.	6,256,523	B1	7/2001	Diab et al.	
5,995,856	A	11/1999	Mannheimer et al.	6,256,524	B1	7/2001	Walker et al.	
5,995,858	A	11/1999	Kinast	6,261,236	B1	7/2001	Grimblatov	
5,995,859	A	11/1999	Takahashi	6,263,221	B1	7/2001	Chance et al.	
5,997,343	A	12/1999	Mills et al.	6,263,222	B1	7/2001	Diab et al.	
5,999,834	A	12/1999	Wang et al.	6,263,223	B1	7/2001	Sheperd et al.	
6,002,952	A	12/1999	Diab et al.	6,266,546	B1	7/2001	Steuer et al.	
6,005,658	A	12/1999	Kaluza et al.	6,266,547	B1	7/2001	Walker et al.	
6,006,120	A	12/1999	Levin	6,272,363	B1	8/2001	Casciani et al.	
6,011,985	A	1/2000	Athan et al.	6,278,522	B1	8/2001	Lepper, Jr. et al.	
6,011,986	A	1/2000	Diab et al.	6,280,213	B1	8/2001	Tobler et al.	
6,014,576	A	1/2000	Raley	6,280,381	B1	8/2001	Malin et al.	
6,018,673	A	1/2000	Chin et al.	6,285,894	B1	9/2001	Oppelt et al.	
6,018,674	A	1/2000	Aronow	6,285,895	B1*	9/2001	Ristolainen et al.	600/323
6,022,321	A	2/2000	Amano et al.	6,285,896	B1	9/2001	Tobler et al.	
6,023,541	A	2/2000	Merchant et al.	6,298,252	B1	10/2001	Kovach et al.	
6,026,312	A	2/2000	Shemwell et al.	6,308,089	B1	10/2001	Von der Ruhr et al.	
6,026,314	A	2/2000	Amerov et al.	6,321,100	B1	11/2001	Parker	
6,031,603	A	2/2000	Fine et al.	6,330,468	B1	12/2001	Scharf	
6,035,223	A	3/2000	Baker, Jr.	6,334,065	B1	12/2001	Al-Ali et al.	
6,036,642	A	3/2000	Diab et al.	6,339,715	B1	1/2002	Bahr et al.	
6,041,247	A	3/2000	Weckstrom et al.	6,343,223	B1	1/2002	Chin et al.	
6,044,283	A	3/2000	Fein et al.	6,343,224	B1	1/2002	Parker	
6,047,201	A	4/2000	Jackson, III	6,349,228	B1	2/2002	Kiani et al.	
6,061,584	A	5/2000	Lovejoy et al.	6,351,658	B1	2/2002	Middleman et al.	
6,064,898	A	5/2000	Aldrich	6,353,750	B1	3/2002	Kimura et al.	
6,064,899	A	5/2000	Fein et al.	6,356,774	B1	3/2002	Bernstein et al.	
6,067,462	A	5/2000	Diab et al.	6,360,113	B1	3/2002	Dettling	
6,073,038	A	6/2000	Wang et al.	6,360,114	B1	3/2002	Diab et al.	
6,078,833	A	6/2000	Hueber	6,361,501	B1	3/2002	Amano et al.	
6,081,735	A	6/2000	Diab et al.	6,363,269	B1	3/2002	Hanna et al.	
6,081,742	A	6/2000	Amano et al.	6,370,408	B1	4/2002	Merchant et al.	
6,083,157	A	7/2000	Noller	6,370,409	B1	4/2002	Chung et al.	
6,083,172	A	7/2000	Baker, Jr. et al.	6,374,129	B1	4/2002	Chin et al.	
6,088,607	A	7/2000	Diab et al.	6,377,829	B1	4/2002	Al-Ali	
6,094,592	A	7/2000	Yorkey et al.	6,381,479	B1	4/2002	Norris	
6,095,974	A	8/2000	Shemwell et al.	6,381,480	B1	4/2002	Stoddart et al.	
6,104,938	A	8/2000	Huiku et al.	6,385,471	B1	5/2002	Mortz	
6,112,107	A	8/2000	Hannula	6,385,821	B1	5/2002	Modgil et al.	
6,113,541	A	9/2000	Dias et al.	6,388,240	B2	5/2002	Schulz et al.	
6,115,621	A	9/2000	Chin	6,393,310	B1	5/2002	Kuenstner	
6,122,535	A	9/2000	Kaestle et al.	6,397,091	B2	5/2002	Diab et al.	
6,133,994	A	10/2000	Mathews et al.	6,397,092	B1	5/2002	Norris et al.	
6,135,952	A	10/2000	Coetzee	6,397,093	B1	5/2002	Aldrich	
6,144,444	A	11/2000	Haworth et al.	6,400,971	B1	6/2002	Finarov et al.	
6,144,867	A	11/2000	Walker et al.	6,400,972	B1	6/2002	Fine	
6,144,868	A	11/2000	Parker	6,402,690	B1	6/2002	Rhee et al.	
6,149,481	A	11/2000	Wang et al.	6,408,198	B1	6/2002	Hanna et al.	
6,150,951	A	11/2000	Olejniczak	6,411,832	B1	6/2002	Guthermann	
6,151,107	A	11/2000	Schöllerman et al.	6,411,833	B1	6/2002	Baker, Jr. et al.	
6,151,518	A	11/2000	Hayashi	6,419,671	B1	7/2002	Lemberg	
6,152,754	A	11/2000	Gerhardt et al.	6,421,549		7/2002	Jacques	
6,154,667	A	11/2000	Miura et al.	6,430,423	B2	8/2002	DeLonzor et al.	
6,157,850	A	12/2000	Diab et al.	6,430,513		8/2002	Wang et al.	
6,163,715	A	12/2000	Larsen et al.	6,430,525	B1	8/2002	Weber et al.	
6,165,005	A	12/2000	Mills et al.	6,434,408		8/2002	Heckel et al.	
6,173,196	B1	1/2001	Delonzor et al.	6,438,399		8/2002	Kurth	
6,178,343	B1	1/2001	Bindszus et al.	6,449,501	B1	9/2002	Reuss	

6,453,183	B1	9/2002	Walker	6,668,183 B2	12/2003	Hicks et al.
6,453,184	B1	9/2002	Hyogo et al.	6,671,526 B1	12/2003	Aoyagi et al.
6,456,862	B2	9/2002	Benni	6,671,528 B2	12/2003	Steuer et al.
6,461,305	B1	10/2002	Schnall	6,671,530 B2	12/2003	Chung et al.
6,463,310	B1	10/2002	Swedlow et al.	6,671,531 B2	12/2003	Al-Ali et al.
6,463,311	B1	10/2002	Diab	6,671,532 B1	12/2003	Fudge et al.
6,466,808	B1	10/2002	Chin et al.	6,675,031 B1	1/2004	Porges et al.
6,466,809	B1	10/2002	Riley	6,678,543 B2	1/2004	Diab et al.
6,470,199	B1	10/2002	Kopotic et al.	6,681,126 B2	1/2004	Solenberger
6,470,200	B2	10/2002	Walker et al.	6,681,128 B2	1/2004	Steuer et al.
6,480,729	B2	11/2002	Stone	6,681,454 B2	1/2004	Modgil et al.
6,490,466	B1	12/2002	Fein et al.	6,684,090 B2	1/2004	Ali et al.
6,496,711	B1	12/2002	Athan et al.	6,684,091 B2	1/2004	Parker
6,498,942	B1	12/2002	Esenaliev et al.	6,694,160 B2	2/2004	Chin
6,501,974	B2	12/2002	Huiku	6,697,653 B2	2/2004	Hanna
6,501,975	B2	12/2002	Diab et al.	6,697,655 B2	2/2004	Sueppel et al.
6,505,060	B1	1/2003	Norris	6,697,656 B1	2/2004	Al-Ali
6,505,061	B2*	1/2003	Larson 600/323	6,697,658 B2	2/2004	Al-Ali
6,505,133	B1	1/2003	Hanna et al.	RE38,476 E	3/2004	Diab et al.
6,510,329	B2	1/2003	Heckel	6,699,194 B1	3/2004	Diab et al.
6,510,331	B1	1/2003	Williams et al.	6,699,199 B2	3/2004	Asada et al.
6,512,937	B2	1/2003	Blank et al.	6,701,170 B2	3/2004	Stetson
6,515,273	B2	2/2003	Al-Ali	6,702,752 B2	3/2004	Dekker
6,519,484	B1	2/2003	Lovejoy et al.	6,707,257 B2	3/2004	Norris
6,519,486	B1	2/2003	Edgar, Jr. et al.	6,708,049 B1	3/2004	Berson et al.
6,519,487	B1	2/2003	Parker	6,709,402 B2	3/2004	Dekker
6,525,386	B1	2/2003	Mills et al.	6,711,424 B1	3/2004	Fine et al.
6,526,300	B1	2/2003	Kiani et al.	6,711,425 B1	3/2004	Reuss
6,526,301	B2	2/2003	Larsen et al.	6,714,803 B1	3/2004	Mortz
6,541,756	B2*	4/2003	Schulz et al. 250/221	6,714,804 B2	3/2004	Al-Ali et al.
6,542,764	B1	4/2003	Al-Ali et al.	6,714,805 B2	3/2004	Jeon et al.
6,546,267	B1	4/2003	Sugiura et al.	RE38,492 E	4/2004	Diab et al.
6,553,241	B2	4/2003	Mannheimer et al.	6,719,686 B2	4/2004	Coakley et al.
6,553,242	B1	4/2003	Sarussi	6,719,705 B2	4/2004	Mills
6,553,243	B2	4/2003	Gurley	6,720,734 B2	4/2004	Norris
6,556,852	B1	4/2003	Schulze et al.	6,721,584 B2	4/2004	Baker, Jr. et al.
6,560,470	B1	5/2003	Pologe	6,721,585 B1	4/2004	Parker
6,564,077	B2	5/2003	Mortara	6,725,074 B1	4/2004	Kästle
6,564,088	B1	5/2003	Soller et al.	6,725,075 B2	4/2004	Al-Ali
6,571,113	B1	5/2003	Fein et al.	6,731,963 B2	5/2004	Finarov et al.
6,571,114	B1	5/2003	Koike et al.	6,731,967 B1	5/2004	Turcott
6,574,491	B2	6/2003	Elghazzawi	6,735,459 B2	5/2004	Parker
6,580,086	B1	6/2003	Schulz et al.	6,745,060 B2	6/2004	Diab et al.
6,584,336	B1	6/2003	Ali et al.	6,745,061 B1	6/2004	Hicks et al.
6,587,703	B2	7/2003	Cheng et al.	6,748,253 B2	6/2004	Norris et al.
6,587,704	B1	7/2003	Fine et al.	6,748,254 B2	6/2004	O'Neill et al.
6,589,172	B2	7/2003	Williams et al.	6,754,515 B1	6/2004	Pologe
6,591,122	B2	7/2003	Schmitt	6,754,516 B2	6/2004	Mannheimer
6,591,123	B2	7/2003	Fein et al.	6,760,607 B2	7/2004	Al-Ali
6,594,511	B2	7/2003	Stone et al.	6,760,609 B2	7/2004	Jacques
6,594,512	B2	7/2003	Huang	6,760,610 B2	7/2004	Tscupp et al.
6,594,513	B1	7/2003	Jobsis et al.	6,763,255 B2	7/2004	DeLonzor et al.
6,597,931	B1	7/2003	Cheng et al.	6,763,256 B2	7/2004	Kimball et al.
6,597,933	B2	7/2003	Kiani et al.	6,770,028 B1	8/2004	Ali et al.
6,600,940	B1	7/2003	Fein et al.	6,771,994 B2	8/2004	Kiani et al.
6,606,510	B2	8/2003	Swedlow et al.	6,773,397 B2	8/2004	Kelly
6,606,511	B1	8/2003	Ali et al.	6,778,923 B2	8/2004	Norris et al.
6,606,512	B2	8/2003	Muz et al.	6,780,158 B2	8/2004	Yarita
6,615,064	B1	9/2003	Aldrich	6,792,300 B1	9/2004	Diab et al.
6,615,065	B1	9/2003	Barrett et al.	6,793,654 B2	9/2004	Lemberg
6,618,602	B2	9/2003	Levin et al.	6,801,797 B2	10/2004	Mannheimer et al.
6,622,034	B1	9/2003	Gorski et al.	6,801,798 B2	10/2004	Geddes et al.
6,628,975	B1	9/2003	Fein et al.	6,801,799 B2	10/2004	Mendelson
6,631,281	B1	10/2003	Kästle	6,801,802 B2	10/2004	Sitzman et al.
6,643,530	B2	11/2003	Diab et al.	6,802,812 B1	10/2004	Walker et al.
6,643,531	B1	11/2003	Katarow	6,805,673 B2	10/2004	Dekker
6,647,279	B2	11/2003	Pologe	6,810,277 B2	10/2004	Edgar, Jr. et al.
6,647,280	B2	11/2003	Bahr et al.	6,813,511 B2	11/2004	Diab et al.
6,650,917	B2	11/2003	Diab et al.	6,816,741 B2	11/2004	Diab
6,650,918	B2	11/2003	Terry	6,819,950 B2	11/2004	Mills
6,654,621	B2	11/2003	Palatnik et al.	6,822,564 B2	11/2004	Al-Ali
6,654,622	B1	11/2003	Eberhard et al.	6,825,619 B2	11/2004	Norris
6,654,623	B1	11/2003	Kästle	6,826,419 B2	11/2004	Diab et al.
6,654,624	B2	11/2003	Diab et al.	6,829,496 B2	12/2004	Nagai et al.
6,658,276	B2	12/2003	Kianl et al.	6,830,711 B2	12/2004	Mills et al.
6,658,277	B2	12/2003	Wassermann	6,836,679 B2	12/2004	Baker, Jr. et al.
6,662,033	B2	12/2003	Casciani et al.	6,839,579 B1	1/2005	Chin
6,665,551	B1	12/2003	Suzuki	6,839,580 B2	1/2005	Zonios et al.
6,668,182	B2	12/2003	Hubelbank	6,839,582 B2	1/2005	Heckel

2004/0171920	A1	9/2004	Mannheimer et al.	
2004/0171948	A1	9/2004	Terry	
2004/0176671	A1	9/2004	Fine et al.	
2004/0181133	A1	9/2004	Al-Ali et al.	
2004/0181134	A1	9/2004	Baker, Jr. et al.	
2004/0186358	A1	9/2004	Chernow et al.	
2004/0199063	A1	10/2004	O'Neil et al.	
2004/0204636	A1	10/2004	Diab et al.	
2004/0204637	A1	10/2004	Diab et al.	
2004/0204638	A1	10/2004	Diab et al.	
2004/0204639	A1	10/2004	Casciani et al.	
2004/0204865	A1	10/2004	Lee et al.	
2004/0210146	A1	10/2004	Diab et al.	
2004/0215069	A1	10/2004	Mannheimer	
2004/0230107	A1	11/2004	Asada et al.	
2004/0230108	A1	11/2004	Melker et al.	
2004/0236196	A1	11/2004	Diab et al.	
2004/0242980	A1	12/2004	Kiani et al.	
2004/0249252	A1	12/2004	Fine et al.	
2004/0257557	A1	12/2004	Block et al.	
2004/0260161	A1	12/2004	Melker et al.	
2004/0267103	A1	12/2004	Li et al.	
2004/0267104	A1	12/2004	Hannula et al.	
2004/0267140	A1	12/2004	Ito et al.	
2005/0004479	A1	1/2005	Townsend et al.	
2005/0010092	A1	1/2005	Weber et al.	
2005/0020887	A1	1/2005	Goldberg	
2005/0020894	A1	1/2005	Norris et al.	
2005/0033128	A1	2/2005	Ali et al.	
2005/0033129	A1	2/2005	Edgar, Jr. et al.	
2005/0043599	A1	2/2005	O'Mara	
2005/0043600	A1	2/2005	Diab et al.	
2005/0049470	A1	3/2005	Terry	
2005/0049471	A1	3/2005	Aceti	
2005/0075550	A1	4/2005	Lindekugel	
2005/0113651	A1	5/2005	Wood et al.	
2005/0177034	A1	8/2005	Beaumont	
2005/0197548	A1	9/2005	Dietiker	
2005/0228248	A1	10/2005	Dietiker	
2005/0272986	A1*	12/2005	Smith et al.	600/310
2005/0277819	A1	12/2005	Kiani et al.	
2005/0283059	A1	12/2005	Iyer et al.	
2006/0009685	Al^{*}	1/2006	Finarov et al.	600/310
2006/0058594	A1	3/2006	Ishizuka et al.	
2006/0084852	A1	4/2006	Mason et al.	
2006/0089547	A1	4/2006	Sarussi	
2006/0106294	A1	5/2006	Maser et al.	
2006/0129040	A1*	6/2006	Fine et al.	600/335
2006/0195028	A1	8/2006	Hannula et al.	
2006/0224058	A1	10/2006	Mannheimer	
2006/0247501	A1	11/2006	Ali	
2006/0258921	A1	11/2006	Addison et al.	
2006/0276700	A1	12/2006	O'Neil et al.	
2007/0032710	A1	2/2007	Raridan et al.	
2007/0032712	A1	2/2007	Raridan et al.	
2007/0032713	A1	2/2007	Eghbal et al.	
2007/0032715	A1	2/2007	Eghbal et al.	
2007/0032716	A1	2/2007	Raridan et al.	
2007/0073121	A1	3/2007	Hoarau et al.	
2007/0073125	A1	3/2007	Hoarau et al.	
2007/0073126	A1	3/2007	Raridan, Jr.	
2007/0073128	A1	3/2007	Hoarau et al.	
2007/0123763	Al*	5/2007	Al-Ali et al.	600/344
2007/0260131	A1*	11/2007	Chin	600/323
2009/0143842	A1*	6/2009	Cumbie et al.	607/88

JP	6269430	$9 / 1994$
JP	3116259	$6 / 1995$
JP	3116260	$6 / 1995$
JP	7236625	$9 / 1995$
JP	10216115	$8 / 1998$
JP	10337282	$12 / 1998$
JP	2000237170	$9 / 2000$
JP	2003275192	$9 / 2003$
JP	2004089546	$3 / 2004$
JP	2004248820	$9 / 2004$
JP	2004329406	$11 / 2004$
JP	2004337605	$12 / 2004$
JP	2004344367	$12 / 2004$
JP	2004351107	$12 / 2004$
WO	WO8909566	$10 / 1989$
WO	WO9111137	$8 / 1991$
WO	WO9221281	$12 / 1992$
WO	WO9502358	$1 / 1995$
WO	WO9736536	$10 / 1997$
WO	WO9857577	$12 / 1998$
WO	WO9947039	$9 / 1999$
WO	0059374	$10 / 2000$
WO	WO0059374	$10 / 2000$
WO	WO2005010567	$2 / 2005$
WO	WO2005010568	$2 / 2005$
	$O T H E R$	OUBLICATIONS

Izumi, Akio, et al.; "Accuracy and Utility of a New Reflectance Pulse Oximeter for Fetal Monitoring During Labor," Journal of Clinical Monitoring, vol. 13, pp. 103-108 (1997).
"Smaller Product, Tighter Tolerances Pose Dispensing Challenges for Medical Device Manufacturer," Adhesives Age, pp. 40-41 (Oct. 1997).

Crilly, Paul B., et al.; "An Integrated Pulse Oximeter System for Telemedicine Applications," IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada; May 19-21, 1997;pp. 102-104.
DeKock, Marc; "Pulse Oximetry Probe Adhesive Disks: a Potential for Infant Aspiration," Anesthesiology, vol. 89, pp. 1603-1604 (1998).

Rhee, Sokwoo, et al.; "The Ring Sensor: a New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring," Proceedings of the $20^{\text {th }}$ annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 4, pp. 1906-1919.
Yang, Boo-Ho, et al.; "A Twenty-Four Hour Tele-Nursing System Using a Ring Sensor," Proceedings of the 1998 IEEE International Conference on Robotics \& Automation, Leaven, Belgium, May 1998; pp. 387-392.
Ferrell, T.L., et al.; "Medical Telesensors," SPIE, vol. 3253, pp. 193-198 (1998).
Yang, Boo-Ho, et al.; "Development of the ring sensor for healthcare automation," Robotics and Autonomous Systems, vol. 30, pp. 273281 (2000).
Rhee, Sokwoo, et al.; "Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor-Part I: Design and Analysis," Proceedings of the $22^{\text {nd }}$ Annual EMBS International Conference, Chicago, Illinois; Jul. 23-28, 2000; pp. 2792-2795.
Rhee, Sokwoo, et al.; "Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor-Part II: Prototyping and Benchmarking," Proceedings of the $22^{\text {nd }}$ Annual EMBSInternational Conference, Chicago, Illinois; Jul. 23-28, 2000; pp. 2796.
Nijland, Mark J.M., et al.; "Assessment of fetal scalp oxygen saturation determination in the sheep by transmission pulse oximetry," Am. J. Obstet Gynecol., vol. 183, No. 6, pp. 1549-1553 (Dec. 2000). Schulz, Christian Eric; "Design of a Pulse Oximetry Sensor Housing Assembly," California State University Master's Thesis, UMI Dissertation Services, UMI No. 1401306, (May 2000) 63 pages.
Yokota, Nakaura, Takahashi, et al.; "Pilot Model of a ReflectanceType Pulse Oximeter for Pre-hospital Evaluation," Journal of the Japanese Society of Emergency Medicine, Kanto Region, vol. 21, pp. 26-27 (2000) (Article in Japanese-contains English summary). Gisiger, P.A., et al.; "OxiCarbo ${ }^{(}$, a single sensor for the non-invasive measurement of arterial oxygen saturation and CO_{2} partial pressure at the ear lobe," Sensor and Actuators, vol. B-76, pp. 527-530 (2001).

Rhee, Sokwoo, et al.; "Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor," IEEE Transactions on Biomedical Engineering, vol. 48, No. 7, pp. 795-805 (Jul. 2001).
Lopez-Silva, Sonnia Maria Lopez, et al.; "NIR transmittance pulse oximetry system with laser diodes," Clinical Diagnostic Systems, Proceedings of SPIE, vol. 4255, pp. 80-87 (2001).
Maletras, Francois-Xavier, et al.; "Construction and calibration of a new design of Fiber Optic Respiratory Plethysmograph (FORP)," Optomechanical Design and Engineering, Proceedings of SPIE, vol. 4444, pp. 285-293 (2001).
Earthrowl-Gould, T., et al.; "Chest and abdominal surface motion measurement for continuous monitoring of respiratory function," Proc. Instn Mech Engrs, V215, Part H; pp. 515-520 (2001).
Kyriacou, Panayiotis A., et al.; "Esophageal Pulse Oximetry Utilizing Reflectance Photoplethysmography," IEEE Transactions on Biomedical Engineering, vol. 49, No. 11, pp. 1360-1368 (Nov. 2002). Irie, A., et al.; "Respiration Monitors-Pulse Oximeters," Neonatal Care, vol. 15, No. 12, pp. 78-83 (2002) (Article in Japanese-contains English summary of article).

Shaltis, Phillip, et al.; "Implementation and Validation of a PowerEfficient, High-Speed Modulation Design for Wireless Oxygen Saturation Measurement Systems," IEEE, pp. 193-194 (2002).
Warren, Steve, et al.; "Wearable Sensors and Component-Based Design for Home Health Care," Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas; Oct. 23-26, 2002; pp. 1871-1872.
Matsui, A., et al.; "Pulse Oximeter," Neonatal Care, vol. 16, No. 3, pp. 38-45 (2003) (Article in Japanese-contains English summary of article).
Nakagawa, M., et al., "Oxygen Saturation Monitor," Neonatal Monitoring, vol. 26, No. 5, pp. 536-539 (2003) (Article in Japanesecontains English summary of article).
Urquhart, C., et al.; "Ear probe pulse oximeters and neonates," Anaesthesia, vol. 60, p. 294 (2005).
Bentley, David J. et al.; "Measure Pressure with Thin Film"; Paper Film \& Foil Converter; May 1, 2003.
http://www.fcw.com.my/fujifilm.html.

* cited by examiner

FLEX CIRCUIT SNAP TRACK FOR A BIOMETRIC SENSOR

RELATED APPLICATION

This application claims priority from U.S. Patent Application No. 61/009,676 which was filed on Dec. 31, 2007 and is incorporated herein by reference in its entirety.

BACKGROUND

The present disclosure relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.

This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.

In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring physiological characteristics. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.

One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient.

Pulse oximeters typically utilize a non-invasive sensor that is placed on or against a patient's tissue that is well perfused with blood, such as a patient's finger, toe, forehead or earlobe. The pulse oximeter sensor emits light and photoelectrically senses the absorption and/or scattering of the light after passage through the perfused tissue. The data collected by the sensor may then be used to calculate one or more of the above physiological characteristics based upon the absorption or scattering of the light. More specifically, the emitted light is typically selected to be of one or more wavelengths that are absorbed or scattered in an amount related to the presence of oxygenated versus de-oxygenated hemoglobin in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of the oxygen in the tissue using various algorithms.

Pulse oximetry sensors may include a flex circuit that electrically connects various electrical components of the sensor. For example, components of the flex circuit may include an optical emitter, such as an LED, a photodetector and wires forming conductors which electrically connect the sensor components and/or allow connection of the sensor components to a pulse oximeter monitor. During fabrication of such a sensor, various aspects of the manufacturing process may place mechanical stresses upon the flex circuit or the attached components such that the circuit and/or components are moved from their desired positions, resulting in a sensor being fabricated in which the flex circuit and/or electrical
components are displaced and/or misaligned with respect to the remainder of the sensor body, potentially rendering the sensor unusable.

SUMMARY

Certain aspects commensurate in scope with the disclosure are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of embodiments and that these aspects are not intended to limit the scope of the disclosure. Indeed, the disclosure may encompass a variety of aspects that may not be set forth below.

In an embodiment, there is provided a sensor frame. The sensor frame includes a frame body configured to house one or more optical components. The sensor body further includes one or more retaining features provided on the frame body, such that the one or more retaining features are configured to limit the movement of a flex circuit electrically connected to the one or more optical components.
In an embodiment, there is provided a sensor assembly. The sensor assembly includes a light emitting component and a photodetecting component. The sensor assembly further comprise a flex circuit connecting at least the light emitting component and the light detecting component, and a frame comprising one or more retaining features configured to restrict movement of at least part of the flex circuit.

In an embodiment there is provided a method for manufacturing a sensor. The method includes positioning a flex circuit on a frame such that retaining features on at least part of the frame restrict the motion of the flex circuit. The method further includes the act of coating the frame.

BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the disclosure may become apparent upon reading the following detailed description and upon reference to the drawings in which:

FIG. 1 illustrates a patient monitoring system coupled to a multi-parameter patient monitor and a sensor; in accordance with an embodiment;

FIG. 2 illustrates a perspective view of an internal frame for use in a patient sensor, in accordance with an embodiment;

FIG. 3 illustrates a blow-up view of the internal frame of FIG. 2, in accordance with an embodiment; and

FIG. 4 illustrates a cross section view of an overmolded patient sensor, in accordance with an embodiment.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Various embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with sys-tem-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.

In various embodiments, methods and systems for securing a flex circuit during a sensor fabrication process may be
described. In one embodiment, the flex circuit is secured within a corresponding flex circuit track of a sensor frame. In such an embodiment, the sensor frame may be overmolded or otherwise used in the further construction of a sensor, such as a pulse oximetry sensor, without the flex circuit or attached electrical components becoming displaced or misaligned.

Prior to discussing embodiments of sensors in detail, it should be appreciated that such sensors are typically designed for use with a patient monitoring system. In various embodiments, referring now to FIG. 1, a sensor $\mathbf{1 0}$ according to the present disclosure may be used in conjunction with a patient monitor 12. In the depicted embodiment a cable 14 connects the sensor 10 to the patient monitor 12 . As will be appreciated, the sensor $10 \mathrm{and} /$ or the cable 14 may include or incorporate one or more integrated circuit devices or electrical devices, such as a memory, processor chip, or resistor, that may facilitate or enhance communication between the sensor 10 and the patient monitor 12. Likewise the cable $\mathbf{1 4}$ may be an adaptor cable, with or without an integrated circuit or electrical device, for facilitating communication between the sensor $\mathbf{1 0}$ and various types of monitors, including older or newer versions of the patient monitor $\mathbf{1 2}$ or other physiological monitors.

In other embodiments, the sensor 10 and the patient monitor $\mathbf{1 2}$ may communicate via wireless means, such as using radio, infrared, or optical signals. In such embodiments, a transmission device (not shown) may be connected to the sensor $\mathbf{1 0}$ to facilitate wireless transmission between the sensor 10 and the patient monitor 12 . As will be appreciated by those of ordinary skill in the art, the cable 14 (or corresponding wireless transmissions) are typically used to transmit control or timing signals from the monitor $\mathbf{1 2}$ to the sensor 10 and/or to transmit acquired data from the sensor 10 to the monitor 12. In some embodiments, however, the cable 14 may be an optical fiber that allows optical signals to be conducted between the monitor 12 and the sensor $\mathbf{1 0}$.

In an embodiment, the patient monitor 12 may be a suitable pulse oximeter, such as those available from Nellcor Puritan Bennett LLC. In other embodiments, the patient monitor 12 may be a monitor suitable for measuring tissue water fractions, or other body fluid related metrics, using spectrophotometric or other techniques. Furthermore, the monitor 12 may be a multi-purpose monitor suitable for performing pulse oximetry and measurement of tissue water fraction, or other combinations of physiological and/or biochemical monitoring processes, using data acquired via the sensor $\mathbf{1 0}$. Furthermore, to upgrade conventional monitoring functions provided by the monitor $\mathbf{1 2}$ to provide additional functions, the patient monitor $\mathbf{1 2}$ may be coupled to a multi-parameter patient monitor 16 via a cable 18 connected to a sensor input port and/or via a cable 20 connected to a digital communication port.

The sensor 10, in the example depicted in FIG. 1, is a clip-style sensor that is overmolded to provide a generally unitary or enclosed assembly. In various embodiments, the sensor $\mathbf{1 0}$ may include an emitter $\mathbf{2 2}$ and a detector 24 which may be of any suitable type. For example, the emitter 22 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light, such as in the red to infrared range, and the detector 24 may be a photodetector, such as a silicon photodiode package, selected to receive light in the range emitted from the emitter 22. In the depicted embodiment, the sensor 10 is coupled to a cable 14 that is responsible for transmitting electrical and/or optical signals to and from the emitter $\mathbf{2 2}$ and detector 24 of the sensor $\mathbf{1 0}$. The cable 14 may be permanently coupled to the sensor $\mathbf{1 0}$, or it may be
removably coupled to the sensor $\mathbf{1 0}$ - the latter alternative being more useful and cost efficient in situations where the sensor $\mathbf{1 0}$ is disposable.
For pulse oximetry embodiments, the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other embodiments a tissue water fraction (or other body fluid related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light, most commonly near infrared wavelengths between about $1,000 \mathrm{~nm}$ to about $2,500 \mathrm{~nm}$. It should be understood that, as used herein, the term "light" may refer to one or more of infrared, visible, ultraviolet, or even X-ray electromagnetic radiation, and may also include any wavelength within the infrared, visible, ultraviolet, or X-ray spectra.

In various embodiments, the overmolded sensor 10 discussed herein may be configured for either transmission or reflectance type sensing. Furthermore, the sensor 10 may include various structural and functional features designed to facilitate its use. An example of such a sensor and its use and construction may be found in U.S. application Ser. No. 11/199,524 titled "Medical Sensor and Technique for Using the Same" and filed on Aug. 8, 2005, which is hereby incorporated by reference in its entirety for all purposes. As will be appreciated by those of ordinary skill in the art, however, such discussion is merely an example and is not intended to limit the scope of the present disclosure.
Referring now to FIG. 2, an internal frame $\mathbf{4 0}$ of the sensor 10 is depicted in accordance with an embodiment. In the depicted example, the internal frame $\mathbf{4 0}$ is a skeletal frame for the sensor 10. In certain embodiments, the internal frame 40 may be constructed, in whole or in part, from polymeric materials, such as thermoplastics, capable of providing a suitable rigidity or semi-rigidity for the different portions of the internal frame 40. Examples of such suitable materials may include polypropylene and nylon, though other polymeric materials may also be suitable. For example, in one embodiment, the internal frame 40 is constructed from polyurethane having a durometer of 65 Shore D. In other embodiments, the internal frame 40 may be constructed, in whole or in part, from other suitably rigid or semi-rigid materials, such as stainless steel, aluminum, magnesium, graphite, fiberglass, or other metals, alloys, or compositions that are sufficiently ductile and/or strong. For example, metals, alloys, or compositions that are suitable for diecasting, sintering, lost wax casting, stamping and forming, and other metal or composition fabrication processes may be used to construct the internal frame 40.

In various embodiments, the internal frame 40 may be constructed as an integral structure or as a composite structure. For example, in one embodiment, the internal frame 40 may be constructed as a single piece from a single material or from different materials. Alternatively, the internal frame 40 may be constructed or assembled from two or more pails that are separately formed. In such embodiments, the different parts may be formed from the same or different materials. For example, in implementations where different parts are formed from different materials, each part may be constructed from a material having suitable mechanical and/or chemical properties for that part. The different parts may then be joined or fitted together to form the internal frame 40.

In various embodiments, the internal frame 40 may include different structures or regions that may or may not have similar rigidities. For example, the depicted skeletal frame includes top and bottom structural supports 42 that define the
general shape of the sensor 10 when coated with an overmolding. In view of their structure providing function, the structural supports $\mathbf{4 2}$ may be constructed to be substantially rigid or semi-rigid. In addition, the skeletal frame may include a cable guide 44 through which a cable, such as an electrical or optical cable, may pass to connect to electrical or optical conductors formed on a flex circuit 45 attached to the emitter 22 and/or detector 24 upon assembly. For example, in one embodiment the emitter $\mathbf{2 2}$ and/or detector $\mathbf{2 4}$ and associated conductors may form components of the flex circuit $\mathbf{4 5}$ disposed on the frame 40.

In addition, in the depicted embodiment, the internal frame 40 may include component housings, such as the emitter housing 46 and detector housing 48, as well as one or more retaining features, such as struts 50 configured to couple such housings to the remainder of the flame $\mathbf{4 0}$. In one embodiment, such housings $\mathbf{4 6}, 48$ and struts 50 , along with other components as discussed herein, may form a flex circuit track configured to secure and support the flex circuit on the frame 40.

For example, FIG. 3 (taken along circular region $\mathbf{3}$ in FIG. 2) is a blow-up view of one of the retaining features, i.e., struts $\mathbf{5 0}$, capable of securing a flex circuit $\mathbf{4 5}$. In this embodiment, the depicted strut $\mathbf{5 0}$ is adapted to secure the flex circuit $\mathbf{4 5}$ that electrically connects the detector 24, housed in detector housing 48, to additional elements of the flex circuit 45. In the depicted embodiment of FIG. 3, side panels 70 are depicted that extend along the outer edges of the strut $\mathbf{5 0}$, defining its outer boundaries. Disposed on the upper edge of the side panels 70 are tabs 52, extending inward from the side panels 70.

As will be appreciated, the flex circuit $\mathbf{4 5}$ may be placed in the track formed by the sidewalls 70 and the tabs $\mathbf{5 2}$ by snap fitting, i.e., applying pressure to the flex circuit $\mathbf{4 5}$ such that the flex circuit 45 bends or gives sufficiently along its edges to allow the flex circuit $\mathbf{4 5}$ to move past the tabs 52 . Therefore, the tabs $\mathbf{5 2}$ may be sized such that the flexibility of the flex circuit 45 is sufficient to allow the flex circuit $\mathbf{4 5}$ to be pressed or snap fit past the tabs 52. Alternatively, the flex circuit 45 may be tilted or angled to facilitate moving the flex circuit 45 past the tabs 52 initially.

In the illustrated embodiment, the tabs $\mathbf{5 2}$ are flush with the upper surface of the side panel 70 and have a thickness that is equal to or less than the thickness of the side panels $70 \mathrm{and} / \mathrm{or}$ the one or more retaining features, i.e., the strut $\mathbf{5 0}$. As will be appreciated by those of ordinary skill in the art, in other embodiments the thickness and placement of the tabs 52 may vary. For example, in the illustrated embodiment the tabs $\mathbf{5 2}$ are disposed periodically along the side panels 70 and the tabs 52 are of similar or equal length. However, in other embodiments the lengths of the tabs $\mathbf{5 2}$ may vary depending on their placement along the side panels 70. Likewise, the tabs need not be spaced regularly or periodically, but may instead be placed to at locations on the strut $\mathbf{5 0}$ where they will be suitably effective at retaining the flex circuit $\mathbf{4 5}$ on the strut 50.

In various embodiments, the inward extension of the tabs 52 from the side panels 70 facilitates maintaining the flex circuit $\mathbf{4 5}$ on the retaining feature, i.e., strut 50 , particularly during fabrication steps which might otherwise move or displace the flex circuit $\mathbf{4 5}$ from the frame $\mathbf{4 0}$. For example, in one embodiment, the tabs $\mathbf{5 2}$ and/or sidewalls $\mathbf{7 0}$ act to prevent the pressures arising during an overmolding process from dislodging the flex circuit $\mathbf{4 5}$ from the struts 50 . In such an implementation, the depicted tabs 52 and sidewalls 70 of the internal frame 40 may help prevent the flex circuit $\mathbf{4 5}$ from
being displaced by the high pressures when overmolding material is injected or cast onto the frame $\mathbf{4 0}$.

During such overmolding processes, the internal frame 40 may be positioned within a die or mold of the desired shape for the sensor 10. In one embodiment, a molten or otherwise unset overmold material may then be injected into the die or mold. Such injection may be done such that the overmolding material enters the die or mold at high speed subjecting the frame 40 to high pressures and strains. Accordingly, the retaining features (i.e., the sidewalls $70 \mathrm{and} /$ or the tabs 52) of the struts $\mathbf{5 0}$ ensure that the flex circuit $\mathbf{4 5}$ remains properly oriented on the frame 40 during the overmolding process. Likewise, in some embodiments, the overmold material may be injected in to the mold at high temperatures, such as between about $400^{\circ} \mathrm{F}$. to about $450^{\circ} \mathrm{F}$. In such embodiments, the overmold material may then be set, such as by cooling for one or more minutes or by chemical treatment, to form the sensor body about the internal frame $\mathbf{4 0}$. Such an overmolding process may result in thermal expansions and contractions of the frame $\mathbf{4 0}$ and surrounding overmolding material. Accordingly, any potential movement and/or misalignment of the flex circuit $\mathbf{4 5}$ relative to the frame $\mathbf{4 0}$ can be mitigated or prevented by the retaining features of the struts $\mathbf{5 0}$ which secure the flex circuit $\mathbf{4 5}$ to the frame 40 .
As will be appreciated, the injection molding process described herein is merely one technique by which the frame 40 may be coated to form a sensor body, with or without associated sensing components. Other techniques which may be employed include, but are not limited to, dipping the frame 40 into a molten or otherwise unset coating material to coat the frame 40 or spraying the frame 40 with a molten or otherwise unset coating material to coat the frame $\mathbf{4 0}$. In such implementations, the coating material may be subsequently set, such as by cooling or chemical means, to form the coating. Such alternative techniques, to the extent that they may result in the movement of the flex circuit $\mathbf{4 5}$ away from the frame 40, may also benefit from the use of the tabs 52 and/or sidewalls 70 on the frame $\mathbf{4 0}$, as described herein.

Turning now to FIG. 4, a cross-sectional view of the sensor 10 taken along line $\mathbf{4}$ of FIG. $\mathbf{2}$ is depicted in accordance with an embodiment. The figure depicts the sensor 10 coated with overmolding 90 covering the skeletal frame 40 . In one embodiment, the overmolding 90 of the sensor 10 may be formed by an injection molding process, as described herein. Likewise, in certain embodiments, the frame 40 is coated to form a unitary or integral sensor assembly, as depicted in FIG. 4. Such an overmolded embodiment may result in a sensor assembly in which the internal frame 40 is completely or substantially coated.

In various embodiments, various overmolding processes of the sensor 10 may subject the flex circuit $\mathbf{4 5}$ to stresses and pressures such that the flex circuit $\mathbf{4 5}$ may dislodge from its designated position within the frame 40 and/or become damaged as a result of the overmolding process. Accordingly, the retaining features, such as the struts $\mathbf{5 0}$, may retain the flex circuit $\mathbf{4 5}$ on the frame $\mathbf{4 0}$ so that the overmolded sensor 10, such as the one shown in FIG. 4, may securely house the flex circuit 45 and components connected thereto.
Furthering the embodiment depicted in FIG. 4, a cable 98 may be disposed along cable guide 44 of the sensor 10 to connect the flex circuit $\mathbf{4 5}$ of the sensor $\mathbf{1 0}$ to an external device, such as the monitor 12 of FIG. 1, for use of the sensor 10. The cable 98 may join the flex circuit 45 at contact points disposed within the sensor $\mathbf{1 0}$. In the illustrated embodiment, the cable 98 is partially coated with the overmolding 90 so that it is securely affixed to the sensor $\mathbf{1 0}$.

While the medical sensors $\mathbf{1 0}$ discussed herein are some examples of overmolded or coated medical devices, other such devices are also contemplated and fall within the scope of the present disclosure. For example, other medical sensors and/or contacts applied externally to a patient may be advantageously applied using an overmolded sensor body having flex circuitry retaining features as discussed herein. For example, devices for measuring tissue water fraction or other body fluid related metrics may utilize a sensor as described herein. Likewise, other spectrophotometric applications where a probe is attached to a patient may utilize a sensor as described herein.

While the disclosure may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the following appended claims.

What is claimed is:

1. A sensor frame, comprising:
a rigid or semi-rigid frame body capable of housing one or more optical components; and
one or more retaining features provided on the frame body, wherein the one or more retaining features are disposed along a substantially continuous length of the frame body corresponding to substantially the entire length of a flex circuit and wherein the one or more retaining features generally limit movement along the length of the flex circuit relative to the frame body.
2. The sensor frame of claim 1, wherein the one or more retaining features comprise a pair of sidewalls disposed along at least a portion of the frame body.
3. The sensor frame of claim 2, wherein the one or more retaining features comprise the pair of sidewalls with two or more tabs disposed thereon.
4. The sensor frame of claim 1 , wherein the frame body has a durometer of at least 65 Shore D.
5. The sensor frame of claim 1, wherein the frame body comprises polypropylene, nylon, polyurethane, stainless steel, aluminum, magnesium, graphite, fiberglass, or other metal alloy.

