
US 20120197914A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0197914 A1

Harnett et al. (43) Pub. Date: Aug. 2, 2012

(54)

(76)

(21)

(22)

(60)

DYNAMIC PARSING RULES

Inventors:

Appl. No.:

Filed:

Provisional application No. 61/380,152, ?led on Sep.
3:

Tim Harnett, Mountain View, CA
(US); Achyutram Bhamidipaty,
San Jose, CA (US); Abinas TeWari,
San Jose, CA (US); Stephen
Manley, Livermore, CA (US);
Stephen Morgan, San Jose, CA
(US); Peter Nicklin, San Jose, CA
(US); Jena-Francois Roy, San
Leandro, CA (U S)

13/225,174

Sep. 2, 2011

Related US. Application Data

2010.

394

Data
Message

Device
Type

3159K Third

Second Type

/

> Parser

Publication Classi?cation

(51) Int. Cl.
G06F 17/30 (2006.01)

(52) us. c1. 707/755;707/E17.009

(57) ABSTRACT

Methods, program products, and systems implementing
dynamic parsing rules are disclosed. Log data from a variety
of log producers can be parsed using parsing rules to generate
information about an information system. The parsing rules
can include system parsing rules and custom parsing rules. A
state machine can be used to detect con?icts between various
parsing rules. A central server can distribute the system pars
ing rules and custom parsing rules to one or more remote
servers for distributed processing. In a hierarchical parsing
system, a ?rst tier parser can be used to identify types of
sources generating the log data. Log data from each type of
log source can be sent to a second tier parser that corresponds
to the type of log source.

Parser

Second Success
Data Store

Patent Application Publication Aug. 2, 2012 Sheet 1 0f 8 US 2012/0197914 A1

38m Ema

mm“. Ix

5%. nwamz
/

Ix 33m
$3.

WEQIW

Ewan“

A| hwgwmi

Patent Application Publication Aug. 2, 2012 Sheet 2 0f 8 US 2012/0197914 A1

m Kw

mam /

am

mmt\
N am $51

EN

2% Al
m 563mm 919$ mm

Em
www

Patent Application Publication Aug. 2, 2012 Sheet 3 0f 8 US 2012/0197914 A1

89m Ema

wwwuujm.

Ewan” ELK
Mam

59mm Eémm Faii

gm

33 38mm

Mwwm

Patent Application Publication Aug. 2, 2012 Sheet 4 0f 8 US 2012/0197914 A1

4%

\ "(:Qmmand”
p _ Parser

“ssh” —> —>

“ace-e33"

4552K 4?6\
System Parsing Custcam Parsing
Ruies Ruies

jé?S
ccmmand - ssh access ~ .*s.*s.*h

A

/(4’i€2
State
Machine

FIG. 4

Patent Application Publication

5061 5% K
Custom
Ruies
System
Ruies 592 K

Aug. 2, 2012 Sheet 5 0f 8

LP

Cemtrai
Pr-acessing
$ystem

US 2012/0197914 A1

Rems?e
Pmcessing
System

LP

2 LP LP
5M3

FIG. 5

/f 5%:

SHFK
Rem-ate
Prccesmng
Sysiem

Patent Application Publication Aug. 2, 2012 Sheet 6 0f 8 US 2012/0197914 A1

m 25% H mm“ W 3% N Na Kan? 5“
gm

@ .QE

mam H w @Ewz

gm

wmi wwmmz A
S“ H N 3% Q“ 35%

m 5% H w @Emz

Jam
gm

EQQE mm wsm Jfwg

m Ewing H w 3% w. 5&3 H N 3% v Egg H r @Emz

Patent Application Publication Aug. 2, 2012 Sheet 7 0f 8 US 2012/0197914 A1

Receiving iog data

i
Rerteiving a ?ns’r parsing ruie and ii second parsing rnie, the ?rst

parsing mic and smi‘onri parsing r'uii: mnfignred to mirnci a named

vaiue based 0n the T€C€iV€d log data m

l
identifying a wn?ici between the first parsing ruie and the second

parsing ruin mg

Resolving the con?ict m

Extracting the named value using a combination of the first parsing

rule and the SQCOI'RCi parssing rule HG

Distributing the first parsing ruie and the second parsing rule in ene

or more remote data pmacssing units 12

FiGn i"

Patent Application Publication Aug. 2, 2012 Sheet 8 0f 8 US 2012/0197914 A1

w Gm

hmmmgg “2E5 mg

mmm :\J

$5M mgwwm K

am 8

@532 CQWSEWELEQQ igémz

E l\,

mam
w

mwvwwgwa 39.5 @323 3&3 w J mom gm

Nam M

US 2012/0197914 A1

DYNAMIC PARSING RULES

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application claims the bene?t under 35 U.S.C.
§119(e)ofU.S. PatentApplication No. 61/380,152, ?led Sep.
3, 2010, entitled “Dynamic Parsing Rules,” Which is incorpo
rated by reference herein in its entirety.

TECHNICAL FIELD

[0002] This disclosure relates generally to data manage
ment.

BACKGROUND

[0003] In a computer-based information system, devices
(e.g., routers), operating systems (e.g., Linux and WindoWs
operating systems), and applications (e.g., Web and database
servers) can generate signi?cant amounts of log data. The
data can be a basis from Which operating information about
the system can be retrieved.
[0004] Many existing tools (e.g., databases) can be used to
analyze the data. These existing tools depend on the data
having some structure. Unstructured data needs to be normal
ized for the operating information to be retrieved. To normal
ize data from different sources and having different formats
can require a different normalization rule for each device,
operating system, and application.

SUMMARY

[0005] Methods, program products, and systems imple
menting dynamic parsing rules are disclosed. Log data from
a variety of log producers can be parsed using parsing rules to
generate information about an information system. The pars
ing rules can include system parsing rules and custom parsing
rules. A state machine can be used to detect con?icts betWeen
various parsing rules. A central server can distribute the sys
tem parsing rules and custom parsing rules to one or more
remote servers for distributed processing. In a hierarchical
parsing system, a ?rst tier parser can be used to identify types
of sources generating the log data. Log data from each type of
log source can be sent to a second tier parser that corresponds
to the type of log source. The parsing of log data can produce
named values. The named values can be customized using a
tag catalog, Which can provide penalty-free changing of
names in the named values.
[0006] These and other implementations can be utilized to
achieve one or more of the folloWing advantages. A system
implementing dynamic parsing technology can deliver a
comprehensive solution to help users of an information sys
tem to structure raW data While maintaining high performance
and scalability even in large and complex environments. For
example, dynamic parsing rules can be advantageous in an
information system that includes multiple and diverse log
sources. Data from multiple log sources can be normalized
and stored in a uniform, centralized data store to be retrieved
by general query. For example, if a “user” or “transaction ID”
data ?eld is commonly identi?ed across disparate log sources,
dynamic parsing rules can enable a system administrator to
track a user or transaction across the entire infrastructure of

information system.
[0007] Dynamic parsing rules can provide ?exibility. Users
often incorrectly tag or categorize some of the values in a
system. A currently preferred structure often changes in the

Aug. 2, 2012

future. Dynamic parsing rules provide features to adjust a tag
or categorization that the users previously gave to certain
?elds having a speci?c message pattern. Features of dynamic
parsing rules can ensure neW log data be tagged or catego
rized appropriately, While alloWing historical data to be
instantly re-tagged or re-categorized and be immediately
accessible.
[0008] The details of one or more implementations of
dynamic parsing rule techniques are set forth in the accom
panying draWings and the description beloW. Other features,
aspects, and advantages of dynamic parsing rule Will become
apparent from the description, the draWings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a block diagram illustrating an exemplary
log processing system implementing dynamic parsing rules.
[0010] FIG. 2 is a block diagram illustrating an exemplary
hierarchical log processing system.
[0011] FIG. 3 is a block diagram illustrating dynamic selec
tion of parsing systems.
[0012] FIG. 4 is a graph illustrating an exemplary parsing
rule con?ict manager.
[0013] FIG. 5 is a block diagram illustrating an exemplary
distribution system distributing parsing rules.
[0014] FIG. 6 is a graph illustrating exemplary implemen
tations of a tag catalog.
[0015] FIG. 7 is a ?oWchart illustrating an exemplary pro
cess of the dynamic parsing rule techniques.
[0016] FIG. 8 is a block diagram of an exemplary system
architecture for implementing the dynamic parsing rule fea
tures and operations.
[0017] Like reference symbols in the various draWings
indicate like elements.

DETAILED DESCRIPTION

Log Processing System OvervieW

[0018] FIG. 1 is a block diagram illustrating exemplary log
processing system 100 implementing dynamic parsing rules.
System 100 can include one or more log producers 102 that
can produce log data 104. Log producer 102 can include
computer instructions that are con?gured to gather various
log data from a log source and send the gathered log data for
processing. The log source can include a log producing device
or application. A log producing device or application can
correspond to multiple log producers. For example, a Web
server device can include one or more system log producers
producing operating system log data and one or more Web
server log producers producing Web server log data.
[0019] Log data 104 can include one or more data mes
sages. Each data message can include information that
describes an event that has occurred at the log source and has
been recorded by the log producer. Some exemplary data
messages are error messages, Warning messages, debugging
messages, database access messages, and Web access log
messages. The data message can be an unstructured message
(e.g., a text description of the event). The data message can
include various values describing the event, for example,
timestamp, a user identi?er, an event type code, or an identity
of the log producer or log source. The identity of the log
source can include an Internet protocol (IP) address or a
media access control (MAC) address. Each log producer can
produce data messages that have a format that correspond to

US 2012/0197914 Al

the log source. For example, a data message from a Web
access log can have a format different from a data message
from a database access log.

[0020] System 100 can include parser 106 that can extract
named value 108 from log data 104. Named value 108 can
include an association betWeen a name (e.g., “transaction ID”
or “user”) to a value (e.g., “12345” or “janedoe”). The value
can be extracted from log data 104. Extracting the value from
log data 104 can include identifying a section of an unstruc
tured data message that represents the value. To identify the
section (e.g., “janedoe”) of an unstructured data message that
corresponds to the name (e.g., “user”), parser 106 can apply
one or more dynamic parsing rules 110 to the unstructured
data message. Dynamic parsing rules 110 can include one or
more matching rules that matches strings. In some implemen
tations, the matching rules can be Written as a regular expres
sion (regex or regexp).
[0021] Dynamic parsing rules 110 can include system pars
ing rules 112 and custom parsing rules 114. System parsing
rules 112 can associate sections of the data message that
match a pattern in a regular expression With a name. In some
implementations, system parsing rules 112 can include regu
lar expressions for matching knoWn and often encountered
patterns, e.g., IP addresses, date and time, email addresses.
For example, a rule can specify that any section of the data
message matching the folloWing pattern be associated With a
name “IP address”:

9] f 1 ,3 I)
[0023] Dynamic parsing rules 110 can include custom pars
ing rules 114 that are created by a user or imported from an
external process or library. Custom parsing rules 114 can
include user created regular expressions. In some implemen
tations, custom parsing rules 114 can be created automati
cally, based on a user selection of a section of a data message.
For example, user interface 116 of system 100 can provide for
display one or more data messages of log data 104. User
interface 116 can alloW the user to select (e.g., by highlight
ing) a section of a data message. Based on the selected section
of the data message, a pattern generator can automatically
generate a message pattern. The message pattern can be asso
ciated With a name. The message pattern can be added to a
pattern data store that can include pre-de?ned patterns. The
pattern data store can alloW a user to have a repository of
commonly used patterns in a customiZed environment.
[0024] System 100 can include con?ict manager 118. Con
?ict manager 118 can examine various parsing rules, includ
ing system parsing rules 112 and custom parsing rules 114, to
determine Whether a con?ict exists. A con?ict can exist When
a section of a data message matches tWo different parsing
rules and can be associated With more than one name (e.g., “IP
address” and “server address”). If a con?ict exists, con?ict
manager 118 can remove the con?ict (e.g., by excluding the
con?icting custom rule) or prompt a user to remove the con
?ict. Con?ict manager 118 can provide combined parsing
rules 110 to parser 106 for parsing and normalizing log data
104.
[0025] Parser 106 can instantiate a state machine (e.g., a
deterministic ?nite automaton (DFA)) to identify each data
message in log data 104 and extract the named values 108. For
example, based on parsing rules 110, parser 106 can parse log
data 104 and extract from a data message containing a text
string “1283361690 1921681109 janedoe” the folloWing
exemplary named values:

Aug. 2, 2012

[0026] Date: Sep. 1, 2010
[0027] Time: 17:21:30
[0028] IP Address: 192.168.1109
[0029] User: janedoe
Parser 106 can convert a segment of the text string
(“1283361690”) that matches a coordinated universal time
(UTC) pattern into named values Sep. 1, 2010 (“date”) and
17:21 :30 (“time”). During extraction, other conversion,
decryption, and decompression can be performed according
to parsing rules 110. Extracted named values 108 can be
stored in data store 122 for further processing.
[0030] In some implementations, system 100 can include
tag catalog 124. Tag catalog 124 can store a list of names, also
referred to as tags or labels, for naming values. Tag catalog
124 can perform functions including helping a user creating
custom parsing rules 114, enabling penalty-free name chang
ing of named value 108.
[0031] When a user identi?es a component of a data mes
sage that the user Wishes to structure, user interface 116 can
provide a choice to select a pre-existing name from tag cata
log 124. If the user cannot ?nd a match, the user can create a
name to be associated to a message pattern. Multiple users
can set up names for each application or device. Re-using
names in tag catalog 124 can reduce the expansion of quantity
of names.

[0032] Tag catalog 124 can be used to facilitate name
changing of named values 108. For example, tag catalog 124
can store the name “user” that is currently associated With
values “janedoe,” “johndoe,” etc. To change the name asso
ciated With the values to “customer,” a user can access user
interface 106 to change the name from “user” to “customer”
in tag catalog 124, instead of directly accessing data store 122
Where named values 108 are stored.

Exemplary Hierarchical Log Processing System

[0033] FIG. 2 is a block diagram illustrating exemplary
hierarchical log processing system 200. Hierarchical log pro
cessing system 200 can include multiple hierarchies, or tiers,
of parsers.
[0034] A ?rst tier parser can include pre-parsing system
202. Pre-parsing system 202 can include a hardWare compo
nent, a software component, or both. Pre-parsing system 202
can receive log data 204 from a log producer 206 or one or
more intermediaries (e.g., a universal data collector that can
collect and combine log data from multiple log producers)
connecting log producer 206 and pre-parsing system 202.
Log data 204 can include one or more data messages.
[0035] Pre-parsing system 202 can use a state machine
(e.g., a DEA) to automatically identify a type of log source of
a data message. A log source can be a device, operating
system, or application program. A log source can be, but need
not be, a log producer. Example log sources include a CiscoTM
router, a WindoWsTM server, or an ApacheTM application.
[0036] The state machine of pre-parsing system 202 can
use device rule set 208 to distinguish each type of log source.
Device rule set 208 can include parsing rules that alloW the
state machine to provide collision detection. The collision
detection can ensure that each type of log source, or in some
implementations, each log source, is uniquely identi?ed. The
log sources can include pre-de?ned log sources and dynami
cally created log sources.
[0037] Based on matching performed by pre-parsing sys
tem 202, log data 204 can be routed to multiple secondary and
tertiary layers or parsing and processing. The different pars

US 2012/0197914 A1

ing rules for 204 can include log data 204 to be sent to
second-tier parsing systems for further processing. The sec
ond-tier parsing systems can include parsing systems 216,
218, and 220.
[0038] Each of parsing systems 216, 218, and 220 can be
performance-tuned to process log data from a speci?c type of
log source or for a speci?c type of processing destination. For
example, parsing system 216 can utiliZe rule set 222 that
includes hi ghly-tuned and e?icient hand-crafted parsing rules
for most common devices or devices producing mo st log data.
Parsing system 218 can use DFA technology, Which can be
memory-intensive, to handle dynamically added parsing
rules 224. Parsing 220 can use parsing rules 226 that includes
a combination of hand-crafted parsing rules and the dynami
cally added parsing rules.
[0039] Each of parsing systems 216, 218, and 220 can
produce named values. The named values can be sent to
various destinations for processing or storage. For example,
named values from parsing system 216 can be sent to security
event manager 228. Named values from parsing systems 218
and 220 can be stored in data store 230.
[0040] FIG. 3 is a block diagram illustrating dynamic selec
tion ofparsing systems. Data message 302 can be part oflog
data. Data message 302 can be associated With device type
304. Device type 304 can have an alphanumeric value indi
cating a type of log source of data message 302. Based on
device type 304, data message 302 can be sent to different
parsers 306, 308, and 310. If device type 304 indicates that the
log source has a ?rst device type, data message 302 can be
sent to ?rst parser 306 for parsing. First parser 3 06 can include
highly-tuned, prede?ned parsing rules. If data message 302 is
successfully parsed by ?rst parser 306, resulting named val
ues can be stored in data store 312.
[0041] If device type 304 indicates that the log source of
data message 302 has a second device type, or if data message
302 failed ?rst parser 306, data message 302 can be sent to
second parser 308. Second parser 308 can include the parsing
rules of ?rst parser 306 and other generic parsing rules, e.g.,
parsing rules that are less-tuned than the rules of ?rst parser
306 but can match more message patterns than the parsing
rules of ?rst parser 306. If data message 302 is successfully
parsed by ?rst parser 308, resulting named values can be
stored in data store 312.
[0042] If device type 304 indicates that the log source of
data message 302 has a third device type, or if data message
302 failed second parser 308, data message 302 can be sent to
third parser 308. Third parser can include the parsing rules of
?rst parser 306 and second parser 308, and customiZed pars
ing rules. The customiZed parsing rules can include, for
example, a customiZed DFA. The customiZed parsing rules
can include rules for handling various security events.
[0043] Dynamic selection ofparsers 306, 308, and 310 can
provide a con?gurable balance betWeen ?exibility, perfor
mance, and user demand. For example, data message 302 can
be sent to ?rst parser 306 Where parsing performance is high
est due to ?xed parsing rules. Data message 302 can be sent to
second parser 308 and third parser 310 Where more comput
ing resources are involved to support more comprehensive
and ?exible parsing. Each of the parsers 306, 308, and 310 can
be con?gured to folloW a limitation of resource consumption
(e. g., memory usage or netWork bandWidth usage), thus
alloWing consistent system performance for all data process
ing.

Exemplary Con?ict Manager
[0044] FIG. 4 illustrates an exemplary parsing rule con?ict
manager. A parsing rule con?ict manager can detect a con?ict

Aug. 2, 2012

betWeen parsing rules. TWo parsing rules can con?ict if the
components of that data message that are to be extracted can
apply to more than one message type, resulting in more than
one result. Due to the customizable nature of the parsing
rules, a custom parsing rule can con?ict With another custom
parsing rule or With a pre-de?ned system parsing rule. TWo
parsing rules can con?ict if the patterns in the rules are liter
ally identical, or literally dissimilar but can produce the same
result nonetheless.
[0045] For example, system parsing rules 402 can include a
parsing rule that speci?es that a literal “ssh” is associated to a
name “command.” Parser 404 parsing data message that
includes the text “ssh” using system parsing rules 402 can
generate a value “ssh” having a name “command.”
[0046] Exemplary custom parsing rule 406 can include a
parsing rule that speci?es that a pattern “.*s.*s.*h” is associ
ated to a name “access.” Parser 404 parsing data message that
includes the text “ssh” using system parsing rules 402 can
generate a value “ssh” having a name “access.” Con?ict 408
exists, since the same text segment “ssh” corresponds to tWo
interpretations.
[0047] State machine 410 can be utiliZed to detect con?ict
408. State machine 410 can include a DEA. The DFA can
accept strings of symbols. The DFA can have a start state and
one or more end states. The DFA can determine Which rule

caused Which end state to come into existence. If tWo rules
come to the same end state, this identi?es a con?ict. The
con?ict manager can be con?gured to perform various actions
after con?ict 408 is detected. For example, the con?ict man
ager can deactivate one of the con?icting rules based on a
priority of the rule. The con?ict manager can provide the
con?ict to a user creating the customiZed the rule and alloW
the user to re?ne the rules. If a con?icting rule is a custom
parsing rule automatically created based on a user selection of
a section of a data message, the con?ict manager can request
the user to re?ne the rule by selecting more sections of the
data message to disambiguate the different rules. In some
implementations, state machine 410 can include a non-deter
ministic ?nite automaton (N FA).

Exemplary Rule Distribution System

[0048] FIG. 5 illustrates exemplary system 500 Where pars
ing rules are distributed. In a large information system, mul
tiple log processing systems can be present. For example, a
large corporation can have multiple of?ces distributed in mul
tiple cities. Each of the o?ices can have multiple log sources
and log producers. Central processing system 502 can include
a log processing system Where creation of parsing rules is
centraliZed. Central processing system 502 can be connected
to one or more log producers 504a, 504b, and 5040 through a
?rst netWork (e.g., a local area netWork (LAN)). Central
processing system 502 can include parsing rules 506, Which
can include system parsing rules and custom parsing rules.
[0049] Central processing system 502 can be connected to
remote processing systems 508 and 510 through second net
Work 512. The second netWork can include a Wide area net

Work (WAN). Remote processing systems 508 and 510 each
can be connected to one or more log producing devices. For
example, remote processing system 508 can be connected to
one or more log producers 514a, 514b, and 5140 through a
second LAN.
[0050] Central processing system 502 can distribute pars
ing rules 506 to remote processing systems 508 and 510
through second netWork 512. As a result, a user can have a

US 2012/0197914 A1

common structure, including common parsing rules 506,
across system 500. Having the common structure can be
bene?cial, alloWing consistency of log data parsing in all
systems. For example, a security event in the log data can have
a consistent name in central processing system 502, remote
processing system 508, and remote processing system 510. In
response to a query “user: janedoe,” system 500 can identify
each “janedoe” Who accessed any device or application in
other o?ices.
[0051] System 500 can be con?gured that each of central
processing system 502, remote processing system 508, and
remote processing system 510 can identify a master of pars
ing rules 506. Once the master (e.g., central processing sys
tem 502) is identi?ed, all other systems can accept message
patterns from the master, and can be prevented from creating
their oWn message patterns.

Exemplary Tag Catalog

[0052] FIG. 6 illustrates exemplary implementations of tag
catalog 600. Tag catalog 600 can include a layer of indirection
betWeen names and a name identi?er stored With data. A
name, or a tag, can be any information associated With a
message or a value. The name can include, for example, a
category of values. In dynamic parsing rules, a name can be
customizable. For example, the name can be changed from
“users” to “users-San Jose.”
[0053] Tag catalog 600 can map a name to a name identi?er.
In parsing rules 602, the name identi?er can be associated
With a message pattern. In data store 604, the name identi?er
can be associated With one or more values corresponding to

the message pattern. When a user accesses data by name, a log
processing system can retrieve one or more name identi?ers

corresponding to the name, and retrieve one or more pattems
based on the name from parsing rules 602. The system can
search for the names corresponding to the message pattern
across all data of data store 604.
[0054] Names of tag catalog 600 can be changed, for
example, by an administrator. User interface 606 can be pro
vided to the administrator for changing names. When a name
is changed (e.g., from “name 3” to “name 4”), the system can
change the mapping from tag catalog 600 to the message
pattern (e. g., “pattern 3”) that is linked to the name by a name
identi?er (e.g., “ID3”). Underlying data, including data
stored in data store 604, need not be changed.
[0055] User interface 608 for displaying parsing rules can
access stored parsing rules 602 and tag catalog 600. After the
name change, user interface 608 can provide for display a
message pattern (e.g., “pattern 3”) in association With the
changed name (e.g., “name 4”). Likewise, user interface 610
for displaying data can provide for display a value (e. g.,
“value 3”) in association With the changed name.
[0056] User interface 610 can provide for display formatted
name-value pairs. User interface 610 can enable the display of
multiple different names in a same display column. The sys
tem can create dynamic groups among names. For example, a
group “user” can include sub-groups “user-San Jose” and
“user-Paris.” The sub-groups can roll up, or merge, to become
a single group. Tag catalog 600 can alloW dividing and merg
ing Without re-indexing data of data store 604, storing mul
tiple names for a single piece of data, and other system over
heads.
[0057] In some implementations, a group can be split into
multiple sub-groups Without penalty. For example, a group
“user” can be changed to one of the sub-groups “user-San

Aug. 2, 2012

Jose” and “user-Paris.” Upon the split, a search for “user-San
Jose” canbe performed. In some implementations, the system
can normaliZe the names. For example, in normaliZation,
spaces can be removed. The name “user-San Jose” can be
normaliZed into “user-SanJose.”
[0058] Tag catalog 600 can include security settings for
each name. When running a search, the security settings can
cause one or more names to be omitted or obscured to prevent

access to certain data. The security settings can alloW access
management Without modifying either raW log data or struc
tured and indexed data stored in data store 604. The security
settings can alloW centraliZed management of access using
role-based control on the system. For example, a group “x”
can be con?gured not to be able to access a social security
number or a credit card number across all log sources. A
group y can be con?gured to be able to access Web access
data from only a selected portion of log sources. A group “Z”
can be con?gured to be able to access certain data, Where the
data are redacted When presented.

Exemplary Processes Implementing Dynamic
Parsing Rules

[0059] FIG. 7 is ?owchart illustrating exemplary process
700 of the dynamic parsing rule techniques. For convenience,
process 700 Will be described in reference to a system imple
menting exemplary process 700. The system can include one
or more data processing devices.
[0060] The system can receive (702) log data. Receiving
the log data includes receiving one or more unstructured data
messages from one or more log producers over a ?rst netWork
(e.g., a LAN). Each data message can have a unique format
speci?c to the log producer that produced the data message.
[0061] The system can receive (704) a ?rst parsing rule and
a secondparsing rule, the ?rst parsing rule and second parsing
rule con?gured to extract a named value based on the received
log data. Receiving the ?rst parsing rule can include receiving
a tag and an expression. The tag can be a name to be used to
name a value. The expression can include a pattern for iden
tifying the value corresponding to the name. Receiving the
second parsing rule can include receiving a user-created pars
ing rule. Receiving the user-created parsing rule can include
receiving a user selection of a portion of a data message
included in the data log. The system can generate a message
pattern based on the user selection. The system can designate
a user-created tag and the message pattern as the user created
parsing rule.
[0062] The system can identify (706) a con?ict betWeen the
?rst parsing rule and the second parsing rule. Identifying the
con?ict can include instantiating one or more state machines
based on the ?rst parsing rule and the second parsing rule. In
some implementations, at least one of the state machines can
include a DEA. Identifying the con?ict can include identify
ing an end state that is reachable according to both the ?rst
parsing rule and the second parsing rule.
[0063] The system can resolve (708) the con?ict. Resolving
the con?ict can include providing a user interface for modi
fying the second parsing rule. Providing the user interface can
include requesting a user to select one or more sections of a

data message based on Which a message pattern can be cre
ated.
[0064] The system can extract (710) the named value using
a combination of the ?rst parsing rule and the second parsing
rule. Extracting the named value can include associating a
name speci?ed in the ?rst parsing rule or second parsing rule

US 2012/0197914A1

to an identi?er. Extracting the named value can further
include storing the identi?er in association With a value that
corresponds to the name according to the ?rst rule or second
rule. The value can be extracted from the log data. In some
implementations, the system can store, in a tag catalog, the
name and the associated identi?er. The system can receive a
neW name for replacing the name. The system can associate
the neW name to the identi?er. In some implementations, the
system can associate a security setting to a name. The security
setting can specify access privileges of a value that corre
sponds to the name. The system can store the security setting
and the name in the tag catalog. The security setting can
specify that the value is to be obfuscated or redacted if
accessed by a type ofuser.
[0065] In some implementations, the system can optionally
distribute (712) the ?rst parsing rule and the second parsing
rule to one or more remote data processing units. Distributing
the ?rst parsing rule and the second parsing rule can include
identifying the system a master and the one or more remote
data processing units as slaves, and pushing the ?rst parsing
rule and the second parsing rule from the master to the slaves.
[0066] In some implementations, process 700 can further
include dynamically selecting parsers. Dynamically selecting
parsers can include creating a ?rst parser based on a ?rst
parsing rule, and creating a second parser based on the ?rst
parsing rule and a second parsing rule. Dynamically selecting
parsers can include identifying a type of a data message
included in the data log. Identifying the type of the data
message can include identifying a device type of a device or
application that generates the data message. Dynamically
selecting parsers can include applying one of the ?rst parser
and the second parser to the data message based on the iden
ti?ed type.

Exemplary System Architecture

[0067] FIG. 8 is a block diagram of an exemplary system
architecture 800 for implementing the features and operations
of dynamic parsing rule techniques. Other architectures are
possible, including architectures With more or feWer compo
nents. In some implementations, architecture 800 includes
one or more processors 802 (e.g., dual-core Intel® Xeon®

Processors), one or more output devices 804 (e. g., LCD), one
or more netWork interfaces 806, one or more input devices
808 (e.g., mouse, keyboard, touch-sensitive display) and one
or more computer-readable mediums 812 (e.g., RAM, ROM,
SDRAM, hard disk, optical disk, ?ash memory, etc.). These
components can exchange communications and data over one
or more communication channels 810 (e. g., buses), Which can
utiliZe various hardWare and softWare for facilitating the
transfer of data and control signals betWeen components.
[0068] The term “computer-readable medium” refers to
any medium that participates in providing instructions to
processor 802 for execution, including Without limitation,
non-volatile media (e.g., optical or magnetic disks), volatile
media (e.g., memory) and transmission media. Transmission
media includes, Without limitation, coaxial cables, copper
Wire and ?ber optics.
[0069] Computer-readable medium 812 can further include
operating system 814 (e.g., Mac OS® server, Windows@ NT
server), netWork communication module 816, database inter
face 820, parsing rules 830, con?ict manager 840, and tag
catalog 850. Database interface 820 can provide one or inter
faces (e.g., database interfaces) to various data stores. Parsing
rules 830 can include system parsing rules and custom pars

Aug. 2, 2012

ing rules for parsing log data. Con?ict manager 840 can be
used to identify con?icts betWeen parsing rules. Tag catalog
850 can include names used in implementing the dynamic
parsing rule techniques.
[0070] Operating system 814 can be multi-user, multipro
cessing, multitasking, multithreading, real time, etc. Operat
ing system 814 performs basic tasks, including but not limited
to: recognizing input from and providing output to devices
804 and 808; keeping track and managing ?les and directories
on computer-readable mediums 812 (e. g., memory or a stor
age device); controlling peripheral devices; and managing
traf?c on the one or more communication channels 810. Net

Work communications module 816 includes various compo
nents for establishing and maintaining netWork connections
(e.g., softWare for implementing communication protocols,
such as TCP/IP, HTTP, etc.). Database interface 820 can
include interface to various databases including relational
databases.
[0071] Architecture 800 can be included in any device
capable of hosting a database application program. Architec
ture 800 can be implemented in a parallel processing or peer
to-peer infrastructure or on a single device With one or more

processors. Software can include multiple softWare compo
nents or can be a single body of code.

[0072] The described features can be implemented advan
tageously in one or more computer program products that are
executable on a programmable system including at least one
programmable processor coupled to receive data and instruc
tions from, and to transmit data and instructions to, a data
storage system, at least one input device, and at least one
output device. A computer program is a set of instructions that
can be used, directly or indirectly, in a computer to perform a
certain activity or bring about a certain result. A computer
program can be Written in any form of programming language
(e.g., Objective-C, Java), including compiled or interpreted
languages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, subroutine,
or other unit suitable for use in a computing environment.

[0073] Suitable processors for the execution of a program
of instructions include, by Way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors or cores, of any kind of computer.
Generally, a processor Will receive instructions and data from
a read-only memory or a random access memory or both. The
essential elements of a computer are a processor for executing
instructions and one or more memories for storing instruc
tions and data. Generally, a computer Will also include, or be
operatively coupled to communicate With, one or more mass
storage devices for storing data ?les; such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by Way of example semiconductor
memory devices, such as EPROM, EEPROM, and ?ash
memory devices; magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated in, ASICs (application
speci?c integrated circuits).
[0074] To provide for interaction With a user, the features
can be implemented on a computer having a display device
such as a CRT (cathode ray tube), LCD (liquid crystal dis
play), or plasma monitor for displaying information to the

US 2012/0197914A1

user and a keyboard and a pointing device such as a mouse or
a trackball by Which the user can provide input to the com
puter.
[0075] The features can be implemented in a computer
system that includes a back-end component, such as a data
server, or that includes a middleWare component, such as an
application server or an Internet server, or that includes a

front-end component, such as a client computer having a
graphical user interface or an Internet broWser, or any com
bination of them. The components of the system can be con
nected by any form or medium of digital data communication
such as a communication netWork. Examples of communica
tion netWorks include, e. g., a LAN, a WAN, and the comput
ers and netWorks forming the lntemet.
[0076] The computer system can include clients and serv
ers. A client and server are generally remote from each other
and typically interact through a netWork. The relationship of
client and server arises by virtue of computer programs run
ning on the respective computers and having a client-server
relationship to each other.
[0077] A number of implementations of the invention have
been described. Nevertheless, it Will be understood that vari
ous modi?cations can be made Without departing from the
spirit and scope of the invention. For example, log data are
described. Dynamic parsing rules can be used to analyZe data
other than log data. For example, stock price data, neWs,
electronic mail, and audio and video content can be analyZed
using the techniques described. Accordingly, other imple
mentations are Within the scope of the folloWing claims.

What is claimed is:
1. A method executed by one or more data processing

devices, comprising:
receiving log data;
receiving a ?rst parsing rule and a second parsing rule, the

?rst parsing rule and second parsing rule con?gured to
extract a named value based on the received log data;

identifying a con?ict betWeen the ?rst parsing rule and the
second parsing rule;

resolving the con?ict; and
extracting the named value using a combination of the ?rst

parsing rule and the second parsing rule.
2. The method of claim 1, Where receiving the log data

includes receiving one or more data messages.
3. The method of claim 1, Where receiving the ?rst parsing

rule includes receiving a tag and an expression, the tag includ
ing a name corresponding to the value, the expression includ
ing a pattern for identifying the value corresponding to the
name.

4. The method of claim 1, Where receiving the second
parsing rule includes receiving a user-created parsing rule.

5. The method of claim 4, Where receiving the user-created
parsing rule includes:

receiving a user selection of a portion of a data message
included in the data log;

generating a message pattern based on the user selection;
and

designating a user-created tag and the message pattern as
the user-created parsing rule.

6. The method of claim 1, Where identifying the con?ict
betWeen the ?rst parsing rule and the second parsing rule
includes:

instantiating one or more state machines based on the ?rst
parsing rule and the second parsing rule; and

Aug. 2, 2012

identifying an end state that is reachable according to both
the ?rst parsing rule and the second parsing rule.

7. The method of claim 6, Where at least one of the state
machines includes a deterministic ?nite automaton (DFA).

8. The method of claim 1, Where resolving the con?ict
includes providing a user interface for modifying the second
parsing rule.

9. The method of claim 1, Where extracting the named
value includes:

associating a name speci?ed in the ?rst parsing rule or
second parsing rule to an identi?er; and

storing the identi?er in association With a value that corre
sponds to the name according to the ?rst rule or second
rule, the value being exacted from the log data.

10. The method of claim 9, further comprising:
storing, in a tag catalog, the name and the associated iden

receiving a neW name for replacing the name; and
associating the neW name to the identi?er.
11. The method of claim 9, further comprising:
associating a security setting to a name, the security setting

specifying access privileges of a value that corresponds
to the name; and

storing the security setting and the name in a tag catalog.
12. The method of claim 11, Where the security setting

speci?es that the value is to be obfuscated or redacted if
accessed by a type of user.

13. The method of claim 1, further comprising distributing
the ?rst parsing rule and the second parsing rule to one or
more remote data processing units, the remote data process
ing units con?gured to receive and process second log data
Without creating con?icts in parsing rules.

14. The method of claim 1, further comprising:
creating a ?rst parser based on the ?rst parsing rule and a

second parser based on the ?rst parsing rule and the
second parsing rule;

identifying a type of a data message included in the data
log; and

applying one of the ?rst parser and the second parser to the
data message based on the identi?ed type.

15. The method of claim 12, Where identifying the type of
the data message includes identifying a device type of a
device or application that generates the data message.

16. A computer program product stored on a storage
device, operable to cause one or more processors to perform
operations comprising:

receiving log data;
receiving a ?rst parsing rule and a second parsing rule, the

?rst parsing rule and second parsing rule con?gured to
extract a named value based on the received log data;

identifying a con?ict betWeen the ?rst parsing rule and the
second parsing rule;

resolving the con?ict; and
extracting the named value using a combination of the ?rst

parsing rule and the second parsing rule.
17. A system comprising:
one or more processors con?gured to perform operations

comprising:
receiving log data;
receiving a ?rst parsing rule and a second parsing rule,

the ?rst parsing rule and second parsing rule con?g
ured to extract a named value based on the received
log data;

identifying a con?ict betWeen the ?rst parsing rule and
the second parsing rule;

resolving the con?ict; and
extracting the named value using a combination of the

?rst parsing rule and the second parsing rule.

* * * * *

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description/Claims

