
US 20130097585Al

(19) United States
(12) Patent Application Publication (10) Pub. N0.: US 2013/0097585 A1

(54)

(76)

(21)

(22)

(51)

JENTSCH et al. (43) Pub. Date: Apr. 18, 2013

PROFILE BASED VERSION COMPARISON (52) US. Cl.
USPC 717/122

Inventors: FRANK JENTSCH, Muehlhausen (57) ABSTRACT
(DE); FRANK BRUNSIWIG,
Heidelberg (DE); BARE SAID, St. Leon
(DE)

Various embodiments of systems and methods to compare
different versions of a development object based on a version
comparison pro?le are described herein. Identities of the dif
ferent versions of the development object are received. Fur
ther, a version comparison pro?le and a corresponding pro?le
de?nition associated With the development object are

Appl. No.: 13/273,253

Flled: Oct‘ 14’ 2011 received. Furthermore, the different versions of the develop
ment object are compared to determine one or more differ

Publication Classi?cation ences based upon the received version comparison pro?le and
the corresponding pro?le de?nition. The determined one or

Int. Cl. more differences between the different versions of the devel
G06F 9/44 (2006.01) opment object are returned.

100

/-125 [135 /
PROVIDE IDENTITIES OF RECEIVE THE IDENTITIES OF

DIFFERENT VERSIONS OFA > DIFFERENT VERSIONS OF THE
DEVELOPMENT OBJECT DEVELOPMENT OBJECT

[130 f 140
PROVIDE VERSION RECEIVE THE VERSION

COMPARISON PROFILE AND ‘ COMPARISON PROFILE AND
CORRESPONDING PROFILE V CORRESPONDING PROFILE

120 DEFINITION DEFINITION

" v f 145
H

COMPARE THE DIFFERENT
VERSIONS OF THE

DEVELOPMENT OBJECT BASED
ON THE VERSION >

COMPARISON PROFILE AND

THE CORRESPONDING PROFILE DEFINITION REPOSI-I-ORYLi

/- ‘I 55 f- 150

DISPLAY THE COMPARED ‘ RETURN THE COMPARED ‘
RESULT ‘ RESULT ‘

USER INTERFACE M PROCESSOR m

Patent Application Publication Apr. 18, 2013 Sheet 1 0f 9 US 2013/0097585 A1

d mOwmwOOwE

'

* *

'

A

Patent Application Publication Apr. 18, 2013 Sheet 2 0f 9 US 2013/0097585 A1

200

/

K210
RECEIVE IDENTITIES OF DIFFERENT

VERSIONS OF A DEVELOPMENT OBJECT

I /-220
RECEIVE A VERSION COMPARISON PROFILE

AND A CORRESPONDING PROFILE
DEFINITION ASSOCIATED WITH THE

DEVELOPMENT OBJECT

I K230
COMPARE THE DIFFERENT VERSIONS OF

THE DEVELOPMENT OBJECT TO DETERMINE
ONE OR MORE DIFFERENCES BASED UPON
THE RETRIEVED VERSION COMPARISON
PROFILE AND THE CORRESPONDING

PROFILE DEFINITION

I K240
RETURN THE DETERMINED ONE OR MORE
DIFFERENCES BETWEEN THE DIFFERENT
VERSIONS OF THE DEVELOPMENT OBJECT

FIG. 2

Patent Application Publication Apr. 18, 2013 Sheet 3 0f 9 US 2013/0097585 A1

<oom

Patent Application Publication Apr. 18, 2013 Sheet 4 0f 9 US 2013/0097585 A1

mm .QE

wuzmmmmmm

_ GU80 wwwzazm

moom\

_________‘p

w .QE

US 2013/0097585 A1

oouoouoo

III

Apr. 18, 2013 Sheet 5 0f 9 Patent Application Publication

Patent Application Publication Apr. 18, 2013 Sheet 6 0f 9 US 2013/0097585 A1

46 .0E

ONFw

Em mEDhODmFw MDOOAED

EMU

Patent Application Publication Apr. 18, 2013 Sheet 7 0f 9 US 2013/0097585 A1

Patent Application Publication Apr. 18, 2013 Sheet 8 0f 9 US 2013/0097585 A1

Patent Application Publication Apr. 18, 2013 Sheet 9 0f 9 US 2013/0097585 A1

oow

US 2013/0097585 A1

PROFILE BASED VERSION COMPARISON

FIELD

[0001] Embodiments generally relate to computer systems
and more particularly to methods and systems to compare
different versions of a development object based on a version
comparison pro?le.

BACKGROUND

[0002] Typically, business requirements change over time
to satisfy customer needs. In this regard, computer softWare is
modi?ed to meet the changed business requirements. These
modi?cations can result in different versions of same com

puter softWare (i.e., source code). Every version can include
one or more unique differences compared to other versions to
meet business requirements or to improvise the previous soft
Ware version. Many a times, it is important to knoW the
signi?cant differences betWeen the different versions of same
computer softWare for analyZing softWare lifecycle aspects
Within the same release and across different releases.

[0003] Generally, softWare versions are compared on a tex
tual basis by using standard tools. Such method of compari
son alloWs convenient visualiZation of the differences
betWeen the softWare versions. HoWever, a metadata reposi
tory supports a plurality of different domain speci?c devel
opment objects (i.e., metadata object types). Further, changes
to the content of the metadata repository may have signi?cant
impact on the functional aspects of a business application,
user interface and the like. To compare the different versions
of the development object using standard version compari
son, the Whole development object is taken into account.
Further, the standard version comparison detects all differ
ences, Which leads to a huge list of differences and is a time
consuming process to analyZe the differences manually. Also,
the development objects are not only based on source code,
but a signi?cant amount of information is available in the
form of the structure of the development objects. As a disad
vantage, there is no evaluation or ranking of the severity of
differences and there is no ?ltering mechanism to search only
for speci?c differences (e. g., to detect incompatible changes,
to detect important structural changes such as enhancements
and the like). Therefore, it is desirable to provide a method
Which enables comparison of the different versions of the
development object based on the speci?c difference (e.g.,
structural change, behavioral change and the like).

SUMMARY

[0004] Various embodiments of systems and methods to
compare different versions of a development object based on
a version comparison pro?le are described herein. In one
aspect, identities of the different versions of the development
object are received. Further, a version comparison pro?le and
a corresponding pro?le de?nition associated With the devel
opment object are received. Furthermore, the different ver
sions of the development object are compared to determine
one or more differences based upon the received version
comparison pro?le and the corresponding pro?le de?nition.
The determined one or more differences betWeen the different
versions of the development object are returned.
[0005] These and other bene?ts and features of embodi
ments of the invention Will be apparent upon consideration of
the folloWing detailed description of preferred embodiments
thereof, presented in connection With the folloWing draWings.

Apr. 18, 2013

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The claims set forth the embodiments of the inven
tion With particularity. The invention is illustrated by Way of
example and not by Way of limitation in the ?gures of the
accompanying draWings in Which like references indicate
similar elements. The embodiments of the invention, together
With its advantages, may be best understood from the folloW
ing detailed description taken in conjunction With the accom
panying draWings.
[0007] FIG. 1 is a functional block diagram illustrating a
system to compare different versions of a development
object, according to an embodiment.
[0008] FIG. 2 is a How diagram illustrating a method to
compare different versions of a development object, accord
ing to an embodiment.

[0009] FIGS. 3A and 3B are exemplary user interfaces
displaying tWo versions of a development object, according to
an embodiment.

[0010] FIG. 4 is an exemplary user interface for providing
identities of different versions of a development object to be
compared, according to an embodiment.
[0011] FIGS. 5A and 5B are exemplary user interfaces for
providing a version comparison pro?le and a corresponding
pro?le de?nition, according to an embodiment.
[0012] FIG. 6 is an exemplary user interface displaying
differences betWeen the tWo versions of the development
object as shoWn in FIGS. 3A and 3B, according to an embodi
ment.

[0013] FIG. 7 is a block diagram illustrating a computing
environment in Which the techniques described to compare
different versions of a development object, according to an
embodiment.

DETAILED DESCRIPTION

[0014] Embodiments of techniques to compare different
versions of a development object based on a version compari
son pro?le are described herein. The development object can
be an individual part of an application stored in a metadata
repository such as a process component, a data type, a busi
ness object, a process agent and the like. In one embodiment,
the version comparison pro?le de?nes a pro?le name, such as
structural changes, behavioral changes, functional changes
and the like, for Which the different versions of the develop
ment object are compared.

[0015] According to one embodiment, different versions of
the development object are compared based on the version
comparison pro?le and corresponding pro?le de?nition. The
corresponding pro?le de?nition de?nes different kinds of
changes, such as delete, create and update, to speci?c parts of
the development object. The version comparison pro?le and
the corresponding pro?le de?nition are provided by a user.
The user refers to an agent, a human or other mechanism

capable of providing input to a computer system. The com
puter system can be desktop computers, Work stations, laptop
computers, hand held computers, smart phone, console
devices or similar portable computing systems. Since the
comparison is done using the version comparison pro?le and
the corresponding pro?le de?nition, speci?c differences as
desired by the user can be analyZed. Therefore, the overall
changes existing betWeen the different versions of the devel
opment object are ?ltered to display major and important
changes as desired by the user.

US 2013/0097585 A1

[0016] In the following description, numerous speci?c
details are set forth to provide a thorough understanding of
embodiments of the invention. One skilled in the relevant art
Will recognize, hoWever, that the invention can be practiced
Without one or more of the speci?c details, or With other
methods, components, materials, etc. In other instances, Well
knoWn structures, materials, or operations are not shoWn or
described in detail to avoid obscuring aspects of the invention.

[0017] Reference throughout this speci?cation to “one
embodiment”, “this embodiment” and similar phrases, means
that a particular feature, structure, or characteristic described
in connection With the embodiment is included in at least one
embodiment of the present invention. Thus, the appearances
of these phrases in various places throughout this speci?ca
tion are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or character
istics may be combined in any suitable manner in one or more
embodiments.

[0018] FIG. 1 is a functional block diagram illustrating a
computer system 100 to compare different versions of a
development object, according to an embodiment. The com
puter system includes a computer generated user interface
105, a processor 110 and one or more memory devices (e.g.,
metadata object repository 115). The user interface 105 is
generally a means for providing an interface for a user 120 to
interact With the computer system 100. The behavior of the
user interface 105 may be governed by computer executable
instructions that are executed When the user 120 interacts With
the user interface 105.

[0019] In one embodiment, the user interface 105 provides
an option for the user 120 to provide identities of different
versions of the development object to be compared (e. g.,
125). In other Words, the option is provided to input names or
labels of the different versions of the development object to be
compared. Further, the user interface 105 provides an option
for the user to provide a version comparison pro?le and a
corresponding pro?le de?nition (e.g., 130). The version com
parison pro?le and the corresponding pro?le de?nition de?ne
the kinds of changes to be determined betWeen the different
versions of the development object. The version comparison
pro?le and the corresponding pro?le de?nition are explained
in greater detail in FIGS. 2, 5A and 5B.

[0020] The processor 110 generally assists the user to
implement a method to compare the different versions of the
development object. At step 135, the identities of different
versions of the development object to be compared are
received. At step 140, the version comparison pro?le and the
corresponding pro?le de?nition are received (explained With
an example in FIGS. 2, 5A and 5B). Further, at step 145, the
different versions of the development object are compared
based on the version comparison pro?le and the correspond
ing pro?le de?nition using the metadata object repository
115. The metadata object repository 115 can include one or
more development objects such as a process component, a
data type, a business object and a process agent. The metadata
object repository 115 may be stored in a physical location or
may be a virtual database, in Which the content of the meta
data object repository 115 is draWn from separate sources. At
step 150, the compared result is returned, Which is displayed
in the user interface 105 (e.g., 155).

[0021] FIG. 2 is a How diagram 200 illustrating a method to
compare different versions of a development object, accord
ing to an embodiment. At step 210, identities of the different

Apr. 18, 2013

versions of the development object to be compared are
received. The different versions can include a current version

of the development object and one or more previous versions
of the development object. In one exemplary embodiment,
the development object can include a domain speci?c meta
data object stored in a metadata repository. The development
object can include at least one of a process component, a data
type, a business object and a process agent. For example,
identities of tWo different versions of a business object ‘Fixed
Asset’ With technical name ‘FIA_FIXED_ASSET’ (e. g.,
using date of release and the like) are received.

[0022] At step 220, a version comparison pro?le and a
corresponding pro?le de?nition associated With the develop
ment object are received. In one embodiment, the version
comparison pro?le includes a pro?le name associated With
the development object for Which the different versions of the
development object are compared. For example, the different
versions of the development object can be compared for
structural changes, behavioral changes, functional changes
and the like. The version comparison pro?le associated With
the development object is prede?ned using a metadata object
model.

[0023] In one embodiment, the corresponding pro?le de?
nition de?nes relevance of different kinds of changes (e.g.,
delete, create and update) to speci?c parts of the development
object performed in different versions. For example, if the
user desires to knoW the list of node elements Which are
deleted from the previous version, then the user can set the
version comparison pro?le as ‘structural change’ and corre
sponding pro?le de?nition as ‘deletion of node element’. An
example is described in greater detail in FIGS. 3A to 6.

[0024] At step 230, the different versions of the develop
ment object are compared to determine one or more differ

ences based upon the received version comparison pro?le and
the corresponding pro?le de?nition. For example, the struc
tural changes (including deletion of node elements) betWeen
the tWo different versions of the business object ‘FIA_FIXE
D_ASSET’ are determined. Therefore, the type of differences
as desired by the user is returned instead of all the differences
existing betWeen the different versions of the development
object.

[0025] At step 240, the determined one or more differences
betWeen the different versions of the development object are
returned. The returned compared results are displayed to the
user. For example, the deleted node elements (With respect to
comparison of tWo different versions of the ‘FIA_FIXED_
ASSET’ business object) are displayed. The method
described in FIG. 2 is explained With an example in FIGS. 3A
to 6.

[0026] FIGS. 3A and 3B are exemplary user interfaces
(300A and 300B) displaying tWo versions of a development
object, according to an embodiment. In one exemplary
embodiment, a business object is considered as the develop
ment object for describing the method described in FIG. 2.
Typically, the business object includes tWo main aspects such
as business object data structure and business object behav
ioral aspects. The metadata model for the business object may
include a plurality of nodes containing a plurality of
attributes. Further, an extract of the business object metadata
model can be as folloWs:

US 2013/0097585 A1

{
Root

Node
Node Element
Action

Action Parameter Element

}

[0027] Wherein, the root includes header information. The
node and node elements are business object data structures.
The action and action parameter elements are business object
behavioral aspects. FIG. 3A displays an exemplary ‘FIA_
FIXED_ASSET’ 310A business object. As an example, the
‘FIA_FIXED_ASSET’ 310A business object may include 17
nodes, 255 node elements, 18 actions and 14 action parameter
elements. For simplicity, it is considered that the ‘FIA_FIXE
D_ASSET’ 310A business object includes node ‘SOB_VAL
VIEW_LINE_ITEM’ 315A and six node elements as shown
in 320. The ‘FIA_FIXED_ASSET’ 310A business object is a
copy of an older version (i.e., a copy of previous release of the
business object).

[0028] FIG. 3B displays an exemplary ‘FIA_FIXED_AS
SET’ 310B business object. The ‘FIA_FIXED_ASSET’
310B business object includes node ‘SOB_VALVIEW_LI
NE_ITEM’ 315B and seven node elements as shown in 320.
The ‘FIA_FIXED_ASSET’ 310B business object is a copy of
a current version (i.e., a copy of new release of the business
object). Two new node elements ‘INTER COMPANY INDI
CATOR’ and ‘INTER COMPANYMAIN IND’ are added to
the current version as shown in 335 when compared to the
older version (e. g., as displayed in FIG. 3A). Further, a node
element ‘DEBIT CREDIT CODE’ 325 is deleted in the cur
rent version (e. g., as displayed in FIG. 3B) when compared to
the older version (e.g., as displayed in FIG. 3A). An example
to determine the changes, as desired by a user, between the
two versions (e.g., as displayed in FIGS. 3A and 3B respec
tively) is described in FIGS. 4 to 6.

[0029] FIG. 4 is an exemplary user interface 400 for pro
viding identities of different versions of a development object
to be compared, according to an embodiment. The user inter
face 400 provides an option for a user to provide identities
(e.g., name, label and the like) of the different versions of the
development object to be compared. Current version selec
tion 410 of the user interface 400 provides an option for the
user to input details of the current version of the development
object (i.e., development object type 430 and development
object instance 440). For example, the user may input the
development object type 430 as ‘MDRS_BUSINESS_OB
JECT’ and development object instance 440 as ‘FIA_FIXE
D_AS SET’ . Further, the other mentioned elements in the user
interface 400 such as software component, component ID,
transport layer, package, original system, and person respon
sible are attributes for the development object (i.e., indepen
dent of the type of the development object). In other words,
the business object instance, process component instance and
data type instance provides such attributes to support a mass
comparison (i.e., a plurality of development objects can be
compared to their respective older version). In FIG. 4, the
displayed selection criteria in the user interface 400 specify
one development object, because development object
instance 440 is explicitly given. However, it would be also

Apr. 18, 2013

possible to let this ?eld empty and select all business objects
of a given software component.
[0030] Further, previous version selection 420 of the user
interface 400 provides an option for the user to input details of
the older version of the development object, which has to be
compared with the version of the development object as
speci?ed in the current version selection 41 0. For example, an
option date/time 450 is provided to input the previous version
details (i.e., date and time of the release of the previous
version). Thus, the current version of the development object
as mentioned in the current version selection 410 is compared
with the previous version of the development object as men
tioned in the previous version selection 420 based on a ver
sion comparison pro?le and a corresponding pro?le de?ni
tion. De?ning the version comparison pro?le and the
corresponding pro?le de?nition are described in FIGS. 5A
and 5B respectively.
[0031] FIGS. 5A and 5B are exemplary user interfaces
(500A and 500B) for providing a version comparison pro?le
and a corresponding pro?le de?nition, according to an
embodiment. FIG. 5A is the exemplary user interface 500A
for providing the version comparison pro?le. In one embodi
ment, the version comparison pro?le includes a pro?le name
associated with a development object for which the different
versions of the development object are compared. The user
interface 500A provides an option to a user to input the
version comparison pro?le. In one exemplary embodiment, a
pro?le overview 505 displays two portions on the user inter
face 500A. The ?rst portion displays a dialogue structure 510
and the second portion display the details of the options
selected under the dialogue structure 510. The dialogue struc
ture 510 enables the user to provide details for version com
parison pro?le 515 and corresponding pro?le de?nition 520.
[0032] In the user interface 500A, the version comparison
pro?le 515 is selected and thus the second portion displays
version comparison pro?le 515. The version comparison pro
?le 515 includes details such as development object name
525, pro?le name 530 and description 535. For example,
‘FIA_FIXED_ASSET’ is selected as the development object
name 525, ‘STRC’ as the pro?le name 530 and ‘structural
changes’ as the description 535. Therefore, the ‘ STRC’ (struc
tural changes) between the current version (as shown in FIG.
3B) and the previous version (as shown in FIG. 3A) of the
development object are determined based on the correspond
ing pro?le de?nition. The pro?le de?nition is described in
FIG. 5B.

[0033] FIG. 5B is the exemplary user interface 500B for
providing the pro?le de?nition. In one exemplary embodi
ment, when the pro?le de?nition 520 is selected, the second
portion displays the pro?le de?nition 520. The pro?le de?ni
tion 520 de?nes relevance of different kinds of changes to
speci?c parts of the development object performed in differ
ent versions of the development object. The pro?le de?nition
520 provides an option to the user to provide relevance of
different kinds of changes such as create (C), delete (D) and
update (U). For example, the user provides the pro?le de?ni
tion 520 specifying to include creation (C) of node and node
elements in the comparison result. Therefore, create (C)
operation is declared as relevant for the comparison of differ
ent versions. The delete (D) and update (U) operations are not
considered for comparison of different versions. In other
words, creation of node and node elements is considered
while comparing the different versions. Further, other
attributes such as actions, action parameters, and the like of

US 2013/0097585 Al

the business object are not considered While comparing the
different versions of the business object. In one exemplary
embodiment, a sign can be provided to state Whether to
include (I) or exclude (E) the kind of change. For example,
creation (C) of the node is excluded (E) and creation (C) of the
node element is included (I) for comparing the different ver
sions of the development object.
[0034] Therefore, the tWo versions of the development
object ‘FIA_FIXED_ASSET’ business object (as described
in FIGS. 3A, 3B and 4) are compared for ‘STRC’ (structural
changes) (as described in FIG. 5A) including creation (C) of
node elements (as described in FIG. 5B). The display of the
comparison result is described in FIG. 6.
[0035] FIG. 6 shoWs an exemplary user interface 600 dis
playing differences betWeen the tWo versions of the develop
ment object as shoWn in FIGS. 3A and 3B, according to an
embodiment. Comparison of the current version (as described
in FIG. 3B) and the previous version (as described in FIG. 3A)
on speci?ed date/time 610 displays the ‘STRC’ (structural
changes) (as described in FIG. 5A) including creation (C) of
node elements (as described in FIG. 5B) When the current
version (as described in FIG. 3B) and the previous version (as
described in FIG. 3A) are compared. Thereby, the node ele
ments ‘INTER COMPANY INDICATOR’ and ‘INTER
COMPANYMAIN IND’ are displayed as shoWn in 620.
Therefore, the kind of change as desired by the user is dis
played in the user interface 600. For example, even though the
node element ‘DEBIT_CREDIT_CODE’ 325 is deleted (D)
in the current version (as displayed in FIG. 3B), the user
interface 600 does not display the node element ‘DEBIT_
CREDIT_CODE’ 325 as the pro?le de?nition is de?ned to
include (I) addition of node elements and not deletion (D) of
node element (as described in FIG. 5B). In one exemplary
embodiment, annotations can be included to rank severity of
the changes. For example, deletion of a node element can be
highlighted as deletion of the node element is considered
more critical than an insertion of the node element.

[0036] It is advantageous to compare different versions of
the development object using version comparison pro?les as
incompatible changes betWeen different versions can be
deleted (e.g., if deletion is considered as incompatible
change, then only deletion of the development object
attributes can be determined). Further, important structural
changes including enhancements can be determined. For
example, if an attribute is added to the development object,
then corresponding changes has to be performed in the user
interface. Therefore, detection of enhancements is advanta
geous and is achieved by comparing the different versions
using the version comparison pro?le. Furthermore, speci?c
changes (eg ad-hoc analysis) of the progress of a mass
change can be detected. For example, speci?c kind of change
or speci?c interested property can be highlighted using the
version comparison pro?les. Therefore, the most important
changes in the different versions of the development object
are determined by an ef?cient and simpli?ed version com
parison method using version comparison pro?les, speci?c to
the development object.
[0037] Further, the method of comparison of different ver
sions of the development object is described using business
object as an example for the development object. HoWever,
the development object is not restricted to the business object
and the business object can be replaced by other metadata
object types stored in a metadata object repository (e.g., a
process component, a data type, a process agent and the like).

Apr. 18, 2013

For example, considering process component (e.g., ?nancial
accounting) as the development object, business process vari
ants acts as a node of the process component metadata object.
Thus, deletion, creation and updates of the business process
variants can be determined using the method as described in
FIG. 2.

[0038] Some embodiments of the invention may include
the above-described methods being Written as one or more
softWare components. These components, and the function
ality associated With each, may be used by client, server,
distributed, or peer computer systems. These components
may be Written in a computer language corresponding to one
or more programming languages such as, functional, declara
tive, procedural, object-oriented, loWer level languages and
the like. They may be linked to other components via various
application programming interfaces and then compiled into
one complete application for a server or a client. Altema
tively, the components maybe implemented in server and
client applications. Further, these components may be linked
together via various distributed programming protocols.
Some example embodiments of the invention may include
remote procedure calls being used to implement one or more
of these components across a distributed programming envi
ronment. For example, a logic level may reside on a ?rst
computer system that is remotely located from a second com
puter system containing an interface level (e.g., a graphical
user interface). These ?rst and second computer systems can
be con?gured in a server-client, peer-to-peer, or some other
con?guration. The clients can vary in complexity from
mobile and handheld devices, to thin clients and on to thick
clients or even other servers.

[0039] The above-illustrated softWare components are tan
gibly stored on a computer readable storage medium as
instructions. The term “computer readable storage medium”
should be taken to include a single medium or multiple media
that stores one or more sets of instructions. The term “com

puter readable storage medium” should be taken to include
any physical article that is capable of undergoing a set of
physical changes to physically store, encode, or otherWise
carry a set of instructions for execution by a computer system
Which causes the computer system to perform any of the
methods or process steps described, represented, or illus
trated herein. Examples of computer readable storage media
include, but are not limited to: magnetic media, such as hard
disks, ?oppy disks, and magnetic tape; optical media such as
CD-ROMs, DVDs and holographic devices; magneto-optical
media; and hardWare devices that are specially con?gured to
store and execute, such as application-speci?c integrated cir
cuits (“ASICs”), programmable logic devices (“PLDs”) and
ROM and RAM devices. Examples of computer readable
instructions include machine code, such as produced by a
compiler, and ?les containing higher-level code that are
executed by a computer using an interpreter. For example, an
embodiment of the invention may be implemented using
Java, C++, or other object-oriented programming language
and development tools. Another embodiment of the invention
may be implemented in hard-Wired circuitry in place of, or in
combination With machine readable softWare instructions.

[0040] FIG. 7 is a block diagram of an exemplary computer
system 700. The computer system 700 includes a processor
705 that executes softWare instructions or code stored on a
computer readable storage medium 755 to perform the above
illustrated methods of the invention. The computer system
700 includes a media reader 740 to read the instructions from

US 2013/0097585 Al

the computer readable storage medium 755 and store the
instructions in storage 710 or in random access memory
(RAM) 715. The storage 710 provides a large space for keep
ing static data Where at least some instructions could be stored
for later execution. The stored instructions may be further
compiled to generate other representations of the instructions
and dynamically stored in the RAM 715. The processor 705
reads instructions from the RAM 715 and performs actions as
instructed. According to one embodiment of the invention,
the computer system 700 further includes an output device
725 (e.g., a display) to provide at least some of the results of
the execution as output including, but not limited to, visual
information to users and an input device 730 to provide a user
or another device With means for entering data and/or other
Wise interact With the computer system 700. Each of these
output devices 725 and input devices 730 could be joined by
one or more additional peripherals to further expand the capa
bilities of the computer system 700 . A netWork communicator
735 may be provided to connect the computer system 700 to
a netWork 750 and in turn to other devices connected to the
netWork 750 including other clients, servers, data stores, and
interfaces, for instance. The modules of the computer system
700 are interconnected via a bus 745. Computer system 700
includes a data source interface 720 to access data source 760.
The data source 760 can be accessed via one or more abstrac

tion layers implemented in hardWare or softWare. For
example, the data source 760 may be accessed by netWork
750. In some embodiments the data source 760 may be
accessed via an abstraction layer, such as, a semantic layer.

[0041] A data source is an information resource. Data
sources include sources of data that enable data storage and
retrieval. Data sources may include databases, such as, rela
tional, transactional, hierarchical, multi-dimensional (e.g.,
OLAP), object oriented databases, and the like. Further data
sources include tabular data (e.g., spreadsheets, delimited
text ?les), data tagged With a markup language (e.g., XML
data), transactional data, unstructured data (e.g., text ?les,
screen scrapings), hierarchical data (e.g., data in a ?le system,
XML data), ?les, a plurality of reports, and any other data
source accessible through an established protocol, such as,
Open DataBase Connectivity (ODBC), produced by an
underlying softWare system (e. g., ERP system), and the like.
Data sources may also include a data source Where the data is
not tangibly stored or otherWise ephemeral such as data
streams, broadcast data, and the like. These data sources can
include associated data foundations, semantic layers, man
agement systems, security systems and so on.

[0042] In the above description, numerous speci?c details
are set forth to provide a thorough understanding of embodi
ments of the invention. One skilled in the relevant art Will
recogniZe, hoWever that the invention can be practiced With
out one or more of the speci?c details or With other methods,
components, techniques, etc. In other instances, Well-knoWn
operations or structures are not shoWn or described in details
to avoid obscuring aspects of the invention.
[0043] Although the processes illustrated and described
herein include series of steps, it Will be appreciated that the
different embodiments of the present invention are not lim
ited by the illustrated ordering of steps, as some steps may
occur in different orders, some concurrently With other steps
apart from that shoWn and described herein. In addition, not
all illustrated steps may be required to implement a method
ology in accordance With the present invention. Moreover, it
Will be appreciated that the processes may be implemented in

Apr. 18, 2013

association With the apparatus and systems illustrated and
described herein as Well as in association With other systems
not illustrated.
[0044] The above descriptions and illustrations of embodi
ments of the invention, including What is described in the
Abstract, is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. While speci?c
embodiments of, and examples for, the invention are
described herein for illustrative purposes, various equivalent
modi?cations are possible Within the scope of the invention,
as those skilled in the relevant art Will recogniZe. These modi
?cations can be made to the invention in light of the above
detailed description. Rather, the scope of the invention is to be
determined by the folloWing claims, Which are to be inter
preted in accordance With established doctrines of claim con
struction.

What is claimed is:
1. An article of manufacture including a tangible computer

readable storage medium to physically store instructions,
Which When executed by a computer, cause the computer to:

receive identities of different versions of a development
object to be compared;

receive a version comparison pro?le and a corresponding
pro?le de?nition associated With the development
object;

compare the different versions of the development object
to determine one or more differences based upon the
received version comparison pro?le and the correspond
ing pro?le de?nition; and

return the determined one or more differences betWeen the
different versions of the development object.

2. The article of manufacture of claim 1, Wherein the dif
ferent versions comprise a current version of the development
object and one or more previous versions of the development
object.

3. The article of manufacture of claim 1, Wherein the devel
opment object comprises a domain speci?c metadata object
stored in a metadata repository.

4. The article of manufacture of claim 3, Wherein the devel
opment object comprises at least one of a process component,
a data type, a business object and a process agent.

5. The article of manufacture of claim 1, Wherein the ver
sion comparison pro?le comprises a pro?le name associated
With the development object for Which the different versions
of the development object are compared.

6. The article of manufacture of claim 5, Wherein the ver
sion comparison pro?le associated With the development
object is prede?ned using a metadata model.

7. The article of manufacture of claim 1, Wherein the cor
responding pro?le de?nition de?nes relevance of different
kinds of changes to speci?c parts of the development object
performed in different versions of the development object.

8. A computer implemented method to compare different
versions of a development object using a computer, the
method comprising:

receiving, from a computer generated user interface, an
identity of the different versions of the development
object to be compared;

receiving, from the computer generated user interface, a
version comparison pro?le and a corresponding pro?le
de?nition associated With the development object;

comparing, the computer, the different versions of the
development object to determine one or more differ

US 2013/0097585 A1

ences based upon the retrieved version comparison pro
?le and the corresponding pro?le de?nition; and

displaying the determined one or more differences
betWeen the different versions of the development
object.

9. The computer implemented method of claim 8, Wherein
the different versions comprise a current version of the devel
opment object and one or more previous versions of the
development object.

10. The computer implemented method of claim 8,
Wherein the development object comprises a domain speci?c
metadata object stored in a metadata repository.

11. The computer implemented method of claim 10,
Wherein the development object comprises at least one of a
process component, a data type, a business object and a pro
cess agent.

12. The computer implemented method of claim 8,
Wherein the version comparison pro?le comprises a pro?le
name associated With the development object for Which the
different versions of the development object are compared.

13. The computer implemented method of claim 12,
Wherein the version comparison pro?le associated With the
development object is prede?ned using a metadata model.

14. The computer implemented method of claim 8,
Wherein the corresponding pro?le de?nition de?nes rel
evance of different kinds of changes to speci?c parts of the
development object performed in different versions of the
development object.

15. A computer system to compare different versions of a
development object, the computer system comprising a pro
cessor, the processor communicating With one or more
memory devices storing instructions to:

Apr. 18, 2013

receive identities of the different versions of the develop
ment object to be compared;

receive a version comparison pro?le and a corresponding
pro?le de?nition associated With the development
object;

compare the different versions of the development object
to determine one or more differences based upon the
retrieved version comparison pro?le and the corre
sponding pro?le de?nition; and

display the determined one or more differences betWeen
the different versions of the development object.

16. The computer system of claim 15, Wherein the different
versions comprise a current version of the development
object and one or more previous versions of the development
object.

17. The computer system of claim 15, Wherein the devel
opment object comprises a domain speci?c metadata object
stored in a metadata repository.

18. The computer system of claim 17, Wherein the devel
opment object comprises at least one of a process component,
a data type, a business object and a process agent.

19. The computer system of claim 15, Wherein the version
comparison pro?le comprises a pro?le name associated With
the development object for Which the different versions of the
development object are compared.

20. The computer system of claim 15, Wherein the corre
sponding pro?le de?nition de?nes relevance of different
kinds of changes to speci?c parts of the development object
performed in different versions of the development object.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description/Claims
	Page 16 - Claims

