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(57) ABSTRACT

An autonomous coverage robot includes a chassis, a drive
system configured to maneuver the robot, and a cleaning
assembly. The cleaning assembly includes a cleaning assem-
bly housing and at least one driven sweeper brush. The robot
includes a controller and a removable sweeper bin configured
to receive debris agitated by the driven sweeper brush. The
sweeper bin includes an emitter disposed on an interior sur-
face of the bin and a receiver disposed remotely from the
emitter on the interior surface of the bin and configured to
receive an emitter signal. The emitter and the receiver are
disposed such that a threshold level of accumulation of debris
in the sweeper bin blocks the receiver from receiving emitter
emissions. The robot includes a bin controller disposed in the
sweeper bin and monitoring a detector signal and initiating a
bin full routine upon determining a bin debris accumulation
level requiring service.
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COVERAGE ROBOTS AND ASSOCIATED
CLEANING BINS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This U.S. patent application claims priority under 35
US.C. §119(e) to U.S. provisional patent applications
60/747,791, filed on May 19, 2006, 60/803,504, filed on May
30, 2006, and 60/807,442, filed on Jul. 14, 2006. The entire
contents of the aforementioned applications are hereby incor-
porated by reference.

TECHNICAL FIELD

This disclosure relates to autonomous coverage robots and
associated cleaning bins.

BACKGROUND

Autonomous robots are robots which can perform desired
tasks in unstructured environments without continuous
human guidance. Many kinds of robots are autonomous to
some degree. Different robots can be autonomous in difterent
ways. An autonomous coverage robot traverses a work sur-
face without continuous human guidance to perform one or
more tasks. In the field of home, office and/or consumer-
oriented robotics, mobile robots that perform household
functions such as vacuum cleaning, floor washing, patrolling,
lawn cutting and other such tasks have been widely adopted.

SUMMARY

In one aspect, an autonomous coverage robot includes a
chassis, a drive system mounted on the chassis and configured
to maneuver the robot, and a cleaning assembly carried by the
chassis. The cleaning assembly includes a cleaning assembly
housing and at least one driven sweeper brush rotatably
coupled to the cleaning assembly housing. The robot includes
a controller carried by the chassis and a removable sweeper
bin attached to the chassis. The sweeper bin is configured to
receive debris agitated by the driven sweeper brush. The
sweeper bin includes an emitter disposed on an interior sur-
face of the bin and a receiver disposed remotely from the
emitter on the interior surface of the bin. The receiver is
configured to receive a signal emitted by the emitter. The
emitter and the receiver are disposed such that a threshold
level of accumulation of debris in the sweeper bin blocks the
receiver from receiving emissions from the emitter. The robot
includes a bin controller disposed in the sweeper bin and
monitoring a signal from the detector and initiating a bin full
routine upon determining a bin debris accumulation level
requiring service.

Implementations of this aspect of the disclosure may
include one or more of the following features. The cleaning
bin is removably attached to the chassis. In some implemen-
tations, a diffuser is positioned over the emitter to diffuse the
emitted signal. The receiver receives the diffused emissions.
Accumulation of debris in the bin at least partially blocks the
diffused emissions from being received by the receiver. The
emitter may include an infrared light emitter diffused by a
translucent plastic sheet. In some examples, the emitter is
disposed on a first interior lateral surface of the bin and the
receiver is disposed on an opposing, second interior lateral
surface of the bin. The emitter and the receiver may be
arranged for a determination of debris accumulation within
substantially an entire volume of the bin. In some implemen-
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tations, the coverage robot bin-full detection system includes
a human perceptible indicator providing an indication that
autonomous operation may be interrupted for bin servicing.
The cleaning bin may include a vacuum assembly having an
at least partially separate entrance path into the bin. In some
examples, the cleaning bin includes a plurality of teeth dis-
posed substantially along a mouth of the bin between a
sweeper bin portion and a vacuum bin portion housing the
vacuum assembly. The teeth are configured to strip debris
from the rotating sweeper brush and the debris is allowed to
accumulate in the sweeper bin portion.

In another aspect, a coverage robot bin-full detection sys-
tem includes a cleaning bin housing configured to be received
by a cleaning robot and a bin capacity sensor system carried
by the cleaning bin housing. The bin capacity sensor system
includes at least one signal emitter disposed on an interior
surface of the cleaning bin housing and at least one signal
detector disposed on the interior surface of the cleaning bin
housing. The detector is configured to receive a signal emitted
by the emitter. The coverage robot bin-full detection system
includes a controller carried by the cleaning bin housing and
a remote indicator in wireless communication with the con-
troller. The controller monitors a signal from the detector and
determines a cleaning service requirement. The remote indi-
cator provides an indication of the cleaning service require-
ment determined by the controller.

Implementations of this aspect of the disclosure may
include one or more of the following features. In some imple-
mentations, the cleaning bin housing defines a sweeper bin
portion and a vacuum bin portion. The cleaning bin housing
may include a vacuum assembly housed by the vacuum bin
portion. The emitter may be an infrared light emitter. In some
implementations, the controller is configured to determine a
robot stuck condition and communicate the robot stuck con-
dition to the wireless remote indicator. The remote indicator
may be configured to communicate commands to the bin
controller. The bin controller may communicate with a con-
troller of the robot.

In yet another aspect, a method of detecting fullness of a
cleaning bin of an autonomous coverage robot includes deter-
mining an empty bin threshold signal value by reading a
signal received from a bin-fullness detection system while the
cleaning bin is empty. After a predetermined period of time,
the method includes detecting a present bin signal value by
reading the signal from the detection system. The method
includes comparing the empty bin threshold signal value with
the present bin signal value to determine a signal value dif-
ference. Then the method includes, in response to determin-
ing that the signal difference is greater than a predetermined
amount, activating a bin full indicator.

Implementations of this aspect of the disclosure may
include one or more of the following features. The method
may include periodically determining the check bin signal
and the signal difference, wherein the indicator is activated
when the check bin signals is greater than the empty bin
threshold signal. The indicator maybe activated when mul-
tiple check bin signals over the period of time are greater than
the empty bin threshold signal. The emitter may be an infrared
light emitter. In some examples, a diffuser positioned over the
emitter to diffuse the emitted signal. In some implementa-
tions, the emitter is disposed on a first interior surface of the
cleaning bin housing and the detector is disposed on an
opposing, second interior surface of the cleaning bin housing.

The details of one or more implementations of the disclo-
sure are set fourth in the accompanying drawings and the



US 8,528,157 B2

3

description below. Other features, objects, and advantages
will be apparent from the description and drawings, and from
the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A is a top view of an autonomous robotic cleaner.

FIG. 1B is a bottom view of an autonomous robotic cleaner.

FIG. 1C is a side view of an autonomous robotic cleaner.

FIG. 2 is a block diagram of systems of an autonomous
robotic cleaner.

FIGS. 3A-3B are top views of autonomous robotic clean-
ers.

FIG. 3C is a rear perspective view of an autonomous
robotic cleaner.

FIGS. 3D-3E are bottom views of autonomous robotic
cleaners.

FIGS. 3F-3G are perspective views of an autonomous
robotic cleaner.

FIGS. 4A-4B are perspective views of removable cleaning
bins.

FIGS. 4C-4E are schematic views an autonomous robotic
cleaner.

FIG. 5A is a top view of an autonomous robotic cleaner.

FIG. 5B is a top view of a bin sensor brush.

FIGS. 6 A-6C are schematic views of autonomous robotic
cleaners.

FIGS. 7A-7B are front views of removable cleaning bins.

FIGS. 7C-7E are perspective views of removable cleaning
bins.

FIGS. 7F-7TH are front views of removable cleaning bins.

FIGS. 8A-8E are schematic views of removable cleaning
bins.

FIG. 9A is a bottom view of an autonomous robotic
cleaner.

FIG. 9B is a perspective view of a robot locking device.

FIGS. 10A-10B are schematic views of autonomous
robotic cleaners.

FIG. 11A is a perspective view of a cleaning bin.

FIGS. 11B-11D are schematic views of cleaning bin indi-
cators.

FIG. 12A is a schematic view of a cleaning bin indicator
system.

FIGS. 12B-12C are schematic views of remote cleaning
bin indicators.

FIG. 12D is a schematic view of an autonomous robotic
cleaner and an evacuation station.

FIGS. 13-32 are process flow charts of bin-fullness detec-
tion systems.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Referring to FIGS. 1A-1D, an autonomous robotic cleaner
11 includes a chassis 31 which carries an outer shell 6. FIG.
1A illustrates the outer shell 6 of the robot 11 connected to a
bumper 5. An omnidirectional receiver 15 and a control panel
10 are both carried by the outer shell 6. The omnidirectional
receiver 15 has a 360 degree line of vision that allowing
detection of signals emitted towards the robot 11 from sub-
stantially all directions.

Referring to FIG. 1B, the robot 11 may move in forward
and reverse drive directions; consequently, the chassis 31 has
corresponding forward and back ends, 31A and 31B respec-
tively. Infrared light (IR) cliff sensors 30 are installed on the
underside of the robot 11 proximate the forward end 31A of
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the chassis 31. The cliff sensors 30 are configured to detect
sudden changes in floor characteristics indicative of an edge
or cliff of the floor (e.g. an edge of a stair). The forward end
31A of the chassis 31 includes a caster wheel 35 which
provides additional support for the robot 11 as a third point of
contact with the floor and does not hinder robot mobility.
Located proximate to and on either side of the caster wheel 35
are two wheel-floor proximity sensors 70. The wheel-floor
proximity sensors 70 are configured to detect sudden changes
in floor characteristics indicative of an edge or cliff of the
floor (e.g. an edge of a stair). The wheel-floor proximity
sensors 70 provide redundancy should the primary cliff sen-
sors 30 fail to detect an edge or cliff. In some implementa-
tions, the wheel-floor proximity sensors 70 are not included,
while the primary cliff sensors 31 remain installed along the
bottom front edge of the chassis 31. A lock assembly 72 on a
bottom side of robot chassis 31 is configured to engage a
corresponding lock assembly installed on a maintenance sta-
tion for securing the robot 11 during servicing.

A cleaning head assembly 40 is located towards the middle
ofthe robot 11 and installed within the chassis 31. The clean-
ing head assembly 40 includes a main 65 brush and a second-
ary brush 60. A battery 25 is housed within the chassis 31
proximate the cleaning head assembly 40. In some examples,
the main 65 and/or the secondary brush 60 are removable. In
other examples, the cleaning head assembly 40 includes a
fixed main brush 65 and/or secondary brush 60, where fixed
refers to a brush permanently installed on the chassis 31.

Installed along either side of the chassis 31 are differen-
tially driven wheels 45 that mobilize the robot 11 and provide
two points of support. Also installed along the side of the
chassis 31 is a side brush 20 configured to rotate 360 degrees
when the robot 11 is operational. The rotation of the side
brush 20 allows the robot 11 to better clean areas adjacent the
robot’s side, and areas otherwise unreachable by the centrally
located cleaning head assembly 40.

A removable cleaning bin 50 is located towards the back
end 31B of the robot 11 and installed within the outer shell 6.
The cleaning bin 50 is removable from the chassis 31 to
provide access to bin contents and an internal filter 54. Addi-
tional access to the cleaning bin 50 may be provided via an
evacuation port 80, as shown in FIG. 1C. In some implemen-
tations, the evacuation port 80 includes a set of sliding side
panels 55 which slide along a side wall of the chassis 31 and
under side panels of the outer shell 6 to open the evacuation
port 80. The evacuation port 80 is configured to mate with
corresponding evacuation ports on a maintenance station
1250. In other implementations, the evacuation port 80 is
installed along an edge of the outer shell 6, on a top most
portion of the outer shell 6, on the bottom of the chassis 31, or
other similar placements where the evacuation port 80 has
ready access to the contents of the cleaning bin 50.

In some implementations, the robot 11 includes a commu-
nication module 90 installed on the bottom of the chassis 31.
The communication module 90 provides a communication
link between a maintenance station 1250 and the robot 11.
The communication module 90, in some instances, includes
both an emitter and a detector, and provides an alternative
communication path while the robot 11 is located within the
maintenance station 1250. In some implementations, the
robot 11 includes a brush service sensor assembly 85 installed
on either side of and proximate the cleaning head 40. The
brush service sensor assembly 85 provides user and system
feedback regarding a degree of filament wound about the
main brush 65, the secondary brush 60, or both. The brush
service sensor assembly 85 includes an emitter 85A for emit-
ting modulated beams and a detector 85B configured to detect



US 8,528,157 B2

5

the beams. The emitter 85A and the detector 86B are posi-
tioned on opposite sides of the cleaning head 60, 65 and
aligned to detect filament wound about the cleaning head 60,
65. The brush service sensor assembly 85 includes a signal
processing circuit configured to receive and interpret detector
output. The emitter 85A is aligned along a rotating axis of the
bush 60, 65 and between rows of bristles (or flaps) so that
when no errant filaments are present on the bush 60, 65, a
signal transmission between the emitter 85A and the detector
868 is not blocked. A presence of a few errant filaments
spooled about the bush 60, 65 partially blocks a signal trans-
mission between the emitter 85A and the detector 86B. When
accumulation of errant filaments wrapped about the brush 60,
65 circumferentially and longitudinally reaches a certain
threshold, a signal transmission between the emitter 85 A and
the detector 86B is substantially blocked by a corresponding
threshold amount. Accumulation of errant filaments across
the whole brush or locally in a ring clump are both detected at
an appropriate time for maintenance.

FIG. 2 is a block diagram of systems included within the
robot 11. The robot 11 includes a microprocessor 245 capable
of executing routines and generating and sending control
signals to actuators within the robot 200. Connected to the
microprocessor 245 is memory 225 for storing routines and
sensor input and output, a power system 220 with a battery 25
and a plurality of amplifiers able to generate and distribute
power to the microprocessor 245, and other components
included within the robot 11. A data module 240 is connected
to the microprocessor 245 which may include ROM, RAM,
an EEPROM or Flash memory. The data module 240 may
store values generated within the robot 11 or to upload new
software routines or values to the robot 11.

The microprocessor 245 is connected to a plurality of
assemblies and systems, one of which is the communication
system 205 including an RS-232 transceiver, radio, Ethernet,
and wireless communicators. The drive assembly 210 is con-
nected to the microprocessor 245 and includes right and left
differentially driven wheels 45, right and left wheel motors,
and wheel encoders. The drive assembly 210 is operable to
receive commands from the microprocessor 245 and generate
sensor data transmitted back to the microprocessor 245 via
the communication system 205. A separate caster wheel
assembly 230 is connected to the microprocessor 245 and
includes a caster wheel 35 and a wheel encoder. The cleaning
assembly 215 is connected to the microprocessor 245 and
includes a primary brush 65, a secondary brush 60, a side
brush 20, and brush motors associated with each brush. Also
connected to the microprocessor is the sensor assembly 235
which may include infrared proximity sensors 75, an omni-
directional detector 15, mechanical switches installed in the
bumper 5, wheel-floor proximity sensors 70, stasis sensors, a
gyroscope, and infrared cliff sensors 30.

FIGS. 3A-3E illustrate various example locations of dis-
posing the cleaning bin 50 and a filter 54 on the chassis 31 and
the outer shell 6. FIG. 3A displays a robot 300A with an
evacuation port 305 disposed on the top of the robot 300A,
and more specifically installed on the top of a cleaning bin
310A. The cleaning bin 310A may or may not be removable
from the chassis 31 and outer shell 6, and if removable, is
removable such that the bin 310A separates from a back
potion 312A of the robot 300A.

Referring to FIG. 3B, a cleaning bin 310B is installed
towards the rearward end of a robot 310B and includes a latch
315. A top 311 of the cleaning bin 310B slides toward the
forward end of the robot 310B when the latch 315 is manipu-
lated, so that contents of the cleaning bin 310B can be
removed. The outer shell 6 includes no latch for the removal
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of'the filter 54. To access the filter 54, the cleaning bin 310B
is removed from a back potion 312B of the robot 310B. In this
implementation, the cleaning bin latch 315 may be manipu-
lated manually by the operator or autonomously by a roboti-
cally driven manipulator.

FIG. 3C illustrates a robot 300C including a cleaning bin
310C located on a rearmost side wall 320 of the outer shell 6.
The cleaning bin 310C has a set of movable doors 350 that
when actuated, slide along the side of the chassis 31 and under
the outer shell 6. Once the doors 350 recess under the outer
shell 6, the cleaning bin 310C is then configured to accept and
mate with an external evacuation port.

FIG. 3D provides a bottom view of a robot 300D and the
bottom of the cleaning bin 310D located on the bottom back
end of the robot 300D. The cleaning bin 310D has a latch 370
allowing a door 365 located on the bottom of cleaning bin
310D to slide towards the forward end of the robot 300D so
that contents of the cleaning bin 310D may be removed. The
filter 54 cannot be accessed from the outer shell 6. The clean-
ing bin 310D must be removed from a back portion 312D of
the robot 300D to clean the filter 54. The cleaning bin 310D
and latch 370 may be manipulated manually by an operator or
autonomously by a robotically driven manipulator.

FIG. 3E provides a bottom view of a robot 300E and the
floor of the cleaning bin 310E located on the bottom, back end
of'the robot 300E. The cleaning bin 310E includes a port 380
for accessing contents of the cleaning bin 310E. An evacua-
tion hose may be attached to the port 380 to evacuate the
cleaning bin 310E. The cleaning bin 310E must be removed
from a back portion 312E of the robot 300D to access and
clean the filter 54.

Referring to FIG. 3F, a robot 300F includes a cleaning bin
310F located on a rear robot portion 312F. The cleaning bin
310F includes two or more evacuation ports 380 on arear side
(three are shown). The evacuation ports 380 are configured to
receive an evacuation hose for removing debris from the bin
310F.

Referring to FIG. 3G, a robot 300G includes a cleaning bin
310G located on a rear robot portion 312G The cleaning bin
310G includes one or more evacuation ports 380 on a side
portion (e.g. left and/or right sides). The evacuation ports 380
are configured to receive an evacuation hose for removing
debris from the bin 310G.

The robotic cleaner 11 receives a number of different
cleaning bins 50. Referring to FIG. 4A, a cleaning bin 400A
is configured to mate with external vacuum evacuation ports.
The vacuum bin 400A defines a main chamber 405A having
a sloped floor 410A that aids movement of debris towards
evacuation ports 415, 420, 425. A first side evacuation port
415 is located adjacent a center evacuation port 420 which is
located between the first side evacuation port 415 and a sec-
ond side evacuation port 425. Located on the side walls of the
bin 400A are two evacuation outlets 430 that are installed to
further aid a vacuum in its evacuation operation.

Referring to FIG. 4B, a bin 400B includes teeth 450 along
a mouth edge 452 of the bin 400B. The teeth 450 reduce the
amount of filament build up on the main brush 60 and/or the
secondary brush 65 by placing the bin 400B close enough to
the brush 60, 65 such that the teeth 492 slide under filament on
the brush 60, 65 and pull off filament as the brush 60, 65
rotates. In some examples, the bin 400B includes between
about 24-36 teeth. In the example shown, the bin 400B
defines a sweeper bin portion 460 and a vacuum bin portion
465. The comb or teeth 450 are positioned between the
sweeper bin portion 460 and the vacuum bin portion 465 and
presented to lightly comb the sweeper brush 60. The comb or
teeth 450 remove errant filaments from the sweeper brush 60
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that accumulate either on the teeth 450 or in the sweeper bin
portion 460. The vacuum bin portion 465 and the teeth 450
above it do not interfere with each other. The bin 400B carries
avacuum assembly 480 (e.g. a vacuum motor/fan) configured
to draw debris past a pair of squeegees 470A and 470B in the
vacuum bin portion 460. Electrical contacts 482 A, 482B pro-
vide power to the vacuum assembly 480. In some examples,
the electrical contacts 482 A, 482B provide communication to
abin microprocessor 217. A filter 54 separates the vacuum bin
portion 460 from the vacuum assembly 480. In some
examples, the filter 54 pivots open along a side, top, or bottom
edge for servicing. In other examples, the filter 54 slides out
of the vacuum bin portion 460.

Referring to FIG. 4C, a bin 400C defines a sweeper bin
portion 460 and a dispenser portion 466. The sweeper bin
portion 460 is configured to receive debris agitated by the
brush 60 and the flapper roller 65. The brush 60 and the
flapper roller 65 may rotate in the same direction or opposite
directions. The bin 400C includes driven vanes 472 config-
ured to chum a substance 474 (e.g. powdered freshener) for
dispersion. In some examples, a dispersion cam 476 (e.g. a
single row ofteeth on a rotatable shaft or roller) opens a spring
biased flap 477 allowing the churned freshener to be dis-
posed. In other examples, the dispersion cam 476 rotated
among open and closed positions to control freshener disper-
sion. In some examples, the bin 400C includes teeth 450
disposed along a sweeper bin portion opening are configured
to engage the brush 60 to remove filament and debris from the
brush.

Referring to FIG. 4D, a bin 400D defines a sweeper bin
portion 460 and a dispenser portion 467. The bin 400D
includes a sprayer 473 configured to spray a substance 474
(e.g. liquid or powder freshener) when actuated by a disper-
sion cam 476. In some examples, the dispersion cam 476
rotates a spring biased flap 477 that actuates the sprayer 473.

Referring to FIG. 4E, a bin 400E defines a sweeper bin
portion 460 which includes at least one chased plate 468
configured to attract particulate or debris. In some examples,
the bin 400E defines a dispenser portion 466 including driven
vanes 472 configured to chum a substance 474 (e.g. powdered
freshener) for dispersion. Air may be forced through dis-
penser portion 466 (e.g. via a fan) to treat the air.

Referring to FIGS. 5A-5B, in some instances, the bin 50
includes a bin-full detection system 700 for sensing an
amount of debris present in the bin 50. In one implementation,
the bin-full detection system includes an emitter 755 and a
detector 760 housed in the bin 50. A housing 757 surrounds
each the emitter 755 and the detector 760 and is substantially
free from debris when the bin 50 is also free of debris. In one
implementation, the bin 50 is detachably connected to the
robotic cleaner 11 and includes a brush assembly 770 for
removing debris and soot from the surface of the emitter/
detector housing 757. The brush assembly 770 includes a
brush 772 mounted on the chassis 31 and configured to sweep
against the emitter/detector housing 757 when the bin 50 is
removed from or attached to the robot 11. The brush 772
includes a cleaning head 774 (e.g. bristles or sponge) at a
distal end farthest from the robot 11 and a window section 776
positioned toward a base of the brush 772 and aligned with the
emitter 755 or detector 760 when the bin 50 is attached to the
robot 11. The emitter 755 transmits and the detector 760
receives light through the window 776. In addition to brush-
ing debris away from the emitter 755 and detector 760, the
cleaning head 774 prevents debris or dust from reaching the
emitter 755 and detector 760 when the bin 50 is attached to the
robot 11. In some examples, the window 776 comprises a
transparent or translucent material and formed integrally with
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the cleaning head 774. In some examples, the emitter 755 and
the detector 760 are mounted on the chassis 31 of the robot 11
and the cleaning head 774 and/or window 776 are mounted on
the bin 50.

FIG. 6A illustrates a sweeper robot 11 including a brush 60
and a flap 65 that sweep debris into a bin 700A having an
emitter 755 and a detector 760 both positioned near a bin
mouth 701. FIG. 6B illustrates an implementation in which a
bin 700B includes a vacuum/blower motor 780, and an emit-
ter 755 and a detector 760 located near an inlet 782 of a
vacuum flow path into the bin 700B. The chassis 31 of the
robot 11 includes a robot vacuum outlet 784 that fits flush
with the vacuum inlet 782 of the bin 700B. By placing the
emitter 755 and the detector 760 near the debris inlet 782, the
debris is measured along the intake flow path rather than
within the debris chamber 785. Therefore, a bin-full condi-
tion is triggered when either the amount of debris swept or
vacuumed along the flow path is extremely high (which may
typically be a rare scenario), or when the debris chamber 785
is full (e.g. debris is no longer deposited therein, but instead
backs up along the intake flow path near the inlet 782).

FIG. 6C illustrates a combined vacuum/sweeper bin 700C
including an emitter 755 and a detector 760 pair positioned
near a sweeper bin inlet 782A and a vacuum bin inlet 782B.
An emitter 755 and a detector 760 are mounted on the chassis
31 of the robot 11 near the bin inlet 782. Alternatively to or in
combination with the inlet sensors 755, 760, several emitter
arrays 788 are positioned on a bottom interior surface of the
bin 700C and one more detectors 760 are positioned on a top
interior surface of the bin 700C. Signals from the detectors
760 located along the intake flow path, as well as the container
of the bin 700C, may be compared for determining bin full-
ness. For example, when a heavy volume of debris is pulled
into the bin 700C by the brush 60, flapper 65, and/or vacuum
motor 780, the detectors 760 located along the flow path may
generate a low detection signal. However, detectors 760
located on the top interior surface of the bin 700D will not
detect a full bin 700C, if it is not yet full. Comparison of the
detector signals avoids a false bin-full condition.

FIGS. 7A-7E illustrate a transmissive optical debris-sens-
ing system for detecting debris within the bin 50. As shown in
FIG. 7A, in some examples, the bin 50 includes emitters 755
located on a bottom interior surface 51 of the bin 50 and
detectors 760 located on an upper interior surface 52 of the
bin 50. The emitters 755 emit light that traverses the interior
of'the bin 50 and which may be detected by the detectors 760.
When the interior of the bin 50 is clear of debris, the trans-
mitted light from the emitters 755 produces a relatively high
signal strength in the detectors 760, because very little of the
transmitted light is diverted or deflected away from the detec-
tors 760 as the transmitted light passes through the empty
interior of the bin 50. By contrast, when the interior of the bin
50 contains debris, at least some of the light transmitted from
the emitters 755 is absorbed, reflected, or diverted as the light
strikes the debris, such that a lower proportion of the emitted
light reaches the detectors 760. The degree of diversion or
deflection caused by the debris in the interior of the bin 50
correlates positively with the amount of debris within the bin
50.

By comparing the signals generated by the detectors 760
when the bin 50 does not contain debris to subsequent signal
readings obtained by the detectors 760 as the robot 11 sweeps
and vacuums debris into the bin 50 during a cleaning cycle,
the presence of debris within the bin 50 may be determined.
For example, when the subsequently polled detector signals
are compared to initial detector signals (taken when the bin 50
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is empty), a determination can be made whether the debris
accumulated within the bin 50 has reached a level sufficient to
trigger a bin-full condition.

One example bin configuration includes one emitter 755
and two detectors 760. Another configuration includes posi-
tioning one or more emitters 755 and detectors 760 in cross-
directed in mutually orthogonal directions. The robot 11 may
determine that heavy debris has accumulated on the bottom of
the bin 50 but has not filled the bin 50, when signals generated
by a first detector 760 on the inner top surface 52 is relatively
low and signals generated by a second detector 760 on an
inner side wall (which detects horizontally-transmitted light)
does not meet a bin-full threshold. On the other hand, when
both detectors 760 report a relatively low received-light sig-
nal, it may be determined that the bin 50 is full.

FIG. 7B illustrates a bin configuration in which the bin 50
includes a detector 760 located proximate a calibration emit-
ter 805, both disposed behind a shield 801 on the top interior
surface 52 of the bin 50. An emitter 755 is disposed on the
bottom interior surface 51 of the bin 50. A calibration signal
reading is obtained by emitting light from the calibration
emitter 805 which is then detected by the detector 760 as a
first reading. The translucent or transparent shield 801 pre-
vents emission interfere between the transmission of light
from the calibration emitter 805 to the detector 760 with dust
or debris from the bin 50. The emitter 755 then transmits light
across the interior of the bin 50 and the detector 760 takes a
second reading of received light. By comparing the second
reading to the first reading, a determination may be made
whether the bin 50 is full of debris. In some examples, the
robot 11 includes sensors 755, 760 positioned along a debris
flow path prior to a mouth 53 of the bin 50. The bin full
sensors 755, 760 may detect debris tending to escape from the
bin 50.

FIG. 7C illustrates a configuration in which the bin 50
includes two emitter arrays 788 and two detectors 760. Each
emitter array 788 may include several light sources. The light
sources may each emit light frequencies that differ from one
another within the same emitter arrays 788. For example,
varying frequencies of light emitted by the light sources
exhibit various levels of absorption by debris of different
sizes. A first sub-emitter within the emitter array 788 may
emit light at a first frequency, which is absorbed by debris of
very small particle size, while a second sub-emitter within the
emitter arrays 788 may emit light at a second frequency which
is not absorbed by small-sized debris particles. The robot 11
may be determine whether the bin 50 is full even when the
particle size of the debris varies by measuring and comparing
the received light signals from the first and second sub-emit-
ters. Undesirable interference with the optical transmissive
detection system may be avoided by employing sub-emitters
emitting light at different frequencies.

Multiple emitter arrays 788 and detectors 760 provide
more accurate and reliable bin fullness detection. In the
example shown, the multiple emitter arrays 788 provide
cross-bin signals to detect potential bin blockages. One pos-
sible blockage location is near an intruding vacuum holding
bulkhead 59, which partially divides the bin 50 into two
lateral compartments. This does not apply to all bins 50. A
blockage may occur when received artifact debris of a large
enough size (e.g. paper or hairball) becomes a blocking and
compartmentalizing bulkhead in the bin 50. A blockage may
occur when shifting, clumping, moving, vibrated, or pushed
debris within the bin creates one or more compartments via
systematic patterns of accumulation. If debris accumulates in
one lateral compartment, but not another, a single detector
pair may miss it. A single detector pair may also provide a
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false-positive signal from a large debris item or clump. Mul-
tiple emitter arrays 788 located on the bottom interior surface
51 ofthe bin 50 and multiple detectors 760 located on the top
interior surface 52 of the bin 50 in two different lateral or
front-to-back locations covers more potential volume of the
bin 50 for more accurate and reliable bin fullness detection. A
histogram or averaging of the bin detector signals or using
XOR or AND on the results of more than one break-beam
may be used to get more true positives (even depending on the
time since accumulation began).

FIG. 7D illustrates a bin 50 with a transmissive optical
detection system including two emitter arrays 788, each hav-
ing a diffuser 790 diffusing emitted infrared light. The diffuse
light transmitted to the interior of the bin 50 provides a
steadier detection signal generated by the detectors 760 rela-
tive to a detection signal generated from a concentrated beam
of light from a non-diffuse light source. The diffuse light
provides a type of physical averaging of the emitted signal.
The detectors 760 receiving diffused infrared light signals can
measure an overall blockage amount versus interruption of
only a line-of-sight break beam from one emitter.

FIG. 7E illustrates a bin 50 including a light pipe or fiber-
optic pathway 792 disposed on the bottom interior surface 51
of the bin 50. Light from a light source 793 in the bin 50
travels along the fiber-optic pathway 792 and is emitted from
distributor terminals 794. This bin configuration centralizes
light production to the single light source 793, rather than
supplying power to several independent light sources, while
distributes light across the bin 50. The distributor terminals
794 may also include a diffuser 790, as discussed above.

FIGS. 7F-7H illustrate optical debris detection in the bin 50
by reflective light transmission. In one example, as illustrated
in FIG. 7F, the bin 50 includes a shielded emitter 756 located
near a detector 760. Light emitted by the shielded emitter 756
does not travel directly to the detector 760 because of the
shielding. However, light emitted from the emitter 756 is
reflected by the interior surface 55 of the bin 50, and traverses
an indirect path to the detectors 760. The attenuation of the
reflected light caused by debris within the bin 50 may be
comparatively greater than in a direct transmissive configu-
ration, because the path the reflected light must travel within
the bin 50 is effectively doubled, for example. Although the
shielded emitter 756 and detector 760 are illustrated as being
proximal to each other, they may be located distally from each
other. The emitter 756 and detector 760 may be positioned on
the same surface, or on different surfaces.

FIG. 7G illustrates two sets of shielded emitters 756 and
detectors 760, each located on opposite horizontal sides of the
interior of the bin 50. In this configuration, light received by
each detector 760 may be a combination of light directly
transmitted from the shielded emitter 756 located on the
opposite side of the bin 50, as well as light reflected off the
interior surface 55 by the proximal shielded emitter 756. In
some examples, a first set of shielded emitters 756 and detec-
tors 760 is located on an adjacent bin surface from a second
set of shielded emitters 756 and detectors 760. In one
example, a single shielded emitter 756 and detector 760 pair
is located on a bottom surface 51 of the bin 50.

FIG. 7H illustrates a configuration in which the bin 50
includes a diffusive screen 412 placed along the transmission
path of the shielded emitter 756 disposed on a bottom surface
51 of the bin 50. The diffusive screen 790 diffuses light
emitted from the shielded emitter 756 that reflects off various
surfaces of the interior 55 of the bin 50 before reaching the
detector 760, thereby providing a detection signal that reflects
a broad area of the interior of the bin 50.
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The robot 11, in some implementations, measures or
detects air flow to determine the presence of debris within the
bin 50. FIGS. 8A-8B illustrate an air flow detection system
800 for detecting a bin-full state. The bin 50 includes an air
flow detector 810. As illustrated in FIG. 8A, when high air
flow is detected by the air flow detector 810, the bin 50
determines that the interior is not full, because a high level of
debris would obstruct air flow within the bin 50. Conversely,
as illustrated in FIG. 8B, when the bin 50 contains a large
quantity of debris, the air flow within the bin 50 stagnates.
Therefore, air flow detected by the air flow detector 810
declines and the bin 50 determines that the debris level is full.

In some example, the bin 50 includes a rotating member
812 which influences an air volume to flow within the bin 50,
guided by the inner surface 55 of the bin 50. The rotating
member 812 may be disposed inside or outside of the bin 50
(anchored or free, e.g, a wire, a vane, a brush, a blade, a beam,
a membrane, a fork, a flap). In some instances, the rotating
member 812 is an existing fan or blower from which air is
diverted. In other instances, the rotating member 812 includes
a brush or paddle having a primary purpose of moving debris
or particulates. The rotating member 812 may be diverted
from a wheel chamber or other moving member chamber.
“Rotation” and “rotating” as used herein, for sensors and/or
cleaning members, includes transformations of rotation into
linear motion, and thereby expressly includes reciprocating
and sweeping movements. The air flow sensor 810 is disposed
in the air volume that generates a signal corresponding to a
change in an air flow characteristic within the bin 50 in
response to a presence of material collected in the bin 50.

In some implementations, the air flow sensor 810 includes
a thermal sensor 862, such as a thermistor, thermocouple,
bimetallic element, IR photo-element, or the like. The ther-
mal sensor 862 may have a long or short time constant, and
can be arranged to measure static temperature, temperature
change, rate of temperature change, or transient characteris-
tics or spikes. The thermal sensor 862 may be passive, active,
or excited. An example of a thermal sensor 862 that is excited
is a self-heating thermistor, which is cyclically excited for a
fixed time at a fixed voltage, in which the cooling behavior of
the thermistor is responsive to air flow over the thermistor.
Different thermistors and thermistor packaging may be used,
e.g. beads or glass packages, having different nominal resis-
tances and negative temperature coefficient of resistance vs.
positive temperature coefficient of resistance.

FIG. 8C illustrates a temperature sensing systems for
detecting a bin-full state. In some examples, the bin 50
includes a self-heating thermistor 862 placed along an air
flow path 864 from an air duct 865 of the bin 50. Air flow is
generated by suction of a vacuum motor 880, for example.
The thermistor 862 is heated to a predetermined temperature
(e.g. by applying an electric current to a heating coil sur-
rounding the thermistor 864). A predetermined period of time
is permitted to elapse without applying further heating to the
thermistor 862 before reading the thermistor temperature of
the 862. When air flow within the bin 50 is relatively high, the
temperature detected by the thermistor 862 is relatively low
because the circulating air cools the thermistor 862. Con-
versely, when the air flow is stagnant, the temperature
detected by the thermistor 862 is relatively high, because of
less cooling of the thermistor 862. The robot 11 determines
whether the bin 50 is full or not based on the relative tem-
perature detected by the thermistor 862 following the heating
and cooling-oft cycle. Accuracy can be achieved by disposing
two thermistors 862 in appropriate positions in the bin 50. A
first thermistors 862 measures ambient temperature, and a
second thermistors 862 to heat above the ambient tempera-
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ture. Air flow generally dissipates heat generated by the ther-
mistor 862. A lack of air flow typically relates to generally
higher temperatures. Long thermal time constants associated
with the temperature differences tend to result in good noise
resistance and benefit from a built-in running averages effect,
aggregating previous measurements automatically to pro-
duce a more accurate determination.

Placing the thermistor 862 in a location of the bin 50
empirically determined to have more or less air flow in gen-
eral, it is possible to tune the sensitivity of air flow inference
by the thermistors 862. The thermistor 862 may be shielded or
define holes to obtain better air flow over the thermistor,
enhancing thermistor sensitivity. The fluid dynamics of a bin
50 actively filling with randomly shaped debris and randomly
perturbed air flow is inherently predictable, and routine
experimentation is necessary to determine the best location
for any sensors mentioned herein.

By adopting a total heating/cooling cycle time of about one
minute (30 seconds heating, 30 seconds cooling, although
this could be varied by an order of magnitude), the long
thermal time constant of the system may prevent the ther-
mistor 862 from responding too quickly. Air flow may also
affect the time constant and the peak-to-peak change in tem-
perature during cycling as well as reducing the long-term
average temperature over many cycles.

Convection may be used if heating occurs at the bottom and
temperature sensing at the top of the thermistor 862. Convec-
tion be used in the vacuum bin 50 to sense a clogged filter
(usually equivalent to a full bin for the vacuum chamber,
which tends to collect microscopic material only). Air flow
decreases when the filter 54 is clogged. If the air flow
decreases, a higher temperature change is produced. Alterna-
tively, the slope of the heating/cooling cycle, averaged, may
also be used to detect filter clogging and/or blocked air flow.

FIG. 8D illustrates a pressure sensing systems for detecting
a bin-full state. In some implementations, the air flow sensor
810 includes a pressure transducer 863, which may have a
long or short time constant. The pressure transducer 863 may
be arranged to measure static pressure (e.g., strain gauge
pressure transducer), overpressure, back pressure, pressure
change, rate of pressure change, or transient characteristics or
spikes (e.g., piezo pressure transducer). The pressure trans-
ducer 863 can be passive, active, or excited, and can be
arranged to measure air flow directly or indirectly by Ber-
noulli/venturi principles (in which more flow past a venturi
tube creates lower pressure, which can be measured tran-
siently or on an averaged basis to infer low air flow and a full
bin when a low pressure zone is not detected).

A relatively small air pathway 868 (herein a “Venturi
tube”) extends orthogonally from the interior surface 55 of
the bin 50. The robot 11 determines bin fullness based on the
relative pressure detected by the pressure transducer 863 at a
distal end 869 of the Venturi tube 868. When air flow along the
interior surface of the bin 50 is high, the pressure at the distal
end 869 of the Venturi tube 868 is relatively low. The pressure
readings may be combined with thermistor and/or optical
sensor readings to more accurately determine the presence of
debris, for example.

Referring to FIG. 8E, in some implementations, the bin 50
includes a vibration, resonance, or acoustic sensor 892 and an
agitator or sonic emitter 894 configured to acoustically stimu-
late or perturb the bin 50, the air within the bin 50, or a sensing
element provided in the bin 50 (e.g., with a known value or
values for the vibrational response of an empty bin, so as to
permit LaPlace-domain or other frequency, spectra, or
response function oriented analyses). The agitator 894 acous-
tically stimulates the bin at least two different frequencies
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(including pings, discrete frequencies or a continuous
sweep), e.g., which can serve to compensate for loads of
varying consistency, density or other potentially confounding
factors. The robot 11 includes an analyzer 896 configured to
analyze vibration or resonance data detected by the vibration
or resonance sensor 892 in response to the acoustical stimu-
lation of the bin 50 by the agitator or sonic emitter 894 and to
indicate when the bin 50 is full to capacity.

In some examples, at various periods the agitator 894,
under the control of the analyzer circuit 896, perturbs the air
remaining within the bin 50 with a known vibration strength.
At the same time, the vibration sensor 892 measures a vibra-
tion response of the air in the bin 50 and transmits the mea-
sured values to the analyzer circuit 896. With respective
known empty and full characteristic vibration responses of
the bin 50, the analyzer circuit 896 analyzes the response
from the vibration sensor 892 using methods such as fre-
quency-domain transforms and comparisons (e.g., L.aPlace or
Fourier transforms, etc.) and returns an appropriate bin state.

When an acoustic signal is emitted from an acoustic emit-
ter 894 attime T1, the transmitted signal initially traverses the
interior of the bin 50 from the acoustic emitter 894 to an
acoustic detector 892 located horizontally opposite the acous-
tic emitter 894. At time T2, the signal is detected by the
transmissive acoustic detector 892A, after one time period t1
has elapsed. The acoustic signal also reflects off the interior
surface 55 of the bin 50 and re-traverses the interior of the bin
50 until it is received by the reflective acoustic detector §92B
at time T3, following another time period equal to 1. When
the detectors 892A and 892B are of similar sensitivity, the
signal detected at time T3 is lower than the signal detected at
time T2 (the difference in amplitude between the signal
detected at T2 and the signal detected at T3 is referred to as
Al).

A similar signal analysis is performed when the interior the
bin 50 is full of debris. The signals received by the detectors
892A and 892B at times T2 and T3, respectively, may decline
monotonically with respect to the initial signal emitted from
emitter 894 at time T1. However, the amplitude difference
between the signals detected at T2 and T3, designated A2, is
greater than a corresponding amplitude difference Al. A
time-of-flight that elapses as the acoustic signal traverses the
interior of the bin 50 (herein referred to as 12) is also greater
than the time period t1 corresponding to the bin-empty state.
The bin-full state can be determined using a signal analysis
when a signal emitted from the acoustic emitter 894 and
detected by the transmissive acoustic detector 892A and the
reflective acoustic detector 892B is compared to a bin empty
condition (which may be initially recorded as a reference
level when the bin is known to be empty, for example).

Any of these fore-mentioned methods for detecting, mea-
suring, inferring or quantitying air flow and/or bin capacity
may also be combined in any suitable permutation thereof, to
further enhance the accuracy of bin capacity measuring
results; in particular, for example, at least two differing bin
capacity-measuring techniques may be employed such that if
there is a weakness in one of the techniques—for example,
where air flow may be halted due to a factor other than bin
fullness, a straight pressure transducer might still produce
accurate measurements of bin capacity, etc.

Referring to FIGS. 9A-B, in some implementations, a clip
catch 902 is installed on the bottom of the robot chassis 31 and
configured to mate with a clip 904 on a maintenance station
1250. The clip 904 engages the catch 902 to lock the robot 11
in place during servicing of the bin 50 and/or brushes or
rollers 60, 65.
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Existing robots 11 which do not include bin-sensing fea-
tures may be retrofitted with a bin 50 including a bin-full
sensor system 700. Signals generated by the bin-full sensor
system 700 are transmitted to the robot microprocessor 245
(e.g. via snap-in wires, a serial line, or a card edge for inter-
facing a bus controlled by a microcontroller; using wireless
transmission, etc.). Alternatively, an existing actuator (e.g. a
fan) monitored by the home robot is “hijacked” (i.e., a prop-
erty of it is modified for new use). For example, when the bin
50 is full, a cleaning assembly microprocessor 215 energizes
the fan motor in a pattern (e.g., three times in a row with
predetermined timing). The retrofitted and firmware-updated
robot processor 245 detects the distinctive current pattern on
the fan and communicates to a user that the bin 50 is full. In
another example, an existing sensor is “hijacked.”” For
example, an IR emitter disposed on top of the bin 50 in a
visible range of an omnidirectional virtual wall/docking sen-
sor. A distinctive modulated IR chirp or pulse train emitted by
the retrofitted bin 50 indicates that the bin 50 is full without
overwhelming the virtual wall sensor. In yet another example,
communications are made just to the user but not to any
automated system. For example, a flashing light on the bin 50,
or a klaxon or other audio signaler, notifies the user that the
bin 50 is full. Such retrofitting is not necessarily limited to the
bin-capacity-sensing function, but may be extended to any
suitable features amenable to similar retrofitting.

Using a manufacturer’s server, a robot user may create a
website containing information regarding his or her custom-
ized (or standard) robot 11 and share the information with
other robot users. The server can also receive information
from robots 11 pertaining to battery usage, bin fullness,
scheduled cleaning times, required maintenance, cleaning
patterns, room-size estimates, etc. Such information may be
stored on the server and sent (e.g. with other information) to
the user via e-mail from the manufacturer’s server, for
example.

Referring to FIGS. 10A-10B, in some implementations,
the robot 11 includes robot communication terminals 1012
and the bin 50 includes bin communication terminals 1014.
When the bin 50 is attached to the robot 11, the bin commu-
nication terminals 1014 contact the corresponding robot com-
munication terminals 1012. Information regarding bin-full
status is communicated from the bin 50 to the robot 11 via the
communication terminals 1012, 1014, for example. In some
examples, the robot 11 includes a demodulator/decoder 29
through which power is routed from the battery 25 through
via the communication terminals 1012, 1014 and to the bin
50. Bin power/communication lines 1018 supply power to a
vacuum motor 780 and to a bin microcontroller 217. The bin
microcontroller 217 monitors the bin-full status reported by
the debris detection system 700 in the bin 50, and piggybacks
a reporting signal onto the power being transmitted over the
bin-side lines 1018. The piggybacked reporting signal is then
transmitted to the demodulator/decoder 29 of the robot 11.
The microprocessor 245 of the robot 11 processes the bin full
indication from the reporting signal piggybacked onto the
power lines 1018, for example. In some examples, the com-
munication terminals 1012, 1014 include serial ports operat-
ing in accordance with an appropriate serial communication
standard (e.g. RS-232, USB, or a proprietary protocol). The
bin microcontroller 217 monitors the bin-full status reported
by the debris detection system 700 in the bin 50 independent
of'a robot controller, allowing the bin 50 to be used on robots
without a debris detection system 700. A robot software
update may be required for the bin upgrade.

Referring to FIG. 10B, in some implementations, the robot
11 includes an infrared light (IR ) receiver 1020 and the bin 50
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includes a corresponding IR emitter 1022. The IR emitter
1022 and IR receiver 1020 are positioned on the bin 50 and
robot 11, respectively, such that an IR signal transmitted from
the IR emitter 1022 reaches the IR receiver 1020 when the bin
50 is attached to the robot 11. In some examples, the IR
emitter 1022 and the IR receiver 1020 both functions as
emitters and receivers, allowing signals to be sent from the
robot 11 to the bin 50. In some examples, the robot 11
includes an omni-directional receiver 13 on the chassis 31 and
configured to interact with a remote virtual wall beacon 1050
that emits and receives infrared signals. A signal from the IR
emitter 1022 on the bin 50 is receivable by the omni-direc-
tional receiver 13 and/or the remote virtual wall beacon 1050
to communicate a bin fullness signal. If the robot 10 was
retrofitted with the bin 50 to and received appropriate soft-
ware, the retrofitted bin 50 can order the robot 10 to return to
a maintenance station for servicing when the bin so is full.

FIGS. 11A-11D illustrate a bin 50 including a bin-full
indicator 1130. In some examples the bin-full indicator 1130
includes visual indicator 1132 such as an LED (FIG. 11B),
LCD, a light bulb, a rotating message wheel (FIG. 11C) or a
rotating color wheel, or any other suitable visual indicator.
The visual indicator 1132 may steadily emit light, flash,
pulse, cycle through various colors, or advance through a
color spectrum in order to indicate to the user that the bin 50
is full of debris, inter alia. The indicator 30 may include an
analog display for indicating the relative degree of fullness of
the bin 50. For example, the bin 50 includes a translucent
window over top of a rotatable color wheel. The translucent
window permits the user to view a subsection of the color
wheel rotated in accordance with a degree of fullness detected
in the bin 50, for example, from green (empty) to red (full). In
some examples, the indicator 30 includes two or more LEDs
which light up in numbers proportional to bin fullness, e.g., in
a bar pattern. Alternatively, the indicator 1030 may be an
electrical and/or mechanical indicator, such as a flag, a pop
up, or message strip, for example. In other examples, the
bin-full indicator 1130 includes an audible indicator 1134
such as a speaker, a beeper, a voice synthesizer, a bell, a
piezo-speaker, or any other suitable device for audibly indi-
cating bin-full status to the user. The audible indicator 1134
emits a sound such as a steady tone, a ring tone, a trill, a
buzzing, an intermittent sound, or any other suitable audible
indication. The audible indicator 1134 modulates the volume
in order to draw attention to the bin-full status (for example,
by repeatedly increasing and decreasing the volume). Insome
examples, as shown in FIG. 11D, the indicator 1130 includes
both visual and audible indicators, 1132 and 1134, respec-
tively. The user may turn off the visual indicator 1132 or
audible indicator 1134 without emptying the bin 50. In some
implementations, the bin-full indicator 1130 is located on the
chassis 31 or body 6 of the robot 11.

Referring to FIGS. 12A-12B, in some implementations,
the bin 50 wirelessly transmits a signal to a remote indicator
1202 (via a transmitter 1201, for example), which then indi-
cates to auser that the bin is full using optical (e.g. LED, LCD,
CRT, light bulb, etc.) and/or audio output (such as a speaker
1202C). In one example, the remote indicator 1202 includes
an electronic device mounted to a kitchen magnet. The remote
indicator 1202 may provide (1) generalized robot mainte-
nance notifications (2) a cleaning routine done notification (3)
an abort and go home instruction, and (4) other control inter-
action with the robot 10 and/or bin 50.

An existing robot 11, which does not include any commu-
nication path or wiring for communicating with a bin-full
sensor system 700 on the bin 50, is nonetheless retrofitted
with a bin 50 including a bin-full sensor system 700 and a
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transmitter 1201. “Retrofitting” generally means associating
the bin with an existing, in-service robot, but for the purposes
of this disclosure, at least additionally includes forward fit-
ting, i.e., associating the bin with a newly produced robotina
compatible manner. Although the robot 11 cannot communi-
cate with the bin-full sensor system 700 and may possibly not
include any program or behavioral routines for responding to
a bin-full condition, the bin 50 may nonetheless indicate to a
user that the bin 50 is full by transmitting an appropriate
signal via the transmitter 1201 to a remote indicator 1202. The
remote indicator 1202 may be located in a different room
from the robot 11 and receives signals from the bin 50 wire-
lessly using any appropriate wireless communication
method, such as IEEE 801.11/WiFi, BlueTooth, Zigbee,
wireless USB, a frequency modulated signal, an amplitude
modulated signal, or the like.

In some implementations, as shown in FIG. 12B, the
remote indicator 1202 is a magnet-mounted unit including an
LED 1204 that lights up or flashes when the bin 50 is full. In
some examples, as shown in FIG. 12C, the remote indicator
1202 includes an LCD display 1206 for printing a message
regarding the bin full condition and/or a speaker 1208 for
emitting an audible signal to the user. The remote indicator
1202 may include a function button 1210, which transmits a
command to the robot 11 when activated. In some examples,
the remote indicator 1202 includes an acknowledge button
1212 that transmits an appropriate command signal to the
mobile robot 20 when pushed. For example, when a bin-full
signal is received, the LCD display 1206 may display a mes-
sage indicating to the user that the bin is full. The user may
then press the button 1212, causing a command to be trans-
mitted to the robot 11 that in turn causes the robot 11 to
navigate to a particular location. The user may then remove
and empty the bin 50, for example.

In some examples, the remote indicator 1202 is a table-top
device or a component of a computer system. The remote
indicator 1202 may be provided with a mounting device such
as a chain, a clip or magnet on a reverse side, permitting it to
be kept in a kitchen, pendant, or on a belt. The transmitter
1201 may communicate using WiFi or other home radio
frequency (RF) network to the remote indicator 1202 that is
part of the computer system 1204, which may in turn cause
the computer system to display a window informing the user
of the bin-full status.

Referring to FIG. 12D, when the bin-full detection system
700 determines that the bin 50 is full and/or the roller full
sensor assembly 85 determines that the cleaning head 40 is
full, the robot 11, in some examples, maneuver to a mainte-
nance station 1250 for servicing. In some examples, the main-
tenance station 1250 automatically evacuates the bin 50 (e.g.
via a vacuum tube connecting to an evacuation port 80, 305,
380,415, 420,425, 430 of the bin 50). If the cleaning head 40
is full of filament, the robot 11 may automatically discharge
the cleaning brush/flapper 60, 65 for either automatic or
manual cleaning. The brush/flapper 60, 65 may be fed into the
maintenance station 1250, either manually or automatically,
which strips filament and debris from the brush/flapper 60,
65.

FIGS. 13-32 illustrate methods for controlling the bin-full
detection and user-notification systems of the robot 11. Steps
orroutines illustrated with dashed lines are expressly optional
or include optional sub-routines. In some cases, steps may be
omitted depending upon whether the bin is powered by its
own battery or by a discharging capacitor.

A normal operating routine begins, as illustrated in FIG.
13, by activating transducers (e.g. bin detection system 700)
to detect a bin full condition. The core operating cycle of the
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bin 50 takes place while the robot 11 is operating (e.g. clean-
ing), in order to detect a bin full condition. However, optional
cycles check the status of the bin 50 and robot 11 when the
robot 11 is not operating.

For example, the bin processor 217 may have an idle or
low-power mode that is active when the robot 11 is not pow-
ered and/or the bin 50 is detached. FIGS. 14 and 15 illustrate
parent procedures used to enter this mode. For example, the
controller 217 may start an optional power detect routine at
step S14-2. “Power detect” in this context is detecting
whether or not the bin 50 is attached to the robot 11 and the
robot 11 is operating (cleaning). If power is detected/avail-
able, the bin 50 enters the normal operating mode (described
below). If no power is available, then the bin controller 217
executes a no-power routine, as illustrated in FIG. 15.

In the no-power mode, the bin 50 may have set a flag
specifying notification is to be activated. If this is the case, a
low-power notification is preferable. An optional step S15-2
would change the notification from a continuous to a more
intermittent notification (rapid flashing to slower flashing,
continuous on to flashing, i.e., from a higher power consump-
tion notification to a lower power consumption notification).
This is less important when the bin 50 does not rely on robot
power to recharge its own power supply.

Another optional step in the no-power routine is a sleep/
wake check, as shown in step S15-3. If the bin 50 maintains
the intermittent or regular notification S15-2 (i.e., each step in
the no-power routine is independent and optional, and may or
may not depend on the execution of preceding steps), the bin
50 may enter a sleep state after a certain number of no-power
(robot off), no-change (bin not disconnected from robot, bin
not moved, no change in bin sensor states) minutes (e.g., 5
mins to 1 hour) elapses. The bin may wake upon disconnec-
tion from the robot 11, movement of the bin 50 or robot 11,
any relevant change in bin sensor states; and may re-activate
or activate checking and wake-state activities.

Another optional step in the no-power routine is an emptied
check S15-4, which checks whether conditions reflect that the
bin 50 has been emptied (including changes in internal sensor
state indicative of emptying, tilt sensing, assumptions made).
A subsequent step upon detection of bin emptying directly or
indirectly is the deactivation of the notification (step S15-5)
and resetting or restarting the processes.

Referring again to FIG. 13, if power is detected, i.e., if the
bin is connected to the robot 11 and the robot 11 is operating,
transducer(s) are started at step S13-2. “Transducers”, in this
context, describes various instruments and sensors as
described herein that are used to directly or indirectly check
whether the bin is full and/or not empty. This includes virtual
transducers. Step S13-2 initiates bin monitoring via the trans-
ducer(s) until monitoring is no longer necessary.

Once the transducers are active, a not empty check is
executed at step S13-3. “Not empty”, in this context,
describes positive, negative, and inferred sensor interpreta-
tions that may directly or indirectly check whether the bin is
full, empty, and/or not empty and/or not full. Steps S13-2 and
13-3 starts, and continues, a not-empty check via the trans-
ducer(s) until the same is registered, and may constitute the
only such check, i.e., confirmation or verification is optional.

Optionally, a not empty verify routine may be executed at
step S13-4. “Verify”, in this context, describes repeating or
extending the checks performed in step S13-3, or a different
kind of check upon a same or different kind of criteria. A
preferred example of the step S13-4 correlates verification
with sufficient elapsed time under a positive not-empty con-
dition. Optionally, step S13-4 includes routines to reject false
positives.
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Once the not-empty or bin full state is detected and option-
ally checked as stable, in one direction or the other, the con-
troller 217 may activate notification in step S13-5. The noti-
fication may be kept on for a certain time period, and/or may
be kept on until the bin is detected as emptied at step S13-6.
Notification is turned off at step S13-7. Thereafter, the pro-
cess is restarted at S13-8.

Examples of start transducer routines are illustrated in
FIGS. 16-20. Each routine includes appropriate calibration/
tare/zeroing steps.

FIG. 16 illustrates an example start transducer routine
appropriate for a single or combined/averaged illuminated
emitter and or detector array in the bin 50, either of the
reflective type or break-beam/transmissive type. A start illu-
mination cycle routine is executed at step S16-2. Empty/off
levels are sampled from bin detectors and averaged at step
S16-3. A not empty check threshold is set at step S16-4,
before the process is returned at step S16-5. As illustrated in
FIG. 17, a similar process is executed in start transducer
example 2 routine, in which empty/off levels are sampled for
a set of 1 to N transducers. Each emitter/detector pair or
combination is accounted for in the calibration or normaliz-
ing of empty or off levels in step 17-3. FIG. 32 contemplates
the case in which the same sensors are checked for different
orientations, or combinations, or cycled time-wise, e.g., emit-
ter Al with detector B1, emitter Al with detector B2, emitter
A2 with detector B1. The start transducer example 2 routine
is appropriate when the same sensors in the emitter and/or
detector arrays can identify sensor failure, or debris jams or
clumps in the bin 50.

FIGS. 18-19 illustrate example start transducer routines, in
which an excitation cycle is started at step S18-2 or S19-2.
These routines are appropriate for bin detection systems 700
including hot-wire anemometers or thermistors, vibration
sensors, time-of-flight acoustic measurements, or transducers
that generate a signal in which the empty or full state that has
a relatively more complex characterization. Calibration at
step S18-3 or S19-3 may require identifying an empty wave-
form, signal, or envelope characteristic representing a range,
envelope, or signal shape of transducer detection values cor-
responding to an empty bin 50. The characteristic envelope is
a baseline for measurements in step S18-4 or S19-4. An
intervening optional step can model, fit, or transform the
shape or envelope so that less data is necessary for storage or
comparison purposes.

FIG. 20 illustrates an example start transducer routine
appropriate for an arrangement in which transducers are not
calibrated, and/or in which heuristics, filters, and/or other
non-linear rules are used to identify the bin full state. The
transducers may nonetheless be normalized or calibrated.

FIGS. 21-24 illustrate example not empty check routines.
FIG. 21 provides an example not empty check routine appro-
priate for a single or combined/averaged illuminated emitter
and or detector array in the bin 50. [llumination received by
the detector of the transducer is measured at step S21-2. The
measured illumination is compared to a threshold illumina-
tion level corresponding to the bin empty state in step S21-3.
If received illumination is below the threshold, the process
loops back to step S21-2. Otherwise, the routine returns at
step S21-4.

FIG. 22 provides a second example not empty check rou-
tine appropriate for a matrix of transducers. [llumination
received by a set of 1 to N transducers is measured in step
S22-2. The received illumination of the 1 to N transducers is
compared to a set of 1 to N threshold levels is step S22-3. If



US 8,528,157 B2

19

received illumination is below the threshold, the process
loops back to step S22-2. Otherwise, the routine returns at
step S22-4.

FIG. 23 illustrates a third example not empty check routine,
in which characteristics of a received signal of a transducer
are tested at step S23-2. A determination of whether the tested
characteristic passes the not empty check is made at step
S23-3. If the tested characteristic of the received signal
passes, the routine returns at step S23-4; otherwise, the pro-
cess repeats step S23-2.

FIG. 24 illustrates a fourth example not empty check rou-
tine, in which a signal received by a transducer is processed
and tested as it is processed at step S24-2. If the ongoing
testing of the signal passes at step S24-3, the routine returns at
step S24-4; otherwise, the routine repeats step S24-2.

FIGS. 25-28 illustrate example not empty verification rou-
tines. FIG. 25 illustrates one example not empty verification
routine including a start sustain timer (e.g., 5 mins) step
S25-2. In step S25-3, it is determined whether a received
signal of a transducer remains above a threshold level. The
sustain timer sets the period for which the not-empty detec-
tion must continue in order to establish the stable bin full
condition. Ifthe received signal of the transducer continues to
be above a threshold level at step S25-3, it is then determined
whether the timer has elapsed at step S25-4. If the timer has
elapsed, the stable bin full condition is established and the
routine returns at step S25-5. If the timer has not yet elapsed,
the routine loops back to step S25-3 to check whether
received signals at the transducer remain above the threshold.

FIG. 26 illustrates a second example of a not empty veri-
fication routine, in which the received signals ofa setof 1 ..
. N transducers are compared to a set of 1 . . . N thresholds in
step S26-3. If any sensor falls below the threshold, the sustain
timer is restarted at step S26-2.

In a third example, illustrated in FIG. 27, when any trans-
ducer falls below the threshold level at step 27-3, the verifi-
cation process, the entire not empty check procedure, and the
initial bin full detection is restarted.

A fourth example of a not empty check routine is illustrated
in FIG. 28, in which a secondary sensor or a condition is
tested at step S28-2. The secondary sensor may be the same
kind of transducer as the primary transducer in the same
location for redundancy, or the same kind of transducer in a
different location for confirmation, or a different kind of
transducer in the same or a different location. If it is deter-
mined that that the secondary sensor also does not detect a full
condition in step S28-3, the process is restarted.

FIG. 29 illustrates a routine for monitoring debris content
of the bin 50. The routine is a specific example of an entire
integrated process such as the general process discussed with
reference to FIG. 13, and includes a specific example includ-
ing two or more LED emitters and two (or more) collectors
disposed in the bin 50. When “80% of dark level” is dis-
cussed, the meaning may be (a) 80% of'a negative value or (b)
80% of a variable meaning “darkness” rather than a direct
measurement of voltage or current. For example, a full dark
score may be 100, recorded upon calibration when illumina-
tion is off, and a full light score may be 0, recorded upon
calibration when illumination is on and unobstructed. 80% of
the absolute dark level would be a score of 80 (mostly dark).
Alternatively, a light score may be used, which may also take
into account accumulated dirt on the sensors and emitters. In
this case, 80% of the absolute dark level may be replaced by
20% of the value recorded upon calibration when illumina-
tion is on and unobstructed.

At step S29-1, an illumination cycle of a transducer is
started. For example, the emitters 755 may be activated and
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the transmitted signal detected by detectors 760, when it is
known (or assumed) that the bin 50 is empty. The thresholds
are then checked and set to the detected values at step S29-3.
For example, each threshold is set proportional to a dark
reading with the lights off.

In a measuring step S29-4, the illumination signal received
by each transducer 1 . . . N (e.g., the detectors 760) is mea-
sured. In step S44-5, it is determined whether the received
illumination is greater than a corresponding set of threshold
values. The thresholds are set as a score to be exceeded, but
may be set as a negative or low dark current value checked via
a greater than or less than comparison. For example, a full bin
50 may register 80% of the absolute dark score in each com-
partment. The comparison step is intended to detect a nearly
absolute dark level, even when the lights are illuminated,
when most ofthe light is being blocked by debris. If one of the
receivers is below the threshold (registers a dark level less
than expected for a full or near-full bin), the routine returns to
step S29-3 (e.g., at least one side is not full or nearing full).
Otherwise, the routine proceeds to step S29-6, in which the
bin 50 is presumed full and a verification timer is started. At
step S29-7, the illumination cycle continues, and the thresh-
olds remain the same, set to a less sensitive level, or decaying
slowly. At step S29-8, it is determined whether the received
signals are greater than the set of thresholds (e.g., all sensors
continue to read more than 80% of a full dark level). If one of
the received signals fails the threshold test, the process may
return to S29-2 to restart the check process (i.e., the stability
test fails, and the entire check restarts, including the “first”
detection of all sensors almost dark).

Alternatively, the process returns to S29-7 rather than S29-
2, i.e., the stability test is set to register a bin full after a
continuous detection of almost full over a certain period time
for all the sensors. In this case, rather than restarting the check
for a “first” bin full detection, the verify timer may be
restarted in step S29-6 when transient non-full conditions are
detected. A bin-full state is notified after a consistent full
condition is detected.

In either case, after the bin 50 (e.g. each side of the bin 50)
has registered an almost full dark condition for the specified
verify timer period, checked in step S29-9, a bin-full notifi-
cation is turned on at step S29-10 in order to indicate to the
user that the bin is full. Optionally, at step S29-11, the illu-
mination cycle may be altered or changed, in order to reduce
power consumption or to check for an emptied bin 50 more or
less often than a full bin 50.

The thresholds for the verification steps are set at step
S29-12. The thresholds may be set to a dark level that is less
dark than previously employed. The verify level in step S29-
12 is not the same as the verification timer of steps S29-6 or
S29-9, and in this case is a verification that the bin 50 has not
yet been emptied. This level is set to, e.g, 50% of the full dark
score, to detect an emptied condition when either sides of the
bin 50 has a sufficient increase in detected illumination. A
significant amount of material must be removed from the bin
50 for either side to reach a level where a sensor receives, e.g.,
50% ofillumination received in an unobstructed condition, or
50% greater illumination than when the sensors are in an
absolute dark level condition. The thresholds are calibrated or
set at step S29-13 on every cycled, e.g., the dark level is set
with reference to a no-illumination state. Ifit is determined at
step S29-14 that one received signals is less than the new
thresholds (e.g., that all of the sensors no longer register an
almost or 80% of dark condition, and at least one of them
registers a partially illuminated or 50% dark condition), noti-
fication is turned off at step S29-15.
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FIG. 30 illustrates a routine for operating transducers,
determining the bin-full status of the bin, and turning the
bin-full indicators on or off. At step S30-1, a timer is initiated
by setting a counter to an initial interval (for example, 5
minutes=300 seconds) and decrementing the counter once
each second (or other periodic schedule). At step S30-2, an
initial sensor cycle is run to calibrate the thresholds. A main
sensor cycle is run at step S30-3, in which each transducer is
polled for received illumination signals, and any flags, such as
a flag indicating that the bin 50 was sensed as full, are con-
sidered. At step S30-4, it is determined whether the bin-full
flags have been triggered. If not, the counter is reset at step
S30-5, the bin-full notification is turned off at step S30-6, and
the routine returns to step S30-3. If the result of step S30-4 is
positive, then it is determined at step S30-7 whether the timer
has completed. If not, the routine returns to step S30-3; oth-
erwise, the routine proceeds to step S30-8, at which the bin-
full notification is turned on. The light threshold may then be
increased or decreased, as appropriate, at step S30-9, for
example, the light threshold may be increased from 20% to
50%, and the routine then returns to step S30-3.

By increasing the light threshold for comparison with the
received illumination signal from the transducers, the sensi-
tivity for turning the bin-full indicators on or oft is decreased.
The bin-full notification therefore becomes less likely to be
turned off, because a more substantial change in the received
illumination signal of the transducers is necessary to exceed
the increased threshold. As a result, rapid shifting of the
bin-full notification from on to off and back again may be
avoided.

FIG. 31 illustrates another example of a control routine for
the robot 11 and the bin 50. At step S31-1, the variables
start_time and grand_total (e.g. a total accumulation of time
spent running a cleaning mode) are set to zero (or otherwise
set to predetermined initial value). At step S31-2, status is
checked for each of the variables, and it is determined at step
S31-3 whether the robot 11 is running in a cleaning mode. If
the robot 11 is running in the cleaning mode, it is then deter-
mined whether the variable start_time has already been
recorded (e.g. whether start_time has been assigned a value
different from its initialization value). If so, the process
returns to step S31-2; otherwise, the process proceeds to step
S31-5, and records the current time to the variable start_time
before returning to step S31-2. If the result of step S31-3 is
negative, it is then determined at step S31-6 whether start-
_time was already recorded. If not, the routine returns to step
S31-2; otherwise, at step S31-7, the current time is recorded
as a variable end_time. At step S31-8, the accumulated clean-
ing mode time is calculated by subtracting the value of the
variable start_time from the value of the variable end_time.
At step S31-9, the accumulated cleaning time is then added to
the variable grand_total. The variable grand._total represents
the total amount of time the robot 11 has spent in cleaning
mode since the most recent system reset.

At step S31-10, it is determined whether grand total is
greater than a milestone value. The milestone may represent
a predetermined time period that may be significant, or the
milestone may correspond to an arbitrarily chosen time
period, for example. If the result of step S31-10 is negative,
the routine returns to step S31-2; otherwise, the illumination
threshold is incremented at step S31-11 in order to desensitize
measurement of the polled transducer values at step S31-11,
before the routine returns to step S31-2.

The sensitivity of the illumination thresholds for the trans-
ducers may be changed or modified based not only on the total
amount of time the robot 11 has spent turned on, but instead,
in proportion to the amount of time the robot 11 has spent in
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the cleaning mode. Furthermore, the criteria of whether the
robot 11 is in cleaning mode or not can be defined such that
the cleaning mode corresponds to times when a high level of
debris intake is detected; or simply when the vacuum or
sweeper motors are turned on, for example. False bin-full
conditions may arise in situations where the robot 11
traverses a large (but relatively clean) area and therefore does
not pick up much debris, or where the robot 11 is turned on for
along period time but does not pick up much debris. The false
bin-full conditions may be avoided by focusing on the clean-
ing mode status rather than general run time.

FIG. 32 illustrates a process of determining bin-fullness in
a cleaning bin 50. The robot 11 is active in step S32-1 and
resets the bin microprocessor 217 in step S32-2. If the robot
11 is active (e.g. cleaning) in step S32-3, the bin micropro-
cessor 217 reads the bin sensor system 700 (which may hive
one or more sensor pairs) in step S32-4; otherwise, the bin
microprocessor 217 checks if a bin full flag is set in step
S32-18. In step S32-5, the bin microprocessor 217 compares
a current sensor reading with a previous sensor reading. If the
current sensor reading is much greater than (by a predeter-
mined amount) the previous sensor reading, the bin micro-
processor 217 assumes the bin 50 is empty and calibrates the
sensor system 700 in step S33-6 and proceeds to step S32-7;
otherwise, the bin microprocessor 217 just proceeds to step
S32-7. In step S32-7, the bin microprocessor 217 determines
if the robot 11 is active (e.g. cleaning). If the robot 11 is not
active, the bin microprocessor 217 checks if a bin full flag is
set in step S32-18. If the robot 11 is active, the bin micropro-
cessor 217 proceeds to step S32-8 to set a timer for a prede-
termined amount of time. The bin microprocessor 217 peri-
odically (or continuously) checks for expiration of the timer.
If the timer has not expired, the bin microprocessor 217
proceeds back to step S32-7 to check for robot activity (with-
out resetting the timer). If the timer has expired, the bin
microprocessor 217 checks if a bin full flag is set in step
S32-9. If the bin full flag is set in step S32-9, the bin micro-
processor 217 updates the indicator 1130 to notify a robot
user that the bin 50 is full and proceeds back to step S32-7 to
check for robot activity. If the bin full flag is not set in step
S32-9, the bin microprocessor 217 reads the bin sensor sys-
tem 700 in step S32-11 and sends the current sensor reading
through a low pass filter in step S32-12. In step S32-13, the
bin microprocessor 217 checks if a debris level has charged
based on the current sensor reading and adjusts the threshold
parameters accordingly. The threshold parameters are set in
step S32-14. If the current sensor reading is greater than the
threshold in step S32-15, the bin microprocessor 217 checks
if multiple readings exceed the threshold parameters in step
S32-16. If current sensor reading and subsequent multiple
samplings exceed the threshold parameters, the bin full flag is
set in step S32-17 and the bin processor 217 proceeds back to
step S32-7; otherwise, the bin processor 217 does not set the
bin full flag and just proceeds back to step S32-7. In step
S32-7, if the robot 11 is no longer active, the bin processor
217 proceeds to step S32-18, where it checks if the bin full
flag is set. If the flag is not set, the robot 11 may proceed to a
sleep mode in step S32-22. If the flag is set, the bin micro-
processor 217 updates the indicator 1130 (which may flash,
chirp, etc.) to notify a robot user that the bin 50 is full. In step
S32-20, if the bin 50 is moved by the user, the bin full flag is
cleared in step S32-21 and the robot 11 proceeds to the sleep
mode in step S32-22; otherwise, the flag is not cleared and the
robot 11 just proceeds to the sleep mode in step S32-23.

Other details and features combinable with those described
herein may be found in the following U.S. patent applications
filed concurrently herewith, entitled “CLEANING ROBOT
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ROLLER PROCESSING” having assigned Ser. No. 11/751,
413; and “REMOVING DEBRIS FROM CLEANING
ROBOTS” having assigned Ser. No. 11/751,470, the entire
contents of the aforementioned applications are hereby incor-
porated by reference.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims.

What is claimed is:

1. An autonomous coverage robot comprising:

a chassis;

a drive system mounted on the chassis and configured to
maneuver the robot;

acleaning assembly carried by the chassis and comprising:
a cleaning assembly housing; and
at least one driven sweeper coupled to the cleaning

assembly housing;
a controller carried by the chassis;
a removable bin attached to the chassis and configured to
receive debris agitated by the driven sweeper, the remov-
able bin comprising:
an emitter disposed on an interior surface of the bin; and
areceiver disposed on the interior surface of the bin, and
configured to receive a signal emitted by the emitter,
the emitter and the receiver disposed such that a
threshold level of accumulation of debris in the bin
attenuates emissions received by the receiver from the
emitter;

and

a bin controller monitoring a signal from the detector and
initiating a bin full routine upon determining a bin debris
accumulation level requiring service, wherein the emit-
ter and the receiver are disposed proximate to one
another on the same interior surface of the bin, the
removable bin further comprising:

a vacuum assembly having an at least partially separate
entrance path into the bin; and

aplurality of teeth disposed substantially along a mouth
of the bin between a sweeper bin portion and a
vacuum bin portion housing the vacuum assembly,
the teeth configured to strip debris from the rotating
sweeper brush, the debris being allowed to accumu-
late in the sweeper bin portion.

2. The autonomous coverage robot of claim 1 further com-
prising a diffuser positioned over the emitter to diffuse the
emitted signal, the receiver receiving the diffused emissions,
wherein accumulation of debris in the bin at least partially
blocks the diffused emissions from being received by the
receiver.

3. The autonomous coverage robot of claim 2 wherein the
emitter comprises an infrared light emitter diffused by a trans-
lucent plastic sheet.

4. The autonomous coverage robot of claim 1 wherein the
emitter is disposed on a first interior lateral surface of the bin
and the receiver is disposed on an opposing, second interior
lateral surface of the bin.

5. The autonomous coverage robot of claim 4 wherein the
emitter and the receiver are arranged for a determination of
debris accumulation within substantially an entire volume of
the bin.

6. The autonomous coverage robot of claim 1 further com-
prising a human perceptible indicator configured to provide
an indication that autonomous operation may be interrupted
for bin servicing.
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7. The autonomous coverage robot of claim 1 further com-
prising:

a remote indicator in wireless communication with the
controller and providing an indication of the cleaning
service requirement determined by the controller,
wherein the emitter and the receiver are disposed proxi-
mate to one another on the same interior surface of the
bin.

8. The coverage robot bin-full detection system of claim 1

wherein the emitter comprises an infrared light emitter.

9. The coverage robot bin-full detection system of claim 7
wherein the controller is configured to determine a robot
stuck condition and communicates the robot stuck condition
to the wireless remote indicator.

10. The coverage robot bin-full detection system of claim 7
wherein the remote indicator is configured to communicate
commands to the bin controller.

11. The coverage robot bin-full detection system of claim 7
wherein the bin controller communicates with a controller of
the robot.

12. An autonomous coverage robot comprising:

a chassis;

a drive system mounted on the chassis and configured to

maneuver the robot;

a cleaning assembly carried by the chassis and comprising:

a cleaning assembly housing; and

at least one driven sweeper brush rotatably coupled to the
cleaning assembly housing;

a controller carried by the chassis;

a removable bin attached to the chassis and configured to
receive debris agitated by the driven sweeper brush, the
removable bin comprising:

an emitter disposed on an interior surface of the bin; and

a receiver disposed remotely from the emitter on the inte-
rior surface of the bin, and configured to receive a signal
emitted by the emitter, the emitter and the receiver dis-
posed such that a threshold level of accumulation of
debris in the bin blocks the receiver from receiving emis-
sions from the emitter; and

a bin controller disposed in the bin and monitoring a signal
from the detector and initiating a bin full routine upon
determining a bin debris accumulation level requiring
service, the bin further comprising:

a vacuum assembly having an at least partially separate
entrance path into the bin and

aplurality of teeth disposed substantially along a mouth
of the bin between a sweeper bin portion and a
vacuum bin portion housing the vacuum assembly,
the teeth configured to strip debris from the rotating
sweeper brush, the debris being allowed to accumu-
late in the sweeper bin portion; and

a remote indicator in wireless communication with the
controller and providing an indication of the cleaning
service requirement determined by the controller.

13. The autonomous coverage robot of claim 12 further
comprising a diffuser positioned over the emitter to diffuse
the emitted signal, the receiver receiving the diffused emis-
sions, wherein accumulation of debris in the bin at least
partially blocks the diffused emissions from being received
by the receiver.

14. The autonomous coverage robot of claim 13 wherein
the emitter comprises an infrared light emitter diffused by a
translucent plastic sheet.

15. The autonomous coverage robot of claim 12 wherein
the emitter is disposed on a first interior lateral surface of the
bin and the receiver is disposed on an opposing, second inte-
rior lateral surface of the bin.
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16. The autonomous coverage robot of claim 15 wherein
the emitter and the receiver are arranged for a determination
of debris accumulation within substantially an entire volume
of the bin.

17. The autonomous coverage robot of claim 12 further 5
comprising a human perceptible indicator configured to pro-
vide an indication that autonomous operation may be inter-
rupted for bin servicing.
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