
US 20110213756A1

(12) Patent Application Publication (10) Pub. No.: US 2011/0213756 A1
(19) United States

Chen et al. (43) Pub. Date: Sep. 1, 2011

(54) CONCURRENCY CONTROL FOR
EXTRACTION, TRANSFORM, LOAD
PROCESSES

(75) Inventors: Ying Chen, San Jose, CA (US); Bin
He, San Jose, CA (US); Rui Wang,
Beijing (CN)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(21) App1.No.: 12/714,929

(22) Filed: Mar. 1, 2010

Time for RV Wi before the
Current Time for Each Table

Ri/Wi in {R1, Rn}/

Publication Classi?cation

(51) Int. Cl.
G06F 17/30 (2006.01)

(52) US. Cl. 707/684; 707/704; 707/E17.007;
707/E17.005

(57) ABSTRACT

System and methods manage concurrent ETL processes
accessing a database. Exemplary embodiments include a
method for concurrency management for ETL processes in a
database having database tables and communicatively
coupled to a computer, the method including establishing a
session lock for the database, determining that a current ETL
process is accessing the database at a current time, associating
a current expiration time With the session lock, the expiration
time being stored in a lock table in the database, sending the
session lock to the current ETL process and performing ETL
level locking for the current ETL process.

Is the Expiration

Set Expiration Time as
of Each Ri in {R1, Rn}

as the Current Time + T1 with

I 820

the Read Lock

840

Set Expiration Time as YES
of Each Wi in {W1, Wn}

as the Current Time + T1 with
the Write Lock

Time for Wi before the
Current Time for Each Table

Wi in {W1, Wn}?

is the Expiration

Return Number of Rows
being Updated for Write Locks

Number of Rows being

I 850

What is the

Updated?

Lock is Received ——870

i)

Patent Application Publication

200
\

Sep. 1, 2011 Sheet 2 of8 US 2011/0213756 A1

Is the Expiration
Time In the Session
Table Before the
Current Time?

210
24 /O

WAIT

Update Expiration Time in
the Session Table to New

Expiration Time
~» 220

i
Lock is Set -» 230

@
FIG. 2

Patent Application Publication Sep. 1, 2011 Sheet 3 0f 8 US 2011/0213756 A1

EXPIRATIONiTIME 400
/

2008-10-01116112113.234 [START i

FIG. 3 ‘r

460
is the Expiration
Time Before the
Current Time?

Set Expiration Time as
Current Time + T1 1 420

Return Number of Rows
being Updated “ 430

What is the
Number of Rows being

Updated?

Lock is Received v—45O

STOP)

FIG. 4

Patent Application Publication Sep. 1, 2011 Sheet 4 0f 8 US 2011/0213756 A1

m .QE

www.mwh P “w t 56 Twoom www.mtmtmt S5 Twoom www.mtmtmt S6 Twoow

MCOI

QEWZOEEEXQ

Patent Application Publication Sep. 1, 2011 Sheet 5 0f 8 US 2011/0213756 A1

i START] 600
/

V

610

Is the Expiration /660
Time for Ri before the W AH.

Current Time for Each Table k

Set Expiration Time as
of Each Ri in {R1, Rn} “- 620
as the Current Time + T1

7

Return Number of Rows M 630
being Updated

640

What is the
Number of Rows being

Updated?

Lock is Received w 650

V

i STOP I

FIG. 6

Patent Application Publication Sep. 1, 2011 Sheet 6 0f 8 US 2011/0213756 Al

N .0E
52% $33 _ “w v 66 SOON 9mm F £35m 3x3 P “w w 6.0 28m mEm>> w 23mg 3x3 P “w v 5.0 15% 9mm m

E EZE|ZQF<MEE EZJGQQ E2<Z|§m§

Patent Application Publication

/ 840

Sep. 1, 2011 Sheet 7 of8 US 2011/0213756 A1

Is the Expiration
Time for RV Wi before the

Current Time for Each Table
Ri/Wi in {R1, Rn}/

{W1, Wn}?

Set Expiration Time as
of Each Ri in {R1, Rn}

as the Current Time + T1 with
the Read Lock

w 820

Set Expiration Time as
of Each Wi in {W1, Wn}

as the Current Time + T1 with
the Write Lock

Is the Expiration
Time for Wi before the

Current Time for Each Table
Wi in {W1, Wn}?

YES

Return Number of Rows

FIG. 8

being Updated for Write Locks
-»— 850

What is the
Number of Rows being

Updated?

Lock is Received “870

i)

Patent Application Publication Sep. 1, 2011 Sheet 8 0f 8 US 2011/0213756 A1

ISDONE yes no yes

LU O3
M000: -

><|2aa- Q
< LI
2

TABLE NAME

US 2011/0213756 A1

CONCURRENCY CONTROL FOR
EXTRACTION, TRANSFORM, LOAD

PROCESSES

BACKGROUND

[0001] The present invention relates to extraction, trans
form, load (ETL) processes in databases, and more speci?
cally, to systems and methods for concurrency control for
multiple ETL processes implementing ETL-level locking and
rollback for process failures.
[0002] Currently, business enterprises are building siZable
databases to enable analytics to improve business perfor
mance. ETL is a process to load data into a database. Often,
users run multiple ETL processes on one database, either
accidentally or intentionally. For example, tWo users may
both load data into one database at the same time Without
knowing each other’s action. If a user knoWs that tWo ETL
processes touch tWo disjointed parts of a database, these tWo
processes should be able to be executed simultaneously.
HoWever, if there are multiple ETL processes performing
simultaneously on one database, there may be data inconsis
tency. The loading result may not be the same as the ETL
processes done one by one. Since an ETL process usually
consists of multiple database transactions, the transaction
level concurrency control in database cannot guarantee the
ETL-level consistency. Therefore, it is important that the
loading tool can guarantee the data consistency With concur
rent ETL processes. The effect (i.e., the loading result) of
concurrent ETL processes should be the same as if those
processes are executed one by one, Which is called the seri
aliZation of ETL processes. Although database systems cur
rently support transaction-level locks to guarantee the data
consistency of concurrent transactions, the database systems
cannot be used for the ETL processes because an ETL process
often include multiple transactions.

SUMMARY

[0003] Exemplary embodiments include a method for con
currency management for ETL processes in a database having
database tables and communicatively coupled to a computer,
the method including establishing a session lock for the data
base, determining that a current ETL process is accessing the
database at a current time, associating a current expiration
time With the session lock, the expiration time being stored in
a lock table in the database, sending the session lock to the
current ETL process and performing ETL-level locking for
the current ETL process.
[0004] Additional exemplary embodiments include a data
base communicatively coupled to a computer having a cur
rent ETL process, the database including data accessible to
the current ETL process, at least one database table including
the data accessible to the ETL process and a lock table includ
ing an expiration time value for a subsequent ETL process,
the subsequent ETL process accessing data accessible to the
current ETL process in the at least one database table.

[0005] Further exemplary embodiments include a com
puter program product for concurrency management for
extraction, transform, load (ETL) processes in a database
having database tables and communicatively coupled to a
computer, the computer program product including instruc
tions for causing the computer to implement a method, the
method including establishing a session lock for the database,
determining that a current ETL process is accessing the data

Sep. 1,2011

base at a current time, associating a current expiration time
With the session lock, the expiration time being stored in a
lock table in the database, sending the session lock to the
current ETL process and performing ETL-level locking for
the current ETL process.
[0006] Additional features and advantages are realiZed
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed inven
tion. For a better understanding of the invention With the
advantages and the features, refer to the description and to the
draWings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0007] The subject matter Which is regarded as the inven
tion is particularly pointed out and distinctly claimed in the
claims at the conclusion of the speci?cation. The forgoing and
other features, and advantages of the invention are apparent
from the folloWing detailed description taken in conjunction
With the accompanying draWings in Which:
[0008] FIG. 1 illustrates an exemplary embodiment of a
system for concurrency control for ETL processes;
[0009] FIG. 2 illustrates a How chart for an overall method
for setting a clock in accordance With exemplary embodi
ments.

[0010] FIG. 3 illustrates an exemplary database-level lock
table;
[0011] FIG. 4 illustrates a method for setting a lock for
database level locking in accordance With exemplary embodi
ments;
[0012] FIG. 5 illustrates an exemplary lock table for table
level locking for exclusive locks;
[0013] FIG. 6 illustrates a How chart of a method for setting
a lock for table level locking in accordance With exemplary
embodiments.
[0014] FIG. 7 illustrates an exemplary table-level lock table
for read-Write locks;
[0015] FIG. 8 illustrates a ?owchart of a method for setting
a lock for table level locking for read-Write locks; and
[0016] FIG. 9 illustrates and exemplary rollback snapshot
table.

DETAILED DESCRIPTION

[0017] In exemplary embodiments, the systems and meth
ods described herein include a concurrency control mecha
nism that supports concurrent ETL processes in databases
and this manage concurrent ETL processes for databases. The
concurrency control mechanism includes a locking mecha
nism and a rollback mechanism. In exemplary embodiments,
the locking mechanism implements database and SQL to
realiZe the concurrency controls. The locking mechanism
thus supports both local and remote ETL processes, and is
generally applicable for any database. In exemplary embodi
ments, session locks can be implemented to avoid process
failures and implement SQL statements to guarantee the lock
atomicity. The exemplary systems and methods described
herein support three-level of granularities for various ETL
applications: database-level exclusive lock, table-level exclu
sive lock, and table-level read-Write lock. Furthermore, the
locking mechanism releases the lock on expiration of a par
ticular time period. The rollback mechanism for multiple
ETL processes can guarantee the data consistency in case of

US 2011/0213756 A1

ETL process failure, by recovering incompletely loaded
records and implementing a rollback snapshot table.
[0018] FIG. 1 illustrates an exemplary embodiment of a
system 100 for concurrency control for ETL processes. The
methods described herein can be implemented in softWare
(e.g., ?rmware), hardWare, or a combination thereof. In
exemplary embodiments, the methods described herein are
implemented in software, as an executable program, and is
executed by a special or general-purpose digital computer,
such as a personal computer, Workstation, minicomputer, or
mainframe computer. The system 100 therefore includes gen
eral-purpose computer 101. In exemplary embodiments, the
computer 101 may be a server having a database (e. g., storage
media 145) accessed by one or more external computers 170,
175 (e.g., clients) that perform ETL processes on the server’s
database
[0019] In exemplary embodiments, in terms of hardWare
architecture, as shoWn in FIG. 1, the computer 101 includes a
processor 105, memory 110 coupled to a memory controller
115, and one or more input and/or output (I/ O) devices 140 (or
peripherals) and storage media 145 that are communicatively
coupled via a local input/output controller 135. The input/
output controller 135 can be, but is not limited to, one or more
buses or other Wired or Wireless connections, as is knoWn in
the art. The input/ output controller 135 may have additional
elements, Which are omitted for simplicity, such as control
lers, buffers (caches), drivers, repeaters, and receivers, to
enable communications. Further, the local interface may
include address, control, and/or data connections to enable
appropriate communications among the aforementioned
components.
[0020] The processor 105 is a hardWare device for execut
ing softWare, particularly that stored in memory 110. The
processor 105 can be any custom made or commercially
available processor, a central processing unit (CPU), an aux
iliary processor among several processors associated With the
computer 101, a semiconductor based microprocessor (in the
form of a microchip or chip set), a macroprocessor, or gen
erally any device for executing software instructions.
[0021] The memory 110 can include any one or combina
tion of volatile memory elements (e.g., random access
memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and
nonvolatile memory elements (e.g., ROM, erasable program
mable read only memory (EPROM), electronically erasable
programmable read only memory (EEPROM), program
mable read only memory (PROM), tape, compact disc read
only memory (CD-ROM), disk, diskette, cartridge, cassette
or the like, etc.). Moreover, the memory 110 may incorporate
electronic, magnetic, optical, and/or other types of storage
media. Note that the memory 110 can have a distributed
architecture, Where various components are situated remote
from one another, but can be accessed by the processor 105.
[0022] The softWare in memory 110 may include one or
more separate programs, each of Which comprises an ordered
listing of executable instructions for implementing logical
functions. In the example of FIG. 1, the software in the
memory 110 includes the ETL process concurrency manage
ment methods described herein in accordance With exem
plary embodiments and a suitable operating system (OS) 111.
The operating system 111 essentially controls the execution
of other computer programs, such the ETL process concur
rency management systems and methods as described herein,
and provides scheduling, input-output control, ?le and data
management, memory management, and communication

Sep. 1,2011

control and related services. The softWare in the memory 110
further includes processes for both the ETL-level locking and
the ETL-level rollback as further described herein.

[0023] The ETL process concurrency management meth
ods described herein may be in the form of a source program,
executable program (object code), script, or any other entity
comprising a set of instructions to be performed. When a
source program, then the program needs to be translated via a

compiler, assembler, interpreter, or the like is used, Which
may or may not be included Within the memory 110, so as to
operate properly in connection With the OS 11 1. Furthermore,
the ETL process concurrency management methods can be
Written as an object oriented programming language, Which
has classes of data and methods, or a procedure programming
language, Which has routines, subroutines, and/ or functions.

[0024] In exemplary embodiments, a conventional key
board 150 and mouse 155 can be coupled to the input/output
controller 135. Other output devices such as the I/O devices
140, may include input devices, for example but not limited to
a printer, a scanner, microphone, and the like. Finally, the I/O
devices 140 may further include devices that communicate
both inputs and outputs, for instance but not limited to, a
netWork interface card (N IC) or modulator/demodulator (for
accessing other ?les, devices, systems, or a netWork), a radio
frequency (RF) or other transceiver, a telephonic interface, a
bridge, a router, and the like. The system 100 can further
include a display controller 125 coupled to a display 130. In
exemplary embodiments, the system 100 can further include
a netWork interface 160 for coupling to a netWork 165. The
netWork 165 can be an IP-based netWork for communication
betWeen the computer 101 and any external server, client and
the like via a broadband connection. The netWork 165 trans
mits and receives data betWeen the computer 101 and external
systems. In exemplary embodiments, netWork 165 can be a
managed IP netWork administered by a service provider. The
netWork 165 may be implemented in a Wireless fashion, e. g.,
using Wireless protocols and technologies, such as WiFi,
WiMax, etc. The netWork 165 can also be a packet-sWitched
netWork such as a local area netWork, Wide area netWork,
metropolitan area netWork, Internet netWork, or other similar
type of netWork environment. The netWork 165 may be a ?xed
Wireless netWork, a Wireless local area netWork (LAN), a
Wireless Wide area netWork (WAN) a personal area netWork
(PAN), a virtual private netWork (V PN), intranet or other
suitable netWork system and includes equipment for receiv
ing and transmitting signals.
[0025] If the computer 101 is a PC, Workstation, intelligent
device or the like, the softWare in the memory 1 1 0 may further
include a basic input output system (BIOS) (omitted for sim
plicity). The BIOS is a set of essential softWare routines that
initialiZe and test hardWare at startup, start the OS 111, and
support the transfer of data among the hardWare devices. The
BIOS is stored in ROM so that the BIOS can be executed
When the computer 101 is activated.

[0026] When the computer 101 is in operation, the proces
sor 105 is con?gured to execute softWare stored Within the
memory 110, to communicate data to and from the memory
110, and to generally control operations of the computer 101
pursuant to the softWare. The ETL process concurrency man
agement methods described herein and the OS 111, in Whole
or in part, but typically the latter, are read by the processor
105, perhaps buffered Within the processor 105, and then
executed.

US 2011/0213756 A1

[0027] When the systems and methods described herein are
implemented in software, as is shown in FIG. 1, the methods
can be stored on any computer readable medium, such as
storage 120, for use by or in connection with any computer
related system or method.

[0028] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding ?rmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule” or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
[0029] Any combination of one or more computer readable
medium(s) may be utiliZed. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor system, apparatus, or device, or any suitable com
bination of the foregoing. More speci?c examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical ?ber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0030] A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

[0031] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical ?ber
cable, RF, etc. or any suitable combination of the foregoing.
[0032] Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the

Sep. 1,2011

remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
[0033] Aspects of the present invention are described
below with reference to ?owchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the ?owchart illustra
tions and/or block diagrams, and combinations of blocks in
the ?owchart illustrations and/ or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts speci?ed in the ?owchart and/ or block diagram
block or blocks.

[0034] These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/ act speci?ed in the ?owchart and/ or block
diagram block or blocks.
[0035] The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts speci?ed in the
?owchart and/or block diagram block or blocks.

[0036] The ?owchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the ?owchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the speci?ed logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the ?gures. For example, two blocks shown
in succession may, in fact, be executed substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/ or ?ow
chart illustration, and combinations of blocks in the block
diagrams and/or ?owchart illustration, can be implemented
by special purpose hardware-based systems that perform the
speci?ed functions or acts, or combinations of special pur
pose hardware and computer instructions.

[0037] In exemplary embodiments, where the ETL process
concurrency management methods are implemented in hard
ware, the ETL process concurrency management methods
described herein can implemented with any or a combination
of the following technologies, which are each well known in
the art: a discrete logic circuit(s) having logic gates for imple

US 2011/0213756 A1

menting logic functions upon data signals, an application
speci?c integrated circuit (ASIC) having appropriate combi
national logic gates, a programmable gate array(s) (PGA), a
?eld programmable gate array (FPGA), etc.
[0038] As described above, the major task of an ETL pro
cess is to load data into a database. The systems and methods
described herein manage multiple ETL processes performing
simultaneously on one database to guarantee the data consis
tency. To support ETL-level concurrency, the systems and
methods described herein preferably include: 1) a locking
mechanism to control the concurrency, and 2) a rollback
mechanism to recover from process failure for concurrent
ETL processes. In exemplary embodiments, the locking
mechanism implements database tables and SQL statements
to establish concurrency control. In exemplary embodiments,
the systems and methods described herein include several
ETL-level locking features that are desirable for concurrency
control for multiple ETL processes. The features include but
are not limited to: a) support of local and remote loadings; b)
platform-independence, c) application in a distributed envi
ronment, d) support of process failure, e) guarantee of the
atomic feature of locking, f) support of database-level and
table-level locks, g) support of read locks and Write locks, and
h) elimination of dead lock cases. In case of failure of an ETL
process, an exemplary rollback mechanism guarantees that
the incompletely loaded data are removed before the next
ETL process starts.

[0039] In exemplary embodiments, the exemplary ETL
level locking mechanism supports local or remote loadings.
Since concurrent ETL processes in the database may come
from either local or remote machines, a ?le based locking
mechanism is not desirable, since a ?le lock can only be
accessed by local ETL processes. The exemplary database
based locking mechanism enables all ETL processes to
access database table (locally or remotely) via database driv
ers.

[0040] In exemplary embodiments, the exemplary ETL
level locking mechanism alloWs process failure. An ETL
process may fail in the middle of loading and cannot properly
exit for various reasons. For example, a user may manually
kill the process, or the machine may crash. In such cases, if the
lock set by the ETL process cannot be released, other pro
cesses cannot proceed. Since the ETL process itself cannot
release the lock due to failure, the exemplary locking mecha
nism can manage the process failures.

[0041] In exemplary embodiments, the exemplary ETL
level locking mechanism guarantees the atomic feature (i.e.,
all the lock setting and releasing operations should be
executed as an atomic operation). If the atomic feature is not
guaranteed, the data consistency may be violated. For
example, the lock setting operation has the folloWing logic: (i)
check Whether the lock is set; (ii) if it is not set, set the lock;
and (iii) otherWise, Wait until it is unlocked. If the lock setting
operation cannot be executed in an atomic manner, this may
cause a data consistency problem. A lock may not set in the
beginning, and an ETL process P1 may execute (i). Before P1
executed (ii), another ETL process P2 may execute (i), and
then execute (ii) too because the lock is not set yet. In this
example, both ETL processes execute (ii) and the lock mecha
nism is not Working. The exemplary ETL-level locking pre
vents this situation by guaranteeing the atomic feature.
[0042] In exemplary embodiments, the exemplary ETL
level locking supports database-level and table-level locks.
Some ETL tasks implement database-level locks (i.e., a lock

Sep. 1,2011

is for an entire database), and others implement table-level
locks (i.e., a lock is for a table).

[0043] In exemplary embodiments, the exemplary ETL
level locking supports read locks and Write locks. An ETL
process may read some tables and Write other tables. There
fore, supporting both read locks and Write locks provides
improved concurrency management.
[0044] In exemplary embodiments, the exemplary ETL
level locking prevents deadlocks. As such, multiple ETL pro
cesses do not form a deadlock circle in Which none of them
can proceed.

[0045] As further described herein, the exemplary systems
and methods include ETL-level rollback. When an ETL pro
cess fails to complete, it may already make changes on the
database, Which cannot be recovered by implementing a
transaction-level rollback mechanism. The exemplary sys
tems and methods described herein record the snapshots of
the database, Which can be recovered When a failure occurs.
The exemplary rollback mechanism is supported by all the
ETL processes.

[0046] For illustrative purposes, the exemplary locking and
rollback mechanisms described herein are implemented on a
general ETL (GETL) toolkit for data Warehousing loading.
The GETL toolkit provides an illustrative example because
the GETL toolkit is Widely used in business intelligence
applications such as Corporate Brand and Reputation Analy
sis (COBRA) (to analyZe the company’s brand reputation) as
described inpatent application Ser. No. 11/972,238, ?led Oct.
29, 2007, and Strategic Information Mining Platform for
Licensing and Execution (SIMPLE) (to analyZe patent and
medline data). HoWever, it is appreciated that in other exem
plary embodiments, the locking and rollback mechanisms
described herein can be implemented on other ETL toolkits
and databases.

[0047] One of the features of the exemplary locking mecha
nism is session locking for ETL process failure. As described
herein, the exemplary locking mechanism supports both local
and remote access to databases. Conventionally, if an ETL
process fails improperly in the middle of loading, the lock is
inactive since it is set but cannot be released by its initiating
process. As a result, subsequent ETL processes are not able to
proceed. The exemplary locking mechanism addresses these
inactive locks by implementing session locks. A lock is asso
ciated With an expiration future time. For example, if the
current timestamp is 2008-10-01 : 1 1 : 12: 13.234, a lock L With
expiration time 2008-10-01:16:12:13.234 means the lock L
expires 5 minutes later. The lock L is considered unlocked if
its expiration time is before the current timestamp.
[0048] FIG. 2 illustrates a How chart for an overall method
200 for setting a clock in accordance With exemplary embodi
ments. At block 210, the method 200 determines Whether the
expiration time(s) in the session table is before the current
time for involved entities. If at block 210 the expiation time is
before the current time, then at block 220 the expiration
time(s) are updated in the session table to neW expiration
time(s), and the lock is set at block 230. If at block 210, the
expiation time is not before the current time, then at block
240, the ETL process Waits for a pre-determined time and
checks the expiration time(s) again at block 210. As further
described herein, the lock is subsequently unlocked. In exem
plary embodiments, SQL statements are implemented to set
the expiration time(s) in the session table to current time(s) in
an atomic manner.

US 2011/0213756 A1

[0049] When an ETL process starts and receives the lock, it
initiates a separate thread. The separate thread periodically
updates the expiration time of the lock until it ?nishes the
loading process. To ensure the lock is valid during the ETL
process, the thread alWays updates the session expiration time
before the lock is expired. That is, if at each time, the thread
sets the expiration time as current time+T1, the thread should
be executed at current time+T2 (Where T2<T1) next time.
Usually, T2:T1/ 2 is an adequate relation to ensure this execu
tion. Before an ETL process receives the lock L, the ETL
process ?rst checks Whether the L is expired. If the L is
expired, the lock is empty and can proceed to use the lock.
Otherwise, the lock is currently used by another process and
thus the ETL process has to Wait. If the ETL process can
properly ?nish, it updates the session expiration time as cur
rent time, so that the lock is expired immediately and thus can
be used by subsequent ETL processes. In contrast, if the ETL
process cannot properly ?nish, the lock unlocks after the time
is expired. As such, the lock is not inactive inde?nitely. After
time T1, subsequent processes are able to use the lock. The
exemplary session locking mechanism can also avoid dead
lock situations, since any lock expires eventually.
[0050] Another feature of the exemplary locking mecha
nism is database level atomic locking. In the database-level
locking, all ETL processes that load data into one database
share one lock. Only one ETL process can load data into the
database at a time. To support a database-level locking design,
a LOCK table is added in the database With an attribute
EXPIRATION_TIME as illustrated in FIG. 3. In exemplary
embodiments, the attribute has one value: the expiration time
for the current session.

[0051] The exemplary locking mechanism is implemented
in each ETL process. In addition, the exemplary locking
mechanism is implemented With atomic operations. In exem
plary embodiments, the systems and methods described
herein include atomic operations for setting the lock and
releasing the lock, Which can be implemented via SQL state
ments.

[0052] FIG. 4 illustrates a method 400 for setting a lock for
database level locking in accordance With exemplary embodi
ments. At block 410, the method 400 determines Whether the
expiration time is before the current time. If the expiration
time is before the current time at block 410, then at block 420
the method 400 sets the expiration time as the current time+
T1. At block 430, the method 400 returns the number of roWs
being updated. At block 440, the method 400 determines the
number of roWs that have been updated. If the number of roWs
updated is 1 at block 440, the lock has been received at block
at block 450. If the number of roWs updated is 0, the lock is
being used by another process right noW, and thus the ETL
process has to Wait at block 460. In addition, if at block 410,
the expiration time is not before the current time, then the
ETL process has to Wait at block 460. To release the lock, the
expiration time is set to current time.

[0053] In the example illustrated in FIG. 4, for setting the
lock, SQL is implemented to realiZe the folloWing semantics:
(i) check Whether the expiration time is before the current
time; (ii) if it is, set the expiration time as the current time+T1;
and (iii) otherWise, Wait some time go to step (i). In exemplary
embodiments steps (i) and (ii) are executed in atomic manner.
A set of SQL statements constructed to realiZe (i) and (ii), are
executed as a database transaction by utiliZing the transaction
locks. The folloWing SQL statement can be implemented for
database locking:

Sep. 1,2011

UPDATE LOCK SET EXPIRATIONLTIME = CURRENTiTIME() +
T1 WHERE EXPIRATIONLTIME < CURRENTiTIME()

[0054] The CURRENT_TIME() function is supported as a
built-in function in all databases. This SQL statement returns
the number of roWs being currently updated. If the number of
roWs updated is 1, the ETL process has successfully received
the lock, and the loading process can proceed. If the number
of roWs updated is 0, the lock is being used by another process
right noW, and thus has to Wait.
[0055] For releasing the lock after the loading is ?nished,
the folloWing SQL statement can be implemented:

UPDATE LOCK SET EXPIRATIONLTIME = CURRENTiTIME()
TABLE-LEVEL ATOMIC LOCKING FOR EXCLUSIVE LOCKS

[0056] The table level locking is a ?ner granularity than the
database level locking mechanism and the database level
locking may not be fully necessary in some cases. For
example, tWo ETL processes may load data into tWo sets of
non-overlapping tables, and thus can be executed at the same
time. For those cases, a ?ner granularity of the table level
locking mechanism is implemented (i.e., each table has its
oWn session lock). FIG. 5 illustrates an exemplary lock table
for exclusive locks.
[0057] FIG. 6 illustrates a How chart of a method 600 for
setting a lock for table level locking in accordance With exem
plary embodiments. At block 610, the method 600 determines
Whether for each table Ri in {R1, . . . , Rn}, the expiration time
of Ri is before the current time. If at block 610, the expiration
time for Ri is before the current time for each table Ri in {R1,
. . . , Rn}, then at block 620, the method 600 sets the expiration

time of each Ri in {R1, . . . , Rn} as the current time+T1. At

block 630, the method 600 returns the number of roWs being
updated. At block 640, the method 600 determines the num
ber of roWs being currently updated. If the number of roWs
updated at block 640 is n, then the process received the lock
at block 650. If the number of roWs updated is 0, the lock is
being used by another process right noW, and thus the ETL
process has to Wait at block 660. In addition, if at block 610,
the expiration time is not before the current time, then the
ETL process has to Wait at block 660. To release the lock, the
expiration times of R1, . . . , Rn are set to the current time.

[0058] As FIG. 5 illustrates, each table is identi?ed by its
table name and associated With an expiration time. In the table
level locking, an ETL process can start loading only if the
ETL process received all the locks for the tables it needs to
use. As such, SQL is implemented to realiZe the folloWing
semantics of the example in FIG. 6: (i) check Whether for each
table R,- in {R1, . . . , Rn}, the expiration time of R,- is before the
current time; (ii) if it is, set the expiration time of each R,- in
{R1, . . . , Rn} as the current time+T1; and (iii) otherWise, Wait
some time go to (i).
[0059] The tables R1, . . . , Rn are the set of tables imple
mented by this ETL process. The locks are also updated
periodically until the loading is completed. When the ETL
process completes, all the locks are released. Similar to the
database level, steps (i) and (ii) are executed in atomic manner
(i.e., the n locks have to be either all updated or all not
updated). The folloWing SQL statement can be implemented:

US 2011/0213756 A1

UPDATE LOCK SET EXPIRATIONiTIME = CURRENTiTIME() +
T1

WHERE (TABLEiNAME = “R1” OR TABLEiNAME = “R2” OR OR TABLEiNAME = “R,,”) AND

11 IN (SELECT COUNT(*) FROM LOCK WHERE
(TABLEiNAME = “R1” OR TABLEiNAME = “R2” OR OR
TABLEiNAME = “R,,”) AND

EXPIRATIONiTIME < CURRENTiTIME(

[0060] The UPDATE statement returns the number of roWs
being currently updated. If the number of roWs updated is n,
the ETL process has successfully received the locks, and the
loading process can proceed. If the number of roWs updated is
0, at least one lock is being used by another process at the
present time, and thus has to Wait.
[0061] The sub-query,

11 IN (SELECT COUNT(*) FROM LOCK WHERE
(TABLEiNAME = “R1” OR TABLEiNAME = “R2” OR OR

TABLEiNAME = “R,,”) AND

EXPIRATIONiTIME < CURRENTiTIME())

[0062] is implemented to realiZe the “if” condition that is
checked on all tables, and the constant number “n” refers to
the number of tables.

[0063] For releasing the lock after the loading is ?nished,
the folloWing SQL statement can be implemented:

UPDATE LOCK SET EXPIRATIONiTIME = CURRENTiTIME()

WHERE TABLEiNAME = “R1” OR TABLEiNAME = “R2” OR OR TABLEiNAME = “R,,”

TABLE-LEVEL ATOMIC LOCKING FOR READ-WRITE LOCKS

[0064] The above-referenced locks have been discussed
With respect to exclusive locks. In some cases, an ETL pro
cess may only read data from some tables and also Write into
another set of tables. If there are tWo ETL processes that read
from the same tables, but Write into different tables, these tWo
processes can be executed simultaneously. HoWever, With
exclusive locks, this concurrency may not be supported. In
exemplary embodiments, tWo types of locks, read lock and
Write lock, are implemented to address this concurrency prob
lem. FIG. 7 illustrates an exemplary table-level lock table for
read-Write locks.

[0065] As FIG. 7 illustrates, each table is identi?ed by its
table name, lock type, expiration time, and ID. The LOCK_

Sep. 1,2011

TYPE attribute can be either READ or WRITE. The ID
attribute is implemented by the atomic operation.
[0066] FIG. 8 illustrates a ?owchart of a method 800 for
setting a lock for table level locking for read-Write locks. At
block 810, the method 800 determines Whether for each read
only table Ri in {R1, . . . , Rn}, the expiration time of Ri is
before the current time, or the lock type is read, and checks
Whether for each Writing table Wi in [W], . . . , Wm}, the
expiration time of Wi is before the current time. If at block
810, the expiration time of Ri is before the current time, and
the expiration time of Wi is before the current time, then at
block 820, the method 800 sets the expiration time of each Ri
in {R1, . . . , Rn} as the current time+T1 With read lock. If at
block 810, the expiration time of Ri is not before the current
time, and the expiration time of Wi is not before the current
time, then at block 820, the ETL process Waits at block 880.
At block 830, the method 800 determines Whether for each
table Wi in [W], . . . ,Wm}, the expiration time of Wi is before
the current time. If at block 830, the expiration time for Wi is
before the current time for each table Wi in {WP . . . , Wm},
then at block 620, the method 600 sets the expiration time of
each Wi in {WP . . . , Wm} as the current time+T1 With the

Write lock. If at block 830, the expiration time of Wi is not
before the current time, then the ETL process Waits at block
880. At block 850, the method 600 returns the number of roWs
being updated for Write locks. At block 860, the method 600
determines the number of roWs being currently updated. If the
number of roWs updated at block 860 is n, then the process
received the lock at block 870. If the number of roWs updated
is 0, the lock is being used by another process right noW, and
thus the ETL process has to Wait at block 880. To release the
lock, the expiration times ofRl, . . . , Rn, W1, . . . , Wn are set

to the current time.
[0067] In the read-Write locking, an ETL process can start
loading if it satis?es: a) all the read-only tables it used do not
have Write locks (read locks are ?ne); and b) all the Writing
tables it used are not locked. As such, SQL is implemented to
realiZe the folloWing semantics from the example in FIG. 8:
(i) check Whether for each read-only table R,- in {R1, . . . , Rn},
the expiration time of R,- is before the current time, or the lock
type is read; (ii) check Whether for each Writing table WI. in
[W], . . . , Wm}, the expiration time ofWi is before the current
time; (iii) if both (i) and (ii) are true, set the expiration time of
each R,- in {R1, . . . , Rn} as the current time+T1 With read lock,

and set the expiration time of each W,- in [W], . . . , Wm} as
current time+T1 With Write lock; and (iv) otherWise, Wait
some time go to (i).
[0068] The locks also need to be updated periodically until
the loading is done. When the ETL process ?nishes, all the
locks need to be released. Steps (i) to (iii) are executed in
atomic manner. The folloWing SQL statements can be imple
mented:

UPDATE LOCK SET EXPIRATIONiTIME = CURRENTiTIME() + T1, ID =

WHERE (TABLEiNAME = “R1” OR TABLEiNAME = “R2” OR OR
TABLEiNAME = “R ”) AND

11 IN (SELECT COUNT(*) FROM LOCK WHERE
(TABLEiNAME = “R1” OR TABLEiNAME = “R2” OR

OR TABLEiNAME = “R,,”) AND

(EXPIRATIONiTIME < CURRENTiTIME() OR
LOCKiTYPE = “READ”)) AND

m IN (SELECT COUNT(*) FROM LOCK WHERE
(TABLEiNAME = “W1” OR TABLEiNAME = “W2” OR

US 2011/0213756 A1

-continued

Sep. 1,2011

OR TABLEiNAME = “Wm”) AND

EXPIRATIONiTIME < CURRENTiTIME())
UPDATE LOCK SET EXPIRATIONiTIME = CURRENTiTIME() + T1
WHERE n IN (SELECT COUNT(*) FROM LOCK WHERE ID = id) AND

(TABLEiNAME = “W1” OR TABLEiNAME = “W2” OR OR
TABLEiNAME = “Wm”) AND

rn IN (SELECT COUNT(*) FROM LOCK WHERE
(TABLEiNAME = “W1” OR TABLEiNAME = “W2” OR

OR TABLEiNAME = “Wm”) AND

EXPIRATIONiTIME < CURRENTiTIME())

[0069] The above statements are executed as one database
transaction to guarantee the atomicity. The ?rst UPDATE
statement sets the read locks by checking both expiration time
and the lock types on both read locks and Write locks. The ?rst
statement updates the read locks only if there is no con?ict on
any locks. The ?rst statement also sets the ID attribute to a
randomly generated integer id. The id is implemented in the
second statement, Which sets the Write locks. The second
statement is executed only if the ?rst UPDATE statement has
made 11 updates. The subquery “n IN (SELECT COUNT(*)
FROM LOCK WHERE IDIid)” veri?es the condition that
the UPDATE statement has made 11 updates. If the ?rst
UPDATE does not update 11 records, the second UPDATE
does update anything.
[0070] In exemplary embodiments, the second UPDATE
statements return the numbers of roWs being currently
updated for Write locks. If the number of roWs updated is m,
the ETL process has successfully received all the locks, and
loading process can proceed. If the number of roWs updated is
0, at least one lock con?ict exists at the present moment, and
thus has to Wait.
[0071] For releasing the lock after the loading is ?nished,
the following SQL statement can be implemented:

UPDATE LOCK SET EXPIRATIONiTIME = CURRENTiTIME() ,
LOCKiTYPE = “READ” WHERE TABLEiNAME = “R1” OR

TABLEiNAME= “R2” OR OR TABLEiNAME = “R,,” OR
TABLEiNAME = “W1” OR TABLEiNAME = “W2” OR OR
TABLEiNAME = “Wm”

[0072] As described above, the exemplary systems and
methods described herein also implement ETL-level roll
back. Each ETL process may append neW records in some
tables in a database. To support ETL-level data consistency,
an automatically incremental attribute PRI_KEY for each
table can be implemented. As such, for each neW record
inserted in a table, the PRI_KEY value automatically incre
ments by 1.
[0073] FIG. 9 illustrates an exemplary rollback snapshot
table. As illustrated, the rollback snapshot table includes four
attributes: TABLE_NAME, MAX_KEY, and ISDONE. Each
table in the database includes a corresponding record in this
table. The shoWs the maximal PRI_KEY value for the latest
completely ETL process. The ISDONE attribute indicates
Whether an ETL process is done already: “yes” means the
ETL process is done, and “no” means the ETL process is not
completed yet.
[0074] In exemplary embodiments, the ETL processes
implement the rollback table to achieve data consistency,
together With the exemplary locking mechanism. When an

ETL process receives the locks, the ETL process ?rst checks
in the rollback snapshot table for all the tables it touches,
Whether the ISDONE values of those tables are all “yes”. In
exemplary embodiments, if all ISDONE are “yes”, the ETL
process changes these values to “no”, and then starts the ETL
loading. When all loadings are complete, the ETL process
updates the ISDONE values to “yes” and the MAX_KEY
values to the maximal PRI_KEY values for each correspond
ing table. In exemplary embodiments, if not all ISDONE
values are “yes”, another ETL process is failed Without cor
recting the rollback snapshot table. In this case, the ETL
process ?rst cleans up the affected tables before the loading.
The cleaning is done for each table With ISDONE:“no”. As
such, all the records With PRI_KEY value larger than the
MAX_KEY value are deleted.
[0075] For example, referring to FIG. 9, if an ETL process
Wants to load data into the table S, the ETL process needs to
?rst run the folloWing SQL to clean the tables. The folloWing
SQL statement can be implemented:
[007 6] DELETE FROM S WHERE PRI_KEY>200
[0077] After the loading is done, the locks are released.
[0078] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an” and “the” are intended to include the plural
forms as Well, unless the context clearly indicates otherWise.
It Will be further understood that the terms “comprises” and/
or “comprising,” When used in this speci?cation, specify the
presence of stated features, integers, steps, operations, ele
ments, and/ or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, element components, and/or groups thereof.
[0079] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims beloW are intended to include any structure, material,
or act for performing the function in combination With other
claimed elements as speci?cally claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modi?cations and variations Will be apparent to those of
ordinary skill in the art Without departing from the scope and
spirit of the invention. The embodiment Was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments With various modi?cations as are suited to the
particular use contemplated
[0080] The How diagrams depicted herein are just one
example. There may be many variations to this diagram or the
steps (or operations) described therein Without departing

US 2011/0213756 A1

from the spirit of the invention. For instance, the steps may be
performed in a differing order or steps may be added, deleted
or modi?ed. All of these variations are considered a part of the
claimed invention.
[0081] While preferred embodiments to the invention have
been described, it Will be understood that those skilled in the
art, both noW and in the future, may make various improve
ments and enhancements Which fall Within the scope of the
claims Which folloW. These claims should be construed to
maintain the proper protection for the invention ?rst
described.
What is claimed is:
1. A method for concurrency management for extraction,

transform, load (ETL) processes in a database having data
base tables and communicatively coupled to a computer, the
method comprising:

establishing a session lock for the database;
determining that a current ETL process is accessing the

database at a current time;
associating a current expiration time With the session lock,

the expiration time being stored in a lock table in the
database;

sending the session lock to the current ETL process; and
performing ETL-level locking for the current ETL process.
2. The method as claimed in claim 1 Wherein performing

ETL-level locking for the ?rst ETL process, comprises:
determining Whether a prior expiration time set in the lock

table occurs before the current time; and
in response to a determination that the prior expiration time

set in the lock table occurs before the current time,
setting the lock table to the current expiration time.

3. The method as claimed in claim 2 further comprising:
in response to a determination that the ?rst expiration time

set in the lock table does not occur before the current
time, Waiting for a predetermined time period.

4. The method as claimed in claim 2 further comprising:
releasing the session lock.
5. The method as claimed in claim 4 Wherein releasing the

session lock comprises setting the current expiration time to
the current time.

6. The method as claimed in claim 2 Wherein the ETL-level
locking is database-level exclusive locking.

7. The method as claimed in claim 2 Wherein the ETL-level
locking is table-level exclusive locking.

8. The method as claimed in claim 2 Wherein the ETL-level
locking is table-level read-Write locking.

9. The method as claimed in claim 1 Wherein the database
includes a rollback snapshot table.

10. The method as claimed in claim 9 further comprising:
in response to sending the session lock, checking the roll

back snapshot table to determine Which database tables
the current ETL process touches;

determining if there has been a prior ETL process failure in
the database that has affected the database tables that the
current ETL process touches;

in response to a determination that there has been a prior
ETL process failure in the database, cleaning the data
base tables that have been affected by the prior ETL
process failure;

performing ETL loading; and
releasing the session lock.
11. A database communicatively coupled to a computer

having a current ETL process, the database comprising:

Sep. 1,2011

data accessible to the current ETL process;
at least one database table including the data accessible to

the ETL process; and
a lock table including an expiration time value for a sub

sequent ETL process, the subsequent ETL process
accessing data accessible to the current ETL process in
the at least one database table.

12. The database as claimed in claim 11 Wherein the current
ETL process is con?gured to check the lock table to deter
mine if the database is locked to access by the at least one ETL
process on a database level.

13. The database as claimed in claim 11 Wherein the lock
table further includes a table_name value.

14. The database as claimed in claim 13 Wherein the current
ETL process is con?gured to check the lock table to deter
mine if the database is locked to access by the at least one ETL
process on a table level.

15. The database as claimed in claim 11 Wherein the lock
table further includes a table_name value, a lock_type value
and an ID value.

16. The database as claimed in claim 15 Wherein the current
ETL process is con?gured to check the lock table to deter
mine if the database is locked to access by the at least one ETL
process on a read-Write level.

17. The database as claimed in claim 11 further compris
mg:

a rollback snapshot table con?gured to record and store a
snapshot of the data accessible to the current ETL pro
cess,

Wherein the current ETL process is con?gured to clean up
the at least one database table in response to a failure of
the prior ATL process.

18. A computer program product for concurrency manage
ment for extraction, transform, load (ETL) processes in a
database having database tables and communicatively
coupled to a computer, the computer program product includ
ing instructions for causing the computer to implement a
method, the method comprising:

establishing a session lock for the database;
determining that a current ETL process is accessing the

database at a current time;
associating a current expiration time With the session lock,

the expiration time being stored in a lock table in the
database;

sending the session lock to the current ETL process; and
performing ETL-level locking for the current ETL process.
19. The computer program product as claimed in claim 18

Wherein performing ETL-level locking for the ?rst ETL pro
cess, comprises:

determining Whether a prior expiration time set in the lock
table occurs before the current time; and

in response to a determination that the prior expiration time
set in the lock table occurs before the current time,
setting the lock table to the current expiration time,

Wherein the ETL-level locking is at least one of database
level exclusive locking, table-level exclusive locking
and table-level read-Write locking.

20. The computer program product as claimed in claim 18
Wherein the database includes a rollback snapshot table con
?gured to record and store a snapshot of data stored in the
database.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description/Claims

