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SEMICONDUCTOR RADIO FREQUENCY
SWITCH WITH BODY CONTACT

This application claims the benefit of provisional patent
application Ser. No. 61/159,668, filed Mar. 12, 2009, the
disclosure of which is hereby incorporated herein by refer-
ence in its entirety.

FIELD OF THE DISCLOSURE

Embodiments of the present disclosure relate to semicon-
ductor and silicon-on-insulator (SOI) technologies and semi-
conductor-based radio frequency (RF) switches, both of
which may be used in RF communications circuits.

BACKGROUND OF THE DISCLOSURE

As technology progresses, wireless communications
devices, such as smart phones, wireless capable computers, or
the like, are becoming increasingly integrated, feature rich,
and complex. Such wireless communications devices rely on
semiconductor technologies, such as silicon based technolo-
gies, which are evolving toward smaller circuit geometries,
lower power consumption, higher operating speeds, and
increased complexity. Complementary metal oxide semicon-
ductor (CMOS) technology is an example of a silicon based
technology. Further, wireless communications devices may
need to support multiple communications bands, multiple
communications modes, multiple communications protocols,
and the like. As such, wireless communications devices may
need multiple RF switches to select between different RF
circuits depending on which communications bands, modes,
and protocols are in use. Such complex RF systems may place
strict linearity, insertion loss, and isolation demands on the
RF switches.

In general, RF switches having semiconductor-based
switching elements may have a trade-off between insertion
loss and isolation. RF switches that must handle high power
levels may require low insertion losses. In order to achieve
low insertion loss and high power handling capability, the size
of circuit elements within an RF switch may be relatively
large. However, such large circuit elements may be associated
with relatively large capacitances, which may decrease iso-
lation. Further, multiple large capacitances may have non-
linearities, which may degrade linearity of the RF switch.
Thus, there is a need for a silicon based RF switch that
improves the trade-off between insertion loss and isolation,
has good linearity performance, operates over multiple fre-
quency bands, or any combination thereof.

SUMMARY OF THE EMBODIMENTS

The present disclosure relates to an RF switch that includes
multiple body-contacted field effect transistor (FET) ele-
ments coupled in series. The FET elements may be formed
using a thin-film semiconductor device layer, which is part of
a thin-film semiconductor die. Conduction paths between the
FET elements through the thin-film semiconductor device
layer and through a substrate of the thin-film semiconductor
die may be substantially eliminated by using insulating mate-
rials. Elimination of the conduction paths allows an RF signal
across the RF switch to be divided across the series coupled
FET elements, such that each FET element is subjected to
only a portion of the RF signal. Further, each FET element is
body-contacted and may receive reverse body biasing when
the RF switch is in an OFF state, thereby reducing an OFF
state drain-to-source capacitance of each FET element. The
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combination of dividing the RF signal and reverse body bias-
ing each FET element when the RF switch is in an OFF state
may improve the trade-off between insertion loss and isola-
tion, may improve linearity performance, and may enable the
RF switch to operate over multiple frequency bands.

Thin-film semiconductor dies may typically be used in
conjunction with complementary metal oxide semiconductor
(CMOS) processes, which may be used to fabricate high
performance microprocessors due to comparatively low
source-to-body and drain-to-body junction capacitances.
However, low source-to-body and drain-to-body junction
capacitances may be beneficial in certain RF circuits, such as
RF switches. Low source-to-body and drain-to-body junction
capacitances may provide a low OFF state drain-to-source
capacitance of an FET element. Further, by using insulating
materials to completely surround each FET element in the RF
switch, a body, a source, and a drain of each FET element may
be isolated from the substrate and may be isolated from other
devices, including other FET elements, via the thin-film semi-
conductor device layer.

During the OFF state of the RF switch, a voltage may be
applied between the body and the source of each FET element
to reverse bias the body and the source, and a voltage may be
applied between the body and the drain of each FET element
to reverse bias the body and the drain to body-contact and
reverse body bias the FET element. By reverse biasing the
body and the source, the source-to-body junction capacitance
may be further reduced, and by reverse biasing the body and
the drain, the drain-to-body junction capacitance may be fur-
ther reduced, thereby further reducing the OFF state drain-
to-source capacitance of each FET element. Such junction
capacitance reductions may further improve the trade-off
between insertion loss and isolation, may further improve
linearity performance, and may further enable the RF switch
to operate over multiple frequency bands. The improved lin-
earity performance of the RF switch may be based on reduced
harmonic distortion of the RF switch or reduced intermodu-
lation distortion.

In addition, for CMOS processes, maximum drain-to-
source voltage ratings may be between about one volt and
about five volts, depending on the technology. However, the
RF signal across the RF switch when the RF switch is in the
OFF state may be significantly larger than the maximum
drain-to-source voltage ratings. Therefore, the RF switch may
include multiple body-contacted FET elements coupled in
series to divide the RF signal across the series-coupled FET
elements. The division of the RF signal needs to be reason-
ably balanced during the OFF state and during transitions
between the OFF state and an ON state to avoid exceeding
maximum drain-to-source voltage ratings. As mentioned
above, conduction paths between the FET elements through
the thin-film semiconductor device layer and through the
substrate of the thin-film semiconductor die may be substan-
tially eliminated by using insulating materials, thereby help-
ing to avoid exceeding maximum drain-to-source voltage
ratings.

Those skilled in the art will appreciate the scope of the
present disclosure and realize additional aspects thereof after
reading the following detailed description of the preferred
embodiments in association with the accompanying drawing
figures.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

The accompanying drawing figures incorporated in and
forming a part of this specification illustrate several aspects of
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the disclosure, and together with the description serve to
explain the principles of the disclosure.

FIG. 1 shows a top view of a conventional substrate, which
is used to form a floating-body field effect transistor (FET)
element according to the prior art.

FIG. 2 shows a top view of details of the floating-body FET
element illustrated in FIG. 1 according to the prior art.

FIG. 3 shows a cross-section of a thin-film semiconductor
die according to one embodiment of the thin-film semicon-
ductor die.

FIG. 4 shows a top view of a first body-contacted FET
element formed using the thin-film semiconductor die illus-
trated in FIG. 3 according to one embodiment of the first
body-contacted FET element.

FIG. 5 shows a top view of details of the first body-con-
tacted FET element illustrated in FIG. 4 according to an
alternate embodiment of the first body-contacted FET ele-
ment.

FIG. 6 shows a top view of details of the first body-con-
tacted FET element illustrated in FIG. 5 according to an
additional embodiment of the first body-contacted FET ele-
ment.

FIG. 7 shows a top view of details of the first body-con-
tacted FET element illustrated in FIG. 4 according to another
embodiment of the first body-contacted FET element.

FIG. 8 shows a cross-section of the thin-film semiconduc-
tor die according to an alternate embodiment of the thin-film
semiconductor die.

FIG. 9 shows a cross-section of the thin-film semiconduc-
tor die according to an additional embodiment of the thin-film
semiconductor die.

FIG. 10 is a schematic diagram showing the first body-
contacted RF switch illustrated in FIG. 9 according to one
embodiment of the first body-contacted RF switch.

FIG. 11 is a schematic diagram showing details of a resistor
bias network illustrated in FIG. 10 according to one embodi-
ment of the resistor bias network.

FIG. 12 is a schematic diagram showing the first body-
contacted RF switch according to an alternate embodiment of
the first body-contacted RF switch.

FIG. 13 shows an RF switch system according to one
embodiment of the RF switch system.

FIG. 14 shows the RF switch system according to an alter-
nate embodiment of the RF switch system.

FIG. 15 shows an application example of the present dis-
closure used in a mobile terminal.

FIG. 16 is a graph illustrating a relationship between a
body-contacted RF switch OFF capacitance of the first body-
contacted RF switch and an absolute value of reverse body
biasing of the first body-contacted RF switch.

FIG. 17 is a graph illustrating a relationship between sec-
ond harmonic power of both floating-body and body-con-
tacted RF switches in an OFF state and input power to the RF
switches.

FIG. 18 is a graph illustrating a relationship between third
harmonic power of both floating-body and body-contacted
RF switches in an OFF state and input power to the RF
switches.

FIG. 19 shows a top view of details of the first body-
contacted FET element illustrated in FIG. 4 according to one
embodiment of the first body-contacted FET element.

FIG. 20 shows a top view of details of the first body-
contacted FET element illustrated in FIG. 4 according to an
alternate embodiment of the first body-contacted FET ele-
ment.
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DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The embodiments set forth below represent the necessary
information to enable those skilled in the art to practice the
disclosure and illustrate the best mode of practicing the dis-
closure. Upon reading the following description in light of the
accompanying drawing figures, those skilled in the art will
understand the concepts of the disclosure and will recognize
applications of these concepts not particularly addressed
herein. It should be understood that these concepts and appli-
cations fall within the scope of the disclosure and the accom-
panying claims.

The present disclosure relates to an RF switch that includes
multiple body-contacted field effect transistor (FET) ele-
ments coupled in series. The FET elements may be formed
using a thin-film semiconductor device layer, which is part of
a thin-film semiconductor die. Conduction paths between the
FET elements through the thin-film semiconductor device
layer and through a substrate of the thin-film semiconductor
die may be substantially eliminated by using insulating mate-
rials. Elimination of the conduction paths allows an RF signal
across the RF switch to be divided across the series coupled
FET elements, such that each FET element is subjected to
only a portion of the RF signal. Further, each FET element is
body-contacted and may receive reverse body biasing when
the RF switch is in an OFF state, thereby reducing an OFF
state drain-to-source capacitance of each FET element. The
combination of dividing the RF signal and reverse body bias-
ing each FET element when the RF switch is in an OFF state
may improve the trade-off between insertion loss and isola-
tion, may improve linearity performance, and may enable the
RF switch to operate over multiple frequency bands.

Thin-film semiconductor dies may typically be used in
conjunction with complementary metal oxide semiconductor
(CMOS) processes, which may be used to fabricate high
performance microprocessors due to comparatively low
source-to-body and drain-to-body junction capacitances.
However, low source-to-body and drain-to-body junction
capacitances may be beneficial in certain RF circuits, such as
RF switches. Low source-to-body and drain-to-body junction
capacitances may provide a low OFF state drain-to-source
capacitance of an FET element. Further, by using insulating
materials to completely surround each FET element in the RF
switch, a body, a source, and a drain of each FET element may
be isolated from the substrate and may be isolated from other
devices, including other FET elements, via the thin-film semi-
conductor device layer.

Reverse bias of a PN junction occurs when a positive
voltage is applied to the N-type material relative to the P-type
material and a magnitude of the positive voltage is greater
than zero. During the OFF state of the RF switch, a voltage
may be applied between the body and the source of each FET
element to reverse bias the body and the source, and a voltage
may be applied between the body and the drain of each FET
element to reverse bias the body and the drain to body-contact
and reverse body bias the FET element. By reverse biasing the
body and the source, the source-to-body junction capacitance
may be further reduced, and by reverse biasing the body and
the drain, the drain-to-body junction capacitance may be fur-
ther reduced, thereby further reducing the OFF state drain-
to-source capacitance of each FET element. Such junction
capacitance reductions may further improve the trade-off
between insertion loss and isolation, may further improve
linearity performance, and may further enable the RF switch
to operate over multiple frequency bands. The improved lin-
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earity performance of'the RF switch may be based on reduced
harmonic distortion of the RF switch.

In addition, for CMOS processes, maximum drain-to-
source voltage ratings may be between about one volt and
about five volts, depending on the technology. However, the
RF signal across the RF switch when the RF switch is in the
OFF state may be significantly larger than the maximum
drain-to-source voltage ratings. Therefore, the RF switch may
include multiple body-contacted FET elements coupled in
series to divide the RF signal across the series-coupled FET
elements. The division of the RF signal needs to be reason-
ably balanced during the OFF state and during transitions
between the OFF state and an ON state to avoid exceeding
maximum drain-to-source voltage ratings. As mentioned
above, conduction paths between the FET elements through
the thin-film semiconductor device layer and through the
substrate of the thin-film semiconductor die may be substan-
tially eliminated by using insulating materials, thereby help-
ing to avoid exceeding maximum drain-to-source voltage
ratings.

FIG. 1 shows a top view of a conventional substrate 10,
whichisused to form a floating-body FET element 12 accord-
ing to the prior art. The floating-body FET element 12
includes an active region 14, which is formed in the conven-
tional substrate 10. The active region 14 includes a conven-
tional source 16, a floating body 18, and a conventional drain
20. The floating body 18 is between the conventional source
16 and the conventional drain 20 and provides a channel for
the floating-body FET element 12. In one configuration, the
conventional source 16 and the conventional drain 20 include
N-type semiconductor material, and the floating body 18
includes P-type semiconductor material. In an alternate con-
figuration, the conventional source 16 and the conventional
drain 20 include P-type semiconductor material, and the
floating body 18 includes N-type semiconductor material.

FIG. 2 shows a top view of details of the floating-body FET
element 12 illustrated in FIG. 1 according to the prior art. The
floating-body FET element 12 includes a conventional gate
22 over the conventional substrate 10. The conventional gate
22 has a gate length 24 and a gate width 26 over the channel
of the floating-body FET element 12. Further, the conven-
tional gate 22 may completely cover the floating body 18 as
shown. The conventional gate 22 may have a gate contact 28,
the conventional source 16 may have source contacts 30, and
the conventional drain 20 may have drain contacts 32. The
gate, the source, and the drain contacts 28, 30, 32 provide
electrical connectivity to the conventional gate 22, the con-
ventional source 16, and the conventional drain 20, respec-
tively. The floating body 18 has no electrical contacts and is
electrically coupled to other devices only through the con-
ventional substrate 10, the conventional gate 22, the conven-
tional source 16, the conventional drain 20, or any combina-
tion thereof.

FIG. 3 shows a cross-section of a thin-film semiconductor
die 34, which may be a thin-film silicon-on-insulator (SOI)
semiconductor die, according to one embodiment of the thin-
film semiconductor die 34. The thin-film semiconductor die
34 includes a substrate 36, which may be an SOI substrate; an
insulating layer 38, which may be an SOI insulating layer,
over the substrate 36; and a thin-film semiconductor device
layer 40, which may be a thin-film SOI device layer, over the
insulating layer 38. The thin-film semiconductor device layer
40 has a semiconductor device layer thickness 42 and the
insulating layer 38 has an insulating layer thickness 44. The
substrate 36 may include silicon, sapphire, other semiconduc-
tor material, insulating material, or any combination thereof.
The substrate 36 may be provided from a silicon handle wafer.
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The insulating layer 38 may include oxide, buried oxide,
silicon dioxide, other insulating material, or any combination
thereof. The thin-film semiconductor device layer 40 is a
thin-film layer that includes silicon and is used to form elec-
tronic devices, such as transistor elements, diode elements,
resistive elements, capacitive elements, or the like. The insu-
lating layer 38 may be used to electrically isolate the thin-film
semiconductor device layer 40 from the substrate 36.

In one embodiment of the thin-film semiconductor device
layer 40, the thin-film semiconductor device layer 40 is par-
tially-depleted SOI and not fully-depleted SOI. As the insu-
lating layer thickness 44 increases, RF coupling to adjacent
devices through the substrate 36 may be reduced, thereby
improving isolation. Additionally, as resistivity of the sub-
strate 36 increases, RF coupling to adjacent devices may be
reduced, thereby improving RF performance of active RF
devices and passive RF devices, such as inductors and trans-
mission lines.

In a first exemplary embodiment of the substrate 36, the
resistivity of the substrate 36 is greater than about 100 ohm-
centimeters. In a second exemplary embodiment of the sub-
strate 36, the resistivity of the substrate 36 is greater than
about 500 ohm-centimeters. In a third exemplary embodi-
ment of the substrate 36, the resistivity of the substrate 36 is
greater than about 1000 ohm-centimeters. In one embodi-
ment of the thin-film semiconductor die 34, the insulating
layer thickness 44 is greater than the semiconductor device
layer thickness 42. In a first exemplary embodiment of the
thin-film semiconductor device layer 40, the semiconductor
device layer thickness 42 is between about 100 nanometers
and about 300 nanometers. In a second exemplary embodi-
ment of the thin-film semiconductor device layer 40, the
semiconductor device layer thickness 42 is less than about
900 nanometers. In a third exemplary embodiment of the
thin-film semiconductor device layer 40, the semiconductor
device layer thickness 42 is less than about 700 nanometers.
In a fourth exemplary embodiment of the thin-film semicon-
ductor device layer 40, the semiconductor device layer thick-
ness 42 is less than about 500 nanometers. In a fifth exemplary
embodiment of the thin-film semiconductor device layer 40,
the semiconductor device layer thickness 42 is less than about
300 nanometers. In a sixth exemplary embodiment of the
thin-film semiconductor device layer 40, the semiconductor
device layer thickness 42 is less than about 200 nanometers.
In a seventh exemplary embodiment of the thin-film semicon-
ductor device layer 40, the semiconductor device layer thick-
ness 42 is less than about 100 nanometers.

In a first exemplary embodiment of the insulating layer 38,
the insulating layer thickness 44 is between about 200
nanometers and about 1000 nanometers. In a second exem-
plary embodiment of the insulating layer 38, the insulating
layer thickness 44 is greater than about 200 nanometers. In a
third exemplary embodiment of the insulating layer 38, the
insulating layer thickness 44 is greater than about 600 nanom-
eters. In a fourth exemplary embodiment of the insulating
layer 38, the insulating layer thickness 44 is greater than
about 1000 nanometers. In a fifth exemplary embodiment of
the insulating layer 38, the insulating layer thickness 44 is
greater than about 1500 nanometers. In a sixth exemplary
embodiment of the insulating layer 38, the insulating layer
thickness 44 is greater than about 2000 nanometers.

FIG. 4 shows a top view of a first body-contacted FET
element 46 formed using the thin-film semiconductor die 34
illustrated in FIG. 3 according to one embodiment of the first
body-contacted FET element 46. The first body-contacted
FET element 46 includes an active region 48, which is formed
in the thin-film semiconductor device layer 40. The active
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region 48 includes a first source 50, a first body 52, and a first
drain 54. The first body 52 is between the first source 50 and
the first drain 54 and provides a channel for the first body-
contacted FET element 46. Either or both of the first source 50
and the first drain 54 may include heavily doped semiconduc-
tor material to increase connectivity and provide one or more
regions for making electrical connections to the first source
50 and the first drain 54, respectively.

In a first exemplary embodiment of the first body-contacted
FET element 46, the first source 50 and the first drain 54
include N-type semiconductor material, and the first body 52
includes P-type semiconductor material. In a second exem-
plary embodiment of the first body-contacted FET element
46, the first source 50 and the first drain 54 include heavily
doped N-type semiconductor material, and the first body 52
includes P-type semiconductor material. In a third exemplary
embodiment of the first body-contacted FET element 46, the
first source 50 and the first drain 54 include P-type semicon-
ductor material, and the first body 52 includes N-type semi-
conductor material. In a fourth exemplary embodiment of the
first body-contacted FET element 46, the first source 50 and
the first drain 54 include heavily doped P-type semiconductor
material, and the first body 52 includes N-type semiconductor
material.

FIG. 5 shows a top view of details of the first body-con-
tacted FET element 46 illustrated in FIG. 4 according to an
alternate embodiment of the first body-contacted FET ele-
ment 46. The first body 52 of the first body-contacted FET
element 46 includes a first body contact region 56, which may
include heavily doped semiconductor material to increase
connectivity and provide one or more regions for making
electrical connections to the first body 52. In a first exemplary
embodiment of the first body 52, the first body 52 includes
P-type semiconductor material and the first body contact
region 56 includes heavily doped P-type semiconductor
material. In a second exemplary embodiment of the first body
52, the first body 52 includes N-type semiconductor material
and the first body contact region 56 includes heavily doped
N-type semiconductor material.

FIG. 6 shows a top view of details of the first body-con-
tacted FET element 46 illustrated in FIG. 5 according to an
additional embodiment of the first body-contacted FET ele-
ment 46. The first body-contacted FET element 46 includes
insulating material 58 in the thin-film semiconductor device
layer 40 and may completely surround the active region 48.
Completely surrounding the active region 48 with the insu-
lating material 58 may substantially eliminate conduction
paths between the first body-contacted FET element 46 and
other devices through the thin-film semiconductor device
layer 40. In general, in thin-film semiconductor processing,
all regions outside of the active region 48 may be fully oxide
isolated as part of the normal CMOS process. A CMOS
shallow trench may be everywhere outside of active regions
48 and may extend down to the insulating layer 38 (FIG. 3).

FIG. 7 shows a top view of details of the first body-con-
tacted FET element 46 illustrated in FIG. 4 according to
another embodiment of the first body-contacted FET element
46. The first body-contacted FET element 46 includes a first
gate 60 over the thin-film semiconductor device layer 40. The
first gate 60 has the gate length 24 and the gate width 26 over
the channel of the first body-contacted FET element 46. The
first gate 60 may have a first gate contact 62, the first source 50
may have first source contacts 64, the first drain 54 may have
first drain contacts 66, and the first body contact region 56
may have first body contacts 68. The first gate, the first source,
the first drain, and the first body contacts 62, 64, 66, 68 may
provide electrical connectivity to the first gate 60, the first
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source 50, the first drain 54, and the first body 52, respec-
tively. The first gate 60 may extend over the insulating mate-
rial 58, beyond the insulating material 58, or both. In one
embodiment of the first gate 60, the first gate 60 includes
polysilicon.

FIG. 8 shows a cross-section of the thin-film semiconduc-
tor die 34 illustrated in FIG. 3 according to an alternate
embodiment of the thin-film semiconductor die 34. FIG. 8
shows a cross-section of the first body-contacted FET ele-
ment 46, a second body-contacted FET element 70, and a
third body-contacted FET element 72 formed using the thin-
film semiconductor device layer 40. The first body-contacted
FET element 46 includes the first source 50, the first body 52,
the first drain 54, the insulating material 58, a gate oxide 74
over the first body 52, and the first gate 60 over the gate oxide
74. The firstbody 52 is between the first source 50 and the first
drain 54, and the first source 50, the first body 52, and the first
drain 54 are surrounded by the insulating material 58. The
gate oxide 74 electrically insulates the first gate 60 from the
first body 52. The first source 50, the first body 52, the first
drain 54, or any combination thereof may completely traverse
the semiconductor device layer thickness 42 (FIG. 3) of the
thin-film semiconductor device layer 40. In one embodiment
of'the first body-contacted FET element 46, the first source 50
and the first drain 54 include N-type silicon, and the first body
52 includes P-type silicon. In an alternate embodiment of the
first body-contacted FET element 46, the first source 50 and
the first drain 54 include P-type silicon, and the first body 52
includes N-type silicon. Alternate embodiments of the first
body-contacted FET element 46, the second body-contacted
FET element 70, the third body-contacted FET element 72,
the like, or any combination thereof may be formed using
alternate layers, additional layers, or both having any type of
implant or doping.

The second body-contacted FET element 70 may be simi-
lar to the first body-contacted FET element 46 and may
include a second source 76, a second body 78, a second drain
80, the insulating material 58, the gate oxide 74 over the
second body 78, and a second gate 82 over the gate oxide 74.
The second body 78 is between the second source 76 and the
second drain 80, and the second source 76, the second body
78, and the second drain 80 are surrounded by the insulating
material 58. The gate oxide 74 electrically insulates the sec-
ond gate 82 from the second body 78. The second body-
contacted FET element 70 may include a second body contact
region (not shown) and second body contacts (not shown).
The second source 76, the second body 78, the second drain
80, or any combination thereof may completely traverse the
semiconductor device layer thickness 42 (FIG. 3) of the thin-
film semiconductor device layer 40. In one embodiment of
the second body-contacted FET element 70, the second
source 76 and the second drain 80 include N-type silicon, and
the second body 78 includes P-type silicon. In an alternate
embodiment of the second body-contacted FET element 70,
the second source 76 and the second drain 80 include P-type
silicon, and the second body 78 includes N-type silicon.

The third body-contacted FET element 72 may be similar
to the first body-contacted FET element 46 and may include
a third source 84, a third body 86, a third drain 88, the
insulating material 58, the gate oxide 74 over the third body
86, and a third gate 90 over the gate oxide 74. The third body
86 is between the third source 84 and the third drain 88, and
the third source 84, the third body 86, and the third drain 88
are surrounded by the insulating material 58. The gate oxide
74 electrically insulates the third gate 90 from the third body
86. The third body-contacted FET element 72 may include a
third body contact region (not shown) and third body contacts
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(not shown). The third source 84, the third body 86, the third
drain 88, or any combination thereof may completely traverse
the semiconductor device layer thickness 42 (FIG. 3) of the
thin-film semiconductor device layer 40. In one embodiment
of'the third body-contacted FET element 72, the third source
84 and the third drain 88 include N-type silicon, and the third
body 86 includes P-type silicon. In an alternate embodiment
of'the third body-contacted FET element 72, the third source
84 and the third drain 88 include P-type silicon, and the third
body 86 includes N-type silicon.

A first body-contacted RF switch 92 includes the first
body-contacted FET element 46, the second body-contacted
FET element 70, and the third body-contacted FET element
72 according to one embodiment of the first body-contacted
RF switch 92. In an exemplary embodiment of the first body-
contacted RF switch 92, the insulating material 58 extends
completely though the thin-film semiconductor device layer
40 down to the insulating layer 38, such that the insulating
material 58 completely surrounds each of the first body-
contacted FET element 46, the second body-contacted FET
element 70, and the third body-contacted FET element 72,
thereby substantially eliminating conduction paths between
the first, the second, and the third body-contacted FET ele-
ments 46, 70, 72 through the substrate 36, through the thin-
film semiconductor device layer 40, or both.

FIG. 9 shows a cross-section of the thin-film semiconduc-
tor die 34 according to an additional embodiment of the
thin-film semiconductor die 34. The thin-film semiconductor
die 34 illustrated in FIG. 9 is similar to the thin-film semicon-
ductor die 34 illustrated in FIG. 8, except that the thin-film
semiconductor die 34 illustrated in FIG. 9 further includes the
first source contact 64, the first drain contact 66, a second
source contact 94, a second drain contact 96, a third source
contact 98, a third drain contact 100, a first switch connection
node 102, a second switch connection node 104, a first FET
interconnect 106, and a second FET interconnect 108. The
contacts 64, 66, 94, 96, 98, 100 may be vias that traverse one
or more layers of the thin-film semiconductor die 34. Any or
all of the first switch connection node 102, the second switch
connection node 104, the first FET interconnect 106, and the
second FET interconnect 108 may be provided by one or
more metallization layers of the thin-film semiconductor die
34.

The first source contact 64 is electrically connected to the
first source 50; the first drain contact 66 is electrically con-
nected to the first drain 54; the second source contact 94 is
electrically connected to the second source 76; the second
drain contact 96 is electrically connected to the second drain
80; the third source contact 98 is electrically connected to the
third source 84; and the third drain contact 100 is electrically
connected to the third drain 88. The first switch connection
node 102 of the first body-contacted RF switch 92 is electri-
cally connected to the third source 84 through the third source
contact 98. The second switch connection node 104 of the first
body-contacted RF switch 92 is electrically connected to the
first drain 54 through the first drain contact 66. The first FET
interconnect 106 electrically connects the first source 50 to
the second drain 80 through the first source contact 64 and the
second drain contact 96, respectively. The second FET inter-
connect 108 electrically connects the second source 76 to the
third drain 88 through the second source contact 94 and the
third drain contact 100, respectively. As such, the first body-
contacted FET element 46, the second body-contacted FET
element 70, and the third body-contacted FET element 72 are
coupled in series between the first switch connection node
102 and the second switch connection node 104.
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FIG. 10 is a schematic diagram showing the first body-
contacted RF switch 92 illustrated in FIG. 9 according to one
embodiment of the first body-contacted RF switch 92. The
first body-contacted RF switch 92 includes the first body-
contacted FET element 46, the second body-contacted FET
element 70, the third body-contacted FET element 72, the
first switch connection node 102, the second switch connec-
tion node 104, a first body bias input FBBI, a first switch
control input FSCI, and a resistor bias network 110. During
operation of the first body-contacted RF switch 92, the first
switch control input FSCI may receive a first switch control
signal 112 and the first body bias input FBBI may receive a
first body bias control signal 114. The first body-contacted
FET element 46, the second body-contacted FET element 70,
and the third body-contacted FET element 72 are coupled in
series between the first switch connection node 102 and the
second switch connection node 104, such that the third source
84 is coupled to the first switch connection node 102, the third
drain 88 is coupled to the second source 76, the second drain
80 is coupled to the first source 50, and the first drain 54 is
coupled to the second switch connection node 104.

The resistor bias network 110 is coupled to the first source
50, the first body 52, the first drain 54, the first gate 60, the
second source 76, the second body 78, the second drain 80,
the second gate 82, the third source 84, the third body 86, the
third drain 88, the third gate 90, the first body bias input FBBI,
and the first switch control input FSCI. During operation of
the first body-contacted RF switch 92, the resistor bias net-
work 110 may provide appropriate bias behavior to the first
source 50, the first body 52, the first drain 54, the first gate 60,
the second source 76, the second body 78, the second drain
80, the second gate 82, the third source 84, the third body 86,
the third drain 88, and the third gate 90 based on the first
switch control signal 112, the first body bias control signal
114, signals between the first switch connection node 102 and
the second switch connection node 104, or any combination
thereof.

FIG. 11 is a schematic diagram showing details of the
resistor bias network 110 illustrated in FIG. 10 according to
one embodiment of the resistor bias network 110. The resistor
bias network 110 includes a first body bias resistive element
RB1, a second body bias resistive element RB2, a third body
bias resistive element RB3, a common body bias resistive
element RBC, a first gate resistive element RG1, a second
gate resistive element RG2, a third gate resistive element
RG3, a common gate resistive element RGC, a first drain-to-
source resistive element RDS1, a second drain-to-source
resistive element RDS2, and a third drain-to-source resistive
element RDS3.

The first gate resistive element RG1 is coupled between the
first gate 60 and a gate node (not shown) to provide a first gate
signal 115 to the first gate 60. The second gate resistive
element RG2 is coupled between the second gate 82 and the
gate node to provide a second gate signal 116 to the second
gate 82. The third gate resistive element RG3 is coupled
between the third gate 90 and the gate node to provide a third
gate signal 118 to the third gate 90. The common gate resistive
element RGC is coupled between the gate node and the first
switch control input FSCI. During operation of the first body-
contacted RF switch 92, the first switch control input FSCI
may receive the first switch control signal 112, such that the
first, the second, and the third gate signals 115, 116, 118 are
based on the first switch control signal 112. The first switch
control signal 112 is used to select either the ON state or the
OFF state of the first body-contacted RF switch 92. Selection
between the ON state and the OFF state normally occurs at a
much lower frequency than the frequency of RF signals
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between the first and the second switch connection nodes 102,
104. As such, the first switch control signal 112 may have
direct current (DC)-like influences on the first body-con-
tacted RF switch 92. To minimize the impact of such DC
influences, the first, the second, and the third gate resistive
elements RG1, RG2, RG3 may have large values of resistance
to isolate the first, the second, and the third gates 60, 82, 90
from one another. Normally, the first body-contacted RF
switch 92 will have one of the ON state, the OFF state, or a
non-operating state.

The first body bias resistive element RB1 is coupled
between the first body 52 and a body bias node (not shown) to
provide a first body bias signal 120 to the first body 52. The
second body bias resistive element RB2 is coupled between
the second body 78 and the body bias node to provide a
second body bias signal 122 to the second body 78. The third
body bias resistive element RB3 is coupled between the third
body 86 and the body bias node to provide a third body bias
signal 124 to the third body 86. The common body bias
resistive element RBC is coupled between the body bias node
and the first body bias input FBBI. During operation of the
first body-contacted RF switch 92, the first body bias input
FBBI may receive the first body bias control signal 114, such
that the first, the second, and the third body bias signals 120,
122, 124 are based on the first body bias control signal 114.
The first body bias control signal 114 may be used to provide
an appropriate body bias to the first, the second, and the third
bodies 52, 78, 86, depending on whether the ON state or the
OFTF state of the first body-contacted RF switch 92 is selected.
As mentioned above, selection between the ON state and the
OFF state normally occurs at a much lower frequency than the
frequency of RF signals between the first and the second
switch connection nodes 102, 104. Since the first body bias
control signal 114 is based on OFF state or ON state selection,
the frequency of the first body bias control signal 114 nor-
mally occurs ata much lower frequency than the frequency of
RF signals between the first and the second switch connection
nodes 102, 104. As such, the first body bias control signal 114
may have DC like influences on the first body-contacted RF
switch 92. To minimize the impact of such DC influences, the
first, the second, and the third body bias resistive elements
RB1, RB2, RB3 may have large values of resistance to isolate
the first, the second, and the third bodies 52, 78, 86 from one
another.

The first drain-to-source resistive element RDS1 is coupled
between the first drain 54 and the first source 50, the second
drain-to-source resistive element RDS2 is coupled between
the second drain 80 and the second source 76, and the third
drain-to-source resistive element RDS3 is coupled between
the third drain 88 and the third source 84. During the OFF
state, the first, the second, and the third drain-to-source resis-
tive elements RDS1, RDS2, RDS3 may provide about equal
voltage division across the first, the second, and the third
body-contacted FET elements 46, 70, 72.

In a first exemplary embodiment of the first body-contacted
RF switch 92, during the OFF state of'the first body-contacted
RF switch 92, a magnitude of the first body bias control signal
114 is about equal to a magnitude of the first switch control
signal 112, and during the ON state of the first body-contacted
RF switch 92, the magnitude of the first body bias control
signal 114 is not equal to the magnitude of the first switch
control signal 112.

In a second exemplary embodiment of the first body-con-
tacted RF switch 92, during the OFF state of the first body-
contacted RF switch 92, the magnitude of the first body bias
control signal 114 is about equal to the magnitude of the first
switch control signal 112, the magnitude of the first switch
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control signal 112 is negative relative to a DC voltage at the
first switch connection node 102, and the magnitude of the
first switch control signal 112 is negative relative to a DC
voltage at the second switch connection node 104. During the
ON state of the first body-contacted RF switch 92, the mag-
nitude of the first switch control signal 112 is positive relative
to the magnitude of the first body bias control signal 114.

In a third exemplary embodiment of the first body-con-
tacted RF switch 92, during the OFF state of the first body-
contacted RF switch 92, the magnitude of the first body bias
control signal 114 is about equal to the magnitude of the first
switch control signal 112, the magnitude of the first switch
control signal 112 is positive relative to the DC voltage at the
first switch connection node 102, and the magnitude of the
first switch control signal 112 is positive relative to the DC
voltage at the second switch connection node 104. During the
ON state of the first body-contacted RF switch 92, the mag-
nitude of the first switch control signal 112 is negative relative
to the magnitude of the first body bias control signal 114.

In a fourth exemplary embodiment of the first body-con-
tacted RF switch 92, during the OFF state of the first body-
contacted RF switch 92, the first body bias control signal 114
is equal to between about -1 volt DC (VDC) and about
-5VDC, the first switch control signal 112 is equal to between
about —1VDC and about -5VDC, the DC voltage at the first
switch connection node 102 is equal to about zero volts, and
the DC voltage at the second switch connection node 104 is
equal to about zero volts. During the ON state of the first
body-contacted RF switch 92, the first body bias control
signal 114 is equal to about zero VDC, the first switch control
signal 112 is equal to between about 1 VDC and about SVDC,
the DC voltage at the first switch connection node 102 is equal
to about zero volts, and the DC voltage at the second switch
connection node 104 is equal to about zero volts.

During the OFF state of the first body-contacted RF switch
92, the first body-contacted RF switch 92 has an OFF state
impedance between the first and the second switch connec-
tion nodes 102, 104. During the ON state of the first body-
contacted RF switch 92, the first body-contacted RF switch
92 has an ON state impedance between the first and the
second switch connection nodes 102, 104. In the illustrated
embodiment of the first body-contacted RF switch 92, the
first, the second, and the third body-contacted FET elements
46, 70, 72 are coupled in series between the first and the
second switch connection nodes 102, 104. As such, three
body-contacted FET elements are coupled in series. In an
alternate embodiment of the first body-contacted RF switch
92, the second body-contacted FET element 70 is omitted,
such that the third drain 88 is directly coupled to the first
source 50. As such, two body-contacted FET elements are
coupled in series. In additional embodiments of the first body-
contacted RF switch 92, any number of body-contacted FET
elements may be coupled in series.

FIG. 12 is a schematic diagram showing the first body-
contacted RF switch 92 according to an alternate embodiment
of the first body-contacted RF switch 92. The first body-
contacted RF switch 92 illustrated in FIG. 12 is similar to the
first body-contacted RF switch 92 illustrated in FIG. 10,
except the first body-contacted RF switch 92 illustrated in
FIG. 12 may include any number of body-contacted FET
elements. The first body-contacted RF switch 92 includes the
first body-contacted FET element 46, the second body-con-
tacted FET element 70, and up to and including an N
body-contacted FET element 126. The N body-contacted
FET element 126 includes an N™ source 128, an N7 body
130, an N”? drain 132, and an N™ gate 134. The N” body-
contacted FET element 126 and any intervening body-con-
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tacted FET elements (not shown) between the second body-
contacted FET element 70 and the N” body-contacted FET
element 126 may be similar to the first body-contacted FET
element 46 as previously described.

The firstbody-contacted FET element 46, the second body-
contacted FET element 70, and up to and including the N
body-contacted FET element 126 are coupled in series
between the first switch connection node 102 and the second
switch connection node 104, such that the N source 128 is
coupled to the first switch connection node 102, the N“ drain
132 is coupled to the second source 76 through any interven-
ing body-contacted FET elements (not shown), the second
drain 80 is coupled to the first source 50, and the first drain 54
is coupled to the second switch connection node 104. The
resistor bias network 110 provides the first gate signal 115 to
the first gate 60, the second gate signal 116 to the second gate
82, and an N7 gate signal 136 to the N“ gate 134. During
operation of the first body-contacted RF switch 92, the first
switch control input FSCI may receive the first switch control
signal 112, such that the first, the second, and up to and
including the N“ gate signals 115, 116, 136 are based on the
first switch control signal 112. The first switch control signal
112 is used to select either the ON state or the OFF state of the
first body-contacted RF switch 92.

The resistive bias network 110 provides the first body bias
signal 120 to the first body 52, the second body bias signal 122
to the second body 78, and an N7 body bias signal 138 to the
N7 body 130. During operation of the first body-contacted
RF switch 92, the first body bias input FBBI may receive the
first body bias control signal 114, such that the first, the
second, and up to and including the N™ body bias signals
120, 122, 138 are based on the first body bias control signal
114. The first body bias control signal 114 may be used to
provide an appropriate body bias to the first, the second, and
up to and including the N bodies 52, 78, 130, depending on
whether the ON state or the OFF state of the first body-
contacted RF switch 92 is selected.

The first body-contacted RF switch 92 includes a quantity
of series coupled body-contacted FET elements equal to N,
such that N is any positive whole number greater than one. An
RF signal 140 between the first and the second switch con-
nection nodes 102, 104 may be present due to the first body-
contacted RF switch 92 interacting with other circuit ele-
ments (not shown). In one embodiment of the first body-
contacted RF switch 92, a frequency of the RF signal 140 is
greater than about 100 megahertz. During the OFF state of the
first body-contacted RF switch 92, the RF signal 140 may be
distributed across the first body-contacted FET element 46,
the second body-contacted FET element 70, and up to and
including the N7 body-contacted FET element 126. In an
exemplary embodiment of'the first body-contacted RF switch
92, during the OFF state of the first body-contacted RF switch
92, the RF signal 140 is distributed about equally across the
first body-contacted FET element 46, the second body-con-
tacted FET element 70, and up to and including the N*¥
body-contacted FET element 126.

FIG. 13 shows an RF switch system 142 according to one
embodiment of the RF switch system 142. The RF switch
system 142 provides four switched ports and includes the first
body-contacted RF switch 92, a second body-contacted RF
switch 144, a third body-contacted RF switch 146, a fourth
body-contacted RF switch 148, and control circuitry 150. The
second, the third, and the fourth body-contacted RF switches
144, 146, 148 may be similar to the first body-contacted RF
switch 92. The second body-contacted RF switch 144 has a
third switch connection node 152 and a fourth switch connec-
tion node 154, which may be similar to the first switch con-
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nection node 102 and the second switch connection node 104,
respectively. Further, the second body-contacted RF switch
144 has a second body bias input SBBI and a second switch
control input SSCI, which may be similarto the first body bias
input FBBI and the first switch control input FSCI, respec-
tively.

The third body-contacted RF switch 146 has a fifth switch
connection node 156 and a sixth switch connection node 158,
which may be similar to the first switch connection node 102
and the second switch connection node 104, respectively.
Further, the third body-contacted RF switch 146 has a third
body bias input TBBI and a third switch control input TSCI,
which may be similar to the first body bias input FBBI and the
first switch control input FSCI, respectively.

The fourth body-contacted RF switch 148 has a seventh
switch connection node 160 and an eighth switch connection
node 162, which may be similar to the first switch connection
node 102 and the second switch connection node 104, respec-
tively. Further, the fourth body-contacted RF switch 148 has
a fourth body bias input FOBBI and a fourth switch control
input FOSCI, which may be similar to the first body bias input
FBBI and the first switch control input FSCI, respectively.

Each of the first, the second, the third, and the fourth
body-contacted RF switches 92, 144, 146, 148 provides a
switched port of the RF switch system 142. The second, the
fourth, the sixth, and the eighth switch connection nodes 104,
154,158, 162 are coupled to an RF antenna 164. The first, the
third, the fifth, and the seventh switch connection nodes 102,
152, 156, 160 provide a first port 166, a second port 168, a
third port 170, and a fourth port 172, respectively. Therefore,
the first, the second, the third, and the fourth body-contacted
RF switches 92, 144, 146, 148 allow the first, the second, the
third, and the fourth ports 166, 168, 170, 172 to share the RF
antenna 164. Any or all of the first, the second, the third, and
the fourth ports 166, 168, 170, 172 may be coupled to RF
transmit circuitry (not shown), RF receive circuitry (not
shown), RF diplexers (not shown), RF duplexers (not shown),
the like (not shown), or any combination thereof (not shown).

The control circuitry 150 provides the first switch control
signal 112, a second switch control signal 174, a third switch
control signal 176, and a fourth switch control signal 178 to
the first switch control input FSCI, the second switch control
input SSCI, the third switch control input TSCIL, and the
fourth switch control input FOSCI, respectively. The control
circuitry 150 selects either the OFF state of the first body-
contacted RF switch 92 or the ON state of the first body-
contacted RF switch 92 and provides the first switch control
signal 112 based on the selected one of the OFF state and the
ON state to indicate which state was selected. The control
circuitry 150 selects either an OFF state of the second body-
contacted RF switch 144 or an ON state of the second body-
contacted RF switch 144 and provides the second switch
control signal 174 based on the selected one of the OFF state
and the ON state to indicate which state was selected. The
control circuitry 150 selects either an OFF state of the third
body-contacted RF switch 146 or an ON state of the third
body-contacted RF switch 146 and provides the third switch
control signal 176 based on the selected one of the OFF state
and the ON state to indicate which state was selected. The
control circuitry 150 selects either an OFF state of the fourth
body-contacted RF switch 148 or an ON state of the fourth
body-contacted RF switch 148 and provides the fourth switch
control signal 178 based on the selected one of the OFF state
and the ON state to indicate which state was selected.

The control circuitry 150 provides the first body bias con-
trol signal 114, a second body bias control signal 180, a third
body bias control signal 182, and a fourth body bias control
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signal 184 to the first body bias input FBBI, the second body
bias input SBBI, the third body bias input TBBI, and the
fourth body bias input FOBBI, respectively. The control cir-
cuitry 150 provides the first body bias control signal 114
based on the selected one of the OFF state and the ON state of
the first body-contacted RF switch 92 to provide the appro-
priate body biasing to the body-contacted FET elements (not
shown) in the first body-contacted RF switch 92. The control
circuitry 150 provides the second body bias control signal 180
based on the selected one of the OFF state and the ON state of
the second body-contacted RF switch 144 to provide the
appropriate body biasing to the body-contacted FET elements
(not shown) in the second body-contacted RF switch 144. The
control circuitry 150 provides the third body bias control
signal 182 based on the selected one of the OFF state and the
ON state of the third body-contacted RF switch 146 to pro-
vide the appropriate body biasing to the body-contacted FET
elements (not shown) in the third body-contacted RF switch
146. The control circuitry 150 provides the fourth body bias
control signal 184 based on the selected one of the OFF state
and the ON state of the fourth body-contacted RF switch 148
to provide the appropriate body biasing to the body-contacted
FET elements (not shown) in the fourth body-contacted RF
switch 148.

Alternate embodiments of the RF switch system 142 may
omit any or all of the second, the third, and the fourth body-
contacted RF switches 144, 146, 148, or may include addi-
tional body-contacted RF switches (not shown). Further, the
body-contacted RF switches may be arranged in any manner.

FIG. 14 shows the RF switch system 142 according to an
alternate embodiment of the RF switch system 142. The RF
switch system 142 illustrated in FIG. 14 is similar to the RF
switch system 142 illustrated in FIG. 13 except the RF switch
system 142 illustrated in FIG. 14 uses the second, the third,
and the fourth body-contacted RF switches 144,146, 148 in a
different manner. In FIG. 13, the second, the fourth, the sixth,
and the eighth switch connection nodes 104, 154,158,162 are
coupled to the RF antenna 164. The first, the third, the fifth,
and the seventh switch connection nodes 102, 152, 156, 160
provide the first, the second, the third, and the fourth ports
166,168, 170, 172, respectively. In FIG. 14, the third and the
fourth ports 170, 172 are omitted. The first and the third
switch connection nodes 102, 152 provide the first port 166,
and the fifth and the seventh switch connection nodes 156,
160 provide the second port 168. The second and the sixth
switch connection nodes 104, 158 are coupled to the RF
antenna 164, and the fourth and the eighth switch connection
nodes 154, 162 are coupled to ground. As such, the second
and the fourth body-contacted RF switches 144, 148 function
as shunt switches.

Normally, when the first body-contacted RF switch 92 is in
the OFF state, the second body-contacted RF switch 144 is in
the ON state and vice versa. By coupling the first switch
connection node 102 to ground when the first body-contacted
RF switch 92 is in the OFF state and the second body-con-
tacted RF switch 144 is in the ON state may improve isolation
characteristics of the first body-contacted RF switch 92. Simi-
larly, normally, when the third body-contacted RF switch 146
is in the OFF state, the fourth body-contacted RF switch 148
is in the ON state and vice versa. By coupling the fifth switch
connection node 156 to ground when the third body-con-
tacted RF switch 146 is in the OFF state and the fourth
body-contacted RF switch 148 is in the ON state may improve
isolation characteristics of the third body-contacted RF
switch 146. Alternate embodiments of the RF switch system
142 may omit any or all of the second, the third, and the fourth
body-contacted RF switches 144, 146, 148, or may include
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additional body-contacted RF switches (not shown). Further,
the body-contacted RF switches may be arranged in any
manner.

An application example of the RF switch system 142 is its
use in a mobile terminal 186, the basic architecture of which
is represented in FIG. 15. The mobile terminal 186 may
include a receiver front end 188, a radio frequency transmitter
section 190, an antenna 192, the RF switch system 142, a
baseband processor 194, a control system 196, a frequency
synthesizer 198, and an interface 200. The receiver front end
188 receives information bearing radio frequency signals
from one or more remote transmitters provided by a base
station (not shown). A low noise amplifier (LNA) 202 ampli-
fies the signal. A filter circuit 204 minimizes broadband inter-
ference in the received signal, while down conversion and
digitization circuitry 206 down converts the filtered, received
signal to an intermediate or baseband frequency signal, which
is then digitized into one or more digital streams. The receiver
front end 188 typically uses one or more mixing frequencies
generated by the frequency synthesizer 198. The baseband
processor 194 processes the digitized received signal to
extract the information or data bits conveyed in the received
signal. This processing typically comprises demodulation,
decoding, and error correction operations. As such, the base-
band processor 194 is generally implemented in one or more
digital signal processors (DSPs).

On the transmit side, the baseband processor 194 receives
digitized data, which may represent voice, data, or control
information, from the control system 196, which it encodes
for transmission. The encoded data is output to the transmitter
190, where it is used by a modulator 208 to modulate a carrier
signal that is at a desired transmit frequency. Power amplifier
circuitry 210 amplifies the modulated carrier signal to a level
appropriate for transmission, and delivers the amplified and
modulated carrier signal to the antenna 192 through the RF
switch system 142.

A user may interact with the mobile terminal 186 via the
interface 200, which may include interface circuitry 212 asso-
ciated with a microphone 214, a speaker 216, a keypad 218,
and a display 220. The interface circuitry 212 typically
includes analog-to-digital converters, digital-to-analog con-
verters, amplifiers, and the like. Additionally, it may include
a voice encoder/decoder, in which case it may communicate
directly with the baseband processor 194. The microphone
214 will typically convert audio input, such as the user’s
voice, into an electrical signal, which is then digitized and
passed directly or indirectly to the baseband processor 194.
Audio information encoded in the received signal is recov-
ered by the baseband processor 194, and converted by the
interface circuitry 212 into an analog signal suitable for driv-
ing the speaker 216. The keypad 218 and display 220 enable
the user to interact with the mobile terminal 186, input num-
bers to be dialed, address book information, or the like, as
well as monitor call progress information.

FIG. 16 is a graph illustrating a relationship between a
body-contacted RF switch OFF capacitance of the first body-
contacted RF switch 92 (FIGS. 13 and 14) and an absolute
value of reverse body biasing of the first body-contacted RF
switch 92. The body-contacted RF switch OFF capacitance is
between the first and the second switch connection nodes 102,
104 (FIGS. 13 and 14) when the first body-contacted RF
switch 92 is in an OFF state. As mentioned above, reverse
body biasing each FET element, which is in an OFF state, in
the first body-contacted RF switch 92 may reduce drain-to-
source capacitance of each FET element. Since the FET ele-
ments are coupled in series, the body-contacted RF switch
OFF capacitance may be reduced by the reverse body biasing.
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FIG. 16 shows that as the absolute value of the reverse body
biasing increases, the body-contacted RF switch OFF capaci-
tance decreases, which may effectively increase RF isolation
of'the first body-contacted RF switch 92. The insertion loss of
the first body-contacted RF switch 92 may be similar to the
insertion loss of a similarly constructed floating-body RF
switch. Therefore, reverse body biasing may improve the
trade-off between insertion loss and RF isolation.

Additionally, reverse body biasing may improve the linear-
ity of the first body-contacted RF switch 92 by operating
where the slope of the capacitance versus the reverse body
biasing curve illustrated in FIG. 16 is shallow instead of steep.
Linearity of an RF switch is provided by maintaining a con-
stant RF switch OFF capacitance over changes in magnitudes
of RF signal levels across the RF switch. RF signals across an
RF switch modulate the body biasing of the RF switch. How-
ever, modulating body biasing modulates the RF switch OFF
capacitance as illustrated in FIG. 16. As magnitudes of the RF
signals increase, magnitudes of the modulations increase,
thereby causing non-linearity in the RF switch 92. Further, by
examining the shape of the curve illustrated in FIG. 16, when
the absolute value of reverse body biasing is close to zero, the
slope of the curve is steep, thereby causing large modulations
of'the RF switch OFF capacitance due to modulations of the
body biasing. Such large modulations of the RF switch OFF
capacitance may cause significant non-linearity in the RF
switch. However, when the absolute value of reverse body
biasing is large, the slope of the curve is shallow, thereby
reducing modulations of the RF switch OFF capacitance due
to modulations of the body biasing. Such reduced modula-
tions of the body-contacted RF switch OFF capacitance may
significantly improve linearity in the first body-contacted RF
switch 92.

FIG. 17 is a graph illustrating a relationship between sec-
ond harmonic power of both floating-body and body-con-
tacted RF switches in an OFF state and input power to the RF
switches. Further, FIG. 18 is a graph illustrating a relationship
between third harmonic power of both floating-body and
body-contacted RF switches in an OFF state and input power
to the RF switches. Harmonic power may be one measure of
harmonic distortion, which may degrade the linearity of the
first body-contacted RF switch 92 (FIGS. 13 and 14). Har-
monic distortion may be caused by changes in the body-
contacted RF switch OFF capacitance resulting from the
time-varying nature of RF signals between the first and the
second switch connection nodes 102, 104 of the first body-
contacted RF switch 92. As mentioned above, the body-con-
tacted RF switch OFF capacitance may result from capaci-
tances of series-coupled FET elements in the first body-
contacted RF switch 92. Each FET element may have a drain-
to-body capacitance, a drain-to-gate capacitance, and a drain-
to-source capacitance. By applying reverse body biasing, the
drain-to-body capacitance may be reduced and may have a
reduced sensitivity to changes in input power, when com-
pared to a floating-body RF switch. As a result, as illustrated
in FIG. 17, the second harmonic power of the first body-
contacted RF switch 92 is slightly less than corresponding
second harmonic power of the floating-body RF switch.
However, as illustrated in FI1G. 18, the third harmonic power
of the first body-contacted RF switch 92 is significantly less
than the third harmonic power of the floating-body RF switch,
particularly as input power increases.

FIG. 19 shows a top view of details of the first body-
contacted FET element 46 illustrated in FIG. 4 according to
one embodiment of the first body-contacted FET element 46.
The first body-contacted FET element 46 illustrated in FIG.
19 is similar to the first body-contacted FET element 46
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illustrated in FIG. 7, except in the first body-contacted FET
element 46 illustrated in FIG. 19, the first gate 60 has multiple
gate fingers 222, the first source 50 has multiple source fin-
gers 224, and the first drain 54 has multiple drain fingers 226.
Each of the multiple gate fingers 222 may be between one of
the multiple source fingers 224 and one of the multiple drain
fingers 226. Further, each of the multiple source fingers 224
may have at least one of the first source contacts 64. Similarly,
each of the multiple drain fingers 226 may have at least one of
the first drain contacts 66. Other embodiments of the first
body-contacted FET element 46 may have any arrangement
of the first gate 60, the first drain 54, and the first source 50
including any number of source fingers 224, drain fingers
226, and gate fingers 222.

FIG. 20 shows a top view of details of the first body-
contacted FET element 46 illustrated in FIG. 4 according to
an alternate embodiment of the first body-contacted FET
element 46. The first body-contacted FET element 46 illus-
trated in FIG. 20 is similar to the first body-contacted FET
element 46 illustrated in FIG. 19, except in the first body-
contacted FET element 46 illustrated in FIG. 20, the multiple
gate fingers 222 are coupled together at both ends instead of
only at one end as illustrated in FIG. 19. Further, both ends of
the first gate 60 may have at least one first gate contact 62.

Some of the circuitry previously described may use dis-
crete circuitry, integrated circuitry, programmable circuitry,
non-volatile circuitry, volatile circuitry, software executing
instructions on computing hardware, firmware executing
instructions on computing hardware, the like, or any combi-
nation thereof. The computing hardware may include main-
frames, micro-processors, micro-controllers, DSPs, the like,
or any combination thereof.

None of the embodiments of the present disclosure are
intended to limit the scope of any other embodiment of the
present disclosure. Any or all of any embodiment of the
present disclosure may be combined with any or all of any
other embodiment of the present disclosure to create new
embodiments of the present disclosure.

Those skilled in the art will recognize improvements and
modifications to the preferred embodiments of the present
disclosure. All such improvements and modifications are con-
sidered within the scope of the concepts disclosed herein and
the claims that follow.

What is claimed is:

1. A semiconductor die comprising:

an insulating layer;

a thin-film semiconductor device layer over the insulating
layer;

a first body-contacted radio frequency (RF) switch having
one of an ON state and an OFF state, and a non-operating
state and comprising a first plurality of body-contacted
field effect transistor (FET) elements coupled in series,
such that each body-contacted FET element comprises a
source, a drain, and a body formed in at least a part of the
thin-film semiconductor device layer, wherein each one
of the first plurality of body-contacted FET elements are
separated from one another in the thin-film semiconduc-
tor device layer by an insulating material; and

control circuitry coupled to each one of the first plurality of
body-contacted FET elements, wherein during the OFF
state of the first body-contacted RF switch, the control
circuitry provides each body a body bias signal, such
that each body and each corresponding source are
reverse biased and each body and each corresponding
drain are reverse biased to provide reverse body biasing
of each corresponding body-contacted FET element.
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2. The semiconductor die of claim 1 wherein:
the control circuitry is further adapted to:
select the OFF state of the first body-contacted RF
switch; and
provide a first body bias control signal, such that each
body bias signal is based on the first body bias control
signal.

3. The semiconductor die of claim 2 wherein the first body-
contacted RF switch further comprises:

a first body bias input adapted to receive the first body bias

control signal; and

a resistor bias network comprising a plurality of body bias

resistive elements, such that each of at least some of the
plurality of body bias resistive elements is coupled
between a body of a corresponding one of the first plu-
rality of body-contacted FET elements and the first body
bias input.

4. The semiconductor die of claim 3 wherein:

the control circuitry is further adapted to provide a first

switch control signal based on one of the OFF state and
the ON state;

the first body-contacted RF switch further comprises a first

switch connection node and a second switch connection
node, such that all of the first plurality of body-contacted
FET elements are coupled in series between the first
switch connection node and the second switch connec-
tion node;

during the OFF state, the first body-contacted RF switch

has an OFF state impedance between the first switch
connection node and the second switch connection
node; and

during the ON state, the first body-contacted RF switch has

an ON state impedance between the first switch connec-
tion node and the second switch connection node.

5. The semiconductor die of claim 4 wherein:

the first body-contacted RF switch further comprises a first

switch control input adapted to receive the first switch
control signal; and

each of the first plurality of body-contacted FET elements

further comprises a gate, which is coupled to the first
switch control input.

6. The semiconductor die of claim 5 wherein the resistor
bias network further comprises a plurality of gate resistive
elements, such that each of at least some of the plurality of
gate resistive elements is coupled between the gate of a cor-
responding one of the first plurality of body-contacted FET
elements and the first switch control input.

7. The semiconductor die of claim 6 wherein:

during the OFF state:

the first switch connection node has a direct current
(DC) voltage equal to about zero volts;

the second switch connection node has a DC voltage
equal to about zero volts;

the first body bias control signal is equal to between
about -1 volt DC (VDC) and about -5VDC; and

the first switch control signal is equal to between about
-1VDC and about -5VDC; and

during the ON state:

the first switch connection node has a DC voltage equal
to about zero volts;

the second switch connection node has a DC voltage
equal to about zero volts;

the first body bias control signal is equal to about zero
volts; and

the first switch control signal is equal to between about
1VDC and about 5VDC.
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8. The semiconductor die of claim 1 wherein a thickness of
the thin-film semiconductor device layer is less than about
500 nanometers.
9. The semiconductor die of claim 8 wherein a thickness of
the insulating layer is greater than the thickness of the thin-
film semiconductor device layer.
10. The semiconductor die of claim 9 wherein the thickness
of'the thin-film semiconductor device layer is between about
100 nanometers and about 300 nanometers and the thickness
of the insulating layer is between about 200 nanometers and
about 1000 nanometers.
11. The semiconductor die of claim 9 further comprising a
substrate, such that the insulating layer is over the substrate,
and a resistivity of the substrate is greater than about 100
ohm-centimeters.
12. The semiconductor die of claim 1 wherein the source of
each of the first plurality of body-contacted FET elements and
the drain of each of the first plurality of body-contacted FET
elements completely traverse a thickness of the thin-film
semiconductor device layer.
13. The semiconductor die of claim 12 wherein:
the source of each of the first plurality of body-contacted
FET elements comprises N-type silicon;

the drain of each of the first plurality of body-contacted
FET elements comprises N-type silicon; and

the body of each of the first plurality of body-contacted
FET elements comprises P-type silicon.

14. The semiconductor die of claim 12 wherein:

the source of each of the first plurality of body-contacted
FET elements comprises P-type silicon;

the drain of each of the first plurality of body-contacted
FET elements comprises P-type silicon; and

the body of each of the first plurality of body-contacted
FET elements comprises N-type silicon.
15. The semiconductor die of claim 1 wherein the first
body-contacted RF switch further comprises a first switch
connection node and a second switch connection node, such
that:
all of the first plurality of body-contacted FET elements are
coupled in series between the first switch connection
node and the second switch connection node; and

during the OFF state of'the first body-contacted RF switch,
an RF signal between the first switch connection node
and the second switch connection node is distributed
across the first plurality of body-contacted FET ele-
ments.

16. The semiconductor die of claim 15 wherein a frequency
of'the RF signal is greater than about 100 megahertz.

17. The semiconductor die of claim 16 wherein during the
OFTF state of the first body-contacted RF switch, the RF signal
between the first switch connection node and the second
switch connection node is distributed about equally across the
first plurality of body-contacted FET elements.

18. The semiconductor die of claim 1 further comprising a
substrate wherein:

the insulating layer is over the substrate; and

the insulating layer substantially eliminates conduction

paths through the substrate to the other devices.

19. The semiconductor die of claim 1 wherein the thin-film
semiconductor device layer is partially-depleted and not
fully-depleted.

20. The semiconductor die of claim 1 further comprising a
second body-contacted RF switch coupled between the first
body-contacted RF switch and ground.

21. The semiconductor die of claim 1 wherein the thin-film
semiconductor device layer comprises silicon.
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22. The semiconductor die of claim 21 further comprising
a silicon-on-insulator (SOI) substrate, such that:

the semiconductor die is an SOI semiconductor die;

the insulating layer is an SOl insulating layer, which is over

the SOI substrate; and

the thin-film semiconductor device layer is a thin-film SOI

device layer.

23. The semiconductor die of claim 1 wherein the insulat-
ing layer provides a substrate of the semiconductor die.

24. The semiconductor die of claim 23 wherein the insu-
lating layer comprises sapphire.

25. The semiconductor die of claim 1 further comprising a
plurality of drain-to-source resistive elements, such that each
of the plurality of drain-to-source resistive elements is
coupled between a corresponding drain and a corresponding
source of the first plurality of body-contacted FET elements.

#* #* #* #* #*
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