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SHARING DATA FABRIC FOR 
COHERENT-DISTRIBUTED CACHING OF 
MULTI-NODE SHARED-DISTRIBUTED 

FLASH MEMORY 

RELATED APPLICATIONS 

This application claims the bene?t of US. Provisional 
Application No. 61/038,336 ?led Mar. 20, 2008. This appli 
cation is a Continuation-In-Part (CIP) of the co-pending US. 
application for “System Including a Fine-Grained Memory 
and a Less-Fine-Grained Memory”, U.S. Ser. No. 12/130, 
661, ?led May 30, 2008, and the co-pending PCT application 
for “System Including a Less-Fine-Grained Memory and a 
Fine-Grained Memory with a Write Buffer for the Less-Fine 
Grained Memory”, U.S. Ser. No. PCT/US08/65167, ?led 
May 29, 2008, hereby incorporated by reference. 

FIELD OF THE INVENTION 

This invention relates to shared multi-node storage sys 
tems, and more particularly to coherent caching of objects in 
a shared, global ?ash memory. 

BACKGROUND OF THE INVENTION 

Demand for computer disk storage has increased sharply in 
the last decade. Computer hard-disk technology and the 
resulting storage densities have grown rapidly. Despite appli 
cation-program bloat, a substantial increase in web sites and 
their storage requirements, and wide use of large multimedia 
?les, disk-drive storage densities have been able to keep up. 
Disk performance, however, has not been able to keep up. 
Access time and rotational speed of disks, key performance 
parameters in many applications, have only improved incre 
mentally in the last 10 years. 
Web sites on the Internet may store vast amounts of data, 

and large web server farms may host many web sites. Storage 
Area Networks (SANs) are widely used as a centralized data 
store. Another widespread storage technology is Network 
Attached Storage (NAS). These disk-based technologies are 
now widely deployed but consume substantial amounts of 
power and can become a central-resource bottleneck. The 
recent rise in energy costs makes further expansion of these 
disk-based server farms undesirable. Newer, lower-power 
technologies are desirable. 

FIG. 1 highlights a prior-art bottleneck problem with a 
distributed web-based database server. A large number of 
users access data in database 16 through servers 12 on web 10. 
Web 10 can be the Internet, a local Intranet, or other network. 
As the number of users accessing database 16 increases, 
additional servers 12 may be added to handle the increased 
workload. However, database 16 is accessible only through 
database server 14. The many requests to read or write data in 
database 16 must funnel through database server 14, creating 
a bottleneck that can limit performance. 

FIG. 2 highlights a coherency problem when a database is 
replicated to reduce bottlenecks. Replicating database 16 by 
creating a second database 16' that is accessible through sec 
ond database server 14' can reduce the bottleneck problem by 
servicing read queries. However, a new coherency problem is 
created with any updates to the database. One user may write 
a data record on database 16, while a second user reads a copy 
of that same record on second database 16'. Does the second 
user read the old record or the new record? How does the copy 
of the record on second database 16' get updated? Complex 
distributed database software or a sophisticated scalable clus 
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2 
tered hardware platform is needed to ensure coherency of 
replicated data accessible by multiple servers. 
Adding second database 16' increases the power consump 

tion, since a second set of disks must be rotated and cooled. 
Operating the motors to physically spin the hard disks and run 
fans and air conditioners to cool them requires a substantially 
large amount of power. 

It has been estimated (by J. Koomey of Stanford Univer 
sity) that aggregate electricity use for servers doubled from 
2000 to 2005 both in the US. and worldwide. Total power for 
servers and the required auxiliary infrastructure represented 
about 1.2% of total US electricity consumption in 2005. As 
the Internet and its data storage requirements seem to increase 
exponentially, these power costs will ominously increase. 

Flash memory has replaced ?oppy disks for personal data 
transport. Many small key-chain ?ash devices are available 
that can each store a few GB of data. Flash storage may also 
be used for data backup and some other specialized applica 
tions. Flash memory uses much less power than rotating hard 
disks, but the different interfacing requirements of ?ash have 
limited its use in large server farms. The slow write time of 
?ash memory complicates the coherency problem of distrib 
uted databases. 
What is desired is a large storage system that uses ?ash 

memory rather than hard disks to reduce power consumption. 
A ?ash memory system with many nodes that acts as a global 
yet shared address space is desirable. A global, shared ?ash 
memory spread across many nodes that can coherently share 
objects is desirable. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 highlights a prior-art bottleneck problem with a 
web-based database server. 

FIG. 2 highlights a coherency problem when a database is 
replicated to reduce bottlenecks. 

FIG. 3 shows a global, shared ?ash memory that appears to 
be a single global address space to multiple servers connected 
to a Sharing Data Fabric (SDF). 

FIG. 4 shows a hardware node in a global, shared ?ash 
memory system. 

FIG. 5 is a layer diagram of software and hardware layers 
in a ?ash memory system using a shared data fabric to enable 
global sharing of a distributed ?ash memory. 

FIG. 6 is a transaction diagram of services and interfaces to 
a shared data fabric. 

FIG. 7 shows permanent objects in ?ash memory being 
copied to DRAM caches on multiple nodes. 

FIG. 8 shows an action node requesting an object from a 
home node that fetches a modi?ed object on a sharing node 
using transaction tables and an object directory. 

FIG. 9 is a storage ?ow model of an action node requesting 
an object from ?ash memory at a home node. 

FIG. 10 is a storage ?ow model of an action node request 
ing an object from ?ash memory at a home node using an 
asynchronous SDF thread at the action node. 

FIG. 11 is a snapshot state diagram of a compute node that 
can act as an action, home, or sharing node. 

FIG. 12 shows a hit in the object cache of the action node. 
FIG. 13 shows a get operation that misses in the object 

cache of the action node, and fetches the object from ?ash 
memory of the home node. 

FIG. 14 shows a get operation that misses in the object 
cache of the action node, and fetches a modi?ed copy of the 
object from a third-party node. 
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FIG. 15 shows a get operation that misses in the object 
cache of the action node, and directly fetches a modi?ed copy 
of the object from a third-party node. 

FIG. 16 shows a lock operation. 

DETAILED DESCRIPTION 

The present invention relates to an improvement in global, 
shared ?ash memory systems. The following description is 
presented to enable one of ordinary skill in the art to make and 
use the invention as provided in the context of a particular 
application and its requirements. Various modi?cations to the 
preferred embodiment will be apparent to those with skill in 
the art, and the general principles de?ned herein may be 
applied to other embodiments. Therefore, the present inven 
tion is not intended to be limited to the particular embodi 
ments shown and described, but is to be accorded the widest 
scope consistent with the principles and novel features herein 
disclosed. 

The inventors have realized that power consumption can be 
dramatically reduced by replacing rotating hard disks with 
?ash memory. The ?ash memory can be distributed across 
many physical nodes, and each node can have a processor that 
can process user requests and system-management threads. 

Dynamic-random-access memory (DRAM) on each of the 
physical nodes can cache data or objects that are normally 
stored in ?ash memory. Coherency among objects in ?ash and 
in DRAM can be ensured by a Sharing Data Fabric (SDF) 
middleware layer. SDF includes an interface for communica 
tions between high-level programs and lower-level hardware 
controllers and their software and ?rmware drivers. SDF is 
accessible by high-level application programs using an appli 
cations-programming interface (API). Communication 
between nodes to ensure coherency is performed by SDF 
threads. 

The DRAM cache may hold copies of objects stored in the 
local node’s ?ash memory, or copies of ?ash objects stored in 
another node’s ?ash memory. Global caching is achieved by 
the SDF, which enables the local DRAM cache to store copies 
of objects from other nodes. Objects can reside anywhere in a 
shared, global address space. The SDF copies objects to 
DRAM caches on any node while ensuring consistency. 

This distributed caching of ?ash is extremely useful since 
a process such as a web server running on one node’s proces 

sor may access data stored on any of the nodes. The system 
can be scaled up by adding nodes. Normally, adding nodes 
slows a system down, since bottlenecks may occur to data 
stored in just one location on a remote node, such as shown on 
FIG. 1. However, using SDF, data or objects may be cached 
on one or more nodes, allowing multiple processors to access 
the same data. Coherency of the cached objects is important 
to prevent data corruption. 

FIG. 3 shows a global, shared ?ash memory that appears to 
be a single global address space to multiple servers connected 
to a sharing data fabric (SDF). Central Processing Units 
(CPUs) or processors 18, 18' can execute programs such as 
server applications to process requests that arrive over a net 
work such as the Intemet. Each of processors 18 has a cache 
of DRAM 22 that contain local copies of objects. These local 
copies in DRAM 22 are accessed by processors 18 in 
response to requests from external users. 

While DRAM 22, 22' stores transient copies of objects, the 
objects are more permanently stored in ?ash memory 24, 24'. 
Objects remain in ?ash memory 24, 24' and are copied to 
caches in DRAM 22, 22' in response to access requests by 
programs running on processors 18, 18'. 
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Sharing data fabric (SDF) 20 is a middleware layer that 

includes SDF threads running on processors 18, 18', andAPIs 
and tables of data. A physical interconnect such as an Ethernet 
or In?niBand® fabric connect physical nodes together. 
Object copies are transferred across the physical interconnect 
by SDF 20 from ?ash memory 24, 24' to cache DRAM 22, 22', 
and among DRAM 22, 22' caches as needed to ensure coher 
ency of object copies. 

Flash memory 24, 24' can be physically located on many 
nodes, such as having one ?ash memory 24 for each processor 
18, or in other arrangements. SDF 20 makes all the objects 
stored in ?ash memory 24, 24' appear to be stored in a global 
address space, even though the global address spaced is 
shared among many processors 18, 18'. Thus ?ash memory 
24, 24' together appear to be one global, shared ?ash memory 
26 via SDF 20. 

FIG. 4 shows a hardware node in a global, shared ?ash 
memory system. A ?ash memory system has multiple nodes 
such as shown in FIG. 4. The multiple nodes are connected 
together by a high-speed interconnect such as an Ethernet or 
In?niBand. One or more links in this high-speed interconnect 
connect to Network Interface Controller (N IC) 3 6 on the node 
shown in FIG. 4. 

Processor 18 executes application programs, threads, and 
other routines and accesses a local memory that stores pro 
gram code and data, such as DRAM 22. DRAM 22 also acts 
as a DRAM cache of objects in the global, shared ?ash 
memory. 

Processor 18 also connects to switch 30. Switch 30 may be 
a PCI EXPRESS switch. Switch 30 allows processor 18 to 
communicate with other nodes through NIC 36 to send and 
receive object copies and coherency commands. Flash mod 
ules 34 contain arrays of ?ash memory that store permanent 
objects. Flash modules 34 are accessed by processor 18 
through switch 30. 

FIG. 5 is a layer diagram of software and hardware layers 
in a ?ash memory system using a shared data fabric to enable 
global sharing of a distributed ?ash memory. Sharing data 
fabric services 116 include API’s that application programs 
122 or networked services 118 can use to access objects and 
control attributes of the objects. Sharing data fabric services 
116 are the API’ s that communicate with routines and threads 
in sharing data fabric 112 that provide a uni?ed shared data 
access of objects that are permanently stores in ?ash memory 
102, and may maintain cached copies in DRAM in compute 
nodes 114. 
Compute nodes 114 are compute nodes, such as node 100 

shown in FIG. 4, with processors, DRAM caches of objects, 
and interconnect. These compute nodes may be constructed 
from commodity parts, such as commodity processors, inter 
connect switches and controllers, and DRAM memory mod 
ules. 

Sharing data fabric services 116 allow application pro 
grams 122 and networked services 118 to control policies and 
attributes of objects by executing routines and launching 
threads of sharing data fabric 112 that are executed on com 
pute nodes 114. The exact location of objects within ?ash 
memory 102 is transparent to application programs 122 and 
networked services 118 since sharing data fabric 112 copies 
objects from ?ash memory 102 to DRAM caches in compute 
nodes 114 and may obtain a copy from any location in ?ash 
memory 102 that has a valid copy of the object. Objects may 
be replicated to make back-up copies in ?ash memory 102. 

Sharing data fabric 112 performs consistency and coher 
ency operations such as ?ushing modi?ed objects in a DRAM 
cache to copy back and update the permanent object in ?ash 
memory 102. Sharing data fabric 112 may also migrate ?ash 




















