
(12) United States Patent
O’Krafka et al.

US008732386B2

US 8,732,386 B2
May 20, 2014

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

(58)

SHARING DATA FABRIC FOR
COHERENT-DISTRIBUTED CACHING OF
MULTI-NODE SHARED-DISTRIBUTED
FLASH MEMORY

Inventors: Brian Walter O’Krafka, Austin, CA
(US); Michael John Koster, Bridgeville,
CA (US); Darpan Dinker, Union City,
CA (US); Earl T. Cohen, Oakland, CA
(US); Thomas M. McWilliams,
Oakland, CA (US)

Assignee: Sandisk Enterprise IP LLC., Milpitas,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 929 days.

Appl. N0.: 12/197,s99

Filed: Aug. 25, 2008

Prior Publication Data

US 2009/0240869 A1 Sep. 24, 2009

Related US. Application Data

Continuation-in-part of application No. 12/ 130,661,
?led on May 30, 2008, noW Pat. No. 7,975,109.

Provisional application No. 61/038,336, ?led on Mar.
20, 2008.

Int. Cl.
G06F 12/00 (2006.01)
US. Cl.
USPC 711/103;711/148; 711/E12.008

Field of Classi?cation Search
USPC 711/103, 148, E12.008

See application ?le for complete search history.

112191.199?

7: PUT FLASH OBJ
IN OBJ CACHE

(56) References Cited

U.S. PATENT DOCUMENTS

4,916,605 A 4/1990 Beardsley et a1.
5,046,002 A 9/1991 Takashi et a1.
5,057,996 A 10/1991 Cutler et a1.
5,117,350 A 5/1992 Parrish et a1.
5,212,789 A 5/1993 Rago
5,287,496 A 2/1994 Chen et a1.
5,297,258 A 3/1994 Hale et a1.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1548600 Bl 1/2007
EP 1746510 Al 1/2007

OTHER PUBLICATIONS

Bsn-modulestore, Versioning Concept, Oct. 13, 2010, 2 pgs.
Btrfs, http://en.wikipedia.0rg, Oct. 3, 2011, 9 pgs.

(Continued)
Primary Examiner * Larry Mackall

(74) Attorney, Agent, or Firm * Morgan, LeWis & Bockius
LLP

(57) ABSTRACT
A Sharing Data Fabric (SDF) causes ?ash memory attached
to multiple compute nodes to appear to be a single large
memory space that is global yet shared by many applications
running on the many compute nodes. Flash objects stored in
?ash memory of a home node are copied to an object cache in
DRAM at an action node by SDF threads executing on the
nodes. The home node has a ?ash object map locating ?ash
objects in the home node’s ?ash memory, and a global cache
directory that locates copies of the object in other sharing
nodes. Application programs use an applications-program
ming interface (API) into the SDF to transparently get and put
objects Without regard to the object’s location on any of the
many compute nodes. SDF threads and tables control coher
ency of objects in ?ash and DRAM.

24 Claims, 15 Drawing Sheets

OBJ

90 APP 92
TRD

FLASH
OBJ Q

4: LOCATE OBJ
U IN FLA HMAP

2' Egg 0
ME

2 9

99"
GET MISS FROM HOME FLASH

US 8,732,386 B2
Page 2

(56) References Cited 2003/0220985 A1 11/2003 Kawamoto et al.
2004/0010502 A1 1/2004 Bom?m et a1.

U_S_ PATENT DOCUMENTS 2004/0078379 A1 4/2004 Hinshaw et al.
2004/0143562 A1 7/2004 Chen et al.

5394555 A 2/1995 Hunter et 31, 2004/0148283 A1* 7/2004 Harris et a1. 707/5
5,403,639 A 4/1995 Belsan et 31, 2004/0172494 A1* 9/2004 Pettey et a1. 710/305
5,423,037 A 6/1995 Hvasshovd 2004/0205151 A1 10/2004 Sprigg et al.
5,509,134 A 4/1996 Fandrich et a1, 2004/0267835 A1 12/2004 ZWilling et al.
5537534 A 7/1996 Voigt et al‘ 2005/0005074 A1 1/2005 Landin et al.
5,603,001 A * 2/1997 Sukegawa 6131. 711/103 2005/0021565 A1 1/2005 Kapoor er al~
5,611,057 A 3/1997 pecone et al‘ 2005/0027701 A1 2/2005 Zane et al.
5,613,071 A * 3/1997 Rankin et al‘ ““““““““““““““ N 1/1 2005/0028134 A1 2/2005 Zane et al.
5,680,579 A 10/1997 Young et 31‘ 2005/0034048 A1 2/2005 Nemawarkar et a1.
5,692,149 A 11/1997 Lee 2005/0081091 A1 4/2005 Bartfai et a1.
5,701,480 A 12/1997 Raz 2005/0086413 A1 4/2005 Lee et al.
5,742,787 A * 4/1998 Talreja ,,,,,,,,,,,,,,,,,,,,,,,, n 711/103 2005/0120133 A1* 6/2005 Slack-Smith 709/234

5,887,138 A 3/1999 Hagersten et a1. 2005/0131964 A1 6/2005 SaXena
5,897,661 A 4/1999 Bamnovsky et 31‘ 2005/0240635 A1 10/2005 Kapoor et al.
5,897,664 A 4/1999 Nesheim et al‘ 2005/0246487 A1 11/2005 Ergan et al.
5963983 A 10/1999 Sakakura et 31‘ 2006/0059428 A1 3/2006 Humphries et al.
6,000,006 A 12/1999 Bruce et al‘ 2006/0161530 A1 7/2006 Biswal et a1.
6,052,815 A 4/2000 Zook 2006/0174063 A1 8/2006 Soules et al.
6,130,759 A 10/2000 Blair 2006/0174069 A1* 8/2006 Shaw et al. 711/146
6,141,692 A 10/2000 Loewenstein et al‘ 2006/0179083 A1 8/2006 Kulkarni et al.
6,216,126 B1 4/2001 Ronstrom 2006/0195648 A1 8/2006 Chandrasekaran et al.
6,298,390 B1 10/2001 Matena et a1, 2006/0212795 A1 9/2006 Cottrille et al.
6,308,169 B1 10/2001 Ronstrom et a1. 2006/0218210 A1 9/2006 Sarma er 91
6,434,144 B1 8/2002 Romanov 2006/0242163 A1 10/2006 Miller et al.
6,467,060 B1 10/2002 Malakapalli et a1. 2007/0043790 A1 2/2007 Kryger
6,615,313 B2 9/2003 Kato et al‘ 2007/0143368 A1 6/2007 Lundsgaard et al.
6,658,526 B2 12/2003 Nguyen et al‘ 2007/0174541 A1 7/2007 Chandrasekaran et al.
6,728,826 B2 4/2004 Kaki et al‘ 2007/0234182 A1 10/2007 Wickeraad et al.
6,745,209 B2 6/2004 Holenstein et a1. 2007/0276784 A1 11/2007 Piedmonte
6,874,044 B1 3/2005 Chou et a1, 2007/0283079 A1 12/2007 Iwamura et al.
6,938,084 B2 8/2005 Gamache et al‘ 2007/0288692 A1 12/2007 Bruce et al.
6,981,070 B1 12/2005 Luk et al‘ 2007/0294564 A1 12/2007 Reddin et a1.
7,003,586 B1 2/2006 Bailey et al‘ 2007/0299816 A1 12/2007 Arora et al.
7,010,521 B2 3/2006 Hinshaw et a1, 2008/0034076 A1 2/2008 Ishikawa et al.
7,043,621 B2 5/2006 Merchant et al‘ 2008/0034174 A1 2/2008 Traister et al.
7,082,481 B2 7/2006 Lambrache et a1, 2008/0034249 A1 2/2008 Husain et al.
7,162,467 B2 1/2007 Eshleman et al‘ 2008/0046538 A1 2/2008 Susarla et a1.
7,200,718 B2 4/2007 Duzett 2008/0046638 A1 2/2008 Maheshwari et a1.
7,203,890 B1 4/2007 Normoyle 2008/0288713 A1 11/2008 Lee et al.
7,249,280 B2 7/2007 Lamport et al‘ 2009/0006500 A1 1/2009 Shiozawa et al.
7,269,708 B2 9/2007 Ware 2009/0006681 A1 1/2009 Hubert et al.
7,269,755 B2 9/2007 Moshayedi et 31‘ 2009/0019456 A1 1/2009 Saxena et al.
7,272,605 B1 9/2007 Hinshaw et a1, 2009/0024871 A1 1/2009 EmaI'u et al.
7,272,654 B1 9/2007 Brendel 2009/0030943 A1 1/2009 Kall
7,281,160 B2 10/2007 Stewart 2009/0070530 A1 3/2009 Satoyama et al.
7,305,386 B2 12/2007 Hinshaw et a1. 2009/0150599 A1 6/2009 Bennett
7,334,154 B2 2/2008 Lorch et al‘ 2009/0177666 A1 7/2009 Kaneda
7,359,927 B1 4/2008 Cardente 2010/0125695 A1 5/2010 Wu et al.
7,383,290 B2 6/2008 Mehra et 31‘ 2010/0241895 A1 9/2010 Li et al.
7,406,487 B1 7/2008 Gupta et al‘ 2010/0262762 A1 10/2010 Borchers et a1.
7,417,992 B2 8/2008 Krishnan 2010/0318821 A1 12/2010 Kwan et a1.
7,467,265 B1 12/2008 Tawri et al‘ 2011/0022566 A1 1/2011 Beaverson et al.
7,529,882 B2 5/2009 Wong 2011/0082985 A1 4/2011 Haines et al.
7,542,968 B2 6/2009 Yokomizo et a1. 2011/0167038 A1 7/2011 Wang et al~
7,562,162 B2 7/2009 Kreiner et al‘ 2011/0179279 A1 7/2011 Greevenbosch et al.
7,584,222 B1 9/2009 Georgiev 2011/0185147 A1 7/2011 Hat?eld et al.
7,610,445 B1 10/2009 Manus et al.
7,647,449 B1 1/2010 Roy et a1. OTHER PUBLICATIONS
7,809,691 B1 10/2010 Karmarkar et al. _ _
7,822,711 B1 10/2010 Ranade Chacon, G1t, The Fast Vers1on Control System, Oct. 3, 2011, 3 pgs.
7,885,923 B1 2/ 2011 Tawri et al, RICE, EXtension Versioning, Update and Compatibility, Aug. 9,
7,917,472 B2 3/2011 Persson 2011, 11 pgs.

et 31~ RICE, Toolkit Version Format, Aug. 19, 2011, 4 pgs.
, , nner

8,0245 15 B 2 9/201 1 Auerbach et al‘ Email Commun1cat10n from James BodW1n to Chr1stopher Brokaw

8,069,328 B2 11/2011 Pyeon rePnOr am Sep' 13,2011’413‘53'.
8,239,617 B1 8/2012 Linnell G1t (Software), http://en.W1k1ped1a.org, Oct. 3, 2011, 10 pgs.
8,261,289 B2 9/2012 Kasravi et 31‘ Vijaykumar, Speculative Versioning Cache, Dec. 1, 2001, 13 pgs.
8,321,450 B2 11/2012 Thane et 31, Hitz, File System Design for an NFS File Server Appliance, Jan. 19,
8,335,776 B2 12/2012 Gokhale 1994, 23 P89
8,370,853 B2 2/ 2013 Giampaolo et 31, McDonald, Architectural Semantics for Practical Transactional
8,401,994 B2 3/2013 Hoang 6161. Memory,1un,2006, 12 P89

2002/0166031 A1 11/2002 Chen et a1. McGonigle, A Short History ofbtrfs, Aug. 14, 2009, 11 pgs.
2002/0184239 A1 12/2002 Mosher, Jr. et a1. Mellor, ZFSithe future of ?le systems? Aug. 14, 2006, 5 pgs.
2003/0016596 A1 * 1/2003 Chiquoine et al. 369/34.01 Mercurial, http://en.Wikipedia.org, Oct. 2, 2011, 6 pages.

US 8,732,386 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Module: Mongoid: Versioning, http://rdoc.info, Documentation by
YARD 0.7.2, 6 pages Oct. 3, 2011.
Noach, Database Schema under Version Control, code.openarck.org,
Apr. 22, 2010, 6 pages.
Reiser FS, , http://enwikipediaorg, Sep. 17, 2011, 5 pgs.
Russell, Track and Record Database SchemaVersions, Jun. 28, 2005,
8 pgs.

Schooner Information Technology, IPAF, PCT/US2008/065167,
Oct. 23, 2008, 7 pgs.
Schooner Information Technology, ISIUWO, PCT/US2008/065167,
Jan. 28, 2009, 16 pgs.
SQL Server Database Schema Versioning and Update, Dec. 2, 2009,
2 pgs.

Suf?ciently Advanced Bug, File Versioning, Caching and Hashing,
Oct. 3, 2011, 3 pgs.
BuchholZ, The Structure of the Reiser File System, Jan. 26, 2006, 21

The Z File System (ZFS), FreeBSD Handbook, Oct. 3, 2011, 8 pgs
(Author not provided).
Tux3 Linux Filesystem Project, 2008, 1 pg.
Tux3 Versioning Filesystem, Jul. 2008, 67 pgs.
Tux3, http://en.wikipedia.org, Jun. 2, 2010, 3 pgs.
WAFLiWrite Anywhere File Layout, 1999, 1 pg.
Write Anywhere File Layout, Sep. 9, 2011, 2 pgs.
ZFS, , http://en.wikipedia.org Sep. 30, 2011, 18 pgs.
Ajmani, Automatic Software Upgrades for Distributed Systems,
MIT, Sep. 2004, 164 pgs.
Amza, Data Replication Strategies for Fault Tolerance and Availabil
ity on Commodity Clusters, 2000, 9 pgs.

* cited by examiner

US. Patent May 20, 2014 Sheet 1 0f 15 US 8,732,386 B2

BOTTLENECK
PROBLEM

PRIOR ART

FIG. 1

FIG. 2

=?
4' """ "> POWER

W
COHERENCY
PROBLEM

US. Patent May 20, 2014 Sheet 2 0f 15 US 8,732,386 B2

CPU CPU CPU ,

(SVR) E (SVR) E ' ' ' (SVR)E

DRAM DRAM DRAM ,
CACHE Q CACHE 2—2- ' ' ° CACHEZZ—

SHARING DATA FABRIC (SDF)

E FLASH FLASH FLASH ;
i MEM MEM ' ' ' MEM .

26 GLOBAL, SHARED FLASH MEMORY I

US. Patent May 20, 2014 Sheet 3 0f 15 US 8,732,386 B2

I

DRAM
Q _

E

‘ 2 CPU
1§

PCIE SWITCH
Q

FLASH 34
— NIC'

MODULES @

ETHERNET
OR INFINIBAND

_ 4 TO OTHER NODES
AND EXTERNAL L/B

US. Patent May 20, 2014 Sheet 4 0f 15 US 8,732,386 B2

APPLICATION PROGRAM(S) 122

(NETWORKED DATABASES,
DISTRIBUTED APPS,

NETWORKEDSERV'CES LE TRANSACTIONALCACHING)

SHARING DATA FABRIC SERVICES (UNIFIED SHARED DATA ACCESS
(API'S) m ACROSS NODES',ATTRIBUTES,

POLICIES, USER-CONTROL)

COMMODHY
COMPUTE
NODES m

(TRANSPARENT LOCATION,
REPLICATION, CONSISTENCY,

SHARING DATA FABRIC 1_1_2 MIGRATION,VERS|ON LOGS,
CACHING IN DRAM)

INTERCONNECT 1_IQ (PCIE SWITCHES, GB ETHERNET)

FLASH MGT 108 (WEAR-LEVEL, CACHINC,
— LOGS, WRITE BUFFER)

FLASH INTERFACE m

FLASH FLASH FLASH FLASH h
CTLR ' CTLR CTLR CTLR 104

FLASH FLASH FLASH FLASH h
MEM MEM MEM MEM 102

FIG. 5

US. Patent May 20, 2014 Sheet 5 0f 15 US 8,732,386 B2

APPLICATION PROGRAM(S)

l SHARING DATA FABRIC :
3 SERVICES (API'S) 116 i

l ISDF_GET SDF_START SDF_CREATE():
ISDF_PUT SDF_ABORT SDF_OPEN()
{SDF_LOCK SDF_COMM|T SDF_CLOSE()
ISDF_UNLOCK SDF_SAVEPOINT SDF_DELETE()§

L

SHARING DATA FABRIC m

LOCK NODE SHARING CACHE
TBL MAP DIR MAP

F I
GET()

5 PUT() E;
: LOCKO FLASH MGT lqg
5 UNLOCK() a
i START() : SEND() READO
s . WRITE() , ABORT() RECEIVE()

L ' FLASH INTERFACE 106
NETWORK INTERFACE 120 —

FIG. 6

US 8,732,386 B2 Sheet 6 0f 15 May 20, 2014 US. Patent

w .GE

o a u n n a a a o nu

on
Q.

uu.
una

Q I I O I l l O O I I I I I O I I O I I I I I I O O O O O O I O O O I I O I I.

n

u a u a a n c.
00- a

S S S S S :W
... 22 92 . 22 22 22 92..

$. m

.. limo .. .b Q I HIV .’ vm ?mO wN 30

..S 19E :2:

26

3% NN 52% 3% mm 52% 3% NN 2% Q @002 m wooz < wooz

US 8,732,386 B2 Sheet 7 0f 15 May 20, 2014 US. Patent

"$5 6.55 9%,; SE

QM % olm mm mm %

22 22 Q2 Q2 22 22 .

Q Q r? u

Bo Bo m-Eb m

vIN SE50: 55 v.. m ES
I m l l

:2: $ § 12¢ 55 12: Q 42

....................... .. | E; I I
2 | 2 I 2 I .

Eu NW 52% 20 NN 55¢ 20 mm 52%
? maoz oz_~_<_._w w $02 25: % $02 232

US 8,732,386 B2 Sheet 11 0f 15 May 20, 2014 US. Patent

a
:2: a “#2 8

-l..l. .lH-l. Nil“... H lllllllllll I I. le 1%“ ? 05

Bo

? ma w

$86 52%

u :2: 30 u m m m5 w m .

l 150.6 52% " NF mv_n_

S £35.29

@ a &< 8
a -.w.@@.z.€._§

US 8,732,386 B2 Sheet 13 0f 15 May 20, 2014 US. Patent

m5 .2530 2_ .51 um

30 .002 zmzhmm no

l | @

12: am a &< a W563; 195 N. -l..|.q.u.l..l..0.4.|.. I l I l l I l I llll. Hm .l..|..l.4.l..l..|.n.l..l.||0| ll

m $3: $96 m mmwmsz
3o " 3d “W.” . v a . . - . :m I n g “Mun u . . . - o - :m

"H 2 g? a n I. 2 m?

| 5% n 5; | ma?a mm ----.m@.%-§<n_...%? a , -----.w.@%.z%

US 8,732,386 B2 Sheet 14 0f 15 May 20, 2014 US. Patent

81502 592% TE; ww__>_ 50 II

@201 20%

m? ._O_n_ Boowmuw
onZ 0% 56% NW ma 5on Bo SE50: Sm “w m5oz 25: mmEBmD mzoI moOz zOF0< OP PQmmE BO .002 zmshmm “w

$.30 9: a :2: “am a &< 8

m 05 m
30 u

- -. -
? mam m m

| 2% u

a -wmmz?w?dm?

M20: 9. v6< “w | @
mIo<o $0 2_ ijm N.

_..m0 .002 .51 K
a QmIEOE 04mm um

? ER w “ma?a 5%
mooz 20:.2

.

............... .. .

.

US 8,732,386 B2 Sheet 15 0f 15 May 20, 2014 US. Patent

mezamm x004

x004

.H. - - - - . - - . . - .

? 22 m

£66 52%

Ill - :

mm mQOz >._.m<m-om_I._.

213.51 6 $ 12: a &< a

wooz 29H?

US 8,732,386 B2
1

SHARING DATA FABRIC FOR
COHERENT-DISTRIBUTED CACHING OF
MULTI-NODE SHARED-DISTRIBUTED

FLASH MEMORY

RELATED APPLICATIONS

This application claims the bene?t of US. Provisional
Application No. 61/038,336 ?led Mar. 20, 2008. This appli
cation is a Continuation-In-Part (CIP) of the co-pending US.
application for “System Including a Fine-Grained Memory
and a Less-Fine-Grained Memory”, U.S. Ser. No. 12/130,
661, ?led May 30, 2008, and the co-pending PCT application
for “System Including a Less-Fine-Grained Memory and a
Fine-Grained Memory with a Write Buffer for the Less-Fine
Grained Memory”, U.S. Ser. No. PCT/US08/65167, ?led
May 29, 2008, hereby incorporated by reference.

FIELD OF THE INVENTION

This invention relates to shared multi-node storage sys
tems, and more particularly to coherent caching of objects in
a shared, global ?ash memory.

BACKGROUND OF THE INVENTION

Demand for computer disk storage has increased sharply in
the last decade. Computer hard-disk technology and the
resulting storage densities have grown rapidly. Despite appli
cation-program bloat, a substantial increase in web sites and
their storage requirements, and wide use of large multimedia
?les, disk-drive storage densities have been able to keep up.
Disk performance, however, has not been able to keep up.
Access time and rotational speed of disks, key performance
parameters in many applications, have only improved incre
mentally in the last 10 years.
Web sites on the Internet may store vast amounts of data,

and large web server farms may host many web sites. Storage
Area Networks (SANs) are widely used as a centralized data
store. Another widespread storage technology is Network
Attached Storage (NAS). These disk-based technologies are
now widely deployed but consume substantial amounts of
power and can become a central-resource bottleneck. The
recent rise in energy costs makes further expansion of these
disk-based server farms undesirable. Newer, lower-power
technologies are desirable.

FIG. 1 highlights a prior-art bottleneck problem with a
distributed web-based database server. A large number of
users access data in database 16 through servers 12 on web 10.
Web 10 can be the Internet, a local Intranet, or other network.
As the number of users accessing database 16 increases,
additional servers 12 may be added to handle the increased
workload. However, database 16 is accessible only through
database server 14. The many requests to read or write data in
database 16 must funnel through database server 14, creating
a bottleneck that can limit performance.

FIG. 2 highlights a coherency problem when a database is
replicated to reduce bottlenecks. Replicating database 16 by
creating a second database 16' that is accessible through sec
ond database server 14' can reduce the bottleneck problem by
servicing read queries. However, a new coherency problem is
created with any updates to the database. One user may write
a data record on database 16, while a second user reads a copy
of that same record on second database 16'. Does the second
user read the old record or the new record? How does the copy
of the record on second database 16' get updated? Complex
distributed database software or a sophisticated scalable clus

20

25

30

35

40

45

50

55

60

65

2
tered hardware platform is needed to ensure coherency of
replicated data accessible by multiple servers.
Adding second database 16' increases the power consump

tion, since a second set of disks must be rotated and cooled.
Operating the motors to physically spin the hard disks and run
fans and air conditioners to cool them requires a substantially
large amount of power.

It has been estimated (by J. Koomey of Stanford Univer
sity) that aggregate electricity use for servers doubled from
2000 to 2005 both in the US. and worldwide. Total power for
servers and the required auxiliary infrastructure represented
about 1.2% of total US electricity consumption in 2005. As
the Internet and its data storage requirements seem to increase
exponentially, these power costs will ominously increase.

Flash memory has replaced ?oppy disks for personal data
transport. Many small key-chain ?ash devices are available
that can each store a few GB of data. Flash storage may also
be used for data backup and some other specialized applica
tions. Flash memory uses much less power than rotating hard
disks, but the different interfacing requirements of ?ash have
limited its use in large server farms. The slow write time of
?ash memory complicates the coherency problem of distrib
uted databases.
What is desired is a large storage system that uses ?ash

memory rather than hard disks to reduce power consumption.
A ?ash memory system with many nodes that acts as a global
yet shared address space is desirable. A global, shared ?ash
memory spread across many nodes that can coherently share
objects is desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 highlights a prior-art bottleneck problem with a
web-based database server.

FIG. 2 highlights a coherency problem when a database is
replicated to reduce bottlenecks.

FIG. 3 shows a global, shared ?ash memory that appears to
be a single global address space to multiple servers connected
to a Sharing Data Fabric (SDF).

FIG. 4 shows a hardware node in a global, shared ?ash
memory system.

FIG. 5 is a layer diagram of software and hardware layers
in a ?ash memory system using a shared data fabric to enable
global sharing of a distributed ?ash memory.

FIG. 6 is a transaction diagram of services and interfaces to
a shared data fabric.

FIG. 7 shows permanent objects in ?ash memory being
copied to DRAM caches on multiple nodes.

FIG. 8 shows an action node requesting an object from a
home node that fetches a modi?ed object on a sharing node
using transaction tables and an object directory.

FIG. 9 is a storage ?ow model of an action node requesting
an object from ?ash memory at a home node.

FIG. 10 is a storage ?ow model of an action node request
ing an object from ?ash memory at a home node using an
asynchronous SDF thread at the action node.

FIG. 11 is a snapshot state diagram of a compute node that
can act as an action, home, or sharing node.

FIG. 12 shows a hit in the object cache of the action node.
FIG. 13 shows a get operation that misses in the object

cache of the action node, and fetches the object from ?ash
memory of the home node.

FIG. 14 shows a get operation that misses in the object
cache of the action node, and fetches a modi?ed copy of the
object from a third-party node.

US 8,732,386 B2
3

FIG. 15 shows a get operation that misses in the object
cache of the action node, and directly fetches a modi?ed copy
of the object from a third-party node.

FIG. 16 shows a lock operation.

DETAILED DESCRIPTION

The present invention relates to an improvement in global,
shared ?ash memory systems. The following description is
presented to enable one of ordinary skill in the art to make and
use the invention as provided in the context of a particular
application and its requirements. Various modi?cations to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles de?ned herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended to be limited to the particular embodi
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features herein
disclosed.

The inventors have realized that power consumption can be
dramatically reduced by replacing rotating hard disks with
?ash memory. The ?ash memory can be distributed across
many physical nodes, and each node can have a processor that
can process user requests and system-management threads.

Dynamic-random-access memory (DRAM) on each of the
physical nodes can cache data or objects that are normally
stored in ?ash memory. Coherency among objects in ?ash and
in DRAM can be ensured by a Sharing Data Fabric (SDF)
middleware layer. SDF includes an interface for communica
tions between high-level programs and lower-level hardware
controllers and their software and ?rmware drivers. SDF is
accessible by high-level application programs using an appli
cations-programming interface (API). Communication
between nodes to ensure coherency is performed by SDF
threads.

The DRAM cache may hold copies of objects stored in the
local node’s ?ash memory, or copies of ?ash objects stored in
another node’s ?ash memory. Global caching is achieved by
the SDF, which enables the local DRAM cache to store copies
of objects from other nodes. Objects can reside anywhere in a
shared, global address space. The SDF copies objects to
DRAM caches on any node while ensuring consistency.

This distributed caching of ?ash is extremely useful since
a process such as a web server running on one node’s proces

sor may access data stored on any of the nodes. The system
can be scaled up by adding nodes. Normally, adding nodes
slows a system down, since bottlenecks may occur to data
stored in just one location on a remote node, such as shown on
FIG. 1. However, using SDF, data or objects may be cached
on one or more nodes, allowing multiple processors to access
the same data. Coherency of the cached objects is important
to prevent data corruption.

FIG. 3 shows a global, shared ?ash memory that appears to
be a single global address space to multiple servers connected
to a sharing data fabric (SDF). Central Processing Units
(CPUs) or processors 18, 18' can execute programs such as
server applications to process requests that arrive over a net
work such as the Intemet. Each of processors 18 has a cache
of DRAM 22 that contain local copies of objects. These local
copies in DRAM 22 are accessed by processors 18 in
response to requests from external users.

While DRAM 22, 22' stores transient copies of objects, the
objects are more permanently stored in ?ash memory 24, 24'.
Objects remain in ?ash memory 24, 24' and are copied to
caches in DRAM 22, 22' in response to access requests by
programs running on processors 18, 18'.

20

25

30

35

40

45

50

55

60

65

4
Sharing data fabric (SDF) 20 is a middleware layer that

includes SDF threads running on processors 18, 18', andAPIs
and tables of data. A physical interconnect such as an Ethernet
or In?niBand® fabric connect physical nodes together.
Object copies are transferred across the physical interconnect
by SDF 20 from ?ash memory 24, 24' to cache DRAM 22, 22',
and among DRAM 22, 22' caches as needed to ensure coher
ency of object copies.

Flash memory 24, 24' can be physically located on many
nodes, such as having one ?ash memory 24 for each processor
18, or in other arrangements. SDF 20 makes all the objects
stored in ?ash memory 24, 24' appear to be stored in a global
address space, even though the global address spaced is
shared among many processors 18, 18'. Thus ?ash memory
24, 24' together appear to be one global, shared ?ash memory
26 via SDF 20.

FIG. 4 shows a hardware node in a global, shared ?ash
memory system. A ?ash memory system has multiple nodes
such as shown in FIG. 4. The multiple nodes are connected
together by a high-speed interconnect such as an Ethernet or
In?niBand. One or more links in this high-speed interconnect
connect to Network Interface Controller (N IC) 3 6 on the node
shown in FIG. 4.

Processor 18 executes application programs, threads, and
other routines and accesses a local memory that stores pro
gram code and data, such as DRAM 22. DRAM 22 also acts
as a DRAM cache of objects in the global, shared ?ash
memory.

Processor 18 also connects to switch 30. Switch 30 may be
a PCI EXPRESS switch. Switch 30 allows processor 18 to
communicate with other nodes through NIC 36 to send and
receive object copies and coherency commands. Flash mod
ules 34 contain arrays of ?ash memory that store permanent
objects. Flash modules 34 are accessed by processor 18
through switch 30.

FIG. 5 is a layer diagram of software and hardware layers
in a ?ash memory system using a shared data fabric to enable
global sharing of a distributed ?ash memory. Sharing data
fabric services 116 include API’s that application programs
122 or networked services 118 can use to access objects and
control attributes of the objects. Sharing data fabric services
116 are the API’ s that communicate with routines and threads
in sharing data fabric 112 that provide a uni?ed shared data
access of objects that are permanently stores in ?ash memory
102, and may maintain cached copies in DRAM in compute
nodes 114.
Compute nodes 114 are compute nodes, such as node 100

shown in FIG. 4, with processors, DRAM caches of objects,
and interconnect. These compute nodes may be constructed
from commodity parts, such as commodity processors, inter
connect switches and controllers, and DRAM memory mod
ules.

Sharing data fabric services 116 allow application pro
grams 122 and networked services 118 to control policies and
attributes of objects by executing routines and launching
threads of sharing data fabric 112 that are executed on com
pute nodes 114. The exact location of objects within ?ash
memory 102 is transparent to application programs 122 and
networked services 118 since sharing data fabric 112 copies
objects from ?ash memory 102 to DRAM caches in compute
nodes 114 and may obtain a copy from any location in ?ash
memory 102 that has a valid copy of the object. Objects may
be replicated to make back-up copies in ?ash memory 102.

Sharing data fabric 112 performs consistency and coher
ency operations such as ?ushing modi?ed objects in a DRAM
cache to copy back and update the permanent object in ?ash
memory 102. Sharing data fabric 112 may also migrate ?ash

