×

Mission prioritization and work order arrangement for unmanned aerial vehicles and remotely-piloted vehicles

  • US 10,043,397 B2
  • Filed: 02/01/2016
  • Issued: 08/07/2018
  • Est. Priority Date: 02/01/2015
  • Status: Active Grant
First Claim
Patent Images

1. A method, comprising:

  • ingesting, as input data, weather information, mission-specific flight parameters for unmanned aircraft, and operational rules for the unmanned aircraft, the weather information including at least one of current weather data, historical weather data, predicted weather data, and forecasted weather data for a specific geographic area, the mission-specific flight parameters defining flight plans for the unmanned aircraft in the specific geographic area and one or more work orders for the unmanned aircraft that include constraints and variables affecting satisfaction of the constraints, and the operational rules at least relating to mission performance;

    analyzing the input data in a plurality of data processing modules within a computing environment in which the plurality of data processing modules are executed in conjunction with at least one processor, the data processing modules configured to perform a mission priority assessment for the unmanned aircraft relative to the weather information and the mission-specific flight parameters, by applying a constraint satisfaction analysis to

         1) determine a significance of each variable to the one or more work orders at least from computing one or more mission risk probabilities in a weather-based statistical analysis,

         2) assign weights to each constraint, based on the significance of each variable to the one or more work orders,

         3) adjust the weighted constraints by continually learning the significance of each variable from one or more factors affecting particular weather conditions in the weather-based statistical analysis for the performance of the one or more work orders, and

         4) prioritize flight plans for each work order based on the weighted constraints, and comparing the constraint satisfaction analysis with the operational rules to evaluate a flight condition of the unmanned aircraft for mission performance; and

    generating, as output data, one or more of a mission compliance status confirming or denying compliance with the operational rules for the mission performance, and an operational instruction comprised of an arrangement of the work orders for the unmanned aircraft according to the prioritized flight plans.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×